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PION AND KAON INTERFEROMETRY OF NUCLEAR 'COLLISIONst 

Sandra S. PADULA• and Miklos GYULASSY 

Mailstop 70A-3307, Lawrence Berkeley Laboratory, Berkeley, CA 94720 USA 

In the study complex reactions, the simple space-time interpretation of pion 
interferometry often breaks down due to strong correlations between spatial 
and momentum coordinates . .In those cases, pion interferometry is still useful 
as a complementary test of specific dynamic models, but a refined formalism 
must be used, as discussed in the introduction. With this formalism, we show 
that recent NA35 data on 0 +Au - 1r-1r- +X at 200 AGeV are consistent 
with both hadronic resonance and quark-gluon plasma models for this reaction. 
The sensitivity of the outward and sideward transverse projected correlation 
function for pions is investigated. Finally, we compare pion and kaon interfer
ometry predictions of these two models. 

1 Introduction 

Pion interferometry has been used for a long time[l]-[19) to probe the space~time. 
geometry of high energy hadronic reactions (for a comprehensive review, see .[20]). 
It is based on exploiting the constructive interference between identical bosons when 
their relative momenta are small compared to the inverse of the. typical spatial di
mensions of the reaction volume. Experimentally, the interference pattern is deduced 
by measuring like pion correlation functions, 

n 

Cn(kt, · · ·, kn) = AfnPn(k~, • • •, kn)/ II Pt(ki) , (I) 
i=l 

where Pn denotes then (identical) pion inclusive distributions,:and .N"n is thejnverse 
of the normalized nth factorial moment.of the multiplicity distribution. 

Unfortunately, the simple geometrical interpretation of the interference pattern 
is only valid in the semi-classical limit and in the absence of correlations between 
the spatial and momentum coordinates[6, 7]. In such idealized cases, the two pion 
correlation function C2 (k~, k 2 ) is directly related to the space-time density, p(x), of 
pion emission points through 

(2) 
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with p( q) = f d4 xeiqr p( x) and with the incoherence or chaoticity parameter .A = 1. 
In many interesting cases, dynamical effects can lead, however, to strong correla
tions between x and k which can distort the interference pattern and obscure the 
space-time interpretation of C(k~, k2 ). In such cases the analysis of correlation func
tions necessarily becomes model dependent! Nevertheless, the study of small relative 
momentum pion correlations is still useful as a unique and complementary test of 
specific dynamical models since identical pion correlations are sensitive to the phase 
space correlations predicted by transport models, which are otherwise not tested in 
other inclusive measurements. However, as shown in Ref[21] it is essential in that case 
to use a more refined formalism to connect transport calculations with interferometry 
data. 

A characteristic symptom of the breakdown of the ideal picture is that C2 (k~, k2 ) 

is found to depend on the mean pion momentum, K = (k1 + k2)/2, as well as on the 
relative momentum, q = k1 - k2 even in the case K · q = 0 (see e.g. [7, 8, 10, 14]). 
(A dependence on the component of K parallel to q always occurs if there is time 
dependence of p( x, t).) A second symptom of the breakdown of the ideal picture is 
a fitted value of .A < 1, also found often· experimentally. While in principle partially 
coherent fields could be produced[5], the most likely cause of an apparent .A < 1 is 
an overly simplified analysis of the complex six-dimensional dependence of C2 (k~, k2 ) 

involving integrations over four or five of the momentum variables and/or neglecting 
additional important dynamical degrees of freedom such as resonances. These points 
have been emphasized for example in refs.[l4, 19]. 

Present interest in this problem stems from new data on pion interferometry 
of nuclear collisions at CERN[15] and the development of Monte Carlo transport 
models[18, 22] for high energy reactions. At high energies, Lorentz boost invariance 
along the beam direction leads to a strong (so called Inside-Outside(23]) correlation 
between the production points, xiA, and final momenta, piA. The modifications of C2 

due to such phase space correlations have been studied in Refs.[ll, 12, 14, 17] us
ing a variety of simplifying assumptions and techniques. There has also been recent 
progress toward more realistic calculations, taking into account additional dynami
cal complications predicted by detailed transport models in refs.[18, 19]. However, 
the theoretical basis for those calculations has not been adequately discussed in the 
literature. 

The formula derived in Ref.[21] turns out to be a natural generalization of the 
one proposed by Pratt[7] and is derived in a more comprehensive way using trans
port theory and the Wigner density formalism developed by Remler[24, 25]. Finite 
wavepackets are used to expose the sensitivity of the interference effects to the pro
duction mechanism. 

The Wigner formalism connects the rate of change of then particle phase space 
distribution, fn(x~, p1 , .. ·, Xn, Pn, t) to asymptotic observables. As emphasized in 
[24, 25], transport theories, such as hydrodynamics or cascade models, can only ap
proximate the rate of change of fn during the limited time interval when relatively 
high momentum transfer processes are occuring. At asymptotic times such models 
break down or predict free streaming. Low momentum transfer final state interactions 
leading to weakly bound states[25] and subtle Bose interference effects can only be 
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rigorously extracted from transport models using the Wigner formalism. The formal
ism also allows us to derive a new equation incorporating effects of intermediate time 
cascading of pions and to study the conditions under which only the final freeze-out 
coordinates dominate the interference pattern. 

The main result of Ref.[21] is summarized by the following formula for the Bose
Einstein symmetrized n pion invariant distribution: 

(3) 

with the smoothed delta function given by 

b~(k, k', p) = (21r~p2 )-3/2 exp(HP- ~(k + k'))2 
/ ~p2 + Hk- k'? 6x2

) ( 4) 

The brackets ( · · ·) denote an average over the Bn pion freeze-out space coordinates 
{xt,p1, · · ·, Xn,Pn}, as obtained from the output of a specific transport model such 
as a cascade[18] or LUND model[19]. In this form, Eq.(4) is ideally suited for Monte 
Carlo computation of pion interference effects. The smoothed delta function results 
from the use of Gaussian wavepackets with widths ~x and 6p that depend on details 
of the pion production mechanism. The sum is over n! permutations, u = (ut, · · ·, un), 
of the indices ( x, k,p, · · · denote four vectors and all momenta are on-shell). 

There are several important points to note in connection with (3): 

1. The freeze-out coordinates do not correspond in general to the set of coordinates 
{xi(t,),pi(t,)} at any particular "freeze-out" time since the decoupling times,. 
x?, are usually widely distributed[24, 25]. In a cascade model, the freeze-out 
time for particle i is the time,.t1i, when the last binary collision was suffered by 
that particle and (xr,pn = (xll(t1i),~(t1i + t:)). These Bn coordinates can be 
arbitrarily correlated. 

2. The wavepacket widths enters because the uncertainty principle permits us to 
interpret the ( xr, pf) only as the mean values of the pion wavepackets. In 
Monte Carlo calculations involving a finite sample of freeze-out coordinates, the 
interference terms are nonvanishing only if ~p > 0 since no two Pi are ever the 
same. However, in the semi-classical limit (((xi- Xj)2) ~ ~x2 , ((Pi- Pi)2) ~ 
~p2 ), the dependence on the widths drops out. 

3. Eq.(3) reduces to the expression derived via a covariant current ensemble formal
isms[19] for minimal wavepackets (~x~p = !). In that case ~p2 = mT in terms 
of the pion mass and the pseudo-temperature parameter characterizing current 
elements. Our derivation thus clarifies the interpretation of the current elements 
in the later formalism. 

4. The Pratt[7] formula for interferometry correspond to the nonrelativistic and the 
~x = ~p = 0 limits of (3). The hybrid Yano-Koonin formula[4] follows from 
(3) only if correlations between Xi and Pi can be neglected. In addition the 
wavepackets provide a physical basis for the numerical smoothing proceedure 
adopted in [18]. 
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5. In general, correction terms to (3) appear due to cascading prior to the freeze
out time but can be neglected in the limit that the mean free path of pions is 
small compared to the source size (the hydrodynamic limit) or if the momentum 
transfers are small compared to the pion momenta (the Eikonallimit). 

6. In cases where Pn is found to be sensitive to the wavepacket size, pion interfer
ometry cannot separate production dynamics from the transport dynamics, and 
~x and ~p must be treated as addition physical parameters. A similar sen
sitivity to the form of the current elements in the current ensemble method is 
possible. As we emphasize in Ref[21], this is the case for the ideal Inside-Outside 
cascade dynamics[ll]-[19], where the rapidity correlation scale, by """ ( ;~p)-I, 
depends not only on the mean pion freez-out proper time but also on ~p. 

7. Eq.(3) could be further generalized by allowing every packet to vary indepen
dently, e.g., via a different ~Xi, ~Pi· Choosing, the coherence length ~Xi to 
be very large for a fraction of the pions due to some exotic production mecha
nism, the interference pattern would be similar to that due to partially coherent 
fields[5]. 

8. Relative Coulomb and other final state interactions are not considered here but 
can be included via methods dicussed by Bowler[16]. 

Pion Interferometry of 0 + Au 

The NA35 collaboration[15] measured 1r-1r- correlations in O+Au at 200 AGeV and 
reported that the freeze-out distribution for pions in this reaction is characterized 
by a surprisingly large freeze-out proper time and transverse radius, 'f """ R.l.f "' 7 
fm. In addition, they reported an unusually high degree of coherence for pions away 
from the central rapidity region. These results are of interest because they may imply 
a breakdown of popular hadronic transport models like LUND[22, 26] and possibly 
provide evidence for novel dynamical effects associated with the formation of quark
gluon plasma in nuclear collisions[ll, 18]. 

In Ref.[19] we showed, however, that the above results are not conclusive and 
that the present data are in fact consistent with a wide range of pion source param
eters when additional non-ideal dynamical and geometrical degrees of freedom are 
incorporated into the analysis. In particular, both hadronic transport models[22] and 
quark-gluon plasma hydrodynamic models[18] are found to be consistent with the 
present correlation data. We also study the sensitivity of "outward" and "sideward" 
transverse momentum interferometry[11, 18] and show that, in contrast to first ex
pectations, much higher precision data will be required to differentiate between such 
competing dynamical models. 

In its simplest form, pion interferometry involves fitting the 1r1r correlation function 
with the ansatz given by eq.(2). As discussed in the Introduction, this simple relation 
is, however, only valid if the freeze-out space-time and momentum coordinates of the 
pions are uncorrelated. In high energy hadronic processes there are many potential 
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sources of such correlations which can significantly modify[ll, 12, 14, 17] the form of 
C(k~, k2), and thus, the geometrical parameters obtained with (2) could be mislead
ing. In phase-space, strong correlations[23] between the space-time and momentum 
rapidity variables, defined by 1J = ~ log((t+z)/(t-z)) andy= ~ log((E+pz)/(E-pz)), 
resulting from approximate longitudinal boost invariance, have to be taken into ac
count. In addition, a large fraction of the observed 1r- could arise from the decay of 
long lived resonances such as w, K*, TJ, • • • [28]. It has been known for a long time[29] 
that those resonances can produce effects that could be misinterpreted as due to 
unusually long lived sources and partially coherent fields. For nuclear collisions at 
moderate energies -200 AGeV, additional complications due to non-uniformity of the 
rapidity density[15] and the large spread of pion freeze-out proper times must also 
be considered. Other correlations, e.g., between the transverse coordinate (x.L) and 
the transverse momentum component (P.L), may have to be considered if collective 
hydrodynamic flow occurs[ll]. 

To incorporate these many effects into the pion interferometric analysis of nuclear 
collisions, we must use equations (3) and (4). While those equations were derived 
using the Wigner formalism, we now review the simpler current ensemble method 
that leads to the same equation for the case of minimal packets. In that formalism 
the source of pions is represented by a large ensemble of current elements, {j0 (x) = 
j0(u~(x- x0 )")}, where x~ and u~ denote the space-time origin and four-velocity of 
current element a, and j 0 (x) specifies each current element in its rest frame. The 
amplitude for the production of a pion with momentum k is given by the· Fourier 
transform of the total source current, 

(5) 
0 

where the factors eitl>a are random phases in the case of completely chaotic sources .. 
Them-pion inclusive distribution function is then given by 

(6) 

where {· · ·) denotes the ensemble average over the space-time coordinates X 11 , four
velocities U 11 , and random phases f/>0 • In the absence of dynamical multi-pion correla
tions, that ensemble average can be expressed in terms of a "freeze-out" phase-space 
distribution 

(7) 

where ~ = mu~. The m pion inclusive distribution functions is then given by[5, 12] 

{8) 

where u = (ut, · · ·, um) runs over the m! permutations of indices. The complex 
amplitude G(ki, kj) is given by the convolution of the freeze-out distribution and two 
current elements that characterize the production dynamics, 

G(ki, kj) = J d"pD(ki-kj,p)j;(pkifm)jo(Pki/m) = {ei(k;-kj):r:aj;(p11 ki/m)jo(p11 kj/m)) 

(9) 
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The objective of pion interferometry from this point of view is to constrain the 
form of the freeze-out source distribution. The model dependence enters, however, 
not only through the parameterization of D(x,p) but also through the model adopted 
for j0 (k). In this formalism the current elements play the same role as wavepackets 
do in the Wigner density formalism[ll, 21). From (9) it is clear that (2) can apply 
only in the very special case that D(q,p) ~ p(q)f(p), and that f(p) is sharply peaked 
compared to j 0 (k). In other words, the space-time and velocity coordinates of the 
source elements must be uncorrelated and the Doppler shift of the pion spectra from 
each source element must be negligible. Neither of these conditions is satisfied in high 
energy hadronic processes. 

In our calculations, we adopt for simplicity a covariant pseudo-thermal model for 
the current elements[5, 12], 

io(pkfm) = exp( -pk/(2mT)) (10) 

where the effective "temperature", T, characterizes the spread of the source elements 
in momentum space and controls the transverse momentum distribution of pions in 
our case. With this model the amplitude assumes the particularly simple form 

(11) 

depending not only on q~-' = ki-k~ but also on the mean pair momentum K~-' = !(ki+ 
kn. Note that this dependence is, however, quite different from the K dependence 
arising in the non-covariant Wigner formalism[ll, 21]. 

The effects of long lived resonances can be easily included in the semiclassical 
approximation. Note that the pion freeze-out coordinates, x~, are related to its 
parent resonance production coordinates, x~, through 

(12) 

where u~ is the resonance four velocity and Tis the proper time of its decay. Inserting 
(12) into (11 ), summing over resonances r of widths r r, and averaging over their decay 
proper times, we obtain the final expression 

(13) 
r 

where fr is the fraction of the observed 1r- 's arising from the decay of a resonance 
of type r, and Tr characterizes the decay distribution of that resonance. The factor 
(1- iqur/fr)-1 insures that pions arising from decay of long lived resonances do not 
interfere effectively at moderate q. While (13) is only valid in the semiclassical limit 
and involves an idealized model (10) of the decay dynamics, it is manifestly Lorentz 
covariant and is of sufficient generality to allow the study a variety of nontrivial 
dynamical models of high energy nuclear collisions. 

We consider here a class of dynamical models that can be characterized by a set 
of resonance fractions {fr }, and a freeze-out phase space distribution of the form 

(14) 
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where r 1 specifies the width and mean value of the freeze-out proper time, T = 
( t 2 - z2) 112, distribution, !:177 specifies the rms fluctuations of 7J = ! log( ( t + z )/( t- z)) 
around y = tlog((E + Pz)/(E- Pz)), Yc is the width of the rapidity distribution 
centered at y•, and Rl. is the rms transverse radius at freeze-out. In this work, we 
estimate the parameters of the freeze-out distribution and resonance fractions using 
the ATTILA version of the LUND Fritiof multi-string model[22] and a string tension, 
K = 1 GeV /fm, to map momentum space into coordinate space. For O+Au at 200 
AGeV, we find that Yc ~ 1.4, y* = 2.5, !:17] ~ 0.7, TJ ~ 3 fm/c and Rl. ~ 3 fm. The 
1r- pedigree is determined to be J1r = 0.19, JP = 0.40, fiN = 0.16, and !K· = 0.09, in 
rough agreement with data on hadron-hadron reactions[28]. The contribution from 
longer lived resonances is set to zero. 

In Ref.[18] a similar form for D was employed to parametrize the results of a 
quark-gluon plasma hydrodynamic calculation. In that case, the parameters were 
found to be TJ = 9.0 fmjc,Rl. = 3.3 fm,l:17J = 0.76, assuming that Yc = oo and 
neglecting resonances. The characteristic long lifetime found in such hydrodynamic 
models results from the slowness of the hadronization transition[30, 14, 17] when the 
latent heat of transition is large. 

For comparison, the idealized inside-outside cascade model[23] considered in [5, 12] 
and used in [15] to fit the data corresponds to 

D(x,p) ex: h(r- TJ)h(TJ- y)exp(-d./R~) , (15) 

with resonances neglected. 
Given the freeze-out distribution, we calculate the amplitude, G(k1 , k2 ), by Monte 

Carlo sampling with typically 400-800 freeze-out phase-space coordinates selected 
according to ( 14) for each ( k1 , k2 ) pair. The freeze-out distributions for all resonance 
species is taken to be identical, and all Tr are set to 0.13 GeV to reduce the number 
of free parameters. To compare with data on the transverse projected correlation 
function[15], (C(ql.)), we must compute 

(c( )) 
, J cPktcPk29(ql.; kt. k2)IG(k1, k2)l2 

~ =1+A , J d3ktd3k29(ql.; kh k2)G(kt. kt)G(k2, k2) 
(16) 

where the experimental constraints are built into 9. For the present data 9 is non
vanishing only if lku- kul is within 5 MeV /c of ql.±, lk~z- k2zl:::; 0.1 GeV jc, and 
if both Yt and Y2 are in a certain interval [Ymin, Ymazo]. The six dimensional integrals 
are computed by importance sampling using a model single inclusive distribution to 
generate typically "' 200 pairs and repeating 2000-4000 times to insure convergence. 

A good test of the numerical method is provided by reproducing the fitted curves in 
Ref.[15], which follow assuming the ideal inside-outside cascade distribution (15). In 
Fig la and ld, we show that our calculations employing the reported parameters[15], 
TJ = 6.4 fm/c, Rl. = 7.3 fm and A = 0.84 for 1r- in the rapidity interval 2 < y < 3 
and TJ = 2.5 fm/c, Rl. = 4.0 fm, and A = 0.30 in the interval I < y < 2, do in fact 
provide a good fit to the data (note that the data have been corrected for Coulomb 
final state interactions). 

Next, we show in Figs lb,le, the calculated curves for the case of non-ideal hadron 
resonance dynamics. For these calculations we chose !:177 = 0.8 and considered TJ = 
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Rl. = 2, 4, 6 fm. We have performed an additional Monte Carlo hadronic cascade 
calculation taking as input the output of the LUND fragmentation model[22) and 
found that with a C1 = 20mb, the true freeze-out distribution is roughly characterized 
by Tf "' Rl. "' 4 fm for this reaction. In both Fig. 1b and 1e, the chaoticity parameter 
is fixed to .X = 1 as appropriate for completely chaotic sources. It is clear that the 
present data are consistent with the freeze-out distribution expected on the basis of 
a resonance gas model for the nuclear dynamics. 

Next, in Figs. 1c,lf we show the remarkable result that the quark-gluon plasma 
freeze-out distribution is also consistent with the data. The reason is that the long 
lifetime of the plasma source leads to the same effect in this case as the inclusion of 
long lived hadronic resonances in Figs. 1 b,1e. Note that our results for the plasma 
model differ substantially from those reported in Ref.[18]. We attribute this dis
crepancy to an improved numerical treatment and a more accurate definition of the 
experimental projected correlation function in the present work. 

While it would be difficult to justify ruling out any of the three models from the 
present data, the "exotic" parameters obtained with the ideal inside-outside cascade 
model[12] are the least compelling, since it would be truly remarkable if the degree 
of coherence in such violent nuclear collisions were not negligible. Note that in Fig 
1d, ideal dynamics with .X = 1 in fact fails to reproduce the data. 

It has been suggested[ll, 18] that the projected correlation function in terms of 
"outward" and "sideward" transverse momenta, 

(17) 

could differentiate between hadronic and plasma models and provide an "unambigu
ous" signature of quark-gluon plasma formation. In Fig. 2a and 2b, we compare 
resonance gas and plasma model predictions for these projected correlation functions 
for the case y1 = y2 = y* = 2.5. Indeed, quantitative differences can be seen. How
ever, when integrated over a broad rapidity interval, 2 < Ytr < 3, as in the present 
data, most of those differences are washed out as can be seen in Figs. 2c,d. This 
shows that much higher statistics data will be required[31] to differentiate between 
present models[26] for nuclear collisions. Of course, additional experimental informa
tion will be essential to constrain further the dynamical degrees of freedom in both 
types of models. Especially important will be an independent direct measurement of 
resonance abundances[28], since in our hadronic scenario w production is the main 
cause of the apparent long lifetime and radius. 

3 Kaon Interferometry 

To test whether kaon interferometry could be a more sensitive tool than pion interfer
ometry, we apply the formalism discussed in the previous section to identical kaons, 
we obtain the result shown in Fig. 3. There, the arrows indicate the "pure" corre
lation function, i.e., those for which Coulombian corrections in the final state were 
not taken into account (see Ref.[5] for a discussion on Gamow correction factors). In 
Fig. 3.a and 3.c we show our results, employing the reported parameters of Ref(19], 
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respectively for the case of pions as well as for kaons. We see that, due to the absence 
of thew's contribution to kaons, a substantial difference between the two dyna.nllcal 
scenarios arises. On Fig. 3.b and 3.d, we show the calculated curves corresponding 
to the plasma model [18] parameters. In this case, since· resonances are not taken 
into account, practically no difference is observed for pions' and for kaon's correlation 
functions, when the Gamow factor is taken as unity. Therefore, kaon interferometry 
can clearly distinguish between our resonance ga.S scenario from the plasma one. 

We should note, however, that when Coulombic final state interactions are taken 
into account, a dramatic suppression of the correlation function for small values of ql. 
can be seen. This effect is even more significative for kaons, due to the increase in the 
mass factor. So, it seems that the Gamow factor practically kills the visibility of the 
effects because it affects the part of C( kt, k2 ) where the Bose-Einstein enhancement is 
most significant. However, as already demonstrated by the NA35 Collaboration[15], 
it is possible (and desirable) to "ungamow" the interferometric results to exhibit 
more clearly this bosonic enhancement. If this is properly taken into account, we 
conclude that kaon-kaon interferometry is an useful tool for deciding whether the 
space-time geometry is determined rp.ostly by long lived resonances or the slowness 
of the hadronization transition from a plasma state. 
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Figure 1: 
Analysis of the transverse projected 1r-1r- correlation data of NA35[15]. The his
tograms in parts (a,d) are calculated assuming an ideal inside~o~tside cascade (IOC) 
source with parameters ( r = r1, RT = RJ.f) taken from [15]. In parts (b,e) a non-ideal 
resonance gas source is considered with parameters, r "' RT "' 4 fm, as suggested by 
the ATTILA version of the LUND Fritiof model[22]. Parts (c,f) correspond to the 
quark-gluon plasma model of (18]. Parts (a-c) refer to the central rapidity region, 
2 < Y1r < 3, and parts ( d-f) refer to the region 1 < Y1r < 2. 
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Figure 2: 
Comparison of transverse projected "outward" and "sideward" interferometry calcu
lated with a resonance gas model (a,c) and a quark-gluon plasma model (b,d). In 
(a,b) the two pion rapidities are restricted to Y1r = y• = 2.5, while in (c,d) a finite 
range, 2 < Y1r < 3, is considered. QT refers to the average transverse projected cor
relation function as in Fig. 1. The solid histograms labeled QouT correspond to the 
projection of Q.L parallel to K.L and the dashed histograms QsiD to the projection of 
Q.L perpendicular to K.L. 
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Figure 3: 
Numerical results comparing pion and kaon correlation functions versus q.L, for j.6.yj < 
1, each particle being in the central rapidity region. The histograms not pointed by 
arrows correspond to the Gamow corrected results. We should emphasize that in all 
cases the chaoticity parameter is fixed to be unity. 
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