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This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
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assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
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process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
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Semi-Analytical Solutions for Flow Problems 
in Unsaturated Porous Media 

Robert W. Zimmerman and Gudmundur S. Bodvarsson 

Earth Sciences Division 
Lawrence Berkeley Laboratory 

1 Cyclotron Road 
Berkeley, CA 94720 

Abstract 

Semi-analytical solutions are developed for two unsaturated flow problems that 

are relevant to characterizing the hydrological behavior of Yucca Mountain; the site of 

a proposed nuclear waste repository. The "integral" or "boundary-layer" approach is 

used to find a closed-form approximate solution for absorption of water from a 

saturated fracture into an unsaturated semi-infinite formation. This solution is then 

programmed into a numerical code as a source/sink term for fracture elements, and 

used to study the problem of flow along a fracture with transverse leakage to the rock 

matrix. 

To be presented at the special session on "Multiphase Transport in Porous Media" at 

the Winter Annual Meeting of the ASME, San Francisco, CA, December 10-15, 1989 
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Nomenclature 

g gravitational acceleration [m!s2] 

k absolute permeability [m2] 

k, relative permeability 

m van Genuchten parameter, = 1- lin 

n van Genuchten parameter for characteristic curves 

q instantaneous liquid· fl. ux [ m3 /m2s] 

Q cumulative liquid flux [m3/m2] 

S liquid saturation 

S; initial saturation 

S, residual liquid saturation 

S s · saturation at zero potential 

S normalized saturation, = (S - S, )/(S s - S,) 

t time since start of absorption [s] 

x distance from fracture into formation Im] 

y distance along fracture measured from inlet [m] 

fJ 
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Greek letters 

a. van Genuchten parameter [ms2/kg] 

~ hydraulic conductivity parameter, = k /Jl<l> [m3s!kg] 

'~ 8 penetration depth of wetting front [m] 

11 similarity variable, = x l...ft 
,. 

<I> porosity 

J.1 viscosity [kg/ms] 

n region occupied by matrix block 

an boundary of n 

p density of water [kg/m3] 

'V potential [kg/ms2] 

'Vi initial potential [kg/ms2] .·.•t 

A 

normalized potential, = O.'V 'V ... ·,....' 
~ .. "'".~· 

c integration variable, = x 18 

~ 'l-i!. 
·t-;'"·i 
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Introduction 

Yucca Mountain in Nevada is presently being considered for the location of an 

underground repository for the disposal of high-level civilian radioactive waste (U.S. 

DOE, 1986; Peters and Klavetter, 1988). The proposed repository would be located in 

the unsaturated zone· above the water table, in a region consisting of highly fractured 

volcanic tuff. As part of the process of characterizing the site for the purposes of 

determining its suitability for the repository, it is necessary to develop models for 

studying the flow of water in an unsaturated fractured rock mass with low (but 

nonzero) matrix permeability. The complex geometry, along with other factors, make 

a purely analytical treatment impractical; at the same time, numerical analysis is con

strained by limitations of computational time. Hence, it is desirable to combine both 

approaches in order to take advantage of the benefits of each. 

A basic problem that must be solved in order to understand the hydrology of the 

Yucca Mountain site is that of absorption of water from a fracture into the adjacent 

partially .saturated rqck. Using the usual aSSl;Jmption th"at the vapor .phase is infinitely 

mobile and at a pressure· of one atmosphere, the flow of liquid water in an unsaturated 

porous medium is described by the highly nonlinear Richard's equation (Hillel; 1980). 

The nonlinearity stems from the fact that both the capillary pressure and the relative 

permeability are strongly-varying functions of the water content. Because of this non

linearity, exact analytical solutions are not feasible, even for simple geometries. We 

therefore use the "integral method" to derive an approximate solution to the problem 

of one-dimensional absorption into a half-space. The medium is assumed initially to 

be at some constant potential, representing a state of partial saturation, with the frac

tures at the boundary then instantaneously brought to full saturation. The van Genu

chten (1980) expressions for the capillary pressure and relative permeability functions 

are used for the characteristic curves of the porous medium. Explicit and fairly accu

rate expressions are found for the volumetric flux of liquid into the medium. These 
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expressions are therefore in a convenient form for incorporation into numerical models 

as source/sink terms for flow between the fractures and the matrix blocks. The result

ing semi-analytical/semi-numerical code is then used to solve the problem of flow 

along a fracture with transverse leakage to the matrix. 

Formulation of the Basic Problem 

The flow of -water through an unsaturated (also referred to as partially saturated) 

medium can be described by the following equation (Hillel, 1980; Bear, 1988): 

div [~kr ('If) grad 'If] = ~~ . (1) 

The dependent variable 'I' in equation (1) represents the pressure potential of the water 

in the medium. It is positive in regions of full saturation, and is equivalent to the 

usual (hydrostatic) pressure used in fluid mechanics. When the medium is less th~ 

fully saturated, 'v is negative, and it is sometimes referred to as the capillary pressure 

or matric potential. The saturation S represents the fraction of pore space that is filled 

with water. ~ is an hydraulic conductivity parameter that equals k IJ.l<!>, where k is the 

permeability of the medium under fully-saturated conditions, J.1 is the viscosity of the 

water, and <1> is the porosity of the medium. kr is a dimensionless "relative permeabil

ity" function, and is typically a strongly increasing function of S. Equation. (1) essen

tially embodies the principle of conservation of mass for the water, with the left hand 

side representing the local net influx of water (through a modified form of Darcy's 

law), and the right hand side representing the change in the volumetric water content. 

As written, equation (1) assumes that the air phase is infinitely mobile, and 

always at one atmosphere pressure. It also assumes that the porosity does not vary 

with 'If, which is true to a very high approximation for most rocks and soils. 
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Hysteretic effects, in which the S ('J1) relationship depends on whether drainage or 

imbibition is occurring, are also ignored. This causes no difficulty as long as we are 

concerned only with processes in which the saturation changes monotonically. Finally, 

equation (1) also neglects gravity, which otherwise would lead to an additional gravita

tional potential term pgz to be added to the pressure potential 'I'· This is permissible 

for horizontal flow, or for the initial phase of vertical infiltration (Philip, 1970). 

Each porous medium has its own set of characteristic curves that describe the 

relationships between S , 'I' and kr. One functional form of the characteristic functions 

that has been found useful in modeling the hydraulic behavior of the volcanic tuffs at 

Yucca Mountain is that proposed by van Genuchten (1980): 

(2) 

{ 1- (<Xhj!l)n-l[1 + (ahj!l)n rm }2 . 

kr = [ 1 + (a I 'I' I )n ]m t2 
(3) 

where a is a scaling parameter that has dimensions of 1/pressure, and m and n are 

dimensionless parameters that satisfy m = 1-1/n, n > 1. Examples of these functions 

are plotted in normalized form in Figures 1 and 2, for a range of n values believed to 

be typical of the Yucca Mountain volcanic tuffs. The normalized potential is defined 

by~= a'Jf, and the normalized saturation asS= (S -Sr)I(Ss -Sr) .. The parameter a 

is in some sense proportional to the average pore diameter in the medium, while n is 

inversely proportional to the broadness of the pore size distribution. The capillary 

pressure curve (Figure 1) has a sigmoidal shape that more closely approximates a step 

function as the pore size distribution narrows and n increases. The quasi-horizontal 

plateau of the capillary pressure curve, where S varies most rapidly with 'If, occurs at 

a potential approximately equal to -1/a. 
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A basic problem that we are interested in involves of a block of porous material 

which is initially at some uniform level of saturation, S;. Through equation (2), this 

corresponds to some initial potential 'I';. In the field, the initial saturation (under 

equilibrium conditions) will generally vary with depth. At Yucca Mountain, however, 

the fracture spacing is so small (less than 1 m; Rulon et al., 1986) that any individual 

matrix block can be considered to be initially at a uniform saturation. At some time 

t = 0, the fractures that form the boundary of the block become saturated at zero poten

tial. Since the permeability of the fractures greatly exceeds that of the matrix blocks, 

it can be assumed that this boundary condition is established instantaneously. If the 

block occupies a region of space denoted by Q, with boundary an (see Figure 3), the 

boundary and initial conditions are 

'lf(Y,t =0) ='I'; for all Yen, (4) 

'lf(Y,t >0) = 0 for all Yean. (5) 

For a given block geometry n, equations (1-5) completely specify the boundary-value 

problem to be solved. 

Approximate Solution for One-Dimensional Absorption 

Consider the problem of infiltration from a saturated fracture at zero potential 

(located at x = 0) into the adjacent semi-infinite formation (x > 0). The assumption of 

a semi-infinite block should be valid for times small enough so that the wetting front 

has not reached the nearest other fracture. In this case, equations (1,4,5) take the form 

l._[ ~]_as ax ~k, ('If) ax - at ' (6) 

.·~ .. -. 
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'lf(X, 0) ='I'; for all x > 0 , (7) 

'lf(O, t) = 0 for all t > 0 , (8) 

lim 'lf(x, t) ='If; for all t > 0 . (9) 
;;c-+oo 

The last condition (9) reflects the fact that at any finite time, the effect of the boundary 

condition at x = 0 must become negligible as x ---+ oo. 

Because of the variation of k, and S with 'If, equations (6-9) represent a highly 

nonlinear problem that is not amenable to standard analytical techniques such as 

Laplace transforms, Green's functions, etc. Nevertheless, much progress has been 

made in obtaining solutions to the absorption problem, for many different types of 

characteristic curves. Philip (1960) in fact derived a closed-form solution that requires 

the characteristic curves to be expressible . as series of inverse error functions. Express-

ing (2) and (3) in this form, however, requires considerable computational effon, made 

particularly difficult by the relative obscurity of inverse error functions. Numerous 

approximate analytical solutions have been derived, with varying degrees of accuracy 

and ease of implementation. Some of the methods used to obtain these solutions 

include perturbation techniques (Babu, 1976), iterative methods (Parlange, 1971), and 

variational principles (Parlange, 1975). Many of these methods are reviewed and dis

cussed by Brutsaen (i976). Although most of these methods yield results with accura-

cies that are sufficient for many purposes, they still require some numerical integration 

of the characteristic functions (1) and (2). They also have the disadvantage of not 

being extendable to geometries other than the half-space, since they rely on the simi

larity transformation 11 = x lYt. 

A closed-form approximate solution can be obtained by using the so-called 

"boundary-layer", or "integral", technique. The boundary-layer method has been 



- 9-

widely used for heat conduction problems (Goodman, 1964), heat transfer problems 

with phase change (Eckert and Drake, 1972), and viscous flow problems (Schlichting, 

1968). Prasad and Rtlmkens (1982) used a related method to investigate vertical 

infiltration under time-varying boundary conditions. Although this method correctly 

predicts a similarity solution that depends on x IW, it does not begin with this as an 

assumption, and therefore can be extended to geometries other than the half-space 

(Zimmerman and Bodvarsson, 1989), for which the similarity solution does not apply. 

The integral method begins with the choice of a trial solution for the pressure or 

saturation profiles. The trial solution must satisfy various boundary (or other subsidi

ary) conditions, and depends on a penetration depth B whose dependence on time is 

not known a priori. If the profile is substituted into the governing PDE, which is then 

integrated over the region 0, the result is an ODE that describes the time evolution of 

B. If a reasonable shape for the trial profile is assumed, the method is known to lead 

to accurate results for the types of problems mentioned above. The accuracy of the 

boundary-layer method for the present problem depends mainly on choosing an 
. . 

appropriate pressure profile. Although the potential, strictly speaking, does not reach 

'Vi until x ~ oo, for practical purposes (Babu, 1976) it can be considered to equal 'Vi 

for all x > B, where B is the penetration distance. As it turns out, it is convenient to 

use the saturation profile, rather than the potential profile, in the calculations. Hence 

we require that the trial profile satisfy the conditions S (0, t) = Ss, and S (B, t) = Si. 

The key to chosing a successful profile in this particular problem is having the 

proper behavior near x = 0. In order for the flux at the fracture wall to be finite, the 

potential profile must start off with a finite negative slope, i.e., 'lf(X, t) = -ax + · · · , 

where a depends on t, but not on x. To determine the behavior of S in the vicinity 

of x = 0, substitute 'lf(X, t) = -ax into equation (2), and then consider the first two 

terms of the binomial expansion of [ 1 + (a I 'If l)n rm, which are 1 - m (a I 'If I )n. This 

leads to S (x, t) = Ss -bxn + · · · , where b depends on t, but not on x, and n is the 
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van Genuchten parameter. The simplest saturation profile that satisfies these criteria is 

S = Si for 0 < X < oo . (to) 

It is often recommended (Goodman, 1964) that trial profiles should have zero 

slope at the edge of the boundary layer, sothat the flux is continuous at x =o. While 

this condition is satisfied by the exact solution, since it merely reflects conservation of 

mass· at the boundary between the disturbed and undisturbed zones, enforcing it would 

require a trial profile that contained an additional free parameter. This would substan

tially complicate the algebraic manipulations that are needed to solve the problem, 

without a concomitant increase in the accuracy of the results. It is simpler to imagine 

that there is a small tail on the saturation profile expressed by equation (10), providing 

continuity of flux at the outer edge of the boundary layer, but sufficiently localized so 

as to make no perceptible contribution to the mass conservation· integral. 

With the saturation profile given by equation (10), the conservation equation (6) 

is integrated from x =0 to x =oo. Using the facts that Chjfl()x =0 for all x > o, and that 

kr = 1 at x =0, the left side of (6) can be integrated to yield 

-f3~J dX x=O 

(11) 
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The right side of (6) integrates out to 

OOJ as fs 1 dB -dx = n(S -S·)(x/8)n--dx 
at S I 8 dt 0 0 

(12) 

Equating (11) and (12) leads to 

(13) 

Since none of the parameters appearing in (13) vary with 8 or t, and since 8 = 0 when 

t = 0, equation (13) can be integrated to yield 

(14) 

Since 8 grows as ..ft, and the saturation profile (10) is a function only of x 18, the 

approximate solution has the self-similar structure that was shown by Bruce and Klute 

(1956) to hold regardless of the specific characteristic curves used. 

The instantaneous volumetric flux at the wall is found by combining equations 

(11) and (14) with Darcy's law: 
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(15) 

The cumulative volumetric liquid flux is found by integrating equation (15) over time, 

which leads to 

(16) 

Absorption from a Fracture in the Topopah Spring Formation 

In order to determine the accuracy of the approximate solution, we can compare 

its predictions to the results of numerical simulations. The simulations were carried 

out using TOUGH (Pruess, 1987), an integrated-finite-difference program that is 

known to accurately model three-dimensional flow of water and air in porous media. 

The physical parameters used in these simulations are those that have been estimated 

for the Topopah Spring unit at Yucca Mountain. The Topopah Spring unit is a cwelded 

volcanic tuff with an estimated matrix permeability of 3.9x w-ts m2, estimated matrix 

porosity of 0.14, and estimated van Genuchten parameters of n =3.04, m =0.671, 

Ss =0.984, S, =0.318, and a= 1.147 x w-5 Pa-1 (Rulon et al., 1986). 

Consider a fracture that is saturated with water at zero potential, with the adjacent 

formation initially at a saturation of 0.6765. This initial saturation seems to be in the 

range that has been estimated (Niemi and Bodvarsson, 1988) for the Topopah Spring 
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uni~. These .simulations, however, are intended mainly as a test of the approximate 

solutions, and not as predictions of actual processes at Yucca Mountain, for which 

more accurate physical property data would be needed. The viscosity of water was 

taken to be 1 cp, or 0.001 kg/ms. The block matrix was divided into 25 grid blocks, 

each 0.04 m thick. Sensitivity studies, as well as previous experience with TOUGH, 

have shown that for problems such as these, further refinement of the grid leads to 

improvements in accuracy on the order of only one percent. 

Figure 4 shows the potential profile for this problem, after an elapsed time of 

1 x 107s (116 days), according to both the approximate solution and the numerical 

simulation. Since the solution depends only on the similarity variable 11 =x t..fi, the 

profiles would have the same shapes for any value of time. The saturation profile is 

shown in Figure 5. Since the instantaneous flux into the formation is proportional to 

the slope of the potential at the boundary, and the cumulative flux is proportional to 

the area under the saturation profile, it is clear that the approximate solution is very 

accurate in this case. Note also that the approximate soh,1tion predicts the location of . .. 

the wetting front with very high accuracy. 

Flow Along a Fracture with Leakage to the Matrix 

Another basic problem which has much relevance to understanding the hydrologi

cal behavior of the Yucca Mountain site is that of water flowing along a fracture with 

leakage into the adjacent matrix. Martinez (1988) discussed this problem for the case 

where the fracture is oriented vertically, and the flow· downward along the fracture is 

gravity-driven. In one of Martinez' models, the fracture was assumed to behave as a 

smooth-walled "slot" of constant aperture, while in another model the fracture was 

treated as a porous medium with its own characteristic functions. The results showed 

that the precise details of the hydraulic properties of the fracture were relatively unim

portant for this problem; the rate of advance of the front was influenced mainly by the 
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absolute permeability of the fracture. 

We are interested in eventually solving large-scale problems using a numerical 

simulator such as TOUGH, with the approximate expression (15) serving as a 

source/sink term for the fracture elements. Use of this type of source/sink term will 

limit our simulations to problems where the flow between a fracture element and the 

adjacent matrix is always in the same direction; problems with oscillatory boundary 

conditions would require a different form for the source/sink term. As an example of 

this approach, consider the variation of Martinez' problem shown in Figure 6, with the 

fracture oriented horizontally. Flow into the fracture is driven by the imposed poten

tial at the y = 0 boundary. For simplicity in this sample problem, we use the same 

characteristic curves as specified above for both the fracture and matrix, but a matrix 

permeability of 3.9 X 10-20 m2, and a· fracture permeability Of 3.9 X 10-lO m2• This 

fracture permeability corresponds roughly to an aperture of 100 Jlm, allowing for tor-

tuosity and contact-area effects. The fracture is discretized into 10 elements, each 1 m 

long and 100 Jlm thick. Each of these elements has a "sjnk" term (for which TOUGH . .. 

already has provisions), the magnitude of which varies with time according to equation 

(15). The sink is assumed to "turn on" instantaneously when the saturation in the 

block reaches 0.90, which is nominally considered to represent the arrival of the wet

ting front. As a comparison, the pr~blem is also solved without the source/sink 

expressions, but with five matrix elements extending into the matrix adjacent to each 

fracture element. The matrix elements extend 100 Jlm .into the formation, which, for 

the time scale of the problem, is sufficient to simulate a semi-infinite region. The 

saturation profile in the fracture after an· elapsed time of 4 x 103 s is shown in Figure 7, 

according to both methods of calculation. The agreement is excellent, and the savings 

in CPU time (on a CRA Y.:XMP) obtaip.~d using the semi-analytical method was 

roughly a factor of ten. Note that after 4x 103 s, about 30% of the fluid that entered 

the fracture at y = 0 has leaked off into the formation, so the effect that we are 
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modeling is not insignificant. 

Conclusions 

The integral method has been used to derive a closed-form approximation for the 

influx of water from a saturated fracture into the adjacent formation. This solution has 

been compared to numerical simulations of this problem, using the hydraulic properties 

that have been estimated for the Topopah Spring welded tuff at Yucca Mountain, 

Nevada. The approximate solution was seen to predict both the infiltration rate and 

the location of the wetting front with high accuracy. The expression for the infiltration 

rate has been programmed into the numerical simula~or TOUGH as a source/sink term, 

thus eliminating the need for explicitly discretizing the matrix. The resulting code was 

used to solve the problem of flow along a ffclcture with transverse leakage into the for

mation. Comparison with a simulation that used both fracture and matrix blocks 

showed very close agreement with the source/sink method. Future work in this area 

will. be aimed at generating source/sink approximations for finite-sized matrix blocks, 

and incorporating more realistic hydraulic properties for the fractures. 
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Figure 1. Capillary pressure curves for a porous medium, according to the van Genu

chten model. After normalization, the shapes of the curves depend only on the param-

eter n. 
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Figure 2. Relative permeability curves for a porous medium, according to the van 

Genuchten model. After normalization, the shapes of the curves depend only on the 

parameter n . 
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Figure 3. Schematic diagram of the basic boundary-value problem of absorption into. a 

porous block. 
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Figure 4. Potential profiles for one-dimensional absorption in Topopah Spring welded 

tuff. Physical properties of tuff are listed in text. 
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Figure 5. Saturation profile for the same problem as shown in Figure 4. 
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Figure 6. Schematic diagram of the problem of infiltration into a fracture, with 

transverse leakage into the matrix. 



w 
0::: 
::::> 0.9 
t> 
< 
0::: 
~ 

z 
z 
0 

~ 
0::: 
::::> 
~ 
(/) 

0 

0.8 

::::> 0 0.7 
:J 

- 24-

t = 4x10**3 s 
DISCRETIZED MATRIX 

~.QH~f~L~L~K-~[tij.QP. 

0.6~--~--~--~--~--~--~--~--~--~~~ 
0 2 3 4 56 7 8 9 10 

DISTANCE FROM THE INLET (m) 

XBL 897-2605 

Figure 7. Saturation profile in fracture -for flow along· fracture with transverse leakage 

to matrix. Hydraulic properties used in simulations are listed in text. 
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