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Abstract 

Although scars in the eigenfunctions of classically chaotic systems 

were originally observed in the configuration space representation, we 

show that these can be better visualized in phase space. On the quan-

titative side, a recent theory of scars is extended to billiards. For the 

stadium detailed agreement between theory and numerical experiment 

is found. 

PACS numbers: 05.45.+b, 03.65.Sq, 03.65.-w 
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One of the few semiclassical results which applies in the case of classically 

chaotic motion is the trace formula of Gutzwiller, 1 which gives the density of states 

in termS of classical periodic orbits. Recently, this formalism has received con-

siderable attention and has been shown to be in good agreement with numerical 

experiment for a variety of chaotic systems. 2 On the other hand, the eigenfunc~ 

tions of strongly chaotic systems were believed for a long time to correspond to 

Wigner functions which are homogeneous over the energy shell. 3 In billiards, this 

conjecture leads to eigenfunctions which in turn are homogeneous over configura-

tion space. This simple picture. was undermined by the finding of high intensity 

patterns resembling periodic orbits ("scars") in the eigenfunctions of the stadium 

billiard. 4 Consequently, a theory of scars in configuration space was. constructed 

by Bogomolny. 5 Latter on, Berry6 derived a semiclassical phase space formula for 

the spectral Wigner function 

W(z, E, E) = hN L 5((E- En) Wn(z), (1) 

" 
where z = (q, p), Wn(z) is the Wigner function corresponding to the n-th eigenstate, 

N is the number of degrees of freedom and 5( (E) is a normalized Lorentz ian of 

width E. As will be shown, Berry's formula is restricted to the case of smooth 

Hamiltonians. Accordingly, the purpose of this Letter is twofold. First we shall 

argue that phase space is a more natural environment for the study of scars. In 

order to support this statement, the Wigner and Husimi functions for the stadium 

are compared with the corresponding scarred eigenfunction, W n ( x, y). Second, a 

billiard formula for W(z, E, E) is derived and compared with the numerical results. 
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For two degrees of freedom systems the energy shell is three-dimensional while 

configuration space has only two dimensions. As a consequence, in phase space 

one has better resolution when attempting to distinguish between the contributions 

of different periodic orbits to a given state. The importance of phase space has 

been especially appreciated by Davis, 1 who studied Wigner and Husimi distribu-

tions numerically for systems with a mixture of regularity and chaos. Here, we 

shall illustrate this statement using the stadium billiard, a system which is globally 

chaotic. We set the radius of the two semicircular caps, r, to be equal to half the 

length of the straight segments, a. In Fig. l(a), an eigenfunction is compared with 

periodic orbits numbers 2 (full line) and 26 (dashed line). (We order the periodic 

orbits in ascending sequence by their linear stability eigenvalue.) To each there 

. corresponds a second symmetry-related periodic orbit obtained by a reflection with 

respect to the x-axis. Although the second orbit seems to better resemble the shape 

of the scar in the eigenfunction, the assignment is not compelling. In phase space 

however, the correspondence between periodic orbits and scars is rather transpar-

ent. In Fig. 1 (b) the associated Husimi distribution in the surface of section at 

x = r = 1 is compared with the periodic orbits which neighbor its local maxima. 8 

In this representation, two additional orbits, numbers 25 and 52, can be seen to 

contribute to this state. Notice that the inherent limitation of this procedure is 

due to the finite width of the individual contributions to the Husimi distribution. 

The major advantage of working in phase space is that the relationship between 

scars and orbits suggested in Fig. 1 (b) can be verified by requiring consistency 



with a different surface of section. Accordingly, in Fig. l(c) the same comparison 

is performed in the x = r /2 section. We find that the assignment of periodic orbits 

to maxima in the corresponding Husimi distribution matches the one in Fig. l(b). 

In both Fig. l(a) and Fig. l(b) the stable and unstable manifolds of orbit 

number 2 are shown. Although the high intensity contours do follow the manifolds, 

the effect is not pronounced. 9 This phenomenon is strongly enhanced, however, if 

the Wigner function rather than the Husimi distribution is studied (see Fig. I( d)). 

On the other hand, due to the very rich structure of the Wigner function it cannot 

be easily employed to visually identify the periodic orbits which scar the state • 

. We now proceed to the. second part of. this Letter and to a quantitative discus

sion of scarring. We start by shortly summarizing the derivation which lead Berry 

to a trace formula for W(z,E,e). From Eq. (1) one can show that 

where G is the propagator, evaluated at QA = q- s/2, Qs = q + s/2. Berry first 

replaces the propagator by its WKB approximation, the Van Vleck formula, 10 and 

then performs the s and t integrations by the stationary phase approximation. As 

a consequence of the s integration, it is found that trajectories which satisfy the 

midpoint rule, that is, z = (zA + zs)/2, dominate the spectral Wigner function. 

The remaining integral over time has the form 

2N """ rJO effE+if-H(aA )J+tA(s,t)+i-y 

W ( z' E' E) = 7r;, . L-. Re J o dt [ det ( m A B + I)] t , 
m1dpo1nt 

(3) 

orbits 
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where A(z, t) is the symplectic area enclosed between the midpoint orbit and a 

straight segment connecting its endpoints (the chord area), and where mAs = 

dzsfdzA. H we denote the phase in Eq. (3) by 4>/li then the stationary phase 

condition takes the form a<t>jat = E- H(zA) = 0. Accordingly, the midpoint 

orbits which lie in the E-energy shell will dominate the time-integral of Eq. (3). 

As was shown by Berry, 6 a crucial point for scarring is that for periodic orbits 

a2<t>jat 2 = 0. Consequently, the periodic orbit contributions to W(z,E,E) result 

from a degenerate stationary phase integral and therefore dominate the contribu-

tions from non-periodic orbits. However, trajectories which are almost periodic are 

also important because they determine the way in which the dominant contribu-

tions to W(z, E, E) decay as a function of e, the displacement away from the periodic 

orbit in the surface of section. For these trajectories the correction to the chord 

area is 

(4) 

where J is the unit symplectic matrix and 1\J = d!s/d!A is the linearized mapping 

about the periodic orbit in the surface of section. Finally, in order to perform the 

degenerate stationary phase integration the third derivative of the phase in Eq. (3) 

is needed, a<t>jat3 = iJz. The resulting contribution from an individual periodic 

orbit is 

Wpo(z, E, E) = 2N -t.T/h. ( 1 1 - M- I ) V e cos ;-S(E) + ;- !J M I!+ --y 
det(M +I) ,, rt. + 

2 { 2[H(z) - Ej} 
x (n.2iJz) 1/3 (n.2iJz) 1/3 · 

(5) 
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For billiard systems, z = {:p,p) = 0 and accordingly Wpo of Eq. {5) needs to 

be. modified. This is most easily done when e = 0, € = 0 (point z on the periodic 

orbit, and no smoothing in energy). In this case, the breakdown of Berry's formula 

is a direct consequence of the absolute degeneracy of the phase appearing in the 

time-integral of Eq. (3), that is a4>jat = E- H(zA) = E -· H(z). Not only do the 

endpoints of the contributing midpoint trajectories lie on the periodic orbit itself 

but they are also required to be on the same straight segment as z. Therefore, 

the time integral runs over the interval ( -2To, 2To) where To is the time of flight 

between z and the nearest bounce. We obtain 

2N r 
W po(z, E, e = € = 0) = ~ M [ (Tr M + 2 + 2ToM 2d t 

1rrt. 21 

...:.. (TrM + 2- 2ToM2l)t] cos(kL + 1), (6) 

where Lis the length of the periodic orbit. Notice that in Eq. (6), Wpo = O{h- 1
) 

while Berry's result of Eq. (5) is only O(h-213
). Accordingly, phase space scars for 

billiards will more strongly diverge in the semiclassical limit. 

When either € or e are nonzero the formula for W(z, E, €) becomes rather 

complex and we shall postpone its derivation for a future publication. Nevertheless, 

it is worthwhile to mention that for small values of e the result of Eq. (6) is 

completely unchanged except for adding the correction to the chord area given in 

Eq. (4) to the argument of the cosine. 

We now proceed to quantitatively check the predictions of Eq. (6) for the case 

of the stadium billiard. For this purpose we have numerically calculated the values 
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of the Wigner function at the point Pa = (x = 0.51,y = 0.745,kz/k11 = -2) for the 

first 1000 odd-odd states and have taken the Fourier transform with respect to k 

F(z,L) = 1/ dkeilcL kW(z,k),. (7) 

The factor of k which appears in Eq. (7) was introduced in order to remove any 

k-dependence in the amplitude of Eq. (6). Since Pa lies on the third periodic 

orbit we should obtain a peak in the Fourier transform at integer multiples of its 

length, La= 4.4721. Indeed, in Fig. 2(a), among several other peaks then= 1 and 

n = 2 multiples of La can be located with a precision of 0.1 %. The corresponding 

heights however, agree to the theoretical prediction of Eq. (6) only to within 17% 

and 12% error respectively. The additional peaks are due to other periodic orbits 

which are neighboring in phase space. Since for those contributions e is finite, the 

corresponding chord area must be adjusted by LlA (see Eq. ( 4)). This correction 

is linear in k and therefore plays the role of a shift in the length of the source 

orbit. The assignment of these peaks to specific periodic orbits is neither unique 

nor especially enlightening. Moreover, due to the fact that in practice the Fourier 

transform is performed over a finite k-interval only, these peaks interfere strongly 

with each other. The effects of the interference can be observed by comparing the 

fringes associated with L = 0 with those at L = £ 3 • It is obvious that for the latter 

they are strongly perturbed by a nearby finite-e peak. This nearby peak is also the 

source of the relatively large errors which we found in the heights and locations of 

the nLa peaks. In Fig. 2(b), F(z,L) for z = P2 = (x = 0.51,y = 0.49,k:/ky = -1) 

is shown. P2 lies on the second periodic orbit for which £ 2 = 4.8482. Clearly, the 
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n = 1 peak is quite well isolated from its neighbors. As a consequence, an error of 

only 0.03% in the position and 6% in the height is obtained. 

In summary, we have shown that Berry's semiclassical theory for the Spectral 

Wigner function is not only more convenient because of being a phase space theory 

but also that it can be easily extended to hold for billiards. Moreover, we have 

quantitatively checked the modified theory against numerical results from the sta-

dium. We feel that such checking is important, because many studies of the scarring 

phenomenon have been qualitative or semiquantitative at best. 

We thank S.S. Creagh and W. Swiateckifor many useful discussions. This work 

was supported in part by the Director, Office of Energy Research, Office of High 

Energy and Nuclear Physics, Division of Nuclear Physics, and Office of Basic Energy 

Sciences Research, Engineering and Geoscience Division of the U.S. Department of 

Energy under Contract No. DE-AC03-76SF00098, by the Division of Materials 

Science, U.S. Department of Energy under Contract No. DE-AC02-76CH00016 

and by the NSF under Grant No. NSF-PYI-84-51276. 
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Figure Captions 

1. Configuration versus phase space for the 744-th state. a) The eigenfunction, b) 

The Husimi distribution on the x = r surface of section. The relevant periodic 

orbits are also shown: the second (•), the 25-th (o), the 2&-th (•) and the 52-nd 

(x). The dotted curves which emerge from the-second periodic orbit are its. 

stable and unstable manifolds, c) As in b) only that here x = r/2, d) The 

Wigner function on the same SOS as in b) (see text) (dashed lines are negative 

contours). 

2. The F(z, L) function: a) z = P3 , b) z = P2 (see text). 
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