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ABSTRACT 

LBL-27591 

The Primary Mirror Active Control System (ACS) of the W.M. Keck Telescope has as its main function the maintenance of 
the mirror figure of the 36-segment primary mirror under the changing effects of gravity, temperature, and other low frequen­
cy perturbations. The ACS is a multivariate control loop that can be represented in a diagonalized fonn, provided that seg­
ment actuator motions only excite oscillations in its corresponding whiffletree (tying an actuator to a mirror segment), with 
no coupling to the other whiffletrees in the same segment mirror. Since whiffletree oscillations are expected to occur at fre­
quencies above the bandpass of the control system, the assumption is expected to be valid for the purpose of analyzing the 
stability and response of the ACS under the expected low frequency perturbations. 

The results of a one-dimensional simulation, justified by the diagonalized fonn of the problem, will be presented showing 
the conditions for stability, the system response to desired changes and the advantages of using feed-forward. A verification 
of the theoretical results will be presented for an actual actuator coupled to a sensor controlled by a one-dimensional version 
of the ACS software. 

Also based on the diagonalized fonn, a study of noise coupling, equivalent system bandwidth and matrix noise magnifica­
tion factor will be presented. The effect of the feed-back control loop on the telescope nns image radius caused by sensor 
noise wiU be calculated. 

1. THEORETICAL ANALYSIS 

The W.M. Keck Telescope Primary Mirror Active Control System (ACS) has been described in a companion paper in this 
issue. I In this section we shall establish the theoretical basis for its analysis, a model for the ACS and conditions under 
which a simplified analysis can be carried out 

1.1 General Problem 

The ACS is a multivariate control loop: the vector of inputs x and the vector of outputs y (see Fig. 1) are related by a ma­
trix H that generally couples each element of x to some number of elements of y. The equation that defines the behavior of 
the simple system of Fig. 1 can be written as 

H(x - y) =I y (1) 

where I is the identity matrix. For the simple case of Fig. 1, vectors x andy have the same dimension, n, and, therefore, H 
, -' is square and of dimension n x n. 
·• 

Equation (1) can be rewritten as 

Hx= (H+I)y (2) 

and it represents the general statement that defines the behavior of the problem of Fig. 1. 



X + 
H 

y 

-

Fig. 1: Simple model of a multivariate control loop. 

The direct analysis of Eq. (2) is very difficult, since matrix H has elements arbitrarily placed in its rows and columns. If the 
problem could be replaced by one in which all matrices are purely diagonal, as in 

Du=D'v (3) 

the analysis would be greatly simplified since each element of vector u would be only related to one element of vector v and 
the coupled problem would be reduced to a number of decoupled problems. We examine first the general procedure by which 
the replacement of problem (2) by problem (3) can be carried out. 

1.2 Eigenvectors and eigenvalues of H and CH + D 

Let K; be the ith eigenvector of Hand K'; the corresponding one of (H + 1). Similarly, let A.; be the ith eigenvalue of H 
and A.'; that of (H + 1). Their definitions are, respectively, 

and 
(H- A.;I)K; = 0 

({H + 1)- A.'; I]K'; = 0 

It will be convenient to rewrite the definitions (4) and (5) as 

HK; =A.; IK; 
and 

(H+I)K';=A.';IK'; 

(4) 

(5) 

(6) 

Let us now postulate that the eigenvalues A.'; can be represented as the sum of two eigenvalues A.; and A."; in which the first 
one is the same eigenvalue of matrix H, as in (6), and A."; has to be determined. 

With the new definition of A.";, Eq. (7) can be separated into two equations: 

HK'; =A.; IK'; (8) 
and 

IK'; =A."; IK'; (9) 

Comparing (6) and (8) we recognize that K'; equals K; and an examination of (9) shows that A."; equals I for any vector 
K 'i. This finding indicates that the eigenvectors of H are the same as the eigenvectors of (H + I) and that the eigenvalues of 
H' are the same as those of H with the addition of 1 to each of them. With this knowledge, we can now proceed to diago­
nalizing the system matrices. 

1.3 Diagonalization of H and (H + I) 

A general matrix H can be diagonalized by the process 

(10) 
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where the matrix K has as its columns the eigenvectors of Hand JT has as its rows the eigenvectors of HT. Since the ei­
genvectors of (H +I) are the same as those of H, matrices JT and K will also diagonalize (H +I), i.e., 

JT(H+I)K=D'. (11) 

The diagonal matrix D will have as its elements the eigenvalues Ai of H, while D' will have the eigenvalues A. 'i, i.e., 
(Ai +1). It follows that D' = (D + 1). 

Solving (10) and (11) for Hand (H + 1), and replacing in (2), we get 

KDJTx=KD'JTy. (12) 

1) Removing K from both sides of the equation we are left with 

D.JT x = D'JT y. (13) 

Let us now examine JT x. A vector x in the space spanned by matrix H can be represented as the expansion 

X= UtKt + U2K2+ .. . 

x=u1K1 +u2K2+ .. . (14) 

where ui = (x, Yi}, the dot product between vector x and the eigenvector Yi of HT. 

The matrix JT contains the eigenvectors of Has rows and, therefore, the product JT x will generate a vector u with ele­
ments Uj. Similarly for the right hand side of (13): the product JT y will generate a vector v with elements Vi= (y, Yi}. 
We are then left with 

Du=D'v (15) 

which is a purely diagonal form, similar to the desired result of (3), relating the series expansions of x and y in a decoupled 
form. 

We can summarize the results of this section with the following statements: 

1) Eq. (2) relates the input and output vectors x and y through matrices H and (H + I) which are not diagonal. 

2) Eq.(15) relates the series expansions u and v of the input and output vectors through matrices D and D' which are 
diagonal. 

3) The basis vectors for the series expansions are the eigenvectors of HT, the "natural modes" of the system. 

4) The diagonal matrix D contains the eigenvalues of H in its diagonal aild the matrix D' has the same elements with 
1 added to the diagonal. 

It is then possible to study system response, conditions for stability, etc., of the individual "natural modes" of the s_ystem in 
a totally uncoupled manner. 

1.4 The error vector 

In describing the behavior of a control system, the concept of an error vector defined as e = x - y is a very useful one, since 
it is usually the minimization of all the components of e that is desired. With the above definition of the error vector, Eq. 
(2) can be rewritten as 

(16) 

In order to have e small for any possible value of x, it is !lecessary that all of its "natural mode" components be as small as 
possible. We have seen from (11) that the matrix (H +I) can be diagonalized by the matrices of left and right eigenvectors 
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JT and K. Some algebraic manipulation starting from (11) shows that 

(H + I) = K D' JT 
and. therefore 

where D' = (D +I) and Dis the diagonal matrix of eigenvalues of H. Substituting into (16) we find 

e=KD'-lJTx 

which can be interpreted as follows: 

(17) 

(18) 

(19) 

JT x: as discussed above, is a vector u containing the coefficients of the series expansion of x into its "natural modes". The 
product n·-1 u modifies those coefficients by the characteristics of the control loop. Finally, the premultiplication by K 
brings the results back to the normal measurement space of x, y and e. If we now define an error vector in the "natural 
mode" space as w = u- v, (15) can be rewritten as 

w=D'-1u (20) 

which is equivalent to (19), but in the "natural. mode" space. In order to minimize errors in all the "natural modes", it is 
then necessary that all the entries in the diagonal of o·-1 be small and uniform. If an entry, or group of entries, is large, er­
rors in those corresponding modes will be significant. For those entries to be small and uniform, it is necessary that the en­
tries of D' be large, i.e., (1 + eigenvalues of H) be large and uniform. 

2. APPLICATION TO Tiffi PRIMARY MIRROR CONTROL SYSTEM 

2.1 Preliminary considerations 

The control loop of the ACS can be looked at from two different points of view: 

1) There is a set of 171 desired sensor readings x and a set of 171 actual sensor readings y. The error vector e is de­
fined as e = x - y and the objective of the analysis is to evaluate e as a function of a perturbation vector c which is 
applied to the plant as a result of structure deformations and 

2) There is a reference plane normal to the optical axis of the telescope. When the mirror attains its correct figure, each 
end of the 108 actuators is at a certain distance from the reference plane. The vector of these distances is a reference 
vector Z(). Under the influence of a perturbation vector c resulting from structure deformations, the actuator ends are 
at distances from the reference plane given by a vector z. The function of the control loop is to change the length of 
the actuators in order to bring z back to zo. The error vector is e = zo - z and the objective of the analysis is to 
evaluate e as a function of the perturbations c. 

The first formulation has an error vector and a matrix H of dimension 171 x 171 and the decomposition into eigenvalues and 
eigenvectors is carried out in the space of sensor positions. The second formulation has an error vector and a matrix of di­
mension 108 x 108, i.e., its decomposition is carried out in actuator position space. 

An attempt at carrying out an analysis in sensor position space shows that the matrix D has only 108 eigenvalues in its di-

• 

agonal different from zero, i.e., the matrix H is of rank 108, rather than 171. This is a consequence of the fact that the sen- lJ 

sors in the ACS are not independent units, but their possible sets of positions are restricted to those generated by the possi-
ble sets of positions of the 108 actuators. It is correct, therefore, to work in the second formulation, with a matrix H of full 
~ ~ 

2.2 A model for the ACS 

The fundamental mathematical element of the ACS is the matrix A which relates actuator positions to sensor readings by the 
geometrical design factors of the primary mirror.2 Its pseudo-inverse B is used in the control loop to calculate the correc-
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Fig. 2: Model of Keck Primary Mirror Control System. See text for description of components. 

tions to be applied through the actuators when the sensor readings are not the desired ones for a given telescope attitude and 
temperature. 

The model of the telescope that will allow us to carry out an analysis in the space of actuator positions is given in Fig. 2. 

In the model, q is a general vector of desired actuator positions, which can be calculated for a set of desired sensor readings 
sd by the equation 

q = zo + Bsd. (21) 

Matrix A is a sparse matrix of dimension 171 x 108 that yields the changes in sensor" readings from changes in actuator 
lengths. Matrix F is a diagonal 171 x 1-71 matrix containing the filter functions f(s) for each sensor circuit as its non-zero 
elements. Here, s is the complex frequency variable. The ACS has been designed with a unique function f(s), so that all di­
agonal elements are identical. Matrix B is the pseudo-inverse of A, which converts sensor readings back to actuator lengths. 
Matrix G is the gain matrix, which, for a single gain parameter for the complete system becomes G = gl. The matrix E is 
the matrix of actuator mechanical responses to an electrical impulse input, with entries which are functions of s. Actuators 
do not all respond in the same way to identical electrical inputs, but we have considered the responses sufficiently similar 
that they can be represented by a single function. Then, E = e(s)I. Finally, matrix M contains the mechanical response of 
the whiffletrees to actuator output impulses. We assume initially that an actuator motion will only excite oscillations in its 
corresponding whiffletree, with no coupling to the other whiffletrees in the same mirror or in other mirrors. For that simple 
case, we have a diagonal matrix, M = m(s)I. 

The perturbation c(s) is due to effects of gravity and temperature on the telescope structure and it is the principal disturbance 
of the system. We defme the error vector 

e = q- z (22) 

and we want to obtain an expression for e as a function of the perturbation c. The resulting expression is 

-e=(I+MEGBFA r 1Mc (23) 

which has the same form as (16) and can be treated identically for the analysis of the problem. However, with the simple 
definitions given above, realizing that BA = I to very high accuracy, the expression becomes 

(24) 
or 

(25) 
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with all the terms being possibly functions of the complex frequency variable s. 

The design decision of using only one kind of filter in all 171 sensor elements has resulted in the product BFA of (23) be­
ing purely diagonal. The simplifying assumption that whiffletrees are not coupled among each other makes M also purely 
diagonal and we end with a system represented by an uncoupled set of equations that relate the error in an actuator length to 
the gravity and temperature deformations on that specific actuator. 

The problem of stability analysis, filter design and application of feed forward becomes very reasonable with the system de­
fined by (25). The effects of whiffletree couplings can be left out for those aspects of the design because whiffletree reso-
nances are expected to occur at frequencies substantially above the band pass of the filter f, where attenuation is expected to :v 
be very high. The control loop is not expected to respond to those oscillations. 

A more complete analysis of the system would require placing off-diagonal terms in M and diagonalizing the problem fol- ~) 
lowing the methods described in the earlier part of this paper. Similarly, couplings between actuator motions through the 
support structure can be studied by placing off-diagonal terms in matrix E. The analysis would have to be carried out in 
terms of the natural modes of the system and it is beyond the scope of the present work. A study of such nature has been re-
ported in Ref. 3. 

3. ONE-DIMENSIONAL SIMULATION OF THE ACS 

3.1 Software simulation 

With the decoupled formulation of the ACS of (25), it is possible to study the behavior of the control loop with a one-di­
mensional simulation. This has been carried out by writing a computer program that studies the relationship among single 
corresponding elements of the input, output, gravity deformation and other vectors. In order to include in the study the ef­
fects of sampling, the simulation program runs in pseudo-real time, i.e., there is a software clock that generates time marks 
representing 100Hz ticks (the data acquisition rate of the mirror system) and a set of C-language structures define. timers, in- _ 
terrupt generators, flags, etc., so that different parts of the program can act when it is their. time, with timing relationships 
that are well defined. The loop is closely related to that of Fig. 2 and is shown in Fig. 3, 

pre-filter 
input 

+ 

external actuator 
input 

cell deformation 
input 

actuator 
___ ,output 

Fig. 3: Model for the one-dimensional simulation of the Keck Primary Mirror Control System. 

The elements of Fig. 3 are the following: 

F The control filter. Four types of recursive filters have been simulated: single pole on the real axis, double pole on 
the real axis, a two-pole Butterworth and a two-pole Cauer. 
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B The B matrix. We have taken the value of unity as the transformation of this element, except that the output of B 
appears delayed with respect to its input by a specified matrix multiplication time. 

G A gain parameter, consisting of a simple multiplication. 
E The response function of the single actuator of the system. An input value to E is picked up at a 2 Hz time mark 

(the update rate of the control loop). This initiates the move of the actuator, with the output representing its length 
as a function of time. An approximate actuator behavior has been simulated by making the move at two velocities 
for moves larger than 100 nm: all but the last 100 nm are done at 25000 nm/sec, while the last portion is done at 
1000 nm/sec. For shorter moves only the slower velocity is used. 

M Mechanical response of the whiffletree structure. It has been set equal to unity . 
A The response of the mirror system, which has been set equal to unity. In this simulation, a single actuator motion 

will appear as a reading of the same length at the single sensor. 

Important parameters that have been used in the simulations are: 

a) Pre-filter input: A desired motion request applied before the input summing point 
b) Filter ouput:, The output of F. 
c) External actuator input: A signal that is applied from outside the loop for feed-forward. 
d) Actuator length: Integrated output of all actuator moves during a simulation, available at the output of E. 
f) Cell deformation input: Effect on the apparent length of the actuator caused by deformations of the telescope cell 

by gravity during star tracking or fast slewing, or by temperature changes. 
g) Sensor output: Identical to actuator length in this simulation, available as output of A. 

3.2 Hardware simulation 

For the purpose of verifying the correctness of the software simulation described above, a one-dimensional form of the ACS 
control loop has been setup in real hardware. One actuator4 physically connected to one sensorS have been controlled by por­
tions of the ACS multiprocessor hatd- and software in order to measure actuator positions as a function of time after the re­
quest for a step motion, with and without the application of feed-forward. A schematic of the functions implemented is 
shown in Fig. 4. 

During operation, the system was allowed to reach steady state at an arbitrary sensor reading before applying a step input 
After the steady state was reached, a step of 1000 nm in desired sensor reading was applied and the output of the filter, the 
actuator move size, actuator length and sensor readings were recorded as functions of time for a period of 40 sec. The mea­
surements were repeated for the case in which a feed-forward step was also applied directly to the actuator through the soft­
ware determining the move size. For the feed-forward case, a delay of 0.12 sec. existed between the application of the feed­
forward step and the corresponding step in the desired sensor readings. This time delay is approximately one half of the time 
needed by the actuator to complete a move. Its application results in the reduction of the disturbance to the system as a re­
sult of applying the feed-forward step. A real-axis double pole cascaded filter with a cutoff frequency fc = 0.2 Hz was used 
in the measurements and loop gains of 0.1 and 0.2 were investigated. The parts of the system that run at 100Hz are shown 
in thin lines, those in thick lines run at 2 Hz. 

3.3 Comparison of hardware and software simulations 

Figure 5 shows the sensor readings calculated by the computer program and the results of the hardware measurements for the 
one-dimensional simulation of the ACS in response to a request of a change in sensor readings of 1000 nm, for loop gains of 
0.1 and 0.2, no feed forward. 

The results of Fig. 5 show a slight discrepancy in the shape of the responsed curves which we attribute to the uncertainty in 
the value of the experimental actuator and sensor conversion factors of electrical signals to motion nm and to the assump­
tions made in the software simulation regarding matrix multiplication times and actuator motion profiles. 

Figure 6 shows comparisons of the hardware and software response curves when a feed-forward signal is applied directly to 
the actuator system input The case shown in the figure corresponds to a desired change in sensor readings of 1000 nm but 
with an actual feed-forward signal of 1010 nm, simulating a 1% error in the knowledge of the conversion factors between 
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Fig. 4: Schematic of the portion of the ACS used for verification of software simulation. 
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Fig. 5: Comparison of hardware and software one-dimensional simulations, without feed-forward. 

20 

actuator travel and drive magnitude. The rapid achievement of the desired sensor reading is observed, although there is a set­
tling time in both the hardware and software results which depends on gain. The magnitude and sign of the error in the first 
few seconds after the feed-forward signal is applied is found to depend on the size of the delay in applying the desired sensor 
values to the pre-filter input of Fig. 3 (step input of Fig. 4) after the feed-forward signal is applied. In principle, this error 
can be reduced to zero if actuator move profiles were known exactly. 

Having checked that the computer simulation is adequate to represent the one dimensional version of the ACS, a large num­
ber of parameters have been examined in order to study their effect on control loop performance. We will show here only the 
results corresponding to determining maximum loop gain before instability and the optimum settings for fastest recovery 
from a fast, large change in azimuthal angle when scanning the sky. 

Figure 7 shows the results of the software simulation of the ACS control loop with gains above the expected points of opera­
tion. With a gain g = 0.5 the loop is underdarnped, resulting in long oscillations about the desired point When g is in­
creased to the neighborhood of 1.15, we are reaching the instability point, in which the oscillations do no longer decay. At 
g > 1.25 the control loop becomes an oscillator. 

.8 
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Fig. 6: Comparison of hardware and software simulations with feed-forward. An error of 1% is assumed to exist in the cali­
bration of the actuators. 
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Fig. 7: Step response of the one-dimensional software simulation of the control loop with gains of 0.5 and 1.15. The ftrst 
is for an underdamped loop and the latter corresponds to a nearly unstable loop. 

Figure 8 shows the behavior of the ACS software simulation during and after a fast slewing move at 2500 nm/sec, as would 
occur when the telescope has to move from one point of the sky to another with a minimum loss of time. 

Figure 8, left, shows the sensor readings during the five seconds of the motion, followed by the readings during settling. 
The graph at the right shows a magnification of the sensor readings scale during the settling time. With reference to Fig. 3, 
the slewing motion was simulated as follows: 

a) pre-filter input= 0 - the desired sensor readings were 0 at all times. 

b) cell deformation input = a ramp of 2500 nm/sec, corresponding to maximum apparent shortening of an actuator un­
der gravity forces during fast slewing. 

c) external acuator input= a pulse of 1275 nm applied at 2Hz corresponding to a feed-forward signal with a 2% error 
in the knowledge of the actuator conversion factor between electrical signals and actual motion. 
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Fig. 8: Settling of the ACS software simulation after a fast 5 second move of 2500 nm/sec. The graph on the right shows 
a magnified view of the sensor reading scale during the fmal settling of the system. · 

The oscillatory behavior of the sensor readings during the fast move is due to the fact that the feed forward signal is applied 
as discrete steps at 2 Hz, while the cell deformation input is a ramp. The fmal value of the ramp is identical (to within the 
conversion factor error) to the integral of the feed-forward steps, but oscillations occur during the process. The settling time 
would be zero if the actuator (and sensor) conversion factors were known exactly and the exact time of application of the feed­
forward signals with respect to the cell deformation input and the profile of actuator moves could be determined exactly. 
Then, the net energy stored in the filters at the end of one loop cycle (0.5 sec) would be zero. For an expected error in con­
version factors of 2% and a first order approach to the feed-forward step timing, the simulation shows a settling time of- 7 
sec to within 10 nm of the final desired sensor reading. A gain of 0.12 was selected as the approximate .value that resulted in 
fastest settling time. 

4. SENSOR NOISE.ANALYSIS 

4.1 General analysis 

For a system like the ACS, a general noise analysis has to take into account the fact that the transfer functions and feedback 
functions are matrices, so that each element of the output..vector may be connected to some or all of the inputs. A treatment 
of this type of system can be found in Ref 6. The relationship between the power spectral densities of each output element Yi 
and that of the input elements Xj is given by 

J 2 
Sy/f) = IIHij(/)1 sxj (f) (26) 

j=1 

where Sy. (/) is the power spectral density of the ith ouput, Sx. (/) is the density of the jth input and Hij (/)is the trans­
fer function between the jth input and the ith output. This is for' the case with inputs Xj uncorrelated. 

The transfer function of the feedback system of Fig. 3, simulating the Keck ACS, can be studied by making reference to the 
more general problem exemplified by Fig. 9, in which x andy are input and output vectors, respectively, and hand fare the 
impulse response function matrices of the main transfer and feedback elements. 

In order to obtain the multivariate transfer functions, we define the autocorrelation function 

RYi(tl,t2) = E{yi(t1)Yi(t2)} 

where E{} indicates expected value. For the general system of Fig. 9, 
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Fig. 9: General multivariate feedback system. 

(28) 

Fourier transforming both sides, and letting capital letters stand for the transforms of the corresponding small case letters, we 
obtain 

'Yj(/) = LHij(f) Xj(f)- I 'LHij(f) Fjl(f) Yt(f) (29) 

j j l 

In the relationship of Eq. 29, the second term of the right hand side (due to the feedback element) contains all"the elements 
of the output vector Y and there is no general solution for the transfer function relating one single Yi(f) to the input vector 
X(f). For the ACS case, with the simplifying definitions given in Sect 3.1, the situation is much better. 

The elements of the matrix H in (29) correspond to M(f)E(f)G(f)F(f)B in the ACS (compare Figs. 3 and 9), i.e., each ele­
ment of the pseudo-inverse matrix B is multiplied by the product of transfer functions indicated. Matrix F of (29) corre­
sponds to the matrix A(f), sparse, non-diagonal, in the ACS. 

With these substitutions and letting C(f) = M(f)E(f)G(f)F(f), (29) becomes 

'Yj(f)=C(f)Lbij Xj(/)-C(f)LLbij ajl Yt(f) (30) 

j j l 

Since B is the pseudo-inverse of A, the summation over j in the second term of the right hand side of (30) results in 1 for i 
=I and 0 otherwise. We are then able to solve for 'Yj(/): 

{ 
C(f) } 

'Yj(f) = l + C(/) "2;bij XjCf) 
J 

(31) 

v The transfer function relating one output Y i to all the inputs Xj needed to calculate the output power spectral densities of (26) 
can then be obtained from (31). 

11.,, 4.2 Noise coupling in the ACS 

For the simplified feedback system of the ACS, as described in Sect. 3.1, the power spectra of the output noise as a function 
of the input power spectra can be obtained from (26) and (31). The result is 
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(32) 

An examination of (32) shows that the noise power of the ith output contains a contribution from all the input noise powers, 
with coupling coefficient given by the squares of all the elements of the rows of the B matrix. If we consider identical noise 
sources at all inputs, the summation of the square of the elements of the rows of the B matrix represents a noise magnifica-
tion ratio which will be evaluated below. The first term of (32) represents the effect of the transfer function of the system. \..,• 
Its integral over all frequencies results in the equivalent noise bandwidth of the system with feedback, for noise sources that 
are essentially flat in the band with of the system. 

4.3 Equivalent system bandwidth 

With the simplifying approximations described in Sect. 3.1, the function C(f) of (32) is simply the frequency response of an 
integrator (the actuator) and two single pole cascaded filters. The equivalent system bandwidth has been obtained by inte­

·grating numerically the frrst term of (32) over all frequencies and is given in Table I. 

TABLE I 

Equivalent System Noise Bandwidth with Double Pole Filter, fc = 0.2 Hz 

Loop Gain g Eq. Bandwidth (Hz) 

1.0 0.31 
0.25 0.108 
0.10 0.048 

4.4 Matrix noise magnification factor 

With the assumption that all noise sources are identical and independent, the matrix noise magnification factor obtained from 
(32) has components that range from 3.31 rms at actuators belonging to the more tightly coupled mirrors to 8.06 nns for 
some of the actuators in peripheral mirrors. The nns noise magnification for the complete primary mirror is found to be 
4.75. It can be interpreted as the factor by which the nns noise that could be measured at the output of a sensor is magnified 
when measured at an actuator site, with all the sensors and actuators in operation. 

4.5 Primary mirror image rms noise 

The rms image radius for noise generated at the sensors is defined by 

(33) 

where M is the number of mirror segments, Om is the deviation angle from the perfect mirror ray and E {) is the expected 
value. Mast and Nelson have obtained a formula for that value for the primary mirror of the Keck telescope in terms of a 
sensor noise <15 • Their result, Eq. 22 of Ref. 2, is 

(34) 
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where the (km) index on B refers to row i of the matrix B and i = 3(m-l)+k for the~ actuator on the mth segment, N is 
the number of sensors and M is the number of mirror segments, as above. 

It will be interesting to see how (34) is affected by the feedback nature of the control loop and its limited bandwidth. For 
that purpose we start with Def. (33), interchanging expectation and summation. Using the expression for the image angle of 
a mirror ray in tenns of actuator lengths p, given by Eq.13 of Ref. 2 , we obtain 

M M 
. o;ms = lt IE{ o~} = lt (~)2 IE{Plm + Pim + dm- PtmP2m- P2mP3m- P3mPtm} (35) 

m=l m=l 

In the notation of the present faper, Pkrn = Ji, where i = 3(m-1) + k, i.e., Yi is the length of the ith actuator. The expected 
value of the quadratic tenns Yi can be obtained from 

~ 
2 

2 . +oo + C(j) 2 
E{y; }=E{y;(t)y;(t+-r)} _0 =Ry.(t,t+-r)l-r=O =f Sy.dt=f "b;':l·Sx.(f)df 

'f- 1 -oo I -oo 1 + C(/) ~ 1 
1 

(36) 

where R is the autocorrelation function and Sis the power spectral density, given by (32). The integral at the right hand side 
of (36) for a sensor noise spectrum which is flat within the band pass of the control system and of value cr52 per unit band­
width, with all the sensors identical and independent, becomes 

E{Jt}=BWn
2 

a;IbJ 
j 

(37) 

where B Wn is the equivalent noise bandwidth at the loop gain employed. For the cross tenns in (35), a similar treatment 
shows that 

E{Y;Y1} = Bw; a; Ib;jblj 
j 

(38) 

Substituting (37) and (38) into the expression for the nns image radius of (35), and after some algebraic manipulation and . ~ 
changing back to Mast and Nelson's notation, we obtain 

. 
21

M33N · 2 
o;ms = (~) -I I I I( B(km)n- B(k'm)n) Bw; a; 4M m=l k=l k'=l n=l 

(39) 

This equation is nearly identical to the result of Mast and Nelson, the only difference being the appearance of the effective 
noise bandwidth factor. 

The implications of (39) are that, for noise sources that are essentially white within the - 0.2 Hz bandpass of the control 
loop, the value of cr5 (in nm/Hzll2) that has to be used in calculating the nns image radius has to be multiplied by the effec­
tive noise bandwidth, which is gain dependent and lower than unity for the ACS, as seen from Table I. For noise sources 
whose energy can be approximated by a &.function at very low frequencies, the value of the corresponding factor is essen­
tially g/(1 + g), so that their effect is also reduced by using a feedback control loop at low gain. In all cases, however, the 
mechanism for noise magnification by coupling by matrix tenns is present. 
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5. CONCLUSIONS 

This paper has focused on two aspects of the Primary Mirror Control System of the Keck Telescope. The first has been a 
study of the time response of the system to desired changes in mirror figure, or to the ability to maintain a specific mirror 
figure under the changes due to gravity and temperature during star tracking or fast slewing. The second aspect has been a 
study of the noise magnification effects of the control matrix B and the equivalent noise bandwidth of the feedback loop 
forming the ACS. In the process of carrying out both studies, it has become evident that the simplified case in which the 
matrix M of mechanical whiffletree response of Fig. 3 is diagonal, leads to a simplified problem that can be treated with rea-
sonable ease. That assumption is expected to be true for the ACS in the bandpass frequencies of the system. If after work- \.' 
ing with the telescope it is found that the assumption does not hold sufficiently well, this paper has laid out the methods by 
which a more complete study can be carried ouL The study of the dynamic behavior would start from (20) and the study of 
noise coupling would start from (29). The results found in this paper can be summarized as follows: ~ 

1) With the fllter cut-off frequency specified at 0.2 Hz by the need to remove aliasing of higher frequency oscillations 
of the mechanical system, the expected range of operating loop gains can be expected to be between 0.1 to 0.2, de­
pending on the operation. 

2) The phase lag introduced by the filter necessitates the use of feed-forward, which can bring settling time to less than 
10 seconds in all tested cases of interesL 

3) The fact that the ACS is a feedback control loop operated at a low gain, results in a reduced noise measured at the 
actuators given by the sensor input noise times a factor that ranges between the effective noise bandwidth of Table 1 
and g/(1 + g), depending on the spectrum. 

4) The fact that the control matrix B couples each actuator to all the sensor noise sources results in an rms noise mag­
nification ratio of 4.75, independent of power spectrum. Factors 3 and 4 have to be considered together in calculat­
ing the system noise. 

5) The rms image radius calculated by Mast and Nelson can be reproduced by the analysis of the present paper, pro­
vided that the value of <15 used is multiplied by the equivalent noise bandwidth at the operating gain. It is also evi­
dent that that analysis only holds for the case of a diagonal mechanical whiffletree response matrix .. If the assump­
tion is not applicable in the bandpass of the ACS, higher noise can be expected than the one now calculated. 
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