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DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain coiTect information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of -
California, nor any of their employees, makes any waiTanty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 
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Abstract 

General framework of linear first order differential equation for four-point confor
mal block is studied by using flat connection. Integrability and SL2 invariance restrict 
possible form of flat connection. under a special ansatz classical Yang-Baxter equa
tion appears as an integrability condition and the WZW model turns to be unique 
conformal field theory in that case. Monodromy property of conformal block can be 
easily determined by the flat connection. 

* Talk given at the XVIII-th International Conference on Differential Geometric Methods in The
oretical Physics "Physics and Geometry" (July 3- 8, Lake Tahoe). This work was supported by the 
Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of High Energy 
Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098. 

t On leave of absence from National Laboratory for High Energy Physics, Tsukuba, lbaraki 305, 

Japan 
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INTRODUCTION 

1 

Recently many people1 are discussing general framework of rational conformal 
field theories (RCFT). There, one of the important concept is a connection matrix 
of conformal blocks. Once connection matrices are given for the conformal blocks, 
which are made from chiral vertex operators of a given chiral algebra by sandwich
ing them with S L2 invariant vacuum, then we can construct the physical correlation 
functions invariant under monodromy transformations and determine operator prod
uct expansion coefficients in principle. 

The connection matrices satisfy some polynomial equations2 such as pentagon 
identity for example. Some people are trying to classify RCFT by solving the poly
nomial equations for connection matrices. The connection matrices, however, have 
only global information ot conformal blocks. Moreover it is unclear how one can 
study dynamical or physical properties of the conformal blocks if playing only with 
the connection matrices. 

On the other hand, we know that the conformal block satisfies a certain differ
ential equation which is the result of null state structure of the representation. 3•4 

The differential equation contains both global and local information of the conformal 
block. 

In the present note we will study the differential equations for conformal blocks 
in general framework. Especially we would like to point out the importance of fiat 
connection. It may give a new and more tractable tool for classification of RCFT. 

t On leave of absence from National Laboratory for High Energy Physics, Tsu
kuba, lbaraki 305, JAPAN 
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Indeed for a special case we can completely classify the flat connections and hence 
CFT. Another advantage of using flat connection in writing down a differential 
equation is that a monodromy property of conformal block can be easily determined. 
In some case we can see quantum group structure for connection matrices without 
giving their explicit forms. 

DIFFERENTIAL EQUATIONS FOR CONFORMAL BLOCKS 

It is known that four-point function is the first nontrivial multi-point function 
in CFT. Let us assume a four-point function t/J satisfy the following first order linear 
differential equation: 

i = 1,2,3,4 (1) 

where t/J is a n-colwnn vector of functions and Wi 's are n x n matrices of functions. 
In general, the number of fundamental solutions of (1), which are conformal blocks, 
is not greater than n. 

Here one might wonder if differential equation· for conformal block is always 
written in a first order form like (1). In the minimal model case, for instance, a 
correlation function (let us denote it by f)- which contains primary field tPh< .. ·•> (z) is 
known to satisfy a differential equation of order rs with respect to z. Even in this 
case we can define a rs-colwnn vector t/J consists of/, lzf' · · ·, and (lz)r.-l f so 
that t/J satisfies first order equation of the form (1). With similar tricks we can see 
that for every known differential equation of four-point function we can rewrite it in 
first order form (1). Hence (1) is most general form. 

Now let us consider requirements for Wi· Among them two important things 
are (A) SL2 invariance and (B) integrability. 

(A) S L2 in variance: Since we are considering CFT on a sphere, S L2 in variance 
is one of necessary conditions. If we denote conformal dimension of each vertex 
operator by Ai (i = 1,2,3,4), then SL2 invariance of t/J requires the following 
relations: 

(2a) 

(2b) 

(2c) 

Using eq. (1), we can derive the conditions for Wi: 

(3a) 
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L:)Lli + ZiWi)tP = 0 (3b) 
i=l 

4 

L(2ziLli + Zi
2w;)l/J = 0 (3c) 

i=l 

(B) Integrability: Eq. (1) consists offour equations. So they have to be consistent 
with each other. This is achieved if differential operators a~. - w; (i = 1,2,3,4) 
commute with each other. Thus we have another set of conditions: 

(4) 

If you regard w; as a connection, ( 4) tells Wi has zero curvature. It is very natural that 
a flat connection governs conformal block since analytic continuation of conformal 
block function does not depend on small (infinitesimal) deformation of continuation 
path. We will see later how the flat connection actually determine the connection 
matrix. 

Besides the above conditions (A) and (B), we need several physical requirements 
to obtain differential equations corresponding to some RCFT. Unitarity, boundary 
condition at infinity and gauge choice are some of examples. Classification of RCFT 
based on this. direction is now under investigation. Here we describe a remarkable 
trial of classification using a certain ansatz. 

Let us assume w; has following form: 

Wi = l::rij(Zij) 

j'#-i 
(5) 

where Zij = Zi - z j and rij ( Zij) is a matrix of functions only depending on Zij 

satisfying r ij ( Zij) = - r ji ( z j i). Then the integrability condition ( 4) becomes 

This equation is nothing but classical Yang-Baxter equation5 (CYBE)! Fortunately 
there exists a classification of its solutions by Belavin and Drinfel'd6 ; a) rational, b) 
trigonometric and c) elliptic solutions. It can be easily seen that among them only 
rational solution satisfies S L2 in variance. The rational solution has a form 

(7) 

where T 4 's are the orthonormal basis of arbitrary simple Lie algebra and p; is a cer
tain representation. Normalization constant ..\ can be fixed by another requirement 
such as unitarity. Substituting this expression into eq. (1), we obtain Knizhnik
Zamolodchikov4(KZ) equation.* This means the WZW model is a unique CFT 

* Conversely, the fact that the integrability condition of KZ equation coincides 
with CYBE is first noted by Kohno7

. 
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under the ansatz (5). Although this ansatz does not include other interesting classes 
of CFT such as minimal model, the above discussion sufficiently exhibit powerfulness 
of this framework toward the classification of CFT. 

MONODROMY PROPERTIES OF CONFORMAL BLOCKS 

As mentioned before, an advantage of writing the differential equation in the 
form of eq. (1) is that it enables us to write down a formal result of analytic con
tinuation of solution. Let "'( be a path from a point { Zi} to another point { zi} in 
C4\~ (we denote~ as a subspace of C4 in which any two coordinates Zi and Zj 
coincide). Then the analytic continuation ~-y(zD of ~(zi) along "Y is expressed by a 
path-ordered integral: 

{zD 

~-y(zD = P-yexp(j I:wjdzj)~(zi) 
{zi} . j 

(8) 

From this expression we can extract the property of connection matrix. Before doing 
so, let us consider gauge degrees of freedom of the differential equation. 

Eq. ( 1) has a gauge in variance (we should rather say covariance) under the 
transformation 

~ -+~' =U~ 

w-+ w' = UwU- 1 + (dU)U- 1 (9) 

where U(zll z2, z3, Z4) is a gauge transformation matrix and w = 'Ei widZi. What is 
more important is a subclass of gauge transformation which leaves w invariant~ The 
condition that U leaves w invariant is 

dU+[U,w]=O (10) 

Then U~ satisfies the same differential equation as ~ does, i.e. eq. (1), and can 
be expressed by a linear combination of fundamental solutions of (1). Defining a 
matrix .\II = ( ~( 1 ), ~(2), · • · , ~(n)) which consists of fundamental solutions ~(i), we 
can swnmarize the action of U in the following form: 

U\11 = 'I!U (11) 

where U is a constant matrix.f We call U that satisfies (10) monodromy operator§ 
and U connection (monodromy) matrix. 

Now let us consider the braiding operation for which we take a path"'( such that 
z~ = Zp(i) where p( i) is a permutation. The analytic continuation operator along "Y 

j
{Zp(i>} 

T-r = P-yexp( w) 
{zi} 

(12) 

+ We can easily see d('I!- 1U'I!) = 0 by using the relations (10), d\11 = w\11, and 
dw-1 = -'ll- 1w. 

§ Here the term monodromy is used somewhat extensively. 

L rY 

(~ 

! ! 
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becomes a matrix of functions of Zi. Generally T"Y does not satisfy (10) unless 
p( i) = i. Instead, 

(13) 
--

is held. H we find a constant matrix A which satisfies Aw(zp(i))A-1 = w(zi), then 
AT"Y becomes a monodromy operator. 

We take the WZW model for the illustration of above construction. In this case 
Wi is given by eqs. (5) and (7), and t/J is a function of four vectors Vi of Lie algebra 
on which the representation Pi(Ta.) acts and four complex coordinates Zi. Taking 
an appropriate basis t/J becomes a column vector. Now a braiding operator, say 8 23 , 

is constructed as follows: First we obtain an analytic continuation operator T"Y with 
an appropriate· braiding path "Y for z2 and za 

where 

(15) 

Second we find a constant matrix which turns w(z1, za, z2, z4) back to w(z1, z2, za, z4); 
the answer is permutation operator P23 of v2 0 va. Furthermore in this case we can 
explicitly perform the path-ordered integral and so the final result becomes 

{16) 

where nij = ! Ea. Pi(Ta.) 0 Pi(Ta. ). 
We define a connection matrix Bi i+l corresponding to braid operation 8; i+l 

according to the general story: 

(17) 

Although the determination of B itself is generally a hard task, much of its important 
properties can be obtained from the properties of B via eq. (17). Indeed B and B 
have common properties such as eigenvalues and braid relation. The eigenvalues of 
Bij are easily determined as efi qc,.-c,-cj, where Ci is Casimir invariant evaluated 
on the representation Pi and q = e111'A. Index k runs over the representations which 
appear in the decomposition Pi 0 Pi = (JJkpk, and efj is either +1 or -1 depending 
on whether Pk is constructed symmetrically or anti-symmetrically from Pi and Pi. 

t'\ In this line of argument, Kohno7 showed that the braiding matrices satisfy 
I 1. Heeke algebra if we choose S Ln for Lie algebra and n-dimensional fundamental 
. •; representation for every Pi. Furthermore we can show8

•9 for the case of SU2 that 
any connection matrices can be expressed by the 6j-symbols10 of quantum su2 and 
the normalization factors for the conformal blocks. They completely agree with the 
explicit evaluation of the connection matrices by Tsuchiya and Kanie. 11 
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