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ABSTRACT 

The two-state, one-dimensional, spinless Fermi gas (Falicov

Kimball model) is studied exactly by numerical calculation and pertur-

bation theory. Rigorous results are presented for small interaction 

strength and (restricted) coherent and incoherent phase diagrams are cal

culated for two specific examples. The numerical calculations are extra

polated to provide a qualitative picture of the complete solution. The 

result includes a fractal structure in which the ground state changes 

discontinuously as a function of the parameters. 
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Study of the two-state one-dimensional spinless Fermi gas 

I. Introduction 

J. K. Freericks and L. M. Falicov 

Department of Physics, 
University of California, 

Berkeley, CA 94720, 

and 

Materials and Chemical Sciences Division, 
Lawrence Berkeley Laboratory, 

Berkeley, CA 94720. 

It is generally accepted that many properties of heavy-fermion systems and 

intermediate-valence compounds as well as the phenomena of metal-insulator transi

tions, itinerant magnetism, metallic crystallization, alloy formation, etc. result from the 

properties of strongly correlated electrons. There are, however, very few exact results 

available for correlated electronic systems and approximate methods are sometimes 

contradictory. In 1969, the Falicov-Kimball model1 was introduced as a model for 

metal-insulator transitions. It remains one of the simplest interacting fermion systems 

in which electron correlation effects may be studied exactly. Several rigorous results 

have already been obtained for the one-band spinless version of the Falicov-Kimball 

model: Brandt and Schmidt2 calculated upper and lower bounds for the ground-state 

energy in two dimensions; Kennedy and Lieb3 proved theorems on long-range order 

for arbitrary dimensions; Brandt and Mielsch4 obtained an exact solution in infinite 

dimensions; and Jedrzejewski et. al. 5 performed numerical studies .in two dimensions. 

In this contribution we present additional rigorous results and restricted phase diagrams 

for the one-dimensional Falicov-Kimball model at T= 0. 

The hamiltonian for the one-dimensional Falicov-Kimball model defined on a lat-

tice of N sites with periodic boundary conditions (PBC) is 
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N N 

H =- t L (c/cj+l + cAlcj) + u L c/cj wj (1) 
j=l j=l 

where c/ (cj) are fermionic creation (annihilation) operators for a spinless6 electron at 

site j , Wj is a classical variable that is 1 (0) if an ion occupies (does not occupy) the 

j th site of the lattice, t is the hopping integral between nearest neighbors, and U is 

the ion-electron on-site interaction. The first term in (1) is the kinetic energy of the 

itinerant electrons and the second term is the interaction between electrons and ions. 

The total electron number Ne = 'Lf=1 c/ cj and the total ion number Ni = 'Lf=1 Wj 

are both conserved quantities. 

The hamiltonian (1) for the Falicov-Kimball model has various physical interpre

tations. It was originally introduced to exaliline the mutual interaction of mobile d

electrons (our electrons) with localized f-electrons (our ions) in transition-metal 

oxides.1 It has recently been proposed as a model for crystalline formation3 - if the 

ion configuration { Wj } of the ground-state is periodic, then this model provides a 

mechanism for electron-induced crystalline order. It also describes a one-dimensional· 

binary alloy problem with the following map: occupied site ~ ion of type A; empty 

site ~ ion of type B; and U ~ UA- Un the difference in electron-ion site energy 

between ions of type A and type B. We finally note that the hamiltonian (1) is identi

cal to the one-dimensional tight-binding Schrtxlinger equation with an on-site potential 

that can assume two different values (0 and U). The tight-binding Schr5dinger equa

tion has been studied for random { Wj } by mathematicians and physicists 7 and has 

been investigated recently for aperiodic deterministic sequences. 8 

Since the electrons do not interact among themselves, the energy levels of (1) are 

determined by the eigenvalues of H and the ground-state energy of a particular ion 

configuration r = {Wj} is found by filling in the lowest Ne one-electron levels. We 

let Er(X, Ne) denote the ground-state energy for Ne electrons in the ion configuration 

r with X = U It (the hopping integral t determines the energy scale; all energies are 

• 
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measured in units of t ). Many-body effects enter into the problem by considering the 

ground state for Ni ions 

N 
E(X, Ne, Ni) = min{Er(X, Ne) I Ni=L Wi} 

j=l 

(2) 

determined by comparing the [N !/Ni !(N -Ni )!] ion configurations with fixed ion 

number. The minimization procedure in (2) determines the equivalence class of the 

ground-state ion configuration as a function of the interaction strength, the number of 

electrons and the number of ions. 

The hamiltonian exhibits two kinds of particle-hole symmetries3 - an ion 

occupied-empty site symmetry and an electron-hole symmetry. In the first case we 

consider the conjugate ion configuration r* defined by interchanging occupied and 

unoccupied sites in the configuration r (this corresponds to wi* = 1-Wj ). The ground 

states for these two configurations are related 

(3) 

for all X and N e . In the second case we use the unitary transformation c j ~ ( -1 )i c j 

and c / ~ ( -1 )i c / to relate electron eigenvalues with interaction X to corresponding 

hole eigenvalues with interaction (-X) yielding the result 

(4) 

These two symmetries are used to reduce the necessary parameter space in the calcula-

tion of the T= 0 phase diagrams. 

In the thermodynamic limit the number of lattice sites becomes infinite (N ~ oo) 

but the electron Pe = Ne/N and the ion Pi = Ni/N concentrations remain finite. The 

ground-state energy per lattice site is determined from n r (£) the density of states 

(DOS) 

(5) 
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where Ep is the Fermi level and 

for each ion configuration r. . The DOS is calculated from Green's function by 

n (E)=-..!.. Im lim G (E+iE) 
1t E-+0 

1 N 
G(E) = -· L GjCE) 

N . 1 
)= 

(6) 

(7a) 

(7b) 

where the local Green's function is defined by the matrix element G j (E) = 
<j 11/(E-H) lj>. A renormalized perturbation expansion (RPE)9 is used to determine 

the local Green's function exactly. The result9 

G ·(E)= -----
1
----

1 E -X Wi -ll/(E) -llj(E) 
(8) 

is expressed in terms of continued fractions 

llj(E) = _________ 1 ___ 1 _____ _ 

E-X Wj±l-
1 

E-X W·±2--------
1 E-X Wj±3-

(9) 

where the local self-energy is llj (E) = ll/(E) + llj(E ). 

The continued fractions in (9) are evaluated straightforwardly for any periodic 

configuration r since the variables Wi are then periodic and the fraction may be made 

finite. For example, the period-two case is analyzed by 

1 
ll0±(E) = ...... -------......-----

1 
E-X W 1 - -------

E - X W 0 - ll6(E) 

(10) 

which yields 

• 
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and, for the DOS 

1 I£-XW0 1 + I£-XW1 1 
n (E) = 27t Re --;::=======:;::=====;::=== 

".}-(£ -XW 0)(£ -XW 1)[£
2-X (W 0+W 1)£ +X 2W 0W 1-4] 

(12) 

In addition to the one-phase periodic configurations, we consider one physically 

relevant two-phase configuration called the segregated phase. The segregated phase is 

an incoherent mixture of the empty and full lattices with weights (1-pi) and Pi respec

tively. The segregated phase has the physical interpretation of the case where the ions 

clump together and do not form a periodic arrangement (crystallization model) or of 

the case where the ions of type A and the ions of type B are immiscible and separate 

(alloy model). The DOS is trivial for the segregated phase since it is a weighted linear 

combination 

(13) 

of the DOS for the empty and full lattices. 

The segregated phase is also important since it is expected to be the ground state 

in the limit IX 1---+ oo. In this limit the potential barrier is so large that the electrons 

are trapped between ion occupied-empty site boundaries. The dominant contribution to 

the ground-state energy is the kinetic energy of the electrons which is minimized by 

making the box as large as possible. This favors the segregated phase to be the 

ground state. However, at the point where the electrons completely fill the box 

(Pe = 1-pi for X---++ oo and Pe = Pi for X---+ -·oo) the Pauli exclusion principle 

requires the additional electrons to be placed above a large potential barrier. At this 

point a periodic arrangement of the ions may actually lower the ground-state energy. 

These physical ideas are summarized in what we may call the segregation principle: In 
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the limit IX I~ oo the segregated phase is the ground state for all values of the elec

tron concentration except the specific values Pe = 1-pi for X~+ oo, and Pe = Pi for 

X~- oo. We have found that principle to be true in all calculated cases and we 

expect it to hold for all values of Pe and Pi. 

In the following section we use perturbation theory to analyze the structure of the 

ground-state phase diagram near X= 0. In Sections ill and IV we examine in detail 

the cases with ionic densities of Pi = 112 and Pi = 113 respectively, and give complete 

phase diagrams for the segregated phase and all ionic configurations with periods less 

than 10 compatible with those Pi. We present our conclusions in the final section. 

II. Perturbative Analysis 

In the limit X < 1 we can perform a perturbative analysis of the hamiltonian (1) 

and determine the structure of the phase diagrams for small interaction strength. We 

only consider periodic structures to avoid the technical difficulties associated with 

aperiodic configurations. Suppose the configuration r(r) has period r; that is, 

Wj+r = Wi for all j. The Fourier coefficient W (21tn lr) is defined 

N o 2nnj r . 21tnj 1 -I 1 -I 

w (21tn ;, ) = - L e , wj = - L e , wj 
N 0 1 r 0 1 J= J= 

(14) 

for n = 0, 1, · · · , r-1. Straightforward Rayleigh-Schr5dinger perturbation theory 

through second-order, with the second term in (1) as the perturbation, yields the 

expression 

E r(r)(X ) - 2 . X • Pe --- SID1tPe + PePi 
1t 

x2 r-1 I W (21tn lr) 12 I sin1tn lr - sin1tpe I 
+- L logl . I+ O(X3) (15) 

81t n=1 sin1tn /r 1 sin1tn /r + sin1tpe 1 

for the ground-state energy of configuration r(r ). The minimization procedure (2) 

outlined above considers configurations with the same ion concentration at fixed 

•. 

• 
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electron concentration and interaction strength, so that the ground-state energy is 

degenerate up to first order. The second-order term has a logarithmic singularity at 

Pe = nlr with relative strength I W(21tnlr) 12
. The singularity indicates that perturba-

tion theory fails at these critical electron concentrations; by comparing the strength of 

the singularity for different configurations, the ground state can be determined in the 

region near Pe = nlr (and by continuity at Pe = nlr). 

In fact, if we . restrict the minimization in (2) to be only over periodic 

configurations, then for rational concentrations the ground-state configuration has the 

lowest allowed periodicity (this is expected from a Fermi-surface nesting argument: the 

state with the largest gap at the Fermi level is the ground state). More rigorously we 

prove the following theorem: 

Theorem 2.1: Given rational electron and ion concentrations 

Pe 
Pe =- • 

qe 

Pi 
P·=-

' qi 
(16) 

· with Pe relatively prime to qe and Pi relatively prime to qi, then the periodic 

configuration with the lowest energy has period Q = LCM (qe, qi ), where LCM stands 

for least common multiple. The proof is given in the AppendiX and includes an 

expression for the ion configuration r(Q) corresponding to the lowest-energy state. 

These lowest-energy configurations satisfy certain structural properties. Let l 

denote the length of the largest connected island of occupied sites in the· configuration 

r(Q) (e.g. the configuration :XXXOXOXXOO, . where X represents an ion and 0 

represents an empty site, corresponds to a given r(lO) and has 1 = 3), then a 

configuration in which only islands of length 1 and (1-1) appear is defined to have the 

uniform ion distribution property. For example, XXOXXOOO has the uniform ion 

distribution property but XXXOOXOO does not. The uniform empty-site distribution 

property is analogously defined. This characterization of the ground-state configuration 

in the limit X ---7 0 is summarized. in the following theorem: 
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Theorem 22: In the limit X~ 0 any periodic lowest-energy configuration with 

Pi S 112 has the uniform ion distribution property and any periodic lowest-energy 

configuration with pi ~ 112 has the uniform empty-site distribution property. The 

proof is given in the Appendix. 

The ground-state energy of the segregated phase also has a perturbative expansion 

about X = 0. A straightforward analysis using the DOS in equation (13) yields 

2 x2 P·O-p· > 
Eseg (X ,p ) =-- sin7tp + Xp P· -- '. 

1 + 0(X3) (17) 
e 7t e e I 47t sm1tpe 

-for the ground-state energy of the segregated phase which is valid in the two-phase, 

band overlap region o(X) < Pe < 1- o(X) where 

"'XX 
o(X) = [9(-X)pi + 9(X) (1-pi)] 

7t 
(18) 

and 9(X) is the unit step function. This expansion has a singularity in the limit X~ 0 

and Pe ~ 0 which indicates the segregated phase should be the ground state for low 

electron concentrations. 

The solution for the ground-state configuration of the one-dimensional Falicov

Kimball model is conveniently summarized in a coherent phase diagram. The ion con

centration is fixed at Pi = Pilqi and the ground-state configuration is plotted as a func

tion of the electron concentration and the interaction strength. We choose the segre

gated phase as the zero of the energy scale because of its physical relevance. We limit 

ourselves to the case Pi S 1/2 and Pe S 112 since the other cases can be obtained by 

application of the symmetries (3) and (4). The two theorems above indicate that in the 

limit X~ 0 the coherent phase diagram has a discontinuous, fractal structure, witli a 

different periodic ground-state configuration at each rational Pe. These configurations 

all satisfy the relevant uniform-distribution property and appear to be a regular transi

tion from the segregated phase at Pe ~ 0 to a period qi (2qi) state at Pe = 1/2 if qi is 

even (odd). The inclusion of aperiodic configurations is not expected to change this 



.. 

- 9-

general picture. Recent analysis8 indicates that some aperiodic configurations have 

gaps at rational numbers (where we expect the periodic configurations to be lower in 

energy) and at irrational numbers (where the aperiodic configurations may be lower in 

energy). Therefore, we conjecture that in the limit X--+ 0 the ground-state 

configuration changes, point by point, at every value of Pe and the coherent phase 

diagram has a regular (discontinuous) transition pattern from the segregated phase at 

Pe--+ 0 to a periodic phase at Pe = 1/2. We also conjecture that the relevant uniform

distribution property holds for each of the ground-state configurations. 

lll. The case Pi = 1/2 

In this section we examine in detail the half-full ion case and present our results 

in the form of phase diagrams. We restrict ourselves to the case Pe S: 1/2 by using the 

electron-hole symmetry (4); the phase diagram for the region Pe ~ 112 is determined 

by rotating the region Pe S: 112 by 180° about the point X = 0, Pe = 1/2. We further 

restrict ourselves to the case X ~ 0 by using the ion occupied-empty site symmetry 

(3); the phase diagram for the region X S: 0 is determined by reflecting the region 

X ;;:: 0 in a mirror plane along the X = 0 axis and applying the conjugation operation 

to the ion configurations (each configuration r with Pi = 1/2 is either self-conjugate 

r* = r or forms a conjugation pair with another Pi = 1/2 configuration). We finally 

restrict ourselves to consider only the segregated phase, all periodic phases with 

Pi= 1/2 and periods less than 9, and any incoherent mixture of these phases. These 

periodic phases are summarized in Table 1. The ground state energies are calculated 

exactly using the Green's function technique outlined in Section I. 

The coherent phase diagrams are determined by comparing the energy of each 

periodic phase with the energy of the segregated phase and plotting the lowest-energy 

state as a function of the electron concentration Pe and the interaction strength X. The 

results are presented in Figures 1-4 and exhibit the extremely rich structure of the 
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solutions of the model. We summarize these results with some observations: 

(A) The periodic ground-state theorem and both uniform-distribution properties 

hold in the region I X I < 1. 

(B) The alternating phase XO is the ground state at Pe = 112 for all values of X 

as stated by previous investigations. 2.3 

(C) The phase diagrams tend to simplify as the interaction strength increases 

indicating that many-body effects stabilize the system (this is a consequence of the 

segregation principle). 

(D) There is a trend for phases that disappear from the phase diagram as X 

increases to reappear as phase-islands at even larger values of X (e.g. the XXXOOO 

phase in Figs. 3 and 4 and the XXXXOOOO phase in Fig. 4). 

(E) Phase-islands of configurations not present at X = 0 may form at larger 

values of X (e.g. the XXOXXOOO phase in Fig. 4). 

(F) The uniform-distribution properties may not hold at finite values of X (the 

XXOXXOOO phase in Fig. 4 does not satisfy the uniform empty-site distribution pro

perty and its conjugate does not satisfy the uniform ion distribution property). 

(G) Some configurations are not the ground state for any value of X or Pe (e.g. 

the configurations XXXOXOOO and XXOXOXOO do not appear in Fig. 4). 

The incoherent phase diagrams are determined by choosing the minimal energy 

state, allowing for incoherent mixing10 of the Pi = 112 periodic phases with themselves 

and with the segregated phase (which is already an incoherent mixture of the Pi = 0 

and Pi = 1 phases). This is accomplished by constructing the convex hull of the 

ground-state energy curves for fixed X and assigning an incoherent phase mixture to 

each region where the convex hull is lower than the energy curves. The results are 

presented in Figures 5-8 where solid lines and shaded regions correspond to single 

phases, dashed lines correspond to two-phase mixtures and dotted lines correspond to 

• 
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more than two-phase mixtures (the points where vertical dotted lines pass through hor

izontal solid lines are the points of phase transitions). The numbers above the single 

phase lines identify the ground state according to the numbers in Table 1. The 

unshaded region below the dashed line is the region where the segregated phase is the 

ground state. The unshaded regions between a solid (or dashed) line and a solid line 

are the regions where an incoherent mixture of the two (or three) phases is the ground 

state. We make the following observations: 

(H) The incoherent phase diagrams are simpler than their single-phase counter

parts. The regions enclosing finite areas of single phases are drastically reduced. 

(I) The behavior in the limit IX I~ 0 appears to be the same as that predicted 

by perturbation theory for the coherent diagrams. 

(J) The secondary phase-islands that sometimes form at IX I > 0 either become 

single phase-lines (XXXOOO in Figs. 7 and 8) or vanish altogether (XXXXOOOO in 

Fig. 8). 

These incoherent phase diagrams are important to study for two reasons: first, 

they determine the ground state of a real system since any physical system organizes 

itself in an incoherent mixture of phases to minimize energy (if possible); second, 

they produce a better approximation to the complete phase diagram of the Falicov

Kimball model. This is because any incoherent mixture of phases can be reinterpreted 

as an aperiodic configuration in a coherent phase diagram. By using this reinterpreta

tion we strengthen the perturbation theory results of Section II to conjecture that the 

ground-state configuration is the segregated phase for a finite region 

[0 S Pe < p;nax(X )]; above this region the ground-state configuration changes point by 

point with Pe, and has a regular (discontinuous) transition from the segregated phase 

to a periodic phase at Pe = 112. Furthermore, for the case P; = 112 we must have 

p;nax(X) < 112 since the alternating state XO is the ground state2•3 at Pe = 112 for all 

X. 



- 12-

IV. The case Pi = 113 

We examine the one-third-full ion case as a representative of the general case 

because it does not have any extra symmetries. The electron-hole symmetry (4) allows 

us to consider only the case Pe ~ 112, but we must consider all values of X since the 

ion occupied-empty site symmetry (3) produces the phase diagrams for the Pi = 2/3 

case. We consider only the segregated phase, the period-three, -six, and -nine phases 

with Pi = 1/3, and any incoherent mixture of these phases.10 The precise ion 

configurations considered are summarized in Table 2. 

The results for the coherent phase diagrams are presented in Figures 9-11 and 

they exhibit a marked asymmetry with respect to the X = 0 plane. We make the fol

lowing observations: 

(K) There is no evidence in support of or against the uniform ion distribution 

property since this property can only be observed for periods 12 and larger, which are 

not studied here. 

(L) The periodic ground-state theorem holds for IX I <c::: l. but the many-body 

effects rapidly become more important and change the structure of the phase diagrams. 

(M) It appears that the period-three phase XOO is the ground state at Pe = 1/3 

for all values of X less than zero. 

(N) The segregation principle holds; In the limit IX I~ oo the segregated phase 

is the ground state for all values of p e except for a region about p e = 113 and 

x~- oo. 

(0) · There is still a trend for phases present at X = 0 to appear as phase-islands 

at larger values of IX I (e.g. the XXOOOO phase in Figs. 10 and 11; the XOXOOO 

phase in Fig. 10; the XXXOOOOOO phase in Fig. 11; and the XXOOOXOOO phase 

in Fig. 11). 
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(P) All studied configurations ·are the ground state for some value of the parame

ters Pe and X. 

The results for the incoherent phase diagrams are summarized in Figures 12-14. 

We present the following observations: 

(Q) Observations (H), <n. and (J) of the previous section still hold. 

(R) Two phases (XXOOXOOOO and XOXOOXOOO) do not appear in the 

incoherent phase diagram although they were present in the coherent phase diagram. 

The structure for the full Falicov-Kimball model in the general case emerges from 

these incoherent phase diagrams. If we reinterpret an incoherent mixture of phases as 

an aperiodic phase in the coherent phase diagram, then it appears that at each value of 

X there is a finite region where the segregated phase is the ground state. In the rest of 

the region the ground state changes from point to point with Pe and has a regular 

(disco_ntinuous) transition from the segregated phase to a periodic phase (and possibly) 

· back to the segregated phase. 

V. Conclusion 

Since its introduction twenty years ago, the Falicov-Kimball model1 is one of the 

simplest models of interacting electron systems. We have studied the one-dimensional 

spinless version of this model by exact numerical calculation for a restricted number of 

phases and by perturbation theory for small interaction strength. Our rigorous results 

include a periodic ground-state theorem and uniform ion and empty-site distribution 

properties for rational electron and ion concentrations and small interaction strength. 

Our numerical calculations indicate that the phase diagram of the complete model is 

separated into two distinct regions: In the first region the segregated phase is the 

ground state; and in the second region the phase diagram has a complex structure with 

the ground state apparently changing point by point at every value of the electron con

centration for fixed interaction strength. In this second region the ground state has a 
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regular (discontinuous) transition pattern from the segregated phase to a periodic phase 

and back to the segregated phase. 

We also present two unproven conjectures that characterize further the structure 

of the phase diagram as illustrated by our numerical work. The first is called the 

segregation principle which states at large interaction strength the segregated phase is 

the ground state for almost all electron concentrations. The only exceptions are when 

the electron concentration matches the ion or the empty-site concentration, where a 

periodic phase is the ground state. The second is the uniform ion or empty-site distri

bution property which states that the ground state configurations satisfy certain struc

tural characteristics. The properties are true for small interaction strength but appear 

to be violated for moderate interactions. 

We mention one final open question. The proper incoherent phase· diagram is 

plotted as a function of the electron and ion concentrations. We have evaluated the 

restricted phase diagrams for only five ion concentrations (p; = 0, 113, 112, 2/3, 1) and 

have no concrete conjecture for the structure of the incoherent phase diagram. How-

ever, we expect this phase diagram to separate into two regions with simple behavior 

in one region and complex behavior in the other. 

Appendix. Proof of the Periodic Ground-State Theorems 

In this appendix we prove the two theorems stated in Section IT. We begin with 

the periodic ground-state theorem. 

Theorem 2.1: Given rational electron and ion concentrations 

Pe 
Pe =-
. qe 

Pi 
p·=-

' q; 
(A.1) 

with Pe relatively prime to qe and Pi relatively prime to q;, then the periodic 

configuration with the lowest energy has period Q = LCM (qe, q; ). 

Proof" The periodic configuration with the lowest energy is the configuration with th~ 
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largest square Fourier coefficient I W (21tPe) 12
• The trial configurations that have 

non-zero Fourier coefficient and proper ion concentration must have a periodicity that 

is a multiple of Q. Consider all periodic configurations with ion· concentration Pi and 

with period less than or equal to r = mQ . These configurations all lie on ~ lattice 

with PBC and size N = MQ where M = LCM (1, 2, · · · , m ). We show the 

configuration with the lowest energy in this restricted set has period Q which (since m 

is arbitrary) proves the theorem. 

The proof proceeds by construction of the largest I W (21tPe) 12
. Assume, for 

simplicity, that qe = Q. Define integers k; by the relation 

i = 0, 1, ... 'Q-1 (A.2) 

Then the choice of Wj = 1 for 

j = ki + ZQ I =0, 1, ·; · ,M-1 (A.3) 

gives an ion concentration 

(A.4) 

and maximizes the square Fourier coefficient 

(A.5a) 

(A.5b) 

since the summation in (A.5a) has the maximal allowed number of U -k) mod Q = 0, 

U-k) mod Q = 1, · · · , and U-k) mod Q = Qp;IQ;-1. The minimal configuration 

r(Q ) constructed above has period Q which completes the proof. The proof for the 

case qe :~: Q is similar and is omitted here. The only complication of this case is that 

the second-order perturbation theory may not fully lift the degeneracy of the lowest

energy state. These degenerate states all have period Q however, which is sufficient 
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to prove the theorem.11 

As an example, we consider the case Pe = 3/8 and Pi = 1/2. This gives Q = 8 

with k0 = 0, k 1 = 3, k2 = 6, and k3 = 1, so that the configuration XXOXOOXO is the 

lowest energy periodic state in the limit X -+ 0. 

We continue with the proof of the uniform-distribution properties. 

Theorem 22: In the limit X-+ 0 any periodic lowest-energy configuration with 

Pi S 112 has the uniform ion distribution property and any periodic lowest-energy 

configuration with Pi ;::: 112 has the uniform empty-site distribution property. 

Proof: We restrict ourselves to the case Pi S 1/2 and Pe S 112 since the other cases 

immediately follow upon application of the symmetries (3) and (4). Assume that 

qe = Q (the proof of the more general case is similar and is omitted). The Q integers 

{ki} can be represented in terms of the first Pe integers by 

j = 0, 1, · · · , p e -1 s =0,1, · · ·, r-1 (A.6) 

and 

j=0,1,···,t-1 (A.7) 

where Q = rpe + t and t < Pe· Since each integer from 0 to Q-1 appears in {ki} 

once and only once, the nearest neighbors in the first Pe integers k 0 , k 1 , · · · , kp.-l 

are separated by gaps of length r or r -1 (there are t neighbors with separation r and 

Pe-t neighbors with separation r-1). As the ions are filled in according to the 

prescription (A.3) of theorem 2.1; each configuration will satisfy the 'uniform ion distri

bution property until the gap between any two nearest-neighbors in the original Pe ions 

is filled in. This occurs when Pi > 1-Pe which is not possible by the hypothesis and 

proves the theorem. 
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Configuration Conjugate 

1 XO 1 

2 xxoo 2 
~~· 

3 xxxooo 3 

4 xxoxoo 4 

5 xxxxoooo 5 

6 xxxoxooo 6 

7 xxxooxoo 8 

8 xxoxxooo 7 

9 xxoxoxoo 9 

10 xxoxooxo 10 

Table 1. Periodic configurations for the Pi = 112 case 
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Configuration 

1 xoo ,, 

2 xxoooo 
3 xoxooo 
4 xxxoooooo 
5 xxoxooooo 
6 xxooxoooo 
7 xxoooxooo 
8 xoxoxoooo 
9 xoxooxooo 

Table 2. Periodic configurations for the Pi = 1/3 case 
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Figure Captions 

Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

Fig. 8 

Fig. 9 

Fig. 10 

.Fig. 11 

Calculated coherent phase diagram for the segregated and period-two 

phases with Pi = 1/2. See Table 1 for the key to the legend. 

Calculated coherent phase diagram for the segregated, period-two and 

-four phases with Pi = 1/2. See Table 1 for the key to the legend. 

Calculated coherent phase diagram for the segregated, period-two, -four 

and -six phases with Pi = 1/2. See Table 1 for the key to the legend. 

Calculated coherent phase diagram for the segregated, period-two, -four, 

-six and -eight phases with Pi = 112. See Table 1 for the key to the 

legend. 

Calculated incoherent phase diagram for the segregated and period-two 

phases with Pi = 1/2. See Table 1 for the key to the legend. 

Calculated incoherent phase diagram for the segregated, period-two and 

-four phases with Pi = 1/2. See Table 1 for the key to the legend. 

Calculated incoherent phase diagram for the segregated, period-two, -four 

and -six phases with Pi = 1/2. See Table 1 for the key to the legend. 

Calculated incoherent phase diagram for the segregated, period-two, -four, 

-six and -eight phases with Pi = 1/2. See Table 1 for the key to the 

legend. 

Calculated coherent phase diagram for the segregated and period-three 

phases with Pi = 113. See Table 2 for the key to the legend. 

Calculated coherent phase diagram for the segregated, period-three and 

-six phases with Pi = 1/3. See Table 2 for the key to the legend. 

Calculated coherent phase diagram for the segregated, period-three, -six 

and -nine phases with Pi = 113. See Table 2 for the key to the legend. 



Fig. 12 

Fig. 13 

Fig. 14 
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Calculated incoherent phase diagram for the segregated and period-three 

phases with Pi = 1/3. See Table 2 for the key to the legend. 

Calculated incoherent phase diagram for the segregated, period-three and 

-six phases with Pi = 1/3. See Table 2 for the key to the legend. 

Calculated incoherent phase diagram for the segregated, period-three, '-six 

and -nine phases with Pi = 113. See Table 2 for .the -key to the legend. 
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