
'L.i 
·t .· 

r 
I 

LBL-27626 
Pre print 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

EARTH SCIENCES DIVISION 

Submitted to Physics of Fluids A 

Permeability of a Fracture with Cylindrical Asperities 

S. Kumar, R.W. Zimmerman, and G.S. Bodvarsson 

August 1989 

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098. 

-ttn 
o ..... r 
:; ) 0 

fJ D 
f(l != z 

1-' 

~ !!.1 n 
1'[)<1-0 
I'D 1\) 1J 
7: 1.'1 -< 
Ill 

i:P 
1-' 

Cl. 
lD . 
Ul 
& 

r ..... 
o-n .... 0 ' !)J"O 
'1"'< 

"-<: . ft) 

r 
IJj 
r 
I 

f·) 
-....1 
0" 
f(t 
IJ'> 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 
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Abstract 

· The permeability of a fracture that consists of smooth, parallel faces and which 

has randomly-located, uniform-sized cylindrical asperities is investigated. The viscous . . 
resistance due to the asperities is ·accounted for by an in-plane permeability coefficient, 

and a Brinkman-type equation is used to find the velocity distribution across the thick· 

ness of the fracture. The resulting expression for the permeability of the fracture 

reduces to the known result for parallel plates as the concentration of asperities 

approaches zero, and reduces to the known result for long, parallel cylinders as the dis

tance between the plates goes to infinity. 

PACS: 47.55Mh, 47.15Gf, 92.40.Lg, 92.40Kf 

Submitted (8/8/89) to Physics of Fluids ! 
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L INTRODUCTION 

The flow of a Newtonian fluid through a rock fracture is of importance in many 

geophysical and geotechnical processes. For hydrological purposes, rock fractures · 

have traditionally been modeled as two smooth parallel walls separated by a distance 

h, which leads to a permeability of h2/12. 1 More recent work2.3 has attempted to 

account for the in-plane tortuosity caused by fluid flowing around the regions where 

the opposing rock faces are iri contact (the asperities). In this paper we estimate the 

effect that viscous drag along the sides of the asperities has in reducing the permeabil

ity. 

IT. THEORETICAL DEVELOPMENT 

Consider a fracture that consists of two smooth parallel walls of infinite extent, 

separated by a distance h. Let the x-y coordinate axes be parallel to the plane of the 

fracture, and the z axis be perpendicular to the fracture walls, which are located at 

z = ±h/2. The x-y coordinates can be oriented so that the macroscopic pressure gra

dient, and the mean flow, are in the x direction (see Fig. 1). For very low Reynolds' 

numbers, such as are typically found in geological systems, the problem can be 

analyzed as follows. At each position z within the fracture, fluid "particles" follow a 

tortuous path around the cylindrical obstacles, but have zero velocity in the z direction. 

The viscous resistance offered by these asperities can be accounted for by a "two

dimensional" permeability coefficient K 2, defined _so that the average velocity ii (aver

aged locally over the transverse x-y plane) for uniform, steady-state flow equals 

-- (K 2/J.J.)VP. Methods of estimating this permeability; for random or periodic distribu

tions of circular obstacles, have been discussed by Hasimoto,4 Howells,5 Rubinstein 

and Keller,6 and Sangani and Yao.7 The average velocities on the various planes paral

lel with the fracture walls will then vary with z, due to the viscous drag between adja

cent fluid "sheets". This effect can be treated within the framework of the Navier-
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Stokes equations, in the sense that the viscous drag between the various sheets is pro

. portional to au loz . 

The time-dependent equations that govern flow within the fracture are obtained by 

combining_ the two-dimensional Navier-Stokes equations with the effective permeability 

concept, yielding(cf. Brinkman8, Vafai and Tien9) 

...e_ ou(x ,z ,t) __ d (p + pg x.> _ _1!_ -c ) + 1!_ i12u(x ,z ,t) 
2 ':'1 - dx K ux,z,t 2 2 ' 

4> ut 2 <1> oz 
(1) 

where p is the density of the fluid, J.1. is the viscosity, g is the gravitational accelera

tion, 'X is a coordinate measured in the direction of the gravitational field, and <1> is the 

fraction of space in the x -y plane that is not occupied by obstacles. The velocity ii is--

averaged locally over the x-y plane, and hence is a function only of x and z. This · 

velocity is a "Darcy velocity" or "filter velocity" 10, and can be related to the actual';· 

average velocity of the fluid particles by ii = 4>2u (actual). The second term on the right 

side of equation (1) represents the potential drop due to viscous drag along the sides of 

the obstacles. One factor of <1> was introduced by Vafai and Tien9 to account for the 

reduced area available for flow, while the second is introduced here to account for 

"tortuosity", in the sense that the actual travel path of a fluid particle between two 

points x =x1 and x =x2 must exceed the distance lx2-x 11. Although the identification 

of the tortuosity with 11<1> is not exact, this idea has had some success in predicting the 

electrical conductivity of porous rocks11• The potential gradient d (p + pg 'X,)Idx is 

averaged over the y-z plane, and hence depends only on x. 

For fully-developed flow, the average velocity and the potential gradient will not 

vary in the x direction, and the flow field will not vary with time, so the equation of 

motion takes the form 
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(2) 

where H represents the potential p + pg X· The no-slip boundary condition on the frac

ture walls requires that 

u(z =±hl2) = 0 . (3) 

The governing equation (2) can be integrated, using the boundary condition (3), to 

yield the following velocity profile: 

(4) 

In the limit as the concentration of obstacles goes to zero, cj> ~ 1 and K 2 ~ oo. ·Since 

cosh~= 1 + ~2/2 as ~ ~ 0, the velocity profile reduces to 

_ -h2 dH [ ·[2z]J u(z) = -.--- 1- -
8J.1 d.x h • 

(5) 

- - - - -

which is the well-known result for flow between two parallel walls. 
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lli. FRACTURE PERMEABll.,ITY 

The total volumetric flux can be found by averaging the velocity again, this time 

over the z direction, yielding 

= 1 +hfl- -K2 dH [ tanh[,h!VK;]] u=-J u(z)dz=--1-
h -hfl J.1 dx [ 'h 12VK;J . 

(6) 

The equivalent "three-dimensional" fracture permeability can now be found by com-

paring (6) with Darcy's law 

= -K3 dH 
u =----' 

J.1 dx 
(7) 

to yield 

(8) 

The above expression reduces to the expected results in the two limiting cases of 

$ ~ 1 (no obstacles), and h ~ oo (no side walls). In the ~ormer case, note that K 2 ~ oo 

when '~ 1 with h held constant, so that the argument of the tanh function goes to 

zero. Use of the series tanh~ = ~ - ~3/3 + · · · in (8) leads to 

(9) 
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which is .the known1 .permeability for fiow .. between parallel fiat ... plates. In the other 

limit of h ~-(with~ held fixed), tanh(oo)= 1 in (8), so that 

(10) 

In this case the permeability reduces to that of flow across an array of infinitely long, 

parallel circular cylinders. 

In order to be more specific about the results, and to quantify what is meant by 

"large h ", we need to assume an expression for K 2• In general, this is a difficult 

problem which is not yet completely solved. When the obstacle concentration is small, 

however, asymptotic expressions for K 2 are available. For cylindrical obstacles of 

radius a located on a square lattice, Hasimoto4 showed that the permeability K 2 is 

given by 

a2 
K 2 = Sc (-Inc - 1.476 + 2c + · · · ) , (11) 

where c = 1 - ~ is the areal concentration of the obstacles (see Figure 2). The permea

bility in (11) scales with a2; this is also true for any extension of such an equation to 

higher asperity concentrations. Although (11) was derived for a cubic array ·of 

cylinders, the influence of cylinder location (as opposed to concentration) only assumes 

importance for values of c greater than about 0.4.4•7 

It is clear that h Ia is the important dimensionless parameter, so that the limit 

h ~ oo really corresponds to h >a. There is another important limit in which 

hla ~ 0 for fixed c, in which case (8) reduces to 

.. 
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q,2h2 h2 
K =-=-(1-c)2 

3 12 12 . (12) 

If the concentration of obstacles c is small but finite, (12) reduces to (1- 2c) h 2112, 

which is the result found by Walsh2 for a thin fracture containing a small concentra

tion of randomly distributed circular asperities. Walsh used the Hele-Shaw approxima

tion to reduce the flow equations to a Laplace equation for the pressure, and then used 

known results from the analogous field of heat conduction. The present analysis 

clarifies the fact that Walsh's result requires h <a. 

For higher concentrations of randomly-located asperities, Sangani and Yao7 used 

a lubrication-type approximation for the flow between nearby cylinders to derive (see 

Figure 2) 

(13) 

Whereas (11) is expected to be accurate for small values of c, (13) is asymptotically 

accurate for large values of c. If one of the K 2 expressions is used in conjunction 

with (8), the three-dimensional permeability K 3 can be predicted (Figure 3). K 3 is 

normalized with respect to the "unobstructed" parallel plate value h2112, in order that 

the plotted permeabilities be finite for all values of h and a. The permeability curve 

labelled h Ia = 0 represents the limiting case where the viscous drag along the parallel 

faces of the fracture greatly exceeds the drag along the sides of the asperities. An 

increase in the hla parameter increases the viscous drag along the asperites, and hence 

decreases the permeability below the "thin fracture" value. 
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IV. CONCLUSIONS 

An expression has been derived for the permeability of a fracture that consists of 

two smooth parallel walls separated by an aperture h, and which contains cylindrical 

asperities of radius a . The predicted permeability reduces to that of an assemblage of 

infinitely long parallel cylinders when h Ia -+ oo, and to the parallel plate permeability 

when the asperity concentration goes to zero. The results show that viscous drag 

·· along the faces of asperities appreciably -reduces the peimeability of a fracture.· 
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FIGURE CAPTIONS 

FIG. 1. Schematic diagram of a parallel-wall fracture propped open by cylindrical 

asperities. 

FIG. 2. Two-dimensional permeability for uniform flow·across an array of randomly

located parallel cylinders of radius a. 

FIG. 3. Three-dimensional fracture permeability, using two different expressions for 

K 2 in Equation (8). 
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FIG. 1. Schematic diagram of a parallel-wall fracture propped open by cylindrical 

asperities. 
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FIG. 2. Two-dimensional permeability for uniform flow across an array of randomly

located parallel cylinders of radius a. 
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FIG. 3. Three-dimensional fracture permeability, using two different expressions for 

K 2 in Equation (8). 
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