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Removal of Singularities From Taylor Series 

By Kenneth La Mon 

abstract 

A mathematical procedure is described whereby the 
radius of convergence of a Taylor series can be 
increased through the inclusion of complex poles 
in a rational approximation. Computer results show 
that this technique is quite independent of the 
asymptotic limit of the power series and only depends 
on the positions of the singularities. Aside from 
the applications in one variable, this method vastly 
improves perturbative solutions to symplectic, 
dynamical mappings in many dimensions by removing 
resonances in the complex plane. 

Introduction 

Whenever a Taylor series is substituted for a nonentire 
analytic function, the radius of convergence of that series is 
determined by the distance from the origin of the expansion to the 
nearest singularity in the complex plane. For example, the 
function 

(1 + z)1/2 

is well behaved near z=l but, because its first derivative becomes 
infinite at the branch point z = -1, its Taylor expansion about 

z=O diverges for Izl > 1. A better approximation near z=l can be 
found by multiplying and dividing this series by (1 + z) thereby 
explicitly including the singularity at z = -1 in the new 
approximation. 

1 + l.z 
2 

1....Z 2 + ... 
8 

= 

(1 + z) (1 + l.z - l.z 2 + ... ) 
2 8 

(1 + z) 

(1 + lz + lz2 + ... ) 
2 8 

(1 + z) 

Now the Taylor series in the numerator is that of (1 + z)3/2, 
and here the singularity is in the second derivative rather than 

the first. This Taylor series still diverges for Izl > 1 but, 
because the singularity appears at a higher order in the 
approximation, the divergence is not as strong. Continuing this 
proces s indefinitely yields a series for which the singularity is 
far enough away not to be felt . Of course, in practice, one only 
deals with finite series so that moving the singularity to highe r 
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and higher order means that we can keep more terms in the Taylor 
expansion in the numerator. That is: 

'/1 + z = lim 
(1 + Z)N- l 

Here the subscript N in the numerator means truncate the resulting 
bracketed polynomial at order N. 

By no means does this heuristic argument constitute a proof , 
the real confirmation coming from extensive computer study over a 
wide range of sample functions. This work was facilitated by and , 
in part, motivated by the Differential Algebra (DA) package of M. 
Berz .l Using this set of FORTRAN subroutines one can quickly 
generate the Taylor series of simple functions to arbitrary order 
in many dimensions and , in addition, manipulate these series at 
finite order through multiplication, division , etc . . 

Because the new rational approximation contains information 
about the function that the old series did not have, specifically 
the positions of poles , it actually converges faster inside the 
radius of convergence of the other series. Table 1 gives a 
comparison of relative errors [ relative error = (approx.- exact 
value)/exact value 1 for fifteenth order series for the function: 

[(1 + l.z + d.z 2 + .. . ZN) (1 + z + z2) kJ. '/1 + z + Z2 --t ___ -.1..2 __ -'8'-____________ _ _ 

(1 + z + z2) k 

In this case the function has poles at z = exp (±21ti/3). The rule 
for removing mUltiple poles is to choose k to be the greatest 
integer less than N divided by the number of poles. 

z 

0 . 2 
0.4 
0 . 6 
0 . 8 
1.0 
1.5 
2 .0 
3 . 0 

10.0 

Table 1: Relative Errors (1+z+z2)1/2 

Taylor Series 
N=15 

2.48(-14) 
1.67(-9) 
1.02(-6) 
9.18(-5) 
2.88( - 3) 

* 
* 
* 
* 

Rational Approx. 
N=15, k=7 

2 . 33( -1 4) 
2 . 49( -1 0) 
2.79(-8) 
4.58(-7) 
3.40(-6) 
6.03(-5) 
2.85( - 4) 
1.42 (-3) 
1.36(-2 ) 

Table 2 shows the dimini s hment of relative error f o r this 
same function as N, the order of the expansion, is increased. 
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Tab1e 2: Relative Errors (1+z+z2)1/2 , z=1.5 

N, k 

5, 2 
10, 4 
15, 7 
20, 9 
30, 14 
40, 19 

Rational Approx. 

1.64(-2) 
1.37(-3) 
6.03(-5) 
5.44(-6) 
2.50(-8) 
1.22(-10) 

App1ication to Dynamica1 Systems 

Using a Poincare surface of section one can study the 
dynamics of trajectories in the neighborhood of a closed orbit r 
in terms of a discrete transfer mapping MZi = zi+l where M gives 
the position of the (i+1)th piercing of the S.O.S. in terms of the 
position of the ith piercing. The closed orbit r is just a fixed 

point of M taken to be at the origin of the reduced phase space. 
For stable Hamiltonian systems, the linear mapping will simply be 
a rotation about the origin. As nonlinearities are added, 
features such as chaos and island chains immediately arise. 
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Figure 1: A plot of the iterates of Eq. (1) with 
11 = 0.245(21t) 
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Figure 1 shows the iterates, for various initial conditions, 
of the nonlinear Hamiltonian mapping: 

x xcos~ + psin~ 
( 1) 

p -xsin~ + pcos~ + x 3 

In this case the constant tune ~ was chosen to be (0.245) (21t) in 
order to excite the m = 1/4 resonance to which this mapping is 
highly sensitive . 

One method for constructing a perturbative solution to such a 
Hamiltonian mapping involves factoring it using a similarity 
transformation. 

Here the map N is chosen to depend only on the radial variable J. 

Hence the transformation ~ sends us to a set of coordinates in 
which the motion in the phase plane is simply a rotation at a 
constant amplitude-dependent frequency. To find out where an 

initial vector (xo , Po) will be after n iterations of the map 11 
we simply apply the transformation ~, rotate by a constant angle , 

and then transform back using ~-1. 

The shapes of the invariant curves of 11 are given by the 

function ~-lJ = constant since 

The method for constructing this factorization involves Lie 
transforms and is quite beyond the scope of this paper although 
several good sources exist that describe it2,3,4. Strictly 
speaking , the asymptotic series generated by this factorization 
cannot converge . Instead, for near-integrable systems , the 
approximation keeps getting better up to a certain order in the 
expansion after which additional terms make the series diverge. 

Characteristically, however, the divergences that first arise 
do not seem to be due to any fundamental property of the motion 
such as chaos. Rather the power series solution generated 
resembles the Taylor series of a function with complex poles. 
Using the method described previously for obtaining a rational 
approximation from a Taylor series we can fix up these divergent 
solutions. 

Finding the positions of the singularities in the case of 
dynamical mappings is actually quite straightforward since the 

mapping N gives the frequency of the motion as a function of 
amplitude in the transformed space . When this frequency is a 
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0.4 

rational multiple of 2x we are at resonance, and for small 
low-order fractions, the resonance will cause our series to be 
singular. 

Resu~ts 

If we look at the effect of applying the transformation 1\-1 

to the 
in the 
space. 
series 

particles tracked through ~, we see that the invariant tori 
original space are transformed into circles in the new 
This provides a visual way of testing the perturbation 

using a computer. 

Figure 2a shows the orbits of Figure 1 once they have been 
mapped through the 15th order polynomial 1\-1. Notice that the 
tori are transformed into circles up to a radius of about r=O.2; 
after that the transformation fails horribly. Since there is no 
discontinuity in the original space, like an island chain, this 
singularity is presumably removable. 

From the mapping N we get a formula for the tune shift with 
amplitude in the new space : 

ro = O.245(2x) - (3/4)J + 0(4) 

The resonance occurs when ro O.25(2x) or 

(2~/75) + x2 + p2 = 0 (2) 

To patch up the 15th order solution multiply and divide by k=7 
powers of eq. (2) and truncate at order 15. Figure 2b shows the 
N=19, k=9 rational function solution which is completely purged of 
this singularity. 

I . I I 1.0 

"': " 

. •....• 
<: .... 

0.2 f-: .. ... . - 0.5 

.... . ..... . ~ 

0 .0 I- - 0.0 

-0.2 r- ... --
-0.5 

. . . ,.~. - .,. 

-0.4 
-0.4 -1.0 

0.4 -1 

I ~ I 
-0.2 o 0.2 

" " ''' " ...... ... : . :.~ 
.. :.: . c:; " 

-0.5 o 0.5 

Figure 2: Trajectories of Eq . (1) with ~ = O. 245(2x) after 
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1.0 

0.5 

0.0 

-0.5 

being acted on by a) 15th order polynomial A-i b) N=1 9, k= 9 
rational function A-i. 

In an earlier paper the author showed5 that by altering the 
formulation of the similarity transformation slightly one may 
construct a solution that converges best at a specified radial 
distance from the origin. Figure 3a shows the iterates of the map 
(1) but, in this case, the constant tune ~ was chosen to be 
O.255(2~). Figure 3b shows the results from applying to these 
points the 10th order polynomial map 1\-1, derived about the radius 
r=O . 75, outside the large, four-turn island chain. As the order 
of the transformation is increased, the small "spurs" on the edge 
of the picture grow until by 15th order, in Figure 4a, they 
dominate. 

Figure 4b shows what happens when this N~15 polynomial 
solution is converted to a N=15, k=7 rational approximation using: 

O.25(2~) = O . 222(2~) + O.033(2~)a2 - (3/4)J + 0(4). 

Figure 4b is actually a composite picture; the three outermost 
orbits of Figure 4a were remapped through the rational 
transformation whereas the nondivergent trajectories were le f t 
alone. In order to create the original radially displaced 
factorization it was necessary to introduce the ordering parameter 

a above, set equal to 1 at the end of the calculation. This 
parameter is partly responsible for creating the singularity and 
must be included for its removal. 
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Figure 3: a) A plot of the iterates of Eq. (1) with 

. .. 

~ = O.255(2~) b) These same trajectories after 
being acted on by a 10th order polynomial A-1 
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Figure 4: a) Trajectories of Fig. 3a after being mapped 
through a 15th order polynomial A-l . b) Same as 
4a but with the three outer trajectories mapped 
through an N=15, k=7 rational approximation . 

The removal of resonances in higher dimensions proceeds in 
exactly the same manner as before . In four variables, to remove a 
resonance of the form: 

mUltiply and divide by k factors of 

dH 
+m---+n=O 

dJy 

where H is a polynomial, derived from N, describing tune shift 
with amplitude. 
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