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Abstract 

The flow of a slightly viscous fluid over a three-dimensional 
non-lifting bluff body of arbitrary geometry can,. in principle, be 
modelled using the random vortex method. In this method the im
permeability condition at the solid surface of the obstacle must be 
re-established at each time-step. Integral equation methods can 
be used to construct a potential flow which, when added to the 
flow evolved at the previous time-step, effects impermeability in 
the present time-step. The relevant equations are described and 
their numerical solution using a low-order discretisation (Nystrom) 
is discussed. The method is illustrated for the cases of flow over 
a two-dimensional prism of rectangular cross-section and for flow 
over a cubic obstacle. Fortran listings are provided of these illus
trations. 



An Application of Panel Methods to Random Vortex 
Simulations 

1. Introduction 

The random vortex method can be applied to the problem of simulat
ing high Reynolds number Navier-Stokes flow around bluff obstacles. The 
application of the method to the two-dimensional problem of flow around a 
cylinder was studied by Chorin [1]. In this-method at each time-step the im
permeability condition must l?e imposed, and Chorin achieved this QY using 
an integral equation technique to construct ~ curl-free potential flow field 
which, when added to the existing flow field effected zero normal component 
of flow at the cylinder surface. Summers et al [5] applied an integral equa
tion method to a random vortex simulation of flow over a two-dimensional 
surface-mounted obstacle.of arbitrary cross-section. Cheer [2,3] used image 
techniques and analytical conformal mapping in a random vortex simula
tion to achieve the impermeability condition, for flow around a cylinder and 
around Joukowski aerofoils. Numerical conformal mapping has be-en used in 
the context of various applications of the random vortex method to interior 
problems (e.g. Ghoniem and Cagnon [4]), and in principle such a technique 
can be applied to exterior two-dimensional problems, although the method 
does not generalise to three-dimensions. 

The impermeability condition can also b~ imposed by using grid-based 
methods. For exterior flow problems involving infinite or semi-infinite do- . 
mains, integral equation methods have an advantage over Eulerian grid 
methods in the sense that in the former approach, computational effort does 
not need to be applied to the problem of imposing conditions at infinity. This 
is especially important for flow at high Reynolds number in which extensive 
wake structure may develop and vortical motion advects downstream. In 
any case, an important feature of the random vortex method is its grid-free 
character, and an integral equation technique (or panel method} formulation 
of the impermeability condition at a solid boundary is compatible with such 
a grid-free strategy. 

In this report a statement of the problem of imposing the impermeabil
ity condition in rando~ vortex methods is presented. The u'se of integral 
equations for two- and three-dimensional problems is discussed. A low-order 
discretisation (Nystrom discretisation) of the relevant equation is described 
as well as a corresponding solution algorithm developed by Hess and· Smith 

1 



[6]. A descriptive discussion of the accuracy and stability of this solution 
procedure is provided. By way of illustrating the basic method, details 
of two particular applications are included (with Fortran listings): invis
cid flow over a two-dimensional prism with rectangular cross-section, and 
inviscid flow over a three-dimensional cuboid. 

Detailed background analysis of the numerical solution of integral equa
tions arising in potential theory can be found in various sources: He~s and 
Smith [6]; Jaswon and Symm [7]; Bose [8]; Rokhlin [9]; Kellogg [10]; Delves 
and Walsh [11]; Goldberg [12]; Atkinson [13]. 

2. Imposing the impermeability condition in Vortex Methods 

To model numerically the flow of a viscous fluid over a three-dimensional 
body B of arbitrary geometry requires that the velocity field satisfy two 
conditions everywhere on the boundary of the body, a B: the component 
of the velocity field u normal to aB must· vanish, i.e. the impermeability 
condition 

u ·n = 0 on BB ; (1) 

and the condition that the tangential component qf the velocity field at the 
boundary must vanish, i.e. the no-slip condition, 

u · s = 0 on aB . (2) 

This is to 'say the total velocity, u, at the body's surface must be zero. 
To solve the flow evolution problem associated with flow over a bluff 

body using a random vortex strategy, is to invoke a time-splitting. A time 
interval dt = tk+I - tk is formally partitioned into two half-intervals. Dur
ing the first half-interval (tk, tk+l) an Euler flow problem is addressed; the 
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vorticity field of the interior flow is discr~tised into a collection of vortex 
core elements whose interaction with each other and ·whose translation in 
the collectively induced flow field represents the Lagrangian dynamics of 
the flow. (The vorticity field in the neighbourhood of a B is discretised 
into a-collection Of vortex sheet elements whose dynamics are described by 
the corresponding boundary layer approximation.) During the subsequent 
half-interval (tk+ 1, tk+t) a stochastic model of viscous diffusion is invoked; 

2 
a gaussian random-walk displacement is imparted to each vortex element. 

The task of solving the Euler problem during (tk,tk+l) requires a flow 
2 

field uk+1 to be determined from a field uk which is consistent with the in-
viscid vorticity transport equation and consistent with boundary conditions 
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{1) and (2) on 8B. At the beginning of each time-step neither (1) nor (2) 
are in general satisfied. The strategy is first to construct an irrotational flow 
field u<l> which, when added to uk will effect condition {1) on 8B. The curl
free character of u<l> will ensure that this field will not directly contribute 
vorticity to the existing vorticity field. Having constructed a field which has 
zero normal component at the surface of the obstacle, 

(uk +u"') ·n = 0 on BB 

the tangential component of this field 

(uk + u<l>) · s on qB 

{3) 

can be used to generate a vortex sheet precisely of strength sufficient to effect 
no-slip at each point of a B. The vortex elements created in this way are 
hence made to advect in the flow field induced by the current vortex elements 
and in the current irrotational field u<~>. To each element is imparted a 
random walk displacement during the second half interval (tk+!, tk+I). The 
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velocity field which results after the completion of advection and diffusion 
is the field uk+1. 

The present discussion concerns the construction of an irrotational ve
locity field u<l> which, when added to uk will effect (1) on aB. The problem 
of determining such a field - one exterior to a closed convex body with 
continuous curvature and with imposed gradient boundary conditions to be 
satisfied on its surface, is a familiar problem from potential theory. 

3. General Statement of the Potential Problem 

We consider a solid obstcle B whose interior is denoted by Bi, whose 
boundary is 8B, and whose exterior is Be. 

We denote the interior Green's function by Gin(rir'), r, r1 E Bi u BB 
and seek to determine a harmonic field t/>(r),r E BB such that this field 
satisfies V 2¢(r) = 0 in the interior of B, and prescribed normal derivatives 
~ = g(r),r E 8B1 where n represents the variable outward normal to the 
surface. 

For two-dimensional problems the appropriate Green's function is 

{4) 

and for three dimensional problems, 

cin(rdrj) = _ _!_ 1 
411" lri- rjl 

(5) 
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The scalar velocity potential <f>(ri) associated with conditions to be imposed 
at aB can be expressed in terms of an integration over a source (or doublet) 
distribution a{rj)· This is to say 

</>(ri) = f a(rj) Gin(rdrj)dSj laB (6) 

where dS; represents a linear increment of a boundary centred at rj for a two
dimensional problem, and represents a surface increment of a boundary with 
centroid rj for a three-dimensional problem. The terminology "body point" 
is used to indicate rj; the point ri is called the "control point". Derivation 
of the formalism can be found, for example, in chapter 13 of reference [7], 
or in appendix 1 of reference [16]. 

The grad operator applied to (6) will determine an expression for the 
velocity field on a B, 

(7) 

The normal component to a B of u<l> at ri is hence 

(8) 

where ni is the unit normal outward to aB at ri E aB. 
The kernel of this line integration is singular at ri = rj ; analysis of the 

singularity shows that (for continuous aB and continuous a(rj) ) this can · 
be formally removed from the integral so that 

(9) 

Our object is to construct an irrotational velocity field u¢' which satisfies 
the prescribed conditions (3) on aB. Since uk is known from the vorticity 
distribution resulting from the advection and random walk processes of the 
previous time-step, equation (9) can be viewed as an integral equation with 
known inhomogeneity vector, 

(10) 

This equation can be solved numerically for the distribution a(ri) . Hence 
u<l> can be determined by numerical integration of (7). 
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.. 4. The two-dimensional problem 

The kernel of equation (10) can be expressed in two-dimensional carte
sian form from ( 4) as 

~ ln lri _ r·l = (xi- Xj)nzi + (Yi- Yi)n 11; 

ani J. lri - rjl 2 

where the unit vector ( nzi, n 11i) is normal to a B at ri. If (3; is the slope angle 
of a B with respect to the x-axis at ri then nzi = sin (Ji and n 11i = cos f3i. 

Th~ boundary can be partitioned into a discrete set of N line-segment 
panels, each centred at a body-point (x;, y;). Over each panel there will 
be assumed to be a uniform source distribution 0';. Such a representation, 
called Nystrom discretisation, replaces the integral in (10) with a trapezoidal 
rule quadrature. This is to say we will content ourselves here with the error 
O(h3 ) for this problem, rather than resort to higher-order quadratures, since 
trapezoidal rule has an obvious and simple -generalisation to the multiple 
integration required in three-dimensional problems. 

If the length of the panel Si at (xi, Yi) is hi, we can write equation (10) 
explicitly as the matrix equation 

N 

I:cij O'j (11) 
i=l 

where 

1 cii = - (12c) 
2 

with dummy variables of integration (e, 77) E Si; dP. is a line differential 
lying in Sj. The coefficient Cij can be expressed in alternative notation 

(13a) 

where 

(13b) 
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and 

(13c) 

Retaining the first term in a multipole expansion of (12b) the following 
approximate relationship is achieved for smallS; 

(14) 

Alternative to this approach, an exact integration of (12b) over each 
panel segment can be performed. This is most easily done by transforming 
into a p~nel-based coordinate system. 

If the direction cosines of the J"th panel are ( Sz, s 11 ) - which can also be 
. expressed in terms of the unit normal vector at rj, . ( n 11;, -nz;) - then the 
position vector of rj relative tori is given in a coordinate system with origin 
at (x;, Y;) by 

(
Sz Su) (x;-x;)=(~i) (15) 

-sll Sz Yi - Yi . Yii 

where x;; is effectively a distance component from a body point to a control 
point taken parallel to the jth panel and Yii is a corresponding distance 
component taken normal to this panel. The subscripts ij will be suppressed 
in the following notation. 

Explicit integration over a panel in (11) can now be performed in this 
simplifying choice of coordinates. The component Ax parallel to the panel 
lS 

1 Jhj/2 (x- €) 
A-=- d€ 

z 21r -hj/2 (x _: €)2 + 'Y2 

= - ln -'-----F2-'----
1 ( ( x + ~) 2 + y2 ) 

47r (x- !fF + f12 
(16a) 

and the component perpendicular to the panel is 

A-==- y d€ 1 !hj/2 -
11 21r -hj/2 (x- €)2 + f/2 

1 ( x+~ x-~) =- tan-1(-_-2 ) - tan-1 ( _ 2 ) 
27r y y 

(16b) 
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.. 

... 

Having evaluated these integr~ls in panel-based coordinates, we can now 
perform the inverse rotation into global coordinates by 

(Sz -s11 ) (A~)= (Az) 
s 11 Sz A 11 All 

{17) 

and hence Cii can be written in a form identical to {13a). Because equations 
{16) are bounded at (x, y) = (0, 0), there is no necessity to formally remove 
the self-potential term in the integral equation. 

Upon solving the linear system (11) for {u;}, equation (7) can be solved 
for u.P on a B. In the context of the present formulation, this requires simply 
the followjng summations to be performed: 

{18) 

To determine the field in the interior of the ,fluid, Az and Aii must be 
recomputed for control points ri E Be using a consistent sense for the panel
based coordinate system. 

:;. Three-dimensional problems 

The solution strategy developed previously for two-dimensional problems 
can be extended to three-dimensions. 

First, we should note the following description of body panel geometry 
for flat quadrilateral panels in contigum,1s distribution over a B. We consider 
a flat panel with four vertices, with position vectors labelled clockwise: 

1 

2 

' ' ' ' ' ' "' v 
/ ' ,"' ',~ 

"' ' 0: "' ' "/ ,"' ' 
"' ' ,"' ' 

"' ' "' ' 
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The position vector of the centroid of the panel is R 0 = t 'Lf=l rj, with 
components denoted (Xo, Yo, Z0 ). We define "diagonal vectors" Q = r3 -r1, 

and P = r4 - r2 A unit outward normal vector to the panel can be 
constructed from 

QxP 
n = -k = -IQ x PI (19) 

A second unit vector, normal both to n and to i = J3r can be constructed 
as 

. QxPxQ 
J = IQ X p X Ql (20) 

Unit vectors (i,j,k) defined in this way constitute a right-handed system. 
A position vector of a point in space (e.g. a control point) relative to the 

centroid of a panel is r' = r - R 0 • This position vector can be expressed in 
a panel-based coordinate system, namely one characterised by unit vectors 
(i,j,k), by the rotation 

(21) 

Similarly, panel-based coordinates can be transformed into global coordi
nates by the inverse rotation 

kx) ( x) ( x- Xo) 
k11 ~ = y- Yo 
kz Z Z- Zo 

The norraal derivative of the Green's function (5) has the form 

a 1 

ani lri- rjl 

Equation (10) can now be written 

with 

N 

2:::: Cij Uj = bi 

j=l 

8 

(22) 

(23) 

(24a) 

.. 

,~: 



C .. _ _!_ !1 (xi- ~)nxi + (Yi- TJ)n 11i + (zi- dnzid 
'' - , a a, 4

11" 8 i ((xi- ~)2 + (Yi- TJ)2 + (zi- ~)2) 2 

1 
cii =-

2 

(24b) 

(24c) 

with dummy variables, (~,1],~) E Si; dais a surface differential in Si. The 
coefficient Cii can be written in analogy with (13a) as: 

(25) 

The coefficients can be approximated by retaining the first term in a multi
pole expansion, 

Cii ~ 8ai ((xi- xi) cosf3x +(xi- xi) cos/311 + (zi- zi} cosf3z) (26) 

41r ((xi- xi)2 + (Yi- YiP+ (zi- zi)2)2 

where cos f3x etc. represent the direction cosines of the panel, and 8~i is the 
area of the panel Si. 

Again, the coefficients Cii can be evaluated by exact integration over the 
surface of the panel. Formulated in terms of the panel-based coordinates 
defined in (21) we must evaluate 

(27a) 

(27b) 

(27c) 

with 

r = J ('x _ ~)2 + (!I _ TJ )2 + :z2 

The double integral of an arbitrary function/(~, TJ) over a quadralateral 
domain can be achieved by double integration over four semi-infinite strips 
each bounded by vertical lines passing through each pair of successive ver
tices of the quadralateral. The integral at each point will be the sum of such 
integrals. 
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For example, the integration can be performed over the strip 6 ~ € ~ 6, 
1'71 < oo . If a weight factor of -! is applied as a premultiplier to the 
integral above the segment '1 ~ g(€), and a factor of+} to the integral 
below the segment '1 ~ g(€), upon summation over all bounding segments, 
the contribution of the integration outside the panel will sum to zero, and 
similarly the net weight factor for the contribution to the integral from those 
differentials interior to the panel will sum to 1. 

Details of this integration can be found in Chapter 4 of reference [6]. 
The j/-~omponent of A associated with the successive vertices €m and €t, 
can be expressed 

(31a) 

with 

and 

Similarly, 

and 

(A-) = 2_ ('1t.- '1m) I lrm + Tt.- dmt.l 
z m,t. 4 d n - - d 

1f' , ml rm + rt + ml 
(31b) 

- tan- 1 r{('7l- TJm)(z 2 + (x- €t.) 2)- (y- '1t)(x- €t.)}/zrt]) (31c) 
L €t- €m 

Summing over these terms for four successive pairs of vertices determines 
the following relationships 

Ax= L (A:t)mt 
paired m,l 
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1 . .: 

Aii = L (Aii)me 
paired m,l 

A:z = L (A:z)ml 
paired m,l 

Transforming to global coordinates we obtain 

(33) 

and the coefficient Cij follows from (25). Having established the matrix Cij, 
equation (23) can be solved for the source distribution {uj}· The velocity 
field u <P can then be determined on a B from the following summation (which 
represents exact integration in (7) ): 

(32) 

The corresponding potential field in ri E Be can be subsequently eval
uated. The column vector (Ax, A11 , Azf must be recalculated in this case, 
remembering to observe a consistent panel-based coordinate system. The 

.. to~al_flow in Be satisfying impermeability at. a B will hence be uk + u<P. 

6. Numerical R~solution of Flow 

The numerical error committed in the potential flow solution strategy 
which has been described, is related to the relaxation of two assumptions 
implicit to the analytical expression of the problem. Implicit to the exact 
theory is the condition a B E C 1 namely the boundedness of the curvature 
of the boundary. Obviously the imposition of gradient boundary conditions 
is compromised if this condition is not satisfied. Furthermor~, in exact 
theory the doublet distribution u(r) is formally considered to be a continuous 
function of position. 

The representation of aBby a discrete set of panels, with doublet distri
bution considered constant on each panel, introduces error into the solution. 
As the number of panels, N, tends to infinity, the definition of the integral 
as a Riemann sum will imply convergence to an exact expression of the 
potential problem. In practice" convergence may be achieved for relatively 
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modest N so long as the distribution of body points adequately represents 
the geometry of the body. 

This latter consideration has specific implications for bodies with contin
uous higher-order curvature. The articulated interfaces between flat panels 
introduce higher-order rippling in the solution for such cases. One can seek 
to reduce such effects by introducing higher numbers of flat panels, or by 
a~opting panels with body-fitted curvature. For example, for flow over a 
sphere, the surface integrations in (27) can be transformed to spherical co
ordinates. Also methods have been developed which admit higher-order 
source density distribution over each panel. For example, one can consider 
a linear distribution [14] 

U = Uo +UtE+ U2TJ 

or a quadratic distribution [6], 

. 1 2 1 2 
u = uo + utE + u2TJ + 2unE + u12E'1 + 2u22'f/ 

For bodies with sharp edges, some effort must be made to parameterise 
the edge in such a way that discontinuity of curvature is mitigated. This 
is to effectively represent a corner as a point of very high, but bounded, 
surface curvature. This will typically require the introduction of panels of 
smaller dimension at such points. The error in problems consisting of flat 
walls and sharp corners tends to concentrate at corners. An upper bound 
to error is 

h3 
12 max l!"(x)l 

where f(x) represents the integrand of (10). The kernel in (10) consists of 
normal gradients and these typically have large higher-order derivatives in 
the neighbourhood of corners, and smaller higher-order derivatives towards 
the mid-point of the obstacle wall. Appendix A of reference [14] offers an 
alternative discussion of corners. 

In the context of random vortex methods it is desirable to resolve the 
field within a regime O(Re-~) of the wall. Considerable effort is made to 
construct there an explicit model of boundary layer dynamics - by repre
senting the motion with overlapping vortex sheets- ~hich should be smooth 
in the sense that the continuity condition is explicitly satisfied at some point 
during each time-step. In principle, the choice of body points in the random 
vortex method can be made to coincide with {hi} from the potential flow 
calculation, although this expedient will have significant implications. 
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In the random vortex method, the lengths of the panels control the 
resolution of the boundary layer model. Typically, one might expect a panel 

1 
length hi"' O(Re-z) will ensure a desired accuracy. Of course, if common 
body-points are to be chosen, different considerations apply in the choice 
of the parameter set {hi} for the two aspects of the calculation, namely 
applying conditions (1) and (2). For example, Puckett [15] suggests for 
a random vortex sheet model in two dimensions, the accuracy conditions 
At Umax :::; h and Wmax :::; C 0 h 2 /At, with C0 = O(j;). These conditions 
would have to be reconciled with the requirements of a sufficiently accurate 
solution to (11). In fact a choice of much smaller panel length for the 
potential flow part of the calculation (than that for the random vortex part) 
could allow a more accurate resolution of the boundary-layer. 

In the present discretisation, the potential flow field is well-behaved in 
the neighbourhood of the body- point .. Although the Green 1s function is 
singular there, it is also integrable. In the immediate neighbourhood of a 
body-point, we can observe in two dimensions 

and 

lim Az = 0 
lr;l-+lril 

lim A 11 =! 
lrd-+lril 2 

The latter limit-reflects-the {act-that the angle~subtended by a panel~ at any~ 
point P ¢ 8B approaches the limit ±1r as P approaches the body point at 
the panel centre. Examination of equations (31) shows that the Nystrom 
discretisation in three-dimensions is also well-behaved in the neighbourhood 
of the body-point. 

On the other hand, both in two- and three-dimensions, the velocity field 
u~ experiences logarithmic singularity at the edge of the panel. This can be 
seen by letting (x, y) ---+ (±!f., 0) in equation (16a) or by letting rm+rt---+ dmt 
in equation (31a). The field solution u~ is strictly valid at the body-point 
alone. Since, in the context of random vortex methods, a knowledge of 
the velocity field in the neighbourhood of the wall is required, the influence 
of these singularities extending into the boundary layer can be important. 
This spatial extent is reduced by reducing the panel dimensions, of course 
expending greater computational effort in the process. 

For large N, the solutions to (11) and (23) might be achieved iteratively. 
Cii is a dense matrix and for two-dimensional problems its condition number 
is typically low. Some discussion of the structure of Cii (for strictly smooth 
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convex bodies) is offered i.n chapter 5.2 of reference [6]. Appendix III of the 
present report reproduces the structure of C for a simple case of flow over 
a cube each face of which is partitioned into four panels (see Chapter 8). 
In three-dimensional problems the matrix may be more poorly conditioned. 
The ordering for three dimensional problems is not uniquely determined and 
may affect the behaviour of iterative I11ethods. Groh [16,17] has proposed a 
regularised iterative algorithm for three-dimensional problems in which con
vergence is apparently assured. However this method also requires analytic 
knowledge of the scalar potential associated with the velocity field uk at each 
time-step. Numerical investigation of this algorithm should demonstate its 
convergence properties. 

In the context of the random vortex method, these iterative solutions 
must be accomplished at each time-step, as the inhomogeneity vector bi is 
updated. If the inhomogeneity vector is incremented slightly during a given 
time-step, then the solution at the previous time-step could serve as a close 
approximation for the initial guess solution to the iteration in the subse
quent time-step. Although direct methods of solution may be impractical 
for large N, N > 500 say, they do have the advantage that the inverse 
matrix c-1 need be computed only once, perhaps preliminary to the en
tire time-dependent calcul~tion. Using direct methods, the evaluation of uti> 
then becomes a matter of performing the matrix product c-l b at each 
time-step, as b is updated. For large N this advantage is submerged by the 
computer effort in matrix multiplication. 

The problem of controlling the computational effort for large distribu
tions of panels can be addressed by adopting fast multipole strategies, in 
particular the application of multipole expansions to the Green's function 
and its derivatives (see Rokhlin [9]). In the context of random vortex meth
ods, this strategy can be allied to a fast particle summation method to 
evaluate the flow induced by a collection of vortex elements (see Greengard 
and Rokhlin [18,19]). .. 

7. A two-dimensional application: flow over a prism of rectan
gular cross-section.· · 

To illustrate the method in the context of a two-dimensional problem, we 
can consider the inviscid flow over a "prism, with rectangular cross-section 
defined in the x - y plane. A uniform free-stream velocity in the positive 
x-direction, uk = i is assumed. 

14 

.• 

.; 



'9 

The main program listed in Appendix Ia represents the controlling sec
tion of a simple algorithm to evaluate the flow around this prism. A paramter 
nn is read from screen, and this determines the streamwise depth to vertical 
height C!Spect ratio of the obstacle, stored as variable aspect. The geometry 
of the-obstacle is defined in subroutine getgeo (Appendix Ib). 

The geometry is generated in such a way that the streamwise length of 
the obstacle can be adjusted by the insertion of additional panels (this is 
to ensure a constant hj for different aspect ratios). An 1-shaped stencil is 
defined in getgeo in data statements, namely in arrays ax(),ay(), to define 
the boundary a B. The boundary is generated by three-fold reflection of 
this stencil. The following parameters are then evaluated in getgeo: the 
coordinate positions of the ends of the panels ( xseg(),yseg()), the panel 
lengths, (h()); the number of body-points, nbox; the coordinate positions 
of the body-points, ( xbody(),ybody()); the direction cosines of the panels, 
(sl(),s2()); and the outward normal to the panels, (anl(),an2()). Direc
tion cosines are calculated from the angle the panel makes with the postive 
x-axis. Having defined geometrical parameters { h;}, { Xcj, Yci}, { nz;, n11;}, 
{ Szj, s11;}, control is returned to main program. 

The following is an illustration of an obstacle generated in this way: it 
consists of 84 body-points and represents a body with aspect ratio 0.20 . 
The maximum value of hi is 0.0333, and the minimum value (at the four 
corners) is 0.000416 : The input variable nn for this case is 2. 

The program then enters subroutine agenr (Appendix Ic) which gener-
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ates the coefficient matrix C;;, and stores this in array a(,). The routine 
enters a nested do loop to generate the terms describing the effect at control 
point i due to a unit source at body point j. 

The inverse rotation matrix 

(:: ~:u) 
is defined and stored in array az(,); panel-based variables x {dxp) and y 
( dyp) are defined. 

Az is calculated (av{l)) as well as Ay (av{2)). Care must be taken in 
the case of Ay to insure the intrinsic function atan2 returns a value of angle 
in the range [-I , I], bearing in mind that this function's default range of 
definition is [ -11', n']. 

The values of Az and Au are then calculated by inverse rotation into 
global coordinates. 

Finally, the linear combination {13a) is calculated. 
Upon visiting every pair of body-points, control is passed back to the 

mam program. 
The inverse matrix c-1 , stored in array atom!{,) is now calculated in 

subroutine inver (Appendix Ic) using standard Gauss elimination. 
Upon return to the mai:ri program, the inhomogeneity column vector. 

(12a) is calculated (and stored in bcol()). The matrix product c-1 b is 
then performed (in do 13 and do 14 ) to determine the source distribution 
{ u; }; this distribution is stored in array sigma(). 

Having evaluated the source distribution, we can evaluate (18), i.e. the 
velocity field u~ at each ri E BB. This integration is achieved in do 15 of the 

main program. The velocity field ( u:(ri), ut(ri)) -stored in arrays uq(i) 
and vq(i) respectively- is calculated in subroutine potvel (Appendix Ie). 

Subroutine potvel evaluates the potential flow (components stored in 
variables u and v) at any point ri (coordinates stored in variables x and y). 
The integration (7) proceeds in loop do 50 of potvel. 

Upon return to loop do 15 of the main program, u~ is added to uk to 
determine the flow at a B. In a random vortex computation, this velocity 
field is required for the vorticity creation algorithm to establish condition 
(2). 

Finally, the velocity field over a regularly distributed array of exterior 
points ri E Be is evaluated by a call to subroutine velext (Appendix If). 
This subroutine establishes the array of field points (xfid,yfid) and then 
calls potvel to determine u~ at each such point. These exterior field values 
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are stored in arrays ufld,vfld. The following diagram ilh,1strates the vector 
velocity field satisfying condition {1) achieved in this way. 

~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~// __ ~ ~~~~~~~~~~~~ 
~~~~~~// \'~~~~~~~~~~~~ 
~ ~ ~ .,.,. ..,.?" .?' / ;/ ~ ' '"' --.... .....::..... ......... -.:a-~ ~ -b. --=-- -a--~ --=-- -e-

~~~~~~~~~ ',,~~~~~~~~~~--=--
~~~~~~~~~ ~~~~~~~~~~~~~~ 

~~~ ~ - -.,... ..( ~ ""- -~ ...... ~-e--=--~-:a.-~~~ 
~~~ ...... ...... .... ..... -\ ';I' 7 - - ~ ~-_....,_---~~---

--- ....... -- - ....... ""'- ..... "' 'I rf .,. -...... ...... ..:.-~--.o--~---

8. A three-dimensional example: flow over a cuboid. 

To illustrate potential flow over a three-dimensional bluff obstacle, we 
can consider the case of a cuboid. In particular we consider a cube with 
each face partitioned into 25 square panels. This is obviously an extremely 
coarse discretisation, which allows d,irect inversion. The total number of 
panels is 150. The main controlling program for such a calculation is found 
in Appendix lla, where the total number of panels is stored in the variable 
iptot. 

Subroutine geom3 (Appendix lib) establishes the coordinate locations 
ofthe vertices of the iptot panels, e.g. (~m,'7m) in equations (31), and 
these are stored in arrays vertx(ip,i) , verty(ip,i), vertz(ip,i), with the 
integer ip E [1,iptot] refers to the panel label number, and integer i E [1,4] 
refers to the vertex label of the panel. The vertices are established in a 
clockwise sequence when the panel is vi~wed from outside the body. The 
partition of the surface is achieved through definition of a grid defined by 
arrays ax(), ay(), az(}, with dimensions nx, ny, nz respectively. The six 
faces of the cuboid are visited in the following (arbitrary) order: y = 0; z = 
0; y = ay(ny); x = ax(nx); z = az(nz). 

When the vertices of the panels are defined, their centroids (xcen, ycen, zcen) 
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are determined, and the system of unit vectors (i,j,k) -which are stored 
in arrays ai(), aj(), ak() -and the unit outward normal, stored in an() . 

Finally the 3 X 3 rotation matrix rot(ip,i,j) is created for each panel, as 
well as'its inverse rotb(ip,i,j) whereupon control passes back to the main 
program. 

The following illustrates the geometry of the cuboid. 

The loops do 2 and do 3 in the main program generate the kernel Cij, 

which is stored in array a(,) . The vector displacements between control 
and body points are transformed into local panel-based coordinates (do 6) 
as are the coordinate locations of the four vertices for each panel (do 9, 
do 10, do 11 ). The vector (A;c, Aii, A:z) defined in equations (31) are 
evaluated for each successive pair of line-segments bounding the ith panel, 
by four calls to subroutine linek (Appendix lie). These are then added 
together for each component (do 15 in main program). By inverse rotation 
the vector ( A:z:, A 11 , Az) is determined (do 16, do 17 ) and finally a(,) is 
determined. 

The inverse ofCij (stored in atom!(,)) is determined directly by Gaus
sian elimination in a call to subroutine inver (Appendix Id), and the accu
racy of this inverse is tested (do 60 of main program ) . 

The inverse of Cij is then made to operate on the inhomogeneity vector 
-uk · n (stored in vector array bcol() ) to determine the source distribu
tion u (stored in array alpha ). This is accomplished in subroutine getalf 
(Appendix lid). 
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Thr<;mgh a call to subroutine potvel (Appendix lie), the perturbation 
velocity field at each body .. poipt is evaluated, and this is added to the free
stream velocity to determine the total field- stored in vx(), vy(), vz(). 
The parallel and normal components to the boundary are also calculated . 
The following diagram illustates the distribution of velocity over the six 
faces of the cuboid for this coarsely paramaterised problem. 
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The flow on the surface of the obstacle is more clearly seen in a fold-out 

of the cube: 

~ -
-

L-~ -
-

~ --
-

L-
t--

-~ 

Finally, the velocity field over a regularly distributed array of exterior 
points is evaluated by a call to velav (Appendix Ilf) which itself calls sub
routine potmeas (Appendix Ilg). The following diagram illustrates this 

external field. 
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c 
c 
c A Program to compute the potential flow over a prism with 
c rectangular cross-section. 
c 
c 
c 

c 

c 

common /invis /sigma(l20),bcol(120),uq(120),vq(120) 
common /arays /a(120,120),aa(120,240),atom1(120,120) 
common /geom /xbody(l20),ybody(120),an1(120),an2(120),s1(120), 

& s2(120),h(120),nbox,nbody 
common /field /ufld(6000),vfld(6000),xfld(6000),yfld(6000) 
common /walls /xO,yO,xb,yb 
real h 
real*8 aa 

data pi {3.14159265 I 

c The incident flow is in the positive x-direction and has 
c unit magnitude. 
c 
c 

c 

v=O. 
u=l. 
write(6,9020) 

9020 format('enter below the input parameter nn') 
read(6,9010) nn 

9010 format(i5) 
aspect=0.2+2. *float(nn)*0.03333333 
twopi=2. *pi 
div2pi=1.0 /twopi 

c The impermeable body is defined by points (xseg,yseg) which are 
c generated by a call to getgeo which also r;:omputes geometrical 
c parameters. nn controls the aspect ratio of the body and is an 
c integer read from screen < 6 for current dimensioning 
c 

can getgeo(nn) 
c 
c A call to agenr generates the kernel to the boundary integral 
c equation. 
c 

can agenr 
c 
c The linear system is solved directly by a call to 
c subroutine inver which evaluates the matrix inverse 
c atom] of the descretised kernel. 
c 

do 10 i=l,nbox 
do 10 j=1,nbox 
aa(i,j)=a(i,j) 

10 continue 
can inver(aa,det,nbox,nbox,nb2) 
can testinv 
do 11 i=1,nbox 
do 11 j=1,nbox 
atom 1 (i,j)=aa(i,j) 

11 continue 
do 12 i=1,nbox 
bcol(i)=-(u*an1(i)+v*an2(i)) 

12 continue 
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c 
c ... this then operates on the inhomogeneity vector bcol 
c to determine the source distribution sigma. 
c 

c 
c 
c 
c 

c 

14 

13 

do 13 i=1 ,nbox 
dummy=O. 
do 14 j=1,nbox 
dummy=dummy+atom 1 (i,j)*bcol(j) 

continue 
sigma(i)=dummy 

continue 

The velocity field at the surface of the obstacle 
is evaluated by a call to potvel at each body point. 

do 15 i=1,nbox 
x=xbody(i) 
y=ybody(i) 
call potvel(O,x,y,uq(i), vq(i)) 
uq(i)=u+uq(i) 
vq(i)=V+vq(i) 

15 continue 

c ... and the velocity field in the interior of the fluid 
c is elialuated by a call to velext. 
c 

call velext 
end 
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c 
c Starting from an L-shaped stencil whose 
c coordinates are (ax,ay) a rectangular prism (with bevelled corners) 
c is generated. This is done by various reflections of the stencil, 
c together with the insertion of NN added panel elements. in the stream 
c direction; the number of body points on the obstacle is NBOX. 
c Coordinates of a sheet layer and image sheet layer, of thickness 
c DELTA are generated. The panel lengths (H), midpoints (XBODY,YBODY), 
c direction cosines (SJ,S2) and normal directions (ANJ,AN2) are 
c calculated. 
c 

c 

subroutine getgeo(nn) 
real h 
dimension ax(19),ay(19),asx(120),asy(120) 
common lgeom lxbody(120),ybody(120),an1(120),an2(120),s1(120), 

1 s2(120),h(120),nbox,nbody 
common lsegs lxseg(120),yseg(120) 
data n 14 l,xO 11. I 
data pi /3.14159265 I 
data ay 1.48333333,.45,.416666,.38333, .35,.316666, .28333,.25, 

1 .216666,.183333,.150000,.116666,.083333,.05,.016666, 
1 ~0083333,.0004166,0;,0. I 

data ax 11.,1., 1.,1.,1.,1., 1.,1., 1., 1., 1.,1., 1.,1., 1.,1., 
1 1.,1.00041666,1.03375 I 

aah=0.0333333 
nbss=19 

c process of generating body 
c 

c 

do 10 i=1,nbss 
yseg(i)=ay(i) 
xseg(i)=ax(i) 

10 continue 
do 11 i=l.nn 
yseg(nbss+i)=yseg(nbss) 
xseg(nbss+i)=xseg(nbss )+i * aah 

11 continue 
nt=nbss+nn 
aO=xseg(nt)+0.5*aah 
do 12 i=1,nt 
yseg(nt+i)=yseg(nt-i+ 1) 
xseg(nt+i)=aO+aD-xseg(nt-i+ 1) 

12 continue 
nt2=2*nt 
a1=yseg(nt2)+0.5*aah 
do 13 i=1,nt2 
yseg(nt2+i)=a1 +a1-yseg(nt2"'-i+ 1) 
xseg(nt2+i)=xseg(nt2-i+ 1) 

13 continue 
nt4=2*nt2 
nbox=nt4 
xO=xseg(l) 
xb=xseg(nt2) 
yO=yseg(nt) 
yb=yseg(nt2+nt) 

c invert order of points 
c 

do 500 i=l,nbox 
asx(i)=xseg(i) 
asy(i)=yseg(i) 

500 continue 
do 501 i=1,nbox 
xseg(i)=asx(nbox+ 1-i) 

Aug 7 16:31 1989 

appendix_ lb 

getgeo. 

Page 1 of appendixJb 



appendix_ Ib 

c 

yseg(i)=asy(nbox+ 1-i) 
501 continue 

c determine midpoints and body-point parameters 
c 

nboxm1=nbox-1 
do 100 i=1,nboxm1 
ahl=xseg(i+ 1 )-xseg(i) 
ah2=yseg(i+ 1 )-yscg(i) 
xbody(i)=xseg(i)+O.S* ahl 
ybody(i)=yseg(i)+O.S* ah2 
h(i)=sqrt(ah1 *ahl+ah2*ah2) 
phi=atan2(ah2,ah1) 
s1 (i)=cos(phi) 
s2(i)=sin(phi) 
an1 (i)=cos(phi+O.S *pi) 
an2(i)=sin(phi+0.5*pi) 

100 continue 
ahl=xseg(1)-xseg(nbox) 
ah2=yseg(l )-yseg(nbox) 
xbody(nbox)=xseg(nbox}+0.5*ah1 
ybody(nbox)=yseg(nbox)+0.5*ah2 
h(nbox)=sqrt(ah1 *ah1+ah2*ah2) 
phi=atan2( ah2,ah 1) 
s1 (nbox)=cos(phi) 
s2(nbox)=sin(phi) 
an 1 (nbox)=cos(phi+O.S *pi) 
an2(nbox)=sin(phi+0.5*pi) 
return 
end 
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c 
c Subroutine to generate coefficient matrix associated 
c with kernel to boundary integral equation. 
c 

c 

subroutine agenr 
real hhlf,h 
common /geom /xbody(120),ybody(120),an1(120),an2(120),s1(120), 

1 s2(120),h(l20),nbox,nbody 
dimension az(2,2),av(2),bv(2) 
data pi /3.14159265 I 
div2pi=l. /(2.*pi) 

c loop to generate terms relating to the th. control point 
c 

c 

do 2 i=l,nbox 
x=xbody(i) 
y=ybody(i) 

c loop to generate terms describing effect at a control point of 
c unit source at body point j 
c 

do 3 j=1,nbox 
if(i .ne. j) go to 4 

c 
c ... self potential term 
c 

c 

a(i,i)=0.5 
go to 3 

4 dx=x-xbodyU) 
dy=y-ybodyU) 

c ... establish rotation matrix az 
c 

az(l, 1)=s1U) 
az(1,2)=-s2U) 
az(2,1)=s2U) 
az(2,2)=s1U) 
dxp=az(l,l )*dx-az(l ,2)*dy 
dyp=-az(2,l)*dx+az(2,2)*dy 
hhlf=0.5*hU) 
av(1)=0.5*div2pi*alog(((dxp+hhlf)**2+dyp**2) /((dxp--hhlf)**2 

& +dyp**2)) 
at1=dxp+hhlf 
at2=dyp 
at3=dxp--hhlf 
dpl=atan2(at1,at2) 
dp2=atan2(at3,at2) 
dpp=dp1-dp2 
qk=O. 
if(dpp.gt.pi) qk=l. 
if(dpp.lt.-pi) qk=-1. 
av(2)=div2pi * ( dp 1-dp2-qk*2. *pi) 
do 40 mm=1,2 
add=O. 
do 50 nn=1,2 
add=az(mm,nn)*av(nn)+add 

50 continue 
bv(mm)=add 

40 continue 
a(i,j)=-s2(i)*bv( 1 )+s 1 (i)*bv(2) 

3 continue 
2 continue 

return 
end 
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c 
c Standard Gaussian elimination is used to invert 
c the nbox x nbox· matrix generated in subroutine AGENR. 
c 

c 

c 

c 

c 

subroutine inver(aa,d,n,nx,mx) 
real*8 aa(120,240) 
n1=n-1 
n2=2*n 

do 2 i=1,n 
do 1 j=1,n 
j1=j+n 

1 aa(i,j1 )=0. 
j1=i+n 

2 aa(i,j1)=1. 

do 10 k=1,n1 
e=aa(k,k) 
if(abs(c)-0.001) 3,3,5 

3 write(1,4) k 
4 format(' **** singularity in row ',i5) 

d"'O. 
go to 300 

5 k1=k+1 
do 6 j=k1,n2 

6 aa(k,j)=aa(k,j) /c 
do 10 i=k1,n 
e=aa(i,k) 
do 10 j=k1,n2 

10 aa(i,j)=aa(i,j)-c*aa(k,j) 
np1=n+1 
lf(abs(aa(n,n))-0.000001) 30,30,19 

19 do 20 j=np1,n2 
20 aa(n,j)=aa(n,j) /aa(n,n) 

go to 33 
30 wrlte(1,31) 
31 format('***** singular matrix *****') 

go to 300 

33 do 200 1=1,nl 
k=n-1 
k1=k+1 
do 200 i=npl,n2 
do 200 j=k1,n · 

200 aa(k,i)=aa(k,i}-aa(k,j)*aaU,i) 

do 250 i=l,n 
do 250 j=1,n 
j1=j+n 

250 aa(i,j)=aa(i,j 1) 
d=l. 
do 220 i=1,n 

220 d=d*aa(i,i) 
300 return 

end 
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c 
c Evaluation of the potential field (u,v) at a point 
c (x,y) associated with source distribution sigma. 
c 

subroutine potvel(x,y,u,v) 
real hhlf,h 
common /invis /sigma(120),bcol(120),uq(120),vq(l20) 
common /geom /xbody(120),ybody( 120),an1 (120),an2(120),s 1( 120), 

1 s2(120),h(120),nbox,nbody 
data pi /3.14159265 I 
div2pi= 1. /(2. *pi) 
dum1=0. 
dum2=0. 
do 50 i=1,nbox 
hhlf=0.5*h(i) 
dx=x-xbody(i) 
dy=y-ybody(i) 
dxp=s1(i)*dx+s2(i)*dy 
dyp=-s2(i)*dx+s1(i)*dy 
if(abs(dyp).le.l.Oe-05) dyp=O. 
at1=dxp+hhlf 
at2=dxp-hhlf 
at3=dyp 
dummy1=0.5*sigma(i)*div2pi*alog((at1 **2+at3**2) /(at2**2+at3**2)) 
dp 1 =atan2( at 1 ,at3) 
dp2=atan2( at2,at3) 
dpp=dp1-dp2 
qk=O. 
if(dpp.gt.pi) qk=l. 
if(dpp.lt.-pi) qk=-1. 
dummy2=sigma(i)*div2pi*(dp1-dp2-qk*2. *pi) 
dum1=dum1 +s1(i)*dummy1-s2(i)*dummy2 
dum2=dum2+s2(i)*dummy 1 +s 1(i)*dummy2 

50 continue 
u=dum1 
v=dum2 
return 
end 
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c 
c Evaluation of flow at regular spacing around 
c obstacle. 
c 

c 

subroutine velext 
common /geom I xbody(120),ybody(120),anl(120),an2(120), 

& s1(120),s2(120),h(120),nbox,nbody 
common /field /ufld(6000),vfld(6000),xfld(6000),yfld(6000) 
common /walls /xO,yO,xb,yb 
dimension x(40),y(20) 
data xrmin /0. /,xrmax /3. /,yrmin /-.2 /,yrmax /1.2 /,nx /25 /,ny !15 I 
nprobe=nx*ny 
x(1)=xrmin 
y(1)= yrmin 
do 10 i=2,nx 
x(i)=x(i-1 )+(xrmax-xrmin) /float(nx) 

10 continue 
do 11 i=2,ny 
y(i)=y(i-1 )+(yrmax-yrmin) /float(ny) 

11 continue 
do 20 i=1,nx 
do 20 j=1,ny 
np=ny*(i-1)+j 

c jump over interior of obstacle 
c 

if(x(i).lt.xO) go to 4 
if(x(i).gt.xb) go to 4 
if(y(j).gt.yb) go to 4 
if(y(j).lt.yO) go to 4 

9 u1=.0 
vl=O. 
go to 30 

4 call potvel(x(i),y(j),u1,v1) 
30 vfld(np)=v1 

ufld(np )=u 1 + 1. 
xfld(np)=x(i) 
yfld(np )=y(j) 

20 continue 
return 
end 
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c 3D Pot Flow over cuboid 
c 
c 

c 

real*8 aa 
common /geom /ax(6),ay(6),az(6)!vertx(150,4), 

& verty(l50,4),vertz(150,4),xcen(150),ycen(150),7..cen(l50), 
& ai(150,3),aj(150,3),ak(150,3),an(150,3),dd(3),v(3), 
& rot(150,3,3),rotb(150,3,3) 

common /kprime /dp(3),vp(4,3) 
common /stream /uinfin(3) 
common /vels /avx(4),avy(4),avz(4),avp(3),av(3) 
common /kemal /a(150,150) 
common /integs /nx,ny,nz,iptot 
common /dims /boxdimx,boxdimy,boxdimz 
common /inv /aa(150,300),atom1(150,150),alpha(150) 
common /vs /vax(150,150),vay(150,150),vaz(150,150),vx(150),vy(150), 

& vz(150) 
common /parm /div4pi,pi 
data boxdimx /1. /,boxdimy /1.0 /,boxdimz /1. /,nx /6 /,ny /6 /,nz /6 I 
data pi /3.14159265 I 
data uinfin /1.,0.,0. I 
open(9 ,file= 'box3d.dat') 
open( 1 O,file= 'field3 ') 
open(8,file= 'box array') 
div4pi=l. /(4.*pi) 
iptot=(nx-1 )*(ny-1 )*(nz-1) 

c call geometry generator 
c 

call georn3d 
c 
c write geometrical data to file 
c 
c 

100 
101 
102 
103 
104 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

wrlte(9,102) iptot 
do 100 i=1,iptot 
write(9,101) (vertx(i,k),k=1,4) 
write(9,101) (verty(i,k),k=1.4) 
wrltc(9,101) (vertz(i,k),k=1.4) 
wrlte(9,103) xcen(i) 
write(9,103) ycen(i) 
wrlte(9,103) zcen(i) 
wrlte(9,104) (an(i,k),k=1,3) 

continue 
format( 4e11.4) 
format(i5) 
format(e11.4) 
format(3e11.4) 

enter nested do loop to generate matrix 
a(iJ). i = j is self potential term. 
the distance between centroid (xcen,ycen, 
zcen) and control point is stored in 
array dd( ). This is then expressed 
in panel-based coordinates by rotation. 

do 2 i=1,iptot 
x=xcen(i) 
y=ycen(i) 
Z=zcen(i) 
do 3 j=1,iptot 
lf(i.ne.j) go to 4 
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c 

a(i,j)=0.5 
go to 3 

4 dd(1)=x-xcen(j) 
dd(2)=y-ycen(j) 
dd(3 )=z-zcen(j) 
do 5 k=1,3 
drun=O. 
do 6 1=1,3 

6 dum=dum+rot(j,k,1)*dd(1) 
5 dp(k)=dum 

c determine the coordinates of the vertices of the 
c jth panel in global coordinates, then by 
c rotation express this in terms of panel-based 
c coordinates. 
c 

c 

do 9 n=1,4 
v(1)=vertx(j,n)-xcen(j) 
v(2)=verty(j,n)-ycen(j) 
v(3)=vertz(j,n)-zcen(j) 
do 10 k=1,3 
drun=O. 
do 11 1=1,3 

11 dum=dum+rot(j,k,1)*v(1) 
10 vp(n,k)=dum 
9 continue 

c Perform integration over the quadrilateral domain 
c by four calls to subroutine linek 
c 

c 

c 
c 

avp(l)=O. 
avp(2)=0. 
avp(3)=0. 
call 1inek(1,2,avx(l ),avy(1 ),avz(1)) 
call 1inek(2,3,avx(2),avy(2),avz(2)) 
call 1inek(3,4,avx(3 ),avy(3 ), avz(3)) 
call 1inek( 4,1,avx( 4 ),avy( 4 ), avz( 4)) 

do 15 k=1,4 
avp( 1 )=avp( 1 )+avx(k) 
avp(2)=avp(2)+avy(k) 
avp(3 )=avp(3 )+avz(k) 

15 continue 

c rotate back into global coordinates, and divide 
c by normalising constant 
c 
c 

c 

do 16 k=1,3 
drun=O. 
do 17 1=1,3 

17 dum=dum+rotb(j,k,l)*avp(l) 
av(k)=dum*div4pi 

16 continue 

c express component of av normal to surface 
c 
c 

a(i,j)=an(i,1 )* av(l )+an(i,2)*av(2)+an( i,3) *av(3) 
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c 
c store invariant part of kernel for later use 
c in external computation, 
c 

c 

vax(i,j)=av(1) 
vay(i,j)=av(2) 
vaz(i,j)=av(3) 

3 continue 
2 continue 

c use gaussian elimination to determine direct 
c inverse to a(ij), using subroutine inver 
c (see Appendix /d). Perform accuracy check. 
c 

* 

c 

c 

do 40 i=1,iptot 
do 40 j=1,iptot 
aa(i,j)=a(i,j) 

40 continue 
call inver(aa,det,iptot,iptot,nb2) 
if(nfatal.gt.O) go to 999 
ncheck=O 

do 60 i=1,iptot 
do 60 j=1,iptot 
dummy=O.O 
do 61 k=1,iptot 
dummy=dummy+a(i,k)*aa(k,j) 

61 continue 
lf(i.eq.j) go to 62 

if(abs(dummy).lt.l.Oe-03) go to 60 
if(ncheck.eq.O) write(6,2005) 

2005 format( /,1x,'as an accuracy check matrix a has been', 
lll'.,'multiplied by its inverse', /,1x,'the answer should be a', 
21x,'unit matrix') 

ncheck=1 
write(6,2004) i,j,dummy 

2004 format(1x,'element ('.i3,',',i3,') of matrix' 
1,1x,'product =',1pe11.4) 

go to 60 

62 if(abs(dummy.:..l.O).It.l.Oe-{)5) go to 60 
if(ncheck.eq.O) write(6,2005) 
ncheck=1 
write(6,2004) i,i,dummy 

60 continue 

999 continue 
do 65 i=1,iptot 
do 66 j=1,iptot 
atom 1 (i,j)=aa(i,j) 

66 continue 
65 continue 

c determine the source distribution alpha() 
c by operaJing the inverse on the inhomogeneity 
c vector, by a call to subroutine getalf. 
c 

call getalf 
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c 
c determine the velocity fteld along the 
c boundary by a call to subroutine potvel 
c 
c 

c 

do 70 i=l,iptot 
write(6,2006) alpha(i),i 

70 continue 
2006 format('alpha, i = ', e11.4,i5) 

call potvel 

c add free-stream field 
c 

c 

do 80 i=l,iptot 
vx(i)=uinfm( 1 )+vx(i) 
vy(i)=vy(i)+uinfin(2) 
vz(i)=vz(i)+uinfin(3) 

c . calculate and write components of field 
c normal (anz) and parallel (apar) to boundary. 
c 

anz=vx(i)*an(i,l)+vy(i)*an(i,2)+vz(i)*an(i,3) 
apl =vx(i)* ai(i,l )+vy(i)* ai(i,2)+vz(i)*ai(i,3) 
ap2=vx(i)* aj(i,l )+vy(i)* aj(i,2)+vz(i)*aj(i,3) 
apar=sqrt(apl **2+ap2**2) 
writc(10,85) vx(i),vy(i),vz(i),anz,apar,i 

80 continue 
85 format('vx,vy,vZ=,vperp,vpar=,i=',lx,5e11.4,i5) 
940 format(7e11.4) 

wrlte(9,940) (vx(i),i= l,iptot) 
write(9,940) (vy(i),i= l,iptot) 
write(9,940) (vz(i),i=l,iptot) 

c ---------
c determine flow field in a region surrounding 
c the obstacle, by a call to subroutine velav, 
c which generates the three-dimensional dis-

• 

c tribution of measurement points (or probe locations). 
c 

c 
c 

call velav(nprobe) 
closc(9) 
closc(lO) 
close(8) 
end 
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c generator of 3d geometries for cuboid 
c 

c 

subroutine geom3d 
common /geom /ax(6),ay(6),az(6),vertx(150,4),verty(150,4), 

& vertz(150,4 ),xcen(150),ycen(150), zcen(150),ai( 150,3), 
& aj(150,3),ak(150,3),an(150,3),dd(3),v(3),rot(150,3,3), 
& rotb(150,3,3) 

common /integs I nx,ny,nz,iptot 
common /dims /boxdimx,boxdimy,boxdimz 

c based on length of each side, set up 
c partition increment. 
c 
c 

c 

ahx=boxdimx /float(nx-1) 
ahy=boxdimy /float(ny-1) 
ahz=boxdimz /float(nz-1) 

c determine x,y,z coordinates of 
c panel vertices ... 
c 

c 

ax(l)=O. 
ay(1)=0. 
az(1)=0. 
do 10 i=2,nx 
ax(i)=ax(i-1 )+ahx 

10 continue 
do 11 i=2,ny 
ay(i)=ay(i-1)+ahy 

11 continue 
do 12 i=2,nz 
az(i)=az(i-1 )+ahz 

12 continue 

c .. . and store these in arrays 
c identified with each labelled panel. 
c 
c 
c 
c 
c 

c 

c 
c 
c 

9 

13 

Face 1: plane y 

ip=O 

do 13 i=1,nx-1 
do 13 j=1,nz-1 
ip=ip+1 
do 9 k=1,4 
verty(ip,k)=O. 
continue 
vertx(ip, 1 )=ax(i) 
vertx(ip,2)=ax(i) 
vertx(ip,3)=ax(i+ 1) 
vertx(ip,4)=ax(i+1) 
vertz(ip, 1 )=az(j) 
vertz(ip,2)=az(j+ 1) 
vertz(ip,3)=az(j+ 1) 
vertz(ip,4 )=az(j) 

continue 

Face 2: plane x 
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... geom3d 
c 

do 14 i=1,ny-1 
do 14 j=1,nz-1 
ip=ip+1 
do 15 k=1,4 
vertx(ip,k)=O. 

15 continue 
verty(ip,1 )=ay(i) 
verty(ip,2)=ay(i+ 1) 
verty(ip,3)=ay(i+ 1) 
verty(ip,4 )=ay(i) 
vertz(ip,1 )=az(j) 
vertz(ip,2)=az(j) 
vertz(ip,3)=az(j+ 1) 
vertz(ip,4)=az(j+ 1) 

14 continue 
c 
c Face 3: plane z 0 
c 
c 

do 16 i=1,nx-1 
do 16 j=1,ny-1 
ip=ip+1 
do 17 k=1,4 
vertz(ip,k)=O. 

17 continue 
vertx(ip,1 )=ax(i) 
vertx(ip,2)=ax(i+ 1) 
vertx(ip,3)=ax(i+ 1) 
vertx(ip,4 )=ax(i) 
verty(ip,1 )=ay(j) 
verty(ip,2)=ay(j) 
verty(ip,3 )=ay(j+ 1) 
verty(ip,4 )=ay(j+ 1) 

16 continue 
c 
c Face 4: y = ay(NY) 
c 
c 

do 18 i=1,nx-1 
do 18 j=1,nz-1 
ip=ip+1 
do 19 k=1,4 

19 verty(ip,k)=ay(ny) 
vertx(ip,1 )=ax(i+ 1) 
vertx(ip,2)=ax(i+ 1) 
vertx(ip,3)=ax(i) 
vertx(ip,4 )=ax(i) 
vertz(ip,1 )=az(j) 
vertz(ip,2)=az(j+ 1) 
vertz(ip,3)=az(j+ 1) 
vertz(ip,4)=az(j) 

18 continue 
c 
c Face 5: X = ax(NX) 
c 
c 

do 20 i=1,ny-1 
do 20 j=1,nz-1 
ip=ip+1 
do 21 k=1,4 
vertx(ip,k)=ax(nx) 

21 continue 
vcrty(ip,1 )=ay(i+ 1) 
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c 

verty(ip,2)=ay(i) 
verty(ip,3)=ay(i) 
verty(ip,4)=ay(i+ 1) 
vertz(ip,1 )=az(j) 
vertz(ip,2)=az(j) 
vertz(ip,3)=az(j+ 1) 
vertz(ip,4 )=az(j+ 1) 

20 continue 

c Face 6: z=az(NZ) 
c 
c 

c 

do 22 i=1,nx-1 
do 22 j=1,ny-1 
ip=ip+1 
do 23 k=1,4 
vertz(ip,k)=az(nz) 

23 continue 
vertx(ip,1 )=ax(i+ 1) 
vertx(ip,2)=ax(i) 
vertx(ip,3 )=ax(i) 
vertx(ip,4)=ax(i+ 1) 
verty(ip,1 )=ay(j) 
verty(ip,2)=ay(j) 
verty(ip,3 )=ay(j+ 1) 
verty(ip,4 )=ay(j+ 1) 

22 continue 
iptot=ip 

c Establish centroid of each panel 
c 

c 

do 29 ip=l,iptot 
zcen(ip)=O. 
xcen(ip )=0. 
ycen(ip)=O. 
do 30 k=1,4 
xcen(ip)=0.25*vertx(ip,k)+xcen(ip) 
ycen(ip)=0.25*verty(ip,k)+ycen(ip) 
zcen(ip )=0.25*vertz(ip,k)+zcen(ip) 

30 continue 

c determine geometrical parameters, 
c and the unit vectors ij,k 
c 

qx=vertx(ip,3)-vertx(ip,1) 
qy=verty(ip,3)-verty(ip,1) 
qZ=vertz(ip,3 )-vertz(ip,1) 
rx=vertx(ip,4)-vertx(ip,2) 
ry=verty(ip,4 )-v::rty(ip,2) 
rz=vertz(ip,4 )-vertz(ip,2) 
amq=sqrt(qx*qx+qy*qy+qz*qz) 
amr=sqrt(rx*rx+ry*ry+rz*rz) 
dirnax=amq 
if( amr .gt.amq) dimax=amr 
akx=qy*rz:...qz*ry 
aky=qz*•·x--qx *rz 
akz=qx *ry--qy*rx 
tx=qz*aky-qy*akz 
ty=qx*akz-akx*qz 
tz=akx *qy-aky*qx 
amt=sqrt(tx*tx+ty*ty+tz*tz) 
amk=sqrt(akx*akx+aky*aky+akz*akz) 
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c 

c 

c 

c 

ai(ip,l)=-qx /amq 
ai(ip,2)=-qy /amq 
ai(ip,3)=-qz /amq 

aj(ip,l)=-tx /amt 
aj(ip,2)=-ty /amt 
aj(ip,3)=-tz /amt 

ak(ip,l )=-akx /amk 
ak(ip,2)=-aky /amk 
ak(ip,3)=-akz /amk 

c . ... and outward normal 
c 

c 

do 32 i=1,3 
an(ip,i)=-ak(ip,i) 

32 continue 

c establish rotation (rot) and 
c inverse rotation (notb) matrices 
c 

do 33 i=l,3 
rotb(ip,i,l )=ai(ip,i) 

33 continue 
do 34 i=l,3 
rotb(ip,i,2)=aj(ip,i) 

34 continue 
do 35 i=l,3 
rotb(ip,i,3)=ak(ip,i) 

35 continue 
do 36 i=l,3 
rot(ip,l,i)=ai(ip,i) 

36 continue 
do 37 i=1,3 
rot(ip,2,i)=aj(ip,i) 

37 cont!nue 
do 38 i=l,3 
rot(ip,3,i)=ak(ip,i) 

38 continue 
29 continue 

return 
end 
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c 
c subroutine to evaluate the 
c decomposed surface integral over 
c a quadralateral: the integral 
c over a semi-infinite strip 
c bounded by vertices labelled 
c n and m. 
c 

c 
c 

c 

subroutine linek(n,m,a1,a2,a3) 
common /kprime /dp(3),vp(4,3) 
common /parm /div4pi,pi 
dimension dr(2) 

dk12=(vp(n,1)-vp(m,1))**2+(vp(n,2)-vp(m,2))**2 
dkl=sqrt(dkl2) 
if(dkl.le.l.Oe-05) go to 14 
dr2=(dp(1)-vp(n,1))**2+(dp(2)-vp(n,2))**2+dp(3)**2 
dr( 1 )=sqrt( dr2) 
dr2=(dp(1)-vp(m,1))**2+(dp(2)-vp(m,2))**2+dp(3)**2 
dr(2)=sqrt( dr2) 
b=(dr(1)+dr(2)-dkl) /(dr(1)+dr(2)+dkl) 
bb=alog(abs(b)) 
a1=(vp(m,2)-vp(n,2))*bb /dkl 
a2=(vp(n,1)-vp(m,1))*bb /dkl 
go to 15 

14 a1=0. 
a2=0. 

15 cc=abs(vp(m,1)-vp(n,1)) 
if(cc.le.l.e-05) go to 10 
cc=abs( dp(3 )) 
if(cc.le.l.e-05) dp(3)=0. 
b1=(vp(m,2)-vp(n,2)) /(vp(m,1)-vp(n,1)) 
b2=dp(3)**2+(dp(1)-vp(n,1))**2 
b3=dp(3)**2+(dp(1)-vp(m,1))**2 
b4=dp(3)*dr(1) 
b5=dp(3)*dr(2) 
at1 =b1 *b2-( dp(2)-vp(n,2))*( dp( 1)-vp(n, 1 )) 
at2=b1 *b3-( dp(2)-vp(m,2))*( dp(1 )-vp(m, 1)) 
a3=(atan2(at1,b4)-atan2(at2,b5)) 
qk=O. 
if(a3.gt.pi) qk=l. 
if(a3.lt.-pi) qk=-1. 
a3=a3-qk*2. *pi 
return 

10 a3=0. 
return 
end 

Aug 2 11:25 1989 

appendi;x _lie 

linek 

Page 1 of appendixJic 



appendix _lid· 

c 
c Subroutine ·to evaluate the linear 
c system for the source distribution 
c alpha(). 
c 

subroutine getalf 
real*8 aa 
common /inv /aa(150,300),atoml(l50,150),alpha(150) 
common /stream /uinfin(3) 
common /integs /nx,ny,nz,iptot 
common /geom /ax(6),ay(6),az(6),vertx(150,4), 

& verty(150,4),vertz(150,4),xcen(150),ycen(150),zcen(150), 
& ai(150,3),aj(150,3),ak(150,3),an(150,3),dd(3),v(3), 
& rot(150,3,3),rotb(150,3,3) 

dimension bcol(150) 
data pi /3.14159265 I 
do 10 i=1,iptot 
bcol(i)=-(uin5n(1 )*an(i,1 )+ui.nlm(2) *an(i,2)+uinfin(3) *an(i,3)) 
bcol(i)=bcol(i) 

10 continue 
do 11 i=1,iptot 
dummy=O. 
do 12 j=1,iptot 
dummy=dummy+atom1 (i,j)*bcol(j) 

12 continue 
alpha(i)=dummy 

11 continue 
return 
end 
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c 
c Subroutine to determine the velocity 
c field at the surface of the obstacle. 
c 

c 

subroutine potvel 
real*8 aa 
common /geom /ax(6),ay(6),az(6),vertx(l50,4),verty(l50,4), 

& vertz(l50,4),xcen(150),ycen(150),zcen(l50), 
& ai(150,3),aj(150,3),ak(150,3),an(150,3),dd(3),v(3), 
& rot(l50,3,3),rotb(150,3,3) 

common /inv /aa(150,300),atoml(150,150),alpha(l50) 
common /vs fvax(150,150),vay(150,150),vaz(l50,150),vx(150),vy(150), 

& vz(150) 
common /integs /nx,ny,nz,iptot 
common /pis /div2pi 
do 50 i=l,iptot 
duml=O. 
dum2=0. 
dum3=0. 
do 60 j=l,iptot 
duml=duml +vax(i,j)*alpha(j) 
dum2=dum2+vay(i,j)*alpha(j) 
dum3=dum3+vaz(i,j)* alpha(j) 

60 continue 
vx(i)=duml 
vy(i)=dum2 
vz(i)=dum3 

50 continue 
return 
end 
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c -----------
c Subroutine to establish a regular 
c distribution of probe points around 
c obstacle at which to measure potential 
c field, which is achieved in a call 
c to potmeas. 
c 
c 

c 

subroutine velav(nprobe) 
dimension x(25),y(15),z(15),xpr(6000),ypr(6000),zpr(6000), 

& uf(6000),vf(6000),wf(6000) 
data xrrnin /-1. /,xrrnax /3. /,yrmin /-1. /,yrmax /2. /,nfx /25 /,nfy /15 /, 

& nfz /15 /,zrmin /-1. /,zrmax /2. I 
nprope=nfx*nfy*nfz 
x(l)=xrmin 
y(l)= yrmin 
z(1)=zrmin 
do 10 i=2,nfx 
x(i)=x(i-1 )+(xrmax-xrrnin) /float(nfx) 

10 continue 
do 11 i=2,nfy 
y(i)=y(i-1 )+(yrmax -yrmin) /float(nfy) 

11 continue 
do 12 i=2,nfz 
z(i)=z(i-1 )+(zrmax-zrmin) !float(nfy) 

12 continue 
do 20 i=1,nfx 
do 20 j=1,nfy 
do 20 k=1,nfz 
np=nfz*nfy*(i-1)+nfz*(j-1)+k 
if(x(i).gt.l.and.x(i).lt.O.) go to 4 
if(z(k).gt.l.and.z(k).lt.O.) go to 4 
if(y(j).gt.l..and.y(j).Jt.O.) go to 4 
uf(np)=O. 
vf(np)=O. 
wf(np)=O. 
gc to 30 

4 call potmeas(x(i),y(j),z(k),uf(np ), vf(np ), wf(np)) 
30 xpr(np)=x(i) 

ypr(np )=y(j) 
zpr(np)=z(k) 

20 continue 

c measured external field is written to file 
c 

write(9,901) nprobe 
write(9,900) (xpr(np),np=1,nprobe) 
write(9,900) (ypr(np),np=1,nprobe) 
write(9,900) (zpr(np),np=1,nprobe) 
write(9,900) (uf(np),np=1,nprobe) 
write(9,900) (vf(np),np=1,nprobe) 
write(9,900) (wf(np),np=1,nprobe) 

900 format(7e11.4) 
901 format(i5) 

return 
end 
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c 
c Subroutine to evaluate the potential 
c field at a probe position (xx,yy,zz). 
c This is done using the source distribution 
c alpha previously evaluated 
c 

ic subroutine potmeas(xx,yy,zz,ufx,ufy,ufz) potmeas 
real"'8 aa 
common /geom /ax(6),ay(6),az(6),vertx(150,4), 

& verty(150,4),vertz(150,4),xcen(150),ycen(150),zcen(150), 
& ai(150,3),aj(150,3),ak(150,3),an(150,3),dd(3),v(3), 
& rot(150,3,3),rotb(150,3,3) 

common /kprime /dp(3),vp(4,3) 
common /stream /uinfin(3) 
common /ve1s /avx(4),avy(4),avz(4),avp(3),av(3) 
common /inv /aa(150,300),atoml(150,150),alpha(150) 
common /integs /nx,ny,nz,iptot 
common /parm /div4pi,pi 

c 
durnl=O. 
durn2=0. 
durn3=0. 
do 2 i=l,iptot 
dd(l)=xx-xcen(i) 
dd(2)=yy-ycen(i) 
dd(3 )=zz-zcen(i) 
do 3 k=l,3 
durn=O. 
do 4 1=1,3 

4 dum=dum+rot(i,k,1)"'dd(1) 
3 dp(k)=durn 

c 
do 7 n=1.4 
v(l )=vertx(i,n)-xcen(i) 
v(2)=verty(i,n)-ycen(i) 
v(3)=vertz(i,n)-zcen(i) 
do 8 k=1,3 
durn=O. 
do 9 1=1,3 

9 durn=dum+rot(i,k,1)"'v(I) 
8 vp(n,k)=durn 
7 continue 

c 
c 

avp(l)=O. 
avp(2)=0. 
avp(3)=0. 
call 1inek(1,2,avx( 1 ),avy(l ),avz( 1)) 
call linek(2,3,avx(2),avy(2),avz(2)) 
call 1inek(3,4,avx(3 ),avy(3),avz(3)) ,., call 1inek(4,1,avx(4),avy(4),avz(4)) 

c 
do 10 k=1.4 
avp(1 )=avp(1 )+avx(k) 
avp(2 )=avp(2)+avy(k) 
avp(3 )=avp(3 )+avz(k) 

10 continue 
c 

do 11 k=1,3 
durn=O. 
do 12 1=1,3 

12 dum=dum+rotb(i,k,1)"'avp(I) 
11 av(k)=durn "'div4pi 
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c 

c 

c 

c 

dwnl=duml +av(l)*alpha(i) 
dwn2=dum2+av(2)*alpha(i) 
dwn3=dum3+av(3)*alpha(i) 

2 continue 

ufx=uinfin(l )+duml 
ufy=uinfin(2)+dum2 
ufz=uinfin(3 )+dum3 

return 
end 
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0.5 0.0713 0.0212 0.0308 0.0187 0.0713 0.0308 0.0212 0.0187 0.0187 0.0139 0.0139 0.0107 0.00852 0.0056 0.012 0.00903 0.00852 0.012 0.0056 0.00903 

0.5 0 0.0212 0.0713 0.0187 0.0308 0.00852 0.012 0.0056 0.00903 0.0139 0.0187 0.0107 0.0139 0.0056 0.00852 0.00903 0.012 0.0713 O.o308 0.0212 0.0187 

0 0.5 0.00852 O.OOS6 0.012 0.00903 0.0212 0.0187 0.0713 O.o308 0.0139 0.0107 0.0187 0.0139 0.0713 0.0212 0.0308 0.0187 0.0056 0.00903 0.00852 0.012 

0 0.5 0.0056 0.00852 0.00903 0.012 0.0056 0.00903 0.00852 0.012 0.0107 0.0139 0.0139 0.0187 0.0212 0.0713 0.0187 0.0308 0.0212 0.0187 0.0713 0.0308 

0.0713 0.0212 0.0308 0.0187 o.s 0.0713 0.0212 0.0308 0.0187 0.00852 0.0056 0.012 0.00903 0.0187 0.0139 0.0139 0.0107 0.00852 0.0056 0.012 0.00903 

0.0212 0.0713 0.0187 0.0308 0.5 0.00852 0.0056 0.012 0.00903 0.0056 0.00852 0.00903 0.012 0.0139 0.0187 0.0107 0.0139 0.0713 0.0212 0.0308 0.0187 

0.00852 0.0056 0.012 0.00903 0 0.5 0.0212 0.0713 0.0187 0.0308 0.0713 0.0212 0.0308 0.0187 0.0139 0.0107 0.0187 0.0139 0.0056 0.00852 0.00903 0.012 

O.OOS6 0.00852 0.00903 0.012 0.5 0.0056 0.00852 0.00903 0.012 0.0212 0.0713 0.0187 0.0308 0.0107 0.0139 0.0139 0.0187 0.0212 0.0713 0.0187 0.0308 

0.0713 0.0308 0.0212 0.0187 0.0713 0.0308 0.0212 0.0187 0.5 0.00852 0.012 0.0056 0.00903 0.00852 0.012 0.0056 0.00903 0.0187 0.0139 0.0139 0.0107 

0.00852 0.012 0.0056 0.00903 0.0212 0.0187 0.0713 0.0308 o.s 0.0713 0.0308 0.0212 0.0187 0.0056 0.00903 0.00852 0.012 ·0.0139 0.0187 0.0107 0.0139 

0.0212 0.0187 0.0713 0.0308 0.00852 0.012 0.0056 0.00903 0.5 0.0056 0.00903 0.00852 0.012 0.0713 0.0308 0.0212 0.0187 0.0139 0.0107 0.0187 0.0139 

O.OOS6 0.00903 0.00852 0.012 0.0056 0.00903 0.00852 0.012 0 0.5 0.0212 0.0187 0.0713 0.0308 0.0212 0.0187 0.0713 0.0308 0.0107 0.0139 0.0139 0.0187 

0.0187 0.0139 0.0139 0.0107 0.0308 0.0187 0.0713 0.0212 0.0308 0.0713 0.0187 0.0212 o.s 0 0.012 0.00903 0.00852 0.0056 0.012 0.00852 0.00903 0.0056 

0.0139 0.0187 0.0107 0.0139 0.0187 0.0308 0.0212 0.0713 0.012 0.00852 0.00903 0.0056 0.5 0 0.00903 0.012 0.0056 0.00852 0.0308 0.0713 0.0187 0.0212 

0.0139 0.0107 0.0187 0.0139 0.012 0.00903 0.00852 0.0056 0.0187 0.0212 0.0308 0.0713 0.5 0.0308 0.0187 0.0713 0.0212 0.00903 0.0056 0.012 0.00852 

0.0107 0.0139 0.0139 0.0187 0.00903 0.012 0.0056 0.00852 0.00903 0.0056 0.012 0.00852 0 0.5 0.0187 0.0308 0.0212 0.0713 0.0187 0.0212 0.0308 0.0713 

0.0308 ·o.o181 0.0713 0.0212 0.0187 0.0139 0.0139 0.0107 0.0308 0.0187 0.0713 0.0212 0.012 0.00903 0.00852 0.0056 0.5 0 0 0.012 0.00903 0.00852 O.OOS6 

0.0187 0.0308 0.0212 0.0713 0.0139 0.0187 0.0107 0.0139 0.012 0:00903 0.00852 0.0056 0.00903 0.012 0.0056 0.00852 0.5 0 0.0308 0.0187 0.0713 0.0212 

0.012 0.00903 0.00852 O.OOS6 0.0139 0.0107 0.0187 0.0139 0.0187 0.0308 0.0212 0.0713 0.0308 0.0187 0.0713 0.0212 0.5 0.00903 0.012 0.0056 0.00852 

0.00903 0.012 0.0056 0.00852 0.0107 9.0139 0.0139 0.0187 0.00903 0.012 0.0056 0.00852 0.0187 0.0308 O.Q212 0.0713 0.5 0.0187 0.0308 0.0212 0.0713 

0.0308 0.0713 0.0187 0.0212 0.0308 0.0713 0.0187 0.0212 0.0187 0.0139 0.0139 0.0107 0.012 0.00852 0.00903 0.0056 0.012 0.00852 0.00903 0.0056 0.5 

0.012 0.00852 0.00903 0.0056 0.0187 0.0212 0.0308 0.0713 0.0139 0.0187 0.0107 o.0139 o.03o8 o.0713 -o.0187 0.0212 o.oo903 o.oo56 0.012 o.o0852 0.5 

0.0187 0.0212 0.0308 0.0713 0.012 0.00852 0.00903 0.0056 0.0139 0.0107 0.0187 0.0139 0.00903 0.0056 0.012 0.00852 O.o308 0.0713 0.0187 0.0212 0.5 

0.00903 0.0056 0.012 0.00852 0.00903 O.OOS6 0.012 0.00852 0.0107 0.0139 0.0139 0.0187 0.0187 0.0212 0.0308 0.0713 0.0187 0.0212 0.0308 0.0713 0.5 
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