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DISCLAIMER 
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necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 
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ABSTRACf 

Approximate solutions are presented for absorption of water into porous spherical, 

cylindrical, and slab-like blocks whose characteristic curves are of the van Genuchten 

type. The solutions are compared to numerical simulations of absorption into blocks 

of Topopah Spring tuff from the site of the proposed nuclear waste repository at Yucca 

Mountain, Nevada. Guided by these results, a scaling law, based on the ratio of sur

face area to volume, is then proposed for predicting the rate of absorption into 

irregularly-shaped blocks. This scaling law is tested against a numerical simulation of 

absorption into an irregularly-shaped two-dimensional polygonal block, and is shown 

to be a good approximation. 

Submitted (7 I 14/89) .to Water Resources Research 
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Introduction 

Yucca Mountain in Nevada is currently being considered for the location of an 

underground repository for the disposal of high-level radioactive waste [U.S. DOE, 

1986]. The proposed repository would be constructed in the unsaturated zone above 

the water table, in a formation consisting of highly fractured volcanic tuff. As part of 

the process of characterizing the site for the purposes of determining its suitability for 

the repository, it is necessary to develop models for studying the flow of groundwater 

in a fractured rock mass with low (but nonzero) matrix permeability. The complex 

geology of the site, along with other factors, make a purely analytical treatment 

impractical, while numerical analysis is constrained by limitations of computational 

time. Hence it is desirable to combine both approaches in order to take advantage of 

the benefits of each. One of the processes which will be a factor. in the overall evalua

tion of the site is that of absorption of water from the fracture network into a matrix 

block. In this paper, we study the effect of the shape and size of a matrix block on 

the rate at which it saturates. 

Absorption of water into. a porous block can be described by the following equa

tion [Bear, 1988]: 

div[~k, ('If) grad 'If] = ~~ , (1) 

where 'If is the potential of the water in the porous medium, S is the fraction of the 

pore space that is filled with liquid, and k, is a dimensionless relative permeability 

function. The parameter ~ is equal to k IJ.L.<I>, where k is the permeability under condi- . 

. tions of full· saturation, Jl is the viscosity of the water, and <1> is the porosity of the 

medium. Equation (1) embodies the principle of conservation of mass for the liquid 

phase, along with a modified form of Darcy's law to relate the volumetric flux to the 

.. 
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potential gradient. 

Each different porous medium has its own characteristic functions that describe k, 

and S as functions of 'Jf. One commonly used form of the characteristic equations is 

that of van Genuchten [1980]: 

(2) 

(3) 

where a is a parameter that has dimensions of 1/Pressure, and m and n are dimension-

less parameters that are related by m = 1- lin, n > 1. A more detailed discussion of 

these characteristic curves is given by van Genuchten [1980], and Zimmerman and 

B?Jdvarsson [1989a]. Equations (1-3) assume constant porosity, no hysteresis, and an 

infinitely mobile air phase which is always at atmospheric pressure. The itnplications 

and limitations of these standard assumptions are discussed by Hillel [1980] and Bear 

[1988]. An additional assumption implicit in Equation (1) is the neglect of gravity 

forces, which otherwise would contribute an additional term pgz to the potential, 

where p is the density of water, g is the gravitational acceleration, and z is the vertical 

coordinate. Discussions of the relative magnitude of the effect of gravitational forces 

compared to that of capillary forces have been given by Parlange [1972], and Lock

ington et al. [1989]. Roughly speaking, gravity can be ignored if pgL <max lwl. 

where L is a characteristic vertical dimension of the block, and max lwl is the charac

teristic pressure potential appearing in the problem. This point will be discussed 

further when specific cases are treated. 



Approximate Solutions for Slabs, Cylinders and Spheres 

Many approximate methods of analysis have been brought to bear on the problem 

of one-dimensional absorption of water into an unsaturated porous medium. A review 

and comparison of some of these approaches is given by Brutsaert [1976]. Most of 

these methods make use of the fact that the one-dimensional Richard's equation for the 

potential 'I' admits a similarity solution of the form 'Jf(X, t) = 'Jf(T}), where 11 = x t..fi. 

As pointed out by Philip [1955], transforming the equation into the new variable 11 

will always reduce it from a partial to an ordinary differential equation, regardless of 

the specific form of the capillary pressure and relative permeability curves. Unfor

tunately, with the exception of certain problems such as line or point sources in an 

infinite media, the similarity approach· does not work for most other. geometries. This 

is because of the fact that for the problem of flow into an infinite medium, the 

"natural length scale" (i.e., the penetration distance of the wetting front) grows with 

..fi, and this growth is accounted for by the similarity variable. For flow into finite 

size blocks, however, there is always a natural length scale defined by the geometry of 

the problem. 

As exact analytical solutions are extremely difficult to obtain for one-dimensional 

flow, one cannot expect to be able to derive them for more complicated geometries. 

However, other methods that do not rely upon the similarity transformation might be 

expected to provide approximate solutions to such problems. Zimmerman and 

B~dvarsson [1989a] used an integral method approach for one:...dimensional absorption 

which does not assume a similarity solution at the outset, although it does lead to a 

solution in terms of x IW for this particular problem. For a semi-infinite medium, this 

method consists of using a trial saturation profile that depends on x as well as on a 

penetration parameter 8, where 8 has an implicit dependence on t. Inserting the· 

profile into the governing Richard's equation, and integrating the equation in the space 

variable from x=O out to x=oo, leads to a differential equation for 8 as a function oft. 
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Integration of this ordinary differential equation provides the approximate solution of 

the problem. This method can be extended to geometries such as slabs, spheres, and 

cylinders with only slight modification of the methodology that was used for the semi

infinite case. The main idea behind this approach is to use a saturation profile similar 

to the 1-d solution for semi-infinte media at small times, until the wetting front reaches 

the center of the block. At this point the finite size of the block has made itself felt, 

and so for later times, the assumed saturation profiles must be chosen so as to reflect 

this fact. It will be seen that even if extremely simple trial profiles are chosen, the 

method leads to reasonably accurate predictions, particularly with respect to the cumu-

lative flux, which is often the most important parameter. 

Slabs 

Consider the problem of absorption into a thin slab of thickness 2a • with the x 

coordinate system defined so that x = 0 and x = 2a at the outer boundaries of the slab. 

Both surfaces of the slab are assumed to be fully saturated and at zero potential, 

whereas the slab is initially partially saturated at some potential 'JI;< 0. By the sym

metry of the problem, the midplane is a no-flow boundary. Neglecting gravity and end 

effects, the problem can be formulated as follows: 

'Jf(X=O,t)='Jiw =0, 

~(x=a.t) = 0, 
dX 

'JI(X, t=O) = 'JI; , 

(4) 

(5) 

(6) 

(7) 

: ~~ 

?·, ,, 

""-' ··~ 
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along with Equations (2) and (3) to describe the hydraulic properties of the medium. 

For sufficiently small periods of time, the wetting front will not have reached the mid

plane, and this problem is identical to that of 1-d flow into a semi-infinite medium. 

For this range of times, the following approximate solution developed by Zimmerman 

and B'bdvarsson [1989a] can be used: 

(8a) 

S = Si for X > a , (8b) 

where (9) 

The time t* at which the front reaches the midplane is· found by setting a = a and 

solving for t* : 

cxna2[m (Ss -S,)]lln 
t*=-------

2(n+1)f3(Ss -Si)-m 
(10) 

For times greater than t* , the simplest profile to use is 

(11) 

where Sc is the (unknown) saturation at the center of the slab. This particular trial 

profile has the xn dependence near the saturated boundary that is required by the van 
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Genuchten equations [Zimmerman and B'bdvarsson 1989a]. It does not satisfy the 

no-flow boundary condition (6) at the midplane; however, it was shown by Zimmer

man and B'bdvarsson [1989b] for the analogous saturated-flow problem that this 

discrepancy is of little importance. One can imagine a small tail on the saturation 

profile which adjusts the slope to zero at x =a , while being so localized that it contri

butes insignificantly to the overall mass balance . 

The saturation Sc now plays a role analogous to that of B, in that it is an open 

parameter whose evolution is found by integrating the governing equation over the 

spatial variable, using the assumed saturation profile (ll). Integration of the left-hand 

side of Equation ( 4) yields 

(12) 

The right-hand side of Equation (4) integrates out to 

f
a as d fa a dSc 
~dx = -d [Ss -(S8 -Sc)(xla)n] dx = --

0 ot t 0 n + 1 dt · 
(13) 

The evolution of Sc is therefore governed by the ordinary differential equation 

(14) 
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The initial condition for this ODE is that Sc must equal S; when t= t*. The solution 

to Equation (14) that satisfies this condition is (recall that m = 1-lln) 

m (n + 1)Ak ('•' )[t - t*] 
.., r 't'w = [(S -S·)m- (S -S )m]. 

aa2[m(Ss-S,)]lln s ' s c 
(15) 

Note that in Equation (15), the relative permeability is evaluated at 'lf='lfw =0, 

which is the potential at the boundary of the slab. According to this solution, the 

decrease of k, within the block due to the negative potential does not appreciably 

affect the rate of influx. This was found by Zimmerman and B'Odvarsson [ 1989a] to be 

true for one-dimensional absorption into a semi-infinite region. The resistance to flow 

in that problem apparently occurs mainly near the imbibition surface, so to speak. 

When water is being absorbed into a finite size block such as the thin slab~ the low 

relative permeability at the center seems to significantly retard the absorption process 

after the wetting front reaches the symmetry plane at the center of the slab. We have 

found, by comparison with numerical simulations (see below), that this effect can be 

partially accounted for by using a crude form of geometric averaging of k, in Equation 

(15), in place of k,('lfw). If we first take a "geometric average" over space at t =0, 

from x =0 (where 'lf=O) out to x =a (where 'lf='lf;). the effective relative permeabil

ity at t=O is [k,('lf;)] 112, since k,(O)= 1. At the end of the absorption process, 'lf=O 

throughout the block, and so the effective relative permeability is .1. Averaging again 

over time leads to an effective k, value for the entire process of 

f, = [k,('lf;)]l/4. (16) 

Although this averaging scheme is very simplistic, it is more accurate (see below) than 
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merely using k, ('lfw) in Equation (15). 

An interesting feature of this solution is that it predicts a finite time t1 at which 

the absorption process is complete. This is in contrast to .heat or solute diffusion into 

a finite-size block, for which the flux tails off exponentially [Crank, 1975]. The time 

at which absorption is complete is found by setting Sc =Ss in Equation (15), and recal

ling that m =(n-1)/n, which yields 

(17) 

As would be predicted from dimensional analysis, the total time needed for complete 

absorption is proportional to a 2. If the dimensionless terms in Equati~n (17) are 

neglected, we see that the time needed for full absorption is roughly on the order of 

aa21~ = CIJ.U!>a 21k. Actually, it is difficult to determine from numerical simulations 

whether the absorption process ends abruptly, or asymptotically; nevertheless, the 

simulations discussed below show that expression (17) gives a reasonable estimation of 

the time at which the slab essentially reaches full saturation. 

The total volume of water absorbed by the slab (per unit area) up to any time t is 

found by integrating that part of the saturation profile over and above the initial satura

tion Si. For t < t* the saturation profile is given by Equation (8), and so 

a S 
Q (t) = 2<1> j[S (x ,t)-S;] dx = 2<!>(Ss -Si) j[1 - (x /o)n] dx 

0 0 
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= 
2n<)>(Ss -S;)8(t) 

n+l 
for t <t* , (18) 

where 8(t) is given by Equation (9). Note that since 8 grows at a rate proportional to 

..fi, Q also grows at this same rate. For t > t* , the saturation profile is given by Equa

tion (11), and so 

a a 

Q (t) = 2<1> f[S(x,t)-S;] dx = 2<1> J {[Ss -S;]- [Ss -Sc(t)](xla)n} dx 
0 0 

= 2alh[(s -S·)- Ss-Sc(t)] for t>t*, 
"' s ' n+1 

(19) 

where Sc (t) is given by Equation (15). 

Cylinders and Spheres 

Absorption into spheres or long cylinders (neglecting end effects) can be analyzed 

simultaneously, since the governing equations for both of these problems can be writ

ten in the following form: 

_1-~[R d-1~] _ as 
rd-1 or pkr ('Jf)r or - ot • (20) 

'Jf(r = a , t) = 0 , (21) 

¥r<r=O,t)=O, (22) 
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'lf(r, t =0) = 'l'i , (23) 

where the dimension parameter d equals 2 for the cylinder and 3 for the sphere. 

Actually, the slab problem could also have been treated as .a special case of Equation 

(20), by setting d = 1 and re-orienting the x axis, but for clarity the slab solution was 

developed in its own right. 

For times small enough so that the front has .not ·reached the center of the ·block, 

the saturation profile (8) can again be used, modified so as to conform with the fact 

that r decreases away from the boundary: 

(24a) 

S = Si for 0 < T < T0 , (24b) 

where r = r 0 is the location of the wetting front. If Equation (20) is multiplied 

through by rd- 1, and integrated from r =0 tor =a, the left-hand side becomes (ignor

ing the spurious flux emanating from the tail of the profile) 

@ d -1 [ (S - S.) ] lin a . s , 

a(a -r0 ) m (Ss -S,) 
(25) 

where we have used the fact that k, ('lfw = 0) = 1. The right-hand side integrates out to 
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(26) 

If we put a -r0 =o and E=O/a and equate (25) and (26), the result can be written as 

__ f3_(S_s_-_S_i)_-m __ = -[-1-E _ (d-1) E2 + (d-2) e3l ~ . 
cxna 2[m(Ss -S,)] 11n n+l n+2 n+3 J dt 

(27) 

Now we separate the variables in Equation (27) and integrate, using the initial condi

tion that E = 0 when t = 0: 

2(n+l)f3(Ss -Si )-m t = 2[
1 

_ 2(d-l)(n+l) + (d-2)(n+l) 21 
ana 2[m (Ss -S,)] 11n · E 3(n+2) E 2(n+3) E J · (28

) 

Equation (28) expresses the normalized penetration depth E= o/a as art implicit func

tion of time. Aside from the bracketed term on the right, Equation (28) is identical to 

Equation (9) for linear flow. For .. small" .times, when E< 1, the bracketed term is 

small, and so all three solutions (sphere, cylinder and slab) asymptotically coincide. 

The correction factor is always less than one, for all allowable values of n and d, 

which shows that a spherical or cylindrical block saturates faster than a slab of similar 

overall thickness. This reflects the fact that as the wetting ,front penetrates into .the 

block, the cross-sectional area available to flow decreases as rd-l, while the unsa

turated volume remaining ahead of the front decreases at a faster rate, rd. The time at 

which the front reaches the center of the block is found by setting E= 1, which yields 

. [ 2(d-l)(n+1) (d-2)(n+1)] t* [cylmder, sphere] = 1 - + t* [slab] . 
3(n+2) 2(n+3) 

(29) 
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As n spans its allowable range from 1 to oo, the bracketed term in Equation (29) varies 

from 0.555 to 0.333 for a cylinder, and from 0.361 to 0.167 for a sphere. 

After the front has reached the center of the block, a convenient form for the 

saturation profile can be found by analogy with Equations (8a), (11), and (24a): 

(30) 

Following the previously described procedure, we multiply Equation (20) through by 

rd-1 and integrate from r = 0 to r =a. · The integral of the left-hand "flux" term fol

lows immediately from Equation (25), with r0 replaced by 0 and S; replaced by Sc: 

(31) 

The right-hand side of Equation (20) integrates out to 

fa as rd-1 dr = Iafr{s - (S -s >[a -r]n}rd-1 dr ot or s s c a 
0 0 

= [ (d-1)!ad ] dSc 
(n+1)(n+2) ... (n+d) dt ' (32) 

where (d-1)! = (d-1)(d-2) ... (1) is the factorial function. Equating (31) and (32) leads 

to the following ODE for Sc as a function of time: 
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Pk,('lfw)(n+l)(n+2) ... (n+d) [ (Ss -Sc) ] lin dSc 

cxa 2(d-1)! m(Ss -S,) = dt · (33) 

Following the results for absorption into a slab, at this point we replace k, ('lfw) with 

k,. = [kr ('l'i )] 114• The integral of Equation (33) that satisfies the initial condition 

Sc (t*) = Si is 

(34) 

Equation (34) applies not only for cylinders and spheres, with d = 2 or 3, but also 

reproduces Equation (15) for the slab if d is set equal to 1. (Note that most equations 

in this section are not written in a form that holds for n = 1). The geometry-dependant 

term (n+l)(n+2) ... (n+d)/(d-1)! increases rapidly with d for the relevant values of 

d = 1-3, so that a sphere reaches full saturation much faster than a cylinder of equal 

diameter, which in turn reaches full saturation faster than a slab of the same ""diame-

ter". 

As was the case for the slab solution, the cumulative volumetric influx can be 

found by integrating the saturation profiles (24) and (30), in conjunction with Equa

tions (28) and (34) which describe the evolution of the parameters o and Sc with time. 

_These calculations are straightforward, and similar. to Equations (18) and (19). for .the 

slab, so for considerations of space only the results will be given here: 

Q (t) dn (2d-3)n 2 (d-2)n 3 
--=--£- £ + £ 

Qoo n+l n+2 n+3 
for t <t* , (35) 

Q(t) [Ss-scl dl 
Qoo = 1 - Ss - Si j (n+1) ... (n+d) 

for t > t* , (36) 
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where £(t) is given by Equation (28), Sc(t) is given by Equation (34), and Qoo is the 

ultimate value of Q, i.e., Q (t~oo). 

Comparison with Numerical Simulations 

In order to determine the accuracies of the three approximate solutions, we have 

compared their predictions to the results of numerical simulations. The simulations 

were carried out using TOUGH [Pruess , 1987], a program that uses integrated-finite

differences, and which is known to accurately model three-dimensional flow of water 

and air in porous media. The physical parameters used in these simulations are those 

that have been estimated for the Topopah Spring unit at Yucca Mountain, Nevada, the 

proposed site of a high-level radioactive waste repository [U.S. DOE, 1986; Peters 

and Klavetter, 1988]. The Topopah Spring unit is a welded volcanic tuff with an 

estimated matrix permeability of 3.9 x w-18 m2, estimated matrix porosity of 14%, and 

estimated van Genuchten parameters of n =3.04, m =0.671,.Ss =0.984, S, =0.318, and 

a= 1.147 X w-5 Pa-1 [Rulon et al.' 1986]. 

The problems ·that were simulated correspond to Equations ( 4-7) for the slab, and 

Equations (20-23) for the sphere and cylinder. A value of a =0.20 m was used for 

each geometry, which roughly corresponds to the fracture spacings of 0.22 - 0.48 m 

that were estimated by Wang and Narasimhan [1985]. The blocks are initially at a 

uniform saturation of 0.6765, after which the outer boundaries of the blocks are 

saturated with water at zero potential (i.e., zero excess pressure). This initial satura

tion seems to be in the range that has been estimated [Niemi and B~dvarsson, 1988] 

for the Topopah Spring unit. These simulations, however, are intended mainly as a 

test of the approximate solutions, and not as predictions of actual processes at Yucca 

Mountain, for which more accurate physical property data would be needed. The 

· viscosity of water was taken to be 1 cp, or 0.001 kg/ms. In each case the block was 

divided into 20 grid blocks of equal volume. Sensitivity· studies, as well as previous 
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experience with TOUGH, have shown that for problems such as these, further 

refinement of the grid leads to improvements in accuracy of only a few percent, which 

for the present purposes is not necessary. Note that when implementing the approxi

mate solutions, kr('lfi)=0.061 when n =3.04 and si =0.6765, and so 

~ = [kr ('lfi )] 114 = 0.497. In order to facilitate comparison with the approximate solu

tions, the gravitational acceleration was set to zero in the simulations. 

The resulting saturation profiles from the approximate and numerical solutions for 

the slab, cylinder and sphere are shown in Figures 1-3. Note that the cylinder and 

sphere profiles are plotted against (rla)2 and (r/a)3, respectively, so that equal dis

tances along the abscissa represent equal pore volumes. In this way, the cumulative 

volumetric flux into the block is proportional to the area under the saturation curve. 

The cumulative volumetric liquid fluxes into the blocks are plotted in Figures 4:..6 as 

functions of a dimensionless time kt /cx~<j)a 2 (a more general non-dimensionalization 

will be introduced below). The approximate solutions are seen to have fair accuracy 

in predicting the saturation profiles and the cumulative fluxes. The greatest 

discrepancy for the slab solution occurs near the time at which the presence of the 

"impermeable" boundary at the center of the block has begun to retard the absorption 

process. In the numerical solution this effect is seen to occur gradually, but in the 

approximate solution it occurs abruptly, and somewhat too late. Hence the instantane

ous flux is discontinous at t = t* in the approximate solutions, although it is smoothly 

varying in the numerical solutions. The approximate solutions do not properly account 

for the effect of the cross-sectional areas normal to the flow dropping off to zero as 

r ~ 0 in the cylinder and sphere problems, and so the cumulative infiltration is 

increasingly overpredicted as time increases. Figures 4-6 show that the slab needs 

about twice as much time to reach full saturation as does the cylinder, and about three 

times as much time as does the sphere. 
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For matrix blocks of the size that are found at Yucca Mountain, it is easy to show 

that gravitational effects are small during the absorption process, and so their neglect 

was justified. Consider first the spherical block of radius a. An order-of-magnitude 

estimate of the gravitational potential would be pga, while the order-of-magnitude of 

the pressure potential is max l\jfl = l'lfi I. Hence the ratio of gravitational forces to 

capillary forces can be estimated as pga !l'lfi I. In the problem simulated above, 

a =0.2m and 'l'i = -1 bar= -1.0 x lOS kg/ms2. Since p = 1000 kg/m3, and g =9.8 rn!s2, 

the ratio of the gravitational to capillary forces is on the order of 0.02. Blocks that are 

"infinitely" long in one direction, such as the one shown in Figure 8, would be used 

for modeling purposes only if the long axis was oriented horizontally, so that the chac

teristic vertical dimension would still be small enough so as not to violate the condi

tion pgL < l'lfi I. Since the magnitude of the initial capillary pressures at Yucca. 

Mountain are thought to be at least as large as 1 bar [Peters and Klavetter, 1988], it is 

clear that gravity can safely be neglected in the analysis of absorption into matrix 

blocks. On a macroscopic scale, of course, gravity effects will be of major importance 

[Rulon et al., 1986]. 

Scaling Law for Irregularly-Shaped Blocks 

The approximate solutions that were derived for absorption into slabs, spheres, 

and cylinders were made possible by the fact that for these geometries, only one 

mathematical variable is effectively needed to describe the location of a point in the 

block. Even though flow in a cylinder or slab is physically three-dimensional, the 

symmetry of the problem reduces it to a mathematically one-dimensional problem. 

The problem was also simplified by the existence of appropriate coordinate systems 

(spherical and polar .cylindrical) ·that allowed the outer boundary of the block to be 

described by a single constant value of the mathematical variable, i.e. , r =a. For 

irregular blocks, such as the polygonal shapes that are formed by the intersection of 
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non-parallel fracture systems, the simplification allowed by these symmetries will not 

occur. Since approximate solutions analogous to those developed above are not 

obtainable for irregular blocks, it would be convenient if a rough rule-of-thumb could 

be developed to allow the rate of absorption into such blocks to be predicted without 

recourse to numerical simulation. 

For diffusion problems with constant diffusivity, scaling laws for irregularly

shaped blocks have been proposed by Barker [1985] and van Genuchten and Dalton 

[1986]. These rules were suggested by manipulations in the Laplace transform domain 

that are not applicable to the present nonlinear absorption problems. A simple scaling 

rule relating the cumulative influx to the ratio of volume V to surface area A can be 

devised, however, by the following considerations. First, note that as t ~ oo, the 

amount of water absorbed by a block must be proportional to its volume. In particu

lar, the final cumulative flux Qoo will equal V <!>(S8 -Si ), where <!> is the porosity and Si 

is the initial liquid saturation. For very small times, on the other hand, the problem 

will be identical to linear one-dimensional absorption, since the penetration depth of 

the wetting front will be small enough that the curvature of the surface will not have 

made itself felt. This fact is demonstrated rigorously for absorption into spheres and 

cylinders with constant diffusivity by Crank [1975], and also pertains for the approxi

mate solutions developed above. Hence for "small" times, Q =A ..Jt, and 

Q /Q oo =A ..Jt IV = ..Jt I(V /A ). We now make the assumption that for larger times, 

Q IQ 00 will continue to be a function of ..Jt I(V lA ), and that this function is the same 

for all geometries. To see if this is true for the three regular shapes analyzed above, 

we can replot the numerical results for the spherical, cylindrical, and slab-like blocks 

of Topopah Spring welded tuff, as a function of the appropriately normalized time. A 

convenient form for the normalized timet is suggested by Equation (10): 

(37) 

,.. 
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Note that V /A = a for a slab of half-thickness a, V lA = a 12 for a cylinder of radius 

a, and V /A = a /3 for a sphere of radius a. Figure 7 shows that the normalized cumu

lative absorption curves nearly coalesce into a single curve when plotted against nor

malized time. 

While the simulations shown in Figure 7 were all carried out under identical ini

tial conditions, the scaling law is much more general, since the dimensionless time 't in 

Equation (37) incorporates all of the van Genuchten parameters, as well as the initial 

saturation. As an illustration of this fact, we have also run simulations for absorption 

into a 0.2 m thick slab of Topopah Spring welded tuff under different initial satura

tions. Figure 8 shows the fractional uptake curves for initial saturations of 0.50, 0. 70, 

and 0.90, with equations (37) used to calculate the normalized time. Note that the 

three curves are almost exactly coincident, and so the scaling concept again shows 

itself to be very useful. 

Since the scaling law works reasonably well for the three shapes treated above, it 

is worthwhile to test its validity for the type of irregular blocks which are formed by 

the intersection of non-parallel sets of fractures. Figure 9 shows a two-dimensional . 

block that was chosen to have an "irregular" shape, in the sense that it does not 

appear slab-like or cylindrical, has both acute and obtuse angles, and has sides of vari

ous lengths. We have simulated absorption into this block with TOUGH [Pruess, 

1987], using the same physical properties and boundary/initial conditions as in the 

simulations described above for the slab, cylinder and sphere. The dotted lines denote 

the boundaries of the 109 grid blocks that were used in the simulation. The volume of 

this block per width W in the third dimension is l.OOW m3, its surface area is 

4.41 W m2, and so its characteristic length V lA is 0.227 m. The normalized cumulative 

absorption rate for this. block is plotted on Figure 7, where it is seen to lie extremely 

close to the curve for the cylinder. This suggests another rule-of-thumb, which would 

be to use the cylinder results for all two-dimensional prismatic blocks, and the sphere 
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results for ail blocks that are roughly of equal dimensions in each direction. Obvi

ously, whether or not any of the approximate solutions, or the scaling laws, would be 

used in a given problem depends on the accuracy required. For incorporation into 

double-porosity models, similar to that carried out by Neretnieks and Rasmuson [1984] 

for the related problem of radionuclide transport in fractured rock masses, it would 

mainly be necessary to distinguish between the different time scales at which various 

blocks become fully saturated. For these purposes it may well suffice to use one of -the 

approximate solutions developed above, along with the scaling law given by Equation 

(37). 

Conclusions 

Approximate solutions have been derived for the absorption of water into porous 

blocks of spherical, cylindrical, and slab-like geometries. The relative permeability 

and capillary pressure curves were assumed to be of the van Genuchten type. The 

solution for the slab was found in closed-form, while the cylinder and sphere solutions 

require a very modest amount of iteration to find the location of the wetting fronts. 

The cumulative volumes of absorbed water that were predicted by these solutions com

pared reasonably well with numerical simulations using parameters believed to be 

appropriate for the Topopah Spring welded tuff from Yucca Mountain, Nevada. The 

predicted saturation profiles are in general fairly accurate for times up until 

Q (t )IQ 00 :: 0.4, but lose accuracy as absorption proceeds. 

Based on the solutions for the three ''regular'' geometries, a scaling law was pro

posed that expresses the normalized cumulative influx Q (t )IQ oo as a function of a 

dimensionless time parameter that is proportional to At IV, where A is the surface area 

of the block and V is its volume. This scaling law brings the absorption curves for 

the sphere, cylinder and slab into much closer agreement than when they are simply 

plotted as functions of time. The conjecture was made that absorption into any non-
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pathological two (or three) dimensional block could be predicted by using the Q /Q_ -

curve for a cylinder (or sphere), and then scaling the time according to the above

mentioned V /A rule. This law was tested against numerical results for absorption into 

a highly irregularly-shaped polygonal two-dimensional block, with extremeley accurate 

results. These approximate solutions, extended to irregularly-shaped blocks via the 

scaling law, are intended to be used as "sink" terms for fracture-elements in numeri-

cal simulations of liquid flow through unsaturated fractured porous media. 
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Notation 

a radius of cylinder or sphere, half-thickness of slab [m] 

A surface area of block [m2] 

d dimension (1 for slab, 2 for cylinder, 3 for sphere) 

gravitational acceleration [mls2] 
'~ 

g 

k absolute permeability [m2] 

kr relative permeability 

f, "average" relative permeability 

L characteristic vertical dimension of block [m] 

m van Genuchten parameter,= 1-1/n 

n van Genuchten parameter for characteristic curves 

Q cumulative liquid flux [m3] 

Q_ ultimate cumulative liquid flux [m3] 

r radial coordinate for cylinder or sphere [m] 

ro radial location of wetting front [m] 

s liquid saturation 

Sc saturation at center of block 

S· I initial saturation 

sr residual liquid saturation 

ss saturation at zero potential 

t time since start of absorption [s] 

t* time when front reaches middle of block [s] '!\'' 

tf time when absorption is complete [s] 

X distance from outer face of slab [m] 

v volume of block [m3] 
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Greek letters 

a. van Genuchten parameter [ms2/kg] 

J3 hydraulic conductivity parameter, = k IJl<l> [m3s!kg] 

o penetration depth of wetting front [m] 

e normalized penetration depth, = O/a 

11 similarity variable, = x tfi 

Jl viscosity [kg/ms] 

p density of water [kgtm3] 

<1> porosity 

'I' potential [kg/ms2] 

'I'; initial potential [kg/ms2] 
... ,.,. 

' 
'l'w potential at outer boundary [kg/ms2] 

't dimensionless time, defined by Eq. (37) 

·.~· 
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Figure Captions 

Fig. 1. Saturation profiles for absorption into a thin slab of Topopah Spring welded 

volcanic tuff. Slab thickness is 0.4 m, the initial saturation is 0.6765, and the potential 

at the outer boundary is zero. Physical properties of the tuff are listed in the text. 

Fig. 2. Same as Figure 1, for a long cylinder of radius 0.2 m. 

Fig. 3. Same as Figure 2, for a sphere of radius 0.2 m. 

Fig. 4. Normalized cumulative liquid flux for slab absorption problem of Fig. 1. 

Fig. 5. Normalized cumulative liquid flux for cylinder absorption problem of Fig. 2. 

Fig. 6. Normalized cumulative liquid flux for sphere absorption problem of Fig. 3. 

Fig. 7. Normalized cumulative liquid flux for variously-shaped blocks of Topopah 

Spring welded tuff, calculated using TOUGH. Time is normalized according to Equa

tion (37). Irregular "block" is shown in Fig. 9. 

Fig. 8. Normalized cumulative liquid flux into a thin slab of Topopah Spring welded 

tuff, for different initial saturations. 

Fig. 9. Irregularly-shaped two-dimensional block used to test scaling law. Grid lines 

indicate the boundaries of the 109 blocks used in numerical simulation. 
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Fig. 1. Saturation profiles for absorption into a thin slab of Topopah Spring welded 

volcanic tuff. Slab thickness is 0.4 m, the initial saturation is 0.6765, and the potential 

at the outer boundary is zero. Physical properties of the tuff are listed in the text. 
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indicate the boundaries of the 109 blocks used in numerical simulation. 
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