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ABSTRACT 

Simple electron microscopy techniques are descr~bed which allow one 

to detect the presence of two enantiomorphous forms of a structure 

within an apparent single crystal. The first method .consists of a 

characterization of the interface between the two enantiom~rphs •. 

In the second method advantage is taken of violations in Friedel's 

law which can occur in non-centro symmetrical crystals. These 

techniques have been illustrated by an analysis of the domain structure 

in ordered LiFe
S

08 ,which has a spacegroup P4l 32 or P4
3

32. Consistent 

results were obtained with both methods. The first method yields a 

more complete description of the domain structure. Methods which can 

be used to determine the absolute configuration. of th~ structure in 

a part of the crystal are discussed. 
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1. INTRODUCTION 

When a structure belongs to a space group which does not contain 

a symmetry operation of the second sort,that is an operation which 

does not involve an inversion or a reflection, then it can exist in 

either a right-handed or a left-handed· form. In some cases these two 

forms have different spacegroups that is either one of an enantiomorphous 

pair of spacegroups. With ordinary X-ray diffra:ctio~techniques it is 

impossible to distinguish between these two enantiomorphous forms. It 

is·necessary to include anomalous scattering in the calculations and 

often very accurate intensity measurements are necessary. The use of 

anomalous scattering of X-rays to determine the absolute configuration of 

a structure has been reviewed by Ramaseshan (1964). Recent contributions 

to this field include the use of the shape of X-ray intensity spectra 

(Burr and Woods, 1973) and applications of the Kossel effect (Brummer, 

et al., 1973). 

These X-ray methods have their limitations. The structure should 

contain at· least two different species, one of which should be an 

anomalous scatterer. The latter condition cannot always be fulfilled 

with commonly available X-ray wavelengths, for instance, if a structure 

contains only light elements. Iwasaki (1974) has shown that there may 

be some, so far imaginary, non-centrosymmetric structures, for which 

Friedel's law holds even with anomalous dispersion. In addition, one 

would have to be sure that both forms of the structure do not coexist 

on a very fine scale viz smaller than the diameter of an X-ray beam, within 

an apparent single crystal. This will depend on whether or not it is 

possible to'have a low energy interface between the two structures, 
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when the crystal axes in both remain parallel. 

In this paper it will be shown that if both enantiomorphous forms do 

occur in the form of very small domains, the presence of the right and 

left-handed forms can be. confirmed using contrast experiments in the 

electron microscope. Two different methods have been used, the first 

method consists of an analysis of the interface between the two structures. 

This interface can be described by a set of geometrical operations.which 

converts the structure on one side into the structure on the other side of 

the interface. Using simple contrast experiments it can be ascertained 

whether or not the operations characterizing the interface contain an 

inversion operation.. A similar method of analysis was used by MacLaren 

and Phakey (1966) in a study of Brazil twinning'in quartz. The second 

method which can be used to confirm the results of the first, takes 

advantage of a violation of Friedel's law in electron diffraction. 

I 
Exceptions to Friedel's law in electron diffraction were first observed 

by Thiessen and Moliere (1939) and later by Miyake and Uyeda (1950). 

A theoretical discussion of Friedel's law in n~beam dynamical theory 

was given by Fujimoto (1959), Cowley and Moodie (1959) and recently by 

Serneels, Snykers, Delavignette, Gevers and Amelinckx (1973), who 

specifically considered the contrast between domains related by an 

inversion operation in non-centrosymmetrical crystals. 
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2. STRUCTURAL INFORMATION 

The compound which has been studied is ordered LiFe50S• The structure 

goes through a phase transformation above 750°C, which has been shown 
i 

to be of the order-disorder type (Braun, 1952). The disordered structure 

has the inverse spinel structure (space group Fd3m,lattice parameter 

a ... 8.33A), with Fe3+ on the tetrahedrally coordinated sites and a 

+ . 3+ . 
mixture of Li and 3Fe on the octahedra11y coordinated sites.· Below 

750°C, Li+ and Fe3+ order and the spacegroup symmetry is lowered to 

P4132 or P4332. This is accompanied by a slight change in lattice 

parameter (Brune1 and de Bergevin, 1964). The atomic coordinates for 

the ions used in this work were given by Braun (1952) using the" 

equivalent positions for P4332 (No. 212 International Tables for X-ray 

crystallography, 1965): 4 Liat (b); 12 Fe at (d) withx= 3/S; 

S Fe at(t) with x = 0; 24 Oxygen at (c) with x == l/S, y= ~l/S,z ,;. l/S, 

8 Oxygen at (cl with x = 3/S. Small corrections for these coordinates 

were :neglected i.e., we assumed that the disordered structure is an ideal 

spinel structure • The complete set of coordinates of the octahedral sites 

is given in Table 1. A projection of these sites on the (100) plane is 

given in Fig. 1. 

Considering now one spacegroup only, it can be seen from Fig. 1 that 

the set of octahedral sites can be divided into four subsets, one 

of which contains only lithium ions and the other three only iron ions. 

When ordering sets in, the lithium ions can occupy any of these four 

subsets. After ordering, the single crystal, is fragmented into domains 

in a way similar to ordered metallic phases (e.g., see Harcinkowski, 1961). 

Within each domain, the lithium ions will occupy only one subset and at 
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the boundary between domains they will be out of phase. ,These boundaries 

can be described by the vector which translates" the lithium ions from 

one subset to another. A 1/2<110> type vector is a lattice vector of 

the disordered structure, hence, a translation of 'the ordered structure 

over this vector does not affect the oxygen ioris or iron ions in 

tetrahedral sites, but it does transfer theLi ions from one subset to 

another. This holds for either one of the spacegroups. 

So, there, are actually eight different subsets out of the 16 

octahedral sites which the Li ions can occupy, and it is possible to' have 

a boundary between any pair of these. The eight arrangements are 

enumerated in Table 2. The arrangements 1L and 1Rhave been taken' 

rather arbitrarily as "basic" arrangements for P4332 and P4132 respectively. 

These two arrangements can be'brought into coincidence with one another by 

an inversion through the pOint (5/8,5/8,5/8), hence the boundary between 

these two arrangements will be called an inversion boundary. 

On the other 'hand, a boundary between lLand' 2R wotildnot' only involve 

an inversion through (5/8,5/8,5/8) but also a translation over a vector 

1/2 [110]. 

This description of the boundaries is not unique. In principle, 

each boundary involving an inversion can be described as a pure 'inversion 

boundary by proper choice of the inversion point. Here the inversion 

point is considered to be fixed. In the context of this paper "inversion" 

means inversion through the point (5/8,5/8,5/8). The boundaries could 

also be described by means of a reflection operation, for instance with 

respect to the (110) planes, which mayor may not be accompanied by a 

translation •. 
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One could have a total of 28 boundaries between the eight possible 

arrangements. However, only seven boundaries, distinct in the geometrical 

operations characterizing them, can occur. These boundaries are indicated 

schematically in Fig. 2. There are three translation boundaries, one 

inversion boundary and three boundaries described by an inversion and 

a translation. All 28 boundaries are enumerated and classified in 

Table 3. 

The ordered and disordered structures contain stacking faults. 

It was shown by Van der Biest and Thomas (1974) that these faults lie 

on {110} planes and have a displacement vector of 1/4 (110), which is 

always perpendicular to the fault plane. It will be shown that in the 

ordered structure an inversion can occur at these faults. 
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3. CONTRAST IN THE ELECTRON MICROSCOPE 

3.1. Contrast at Domain Boundaries 

It is useful to reconsider here the two beam dynamical theory of 

contrast at a stacking fault in crystals (e.g., see Whelan and Hirsh (1957) 

and Hirsch, Howie, Nicholson, Pashley and Whelan (1965». The equations 

for the faulted crystal can be derived from those of the'perfect crystal 

simply by modifying the Fourier coefficient of the crystal potential 

in the bottom part of t~e crystal by a phase factor exp(ia), Le., 

(1) 

where b indicates the bottom of the crystal and t indicates the top (facing 

the electron beam). cl = -21Tg·R, where R is the displacement of the bottom 
"""'J~. ,.",., 

relative to the" top' and -g is the reciprocal lattice vector corresponding .... 
to the rei1ection e~cited. ,,' It i~ understood here that the potential of 

t ' b .' 
the top of the crystal V (r) and the potential at the bottom V (r) have .... .... 
both been referred to the same origin. Equation (1) implies that: 

t F exp(ia) g 

This equation yields another interpretation for the phase angle ,a: 

a is the difference between the phase angles in the structure factor 

expressions for the top and bottom of the crystal, calculated with 

respect to a common origin. 

(2) 

In the case of a boundary between a left-handed and a right-handed 

crystal, we can write quite generally the following expression for the 

structure factor: 
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1 1 11 t F = F exp(ia) g g g 
r 1 rl r F = F exp(ia) 
g g . g 

In particular, for the moduli of the structure factor it .follows regardless 

of choice origin: 

Hence, it follows that: 

or 

with 

1 r 1 r 
F = F exp(i(a - a » 

g g g g 

1 r 
a= a - a g . 8 

(3) 

(4) 

Considering now a boundary between the two enantiomorphs with the 

right-handed structure at the top of the crystal facing the electron gun 

and the left~handed structure at the bottom, Eq. (3) implies that 

(5) 

Rence, the relationship between the crystalpotential in the two parts ·of 

the crystal on either side of this boundary is the same as in the case of 

a stacking fault.. The results of the two beam dynamical theory?f' 

contrast at a stacking fault apply equally well to this boundary. A 

boundary between two enantiomorphs will be imaged as a fringes where a 

is now equal ,to the differen«=e in the phase angle of the structure 

factor expression calculated with respect to the same origin. This. 

phase difference is independent of the actual choice of origin. 

,I 
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In the dynamical theory of contrast the assumption is usually made 

that ·the crystal is centrosynnnetric so that one can.write V = V 
g -g 

(or F ... F ). In a two. beam case·thisassumption is not really 
g -g 

necessary as one is free to chose the origin so that for·a particular 

t t t * r beam F ... F ... Fwhich means that in the example above ex ... 0. g -g g g 

It is clear that this approach to the contrast problem at an inversion 

boundary will not be valid in the case of a many-beam situation, 

because it is then not possible to chose an origin so that the condition 

V· ... V ,is simultaneously fulfilled for all the beams involved. g -g . 

Using a simple ·structure factor program, the· values of ex were cal-

culated for each of the seven boundaries which occur in ord~red LiFeSOS. 

The atomic coordinates for the iron ·and lithium ions on the octahedral 

sites given in Table 2 were used. The results are shown in Table 4. 

In the case of translation boundaries the value of ex is also equal to . 

..;21Tg·R. Wherever a = ° or 2'IT, a domainboundary·will be out of contrast. 

For reflections of the type 110, 211, 103, 123, ex takes the value 0, 1T. 

For reflections of the type 102, 302 ex takes the value 0, 'IT for translation 

boundaries but only ±rr/2 for inversion boundaries. For all spinel 

reflections ex = ° and the boundaries should be out of contrast. 

3.2. Contrast Between Domains 

In a second method, by which the presence of two enantiomorphous 

structures can be verified, one takes advantage of the violations in 

Friedel's law which take place in electron diffraction in certain multiple 

beam situations •. What is meant by a violation of Friedel's law is that +g 

and -g do not have the same intensity even when the excitation errors are the 

same. At a~ inversion boundary, when+g is ~perating in one part of the 
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crystal, -g is operating in the inverted part, with exactly the same 

excitation. When Friedel's law is violated then the domains should show 

up with different intensity. This situation was studied by Serneels, 

et al. (1973) and they concluded the following: (i) A multi-beam condition 

is necessary to observe any contrast at all. (ii) Friedel's law holds 

for the direct beam in a general multiple beam situation. It does not 

hold in general in dark field. (iii) The difference in intensity depends 

strongly on the thickness of the crystal. (iv) If the only reflections 

excited belong to a zone axis along which the crystal displays a center 

of symmetry in projection, no contrast should be observed in dark field. 
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4. EXPERIMENTAL TECHNIQUES 

The specimens studied were flux grown single crystals of LiFe
5

0S• 

A Buerger's precession camera was used to check the spacegroup 

symmetry of the structures involved. The specimens used for this 

study were annealed at S50°C and furnace cooled. Standard thin sections 

were prepared. Final thinning was done using an ion bombardment 

technique (Barber, 1970) or by chemically polishing in hot phosphoric 

acid. The specimens were examined in a Hitachi HU-650 microscope 

operated at 650 kV. 
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5. RESULTS 

From,systematic extinctions in the precession photographs it was 

confirmed that the spacegroup of the disordered structure is Fd3m. The 

precession photographs of the ordered compound showed the presence of 

systemat;i.c,extinctions required for the spacegroups P4
l

32 and P4
3

32. 

The non-systematic extinctions ,in these photographs could be accounted 

for by the atomic positions given by Braun (1952). . ... 

Figure 3 shows a series of transmission electron micrographs taken 

under a variety of diffraction conditions. Figure 3a was taken under 

conditions approaching a two beam case as the 024 and 024'ref1ections 

are not allowed. Figures 3b, 3c and 3d were taken with a systematic row 

of reflections operating with the indicated reflection on the Ewald 

sphere. Although the presence "fthe systematic beams will alter the 

detail of the contrast at the boundary, it will not affect the visibility 

criteria derived for two beam conditions. The visibility or invisibility 

of the boundaries marked by a lower 'case letter in Fig. 3a has been 

tabulated in Table 5. Comparison of these results with the calculations 

given in Table 4 allows one to identify each of the boundaries with one 

of the seven types of boundaries possible. This identification is made 

in the last column of Table 5. 

The internal consistency of the method of analysis can be checked 

by labelling each domaiIl as follows: because at present, these'electron 

microscopic methods do not yet allow the determination of the absolute 

configuration, it was assumed that the domain which runs vertically 

through the micrograph has a left-handed P4
3

32 arrangement. It was also 

assumed that it was the "basic" lL arrangement. The latter assumption 
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is equivalent tochosing an origin. Once these assumptions are made, 

the arrangements in all the other domains can be . found through the 

character of their boundaries derived in Table 5, and the use of 

Table 3. This was done in Fig. 3a. This labelling of domains provides 

a check, on the identification of the boundaries e.g.; if a is a boundary 

between lL and 3R and b is a boundary between 3R and 4R, then clearly 

the character of c is fixed and c has to behave asa 1L - 4R boundary, 

Le. ,1 + T3• This has indeed been found by' contrast experiments 

(Table 5). Hence, a complete internally consistent picture is obtained 

of the relationships between the domains. 

An independent check on these results·is provided in Figs. 3e, 3f 

and 3g. The same area was imaged here under multi-beam conditions 

(Fig. 3g), hence, one may expect violations of Friedel's law at inversion 

boundaries. The foil was wedge-shaped with thinner parts at the bottom 

of the pictures. The fringes in Fig. 3e running from'right to left are 

thickness fringes. These remain continuous across the 'boundaries in the 

bright field picture. In dark field,'however, these fringes change color 

at some boundaries (e.g., at a and c) but remain continuous across others 

(e.g., at j and g). The latter ones may be expected to be translation 

boundaries whereas the first should be inversion boundaries. Comparison 

with Fig. 3a shows that these boundaries are the same ones for which the 

first method showed that an inversion was involved. 

Figure 4 provides another example where the two enantiomorphous 

structures can be distinguished by a difference in background intensity. 

This specimen was chemically thinned and some etching had occurred at the 

boundaries. The presence of two strong "accidential" reflections was 
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sufficient to provide a very strong contrast between enantiomorphous 

domains e.g., at A and B. There is no difference in background 

intensity across translation boundaries e.g., at C and D. 

Figure 5 shows three stacking faults on {l10} planes meeting along 

a line. The displacement vector of these faults· was determined as 

1/4(110) plus a spinel lattice vector. The boundary 4 joining fault 1 

is a translation boundary. The contrast in Fig. 5d can be explained 

only if faults 1 and 2 are simultaneously boundaries between the left 

and right-handed structure. The displacement vectors of these faults 

are: RIa = 1/4[101], ~b = 1/4[101],.~ = 1/4[110]. For g = 102, this 

yields for the phase angle: <lla = 1T/2, <lIb = -1T/2 and <l2 .~ -1T/2. 

Hence, ·if these faults were simple translation faults, they . should .be 

visible as <l fringes with <l = ±Tr/2. If these fault·s also included an 

inversion operation then a phase angle ·of ±1T/2 would be added (see 

Table 4). Taking the plus sign yields: .(l = 1T, (l' = o and (l2 = O. . la lb 

. Hence , the bpart of fault land fault 2 will be invisible. This 

matches the observations. 

Additional evidence that stacking faults can also serve as the 

boundary between enantiomorphous forms is given in Fig. 6. Figure 6a 

was taken under the diffraction conditions shown in Fig. 6b. Figure 6c 

shows that the fault ABC seen edge on in 6a is indeed a stacking fault. 

Analysis of the boundaries a and b showed that they were pure inversion 

boundaries. The difference in background' contrast at A and C indicates· 

that an inversion takes place at the stacking fault. However, there 

should not· be any 'difference in background intensity at B. This is 

indeed observed. 
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6. DISCUSSION 

The domain size in the ordered crystal depends on the heat treatment 

but i3 usually of the order of III or-smaller, and, hence well below.the 

diameter of an X-ray beam. It is clear that a very fine intergrowth of 

the two enantiomorphous structures would give rise ,to a spurious center 

of symmetry in diffraction even when an X-ray wavelength is used for 

which iron is a strong anomalous scatterer. The success of the electron 

microscopic:methods does not depend on the presence of a particular 

atomic species in the compound. The method should also be applicable 

for structures containing only lightweight elements •. 

In the multibeam method, the contrast in dark field arises due 

to a complex interaction between n beams. However, one can not show in 

general that the difference in intensity between the inverted domains 

will be large enough to be detectable. This 4ifference in intensity 

will depend on the details of the structure, the thickness of the sample 

and the diffraction conditions. It is shown by Serneels et a1. (1973) 

that for very thick foils the contrast will be destroyed by absorption. 

The analysis of an inversion boundary using different g vectors 

should be applicable to all crystals in which enantiomorphous domains 

occur. The success of this method hinges on the fact that there is a 

difference in phase angle of a particular reflection for the .two 

enantiomorphous structures when both are referred to the same reference 

frame. Reflections for which this phase angle difference is not equal 

to zero can always be found. This method has the additional advantage 

that it yields a complete description of the interface between the two 

structures.' Not only can it be established that an inversion operation 
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is involved at the boundary but any additional translation can be 

determined as well. In general, these translations are not known a 

priori. In the case of ordered LiFe
5

08 a precise description of the 

domain structure can be given because the ordered· structure is derived 

from the relatively simple spinel structure. This is the reason why 

lithium ferrite forms an ideal case to illustrate the use of these 

electron microscopic techniques. 

For .. all practical purposes it might be·· sufficient to establish 

the presence of the two enantiomotphous forms within an apparent single 

crystal. The microscopic methods described in this paper have not yet 

been extended to determine the· absolute configuration of the structure 

in a part of the crystal. Inprincip1e this possibility exists. III 

the case of the mu1tibeam method, one should be able to predict·using 

a_many beam dynamical theory for non-centrosymmetriccrysta1s, which 

form should show up bright in dark field for a given crystal thickness 

and diffraction condition. In general, an electronic computer would 

have to be used for this. The problem is completely analogous to the 

absolute determination of the orientation of a non-centrosymmetrica1 

crystal, which has reflection symmetry. This problem has been solved, 

for hexagonal CdS by Goodman and Lehmpfuhl (1968), who used a convergent 

beam technique and a multiple slice calculation for n-beam diffraction. 

In the case of the ,interface analysis, it should be possible to 

predict for an interface inclined with respect to the beam, which form 

is at the top of the crystal facing the electron gun. This can only 

be done when the difference in phase angle a is different from~. In 

the case of ·ordered lithium-ferrite this is the case for reflections of 

,-.- " 

... '. 

," 

'i 
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type 012 or 203 when a = ±~/2. The problem is then reduced to a deter­

mination of the character of a stacking fault in fcc metals (Hirsch, et 

a1., 1965). A systematic study of this problem for a = ~/2 has not yet 

been undertaken. 
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Table 1- Coordinates of octahedral sites. 

No. x y z 

1 0.625 0.625 0.625 

2 0.125 0.875 0.375 

3 0.375 0.125 0.875 

4 0.875 0.375 0.125 

5 0.125 0.375 0.875 

6 0.875 0.125 0.375 

7 0.375 0.875 0.125 

8 0.375 0.625 0.375 

9 0.375 0.375 0.625 

10 0.625 0.375 0.375 

11 0.625 0.125 0.125 

12 0.125 0.625 0.125 

13 0.125 0.125 0.625 

14 0.875 0.875 0.625 

15 0.625 0.875 0.875 

16 0.875 0.625 0.875 
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Table 2. Atomic coordinates of the eight ordered arrangements. 

Symbol Ar~angelllent Atom~c Coordinates* 

1L P4332 Li: 1, 2,3, 4** 

2L P4332 +t[1101t Li: 7, 10,· 13, 16 

jL P4332 + t[101] Li: 6, 9, 12, 15 

4L P4332 + ~[011] Li: 5, 8, 11, 14 

1R P4132 Li: 1, 5, 6, 7 

2R P4132 + t[110] Li: 4, 8, 13, 15· 

3R P4132 + ~[101] Li: 3, 10, 12, 14 

4R P4132 + t[Oll] Li: 4, 9, 11, 16 

* The octahedral sites not occupied by lithium are occupied by 
the iron ions. Only the position of the lithium ions are given. 
The position of the oxygen ions and tetrahedral ions are the 
same for all the ordered arrangements. 

** These numbers refer to the numbers of the octahedral sites as 
given in Table 1. 
t 1 . 

P4332 + '2[110] means that this arrangement is derived from the 

''basic'' P4332 arrangement by giving the Li ions a displacement 

1 
over a vector '2[110]. 
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Table 3. Classification of Boundaries •• 

T1 T2 T3 I I+T1 I+T2 I+T3 

LL-2L 1L-3L 1L-4L 1L-1R 1L-2R 1L-3R 1L-4R 

3L-4L 2L-4L 2L-3L 2L-2R 2L-IR 2L-4R 2L-3R 

1R-2R 1R-3R 1R-4R 3L-3R 3L-4R 3L-1R 3L-2R 

3R-4R 3R-4R 2R-3R 4L-4R 4L-4R 4L-2R 4L-IR 

* Symbols used in this table are explained in Table 2 
and in Fig. 2. 
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Table 4. Values of the phase angle a. 

C T1 T2 'T 
3 

I I+T1 I+T 
2 

I+T
3 

110 0 1T 1T 0 0 1T 1T 

110 0 1T 1T 1T 1T 0 0 

"'101 1T 0 1T 0 1T 0 1T 

101 1T 0 1T 1T 0 1T 0 

011 1T 1T 0 0 1T 1T 0 

011 1T 1T 0 1T 0 0 1T 

112 0 1T 1T 0 0 1T 1T 

112 0 1T 1T 1T 1T 0 0 

1Ii 0 1T 1T 1T 'If 0 0 

112 0 1T 1T 0 0 1T 1T 

211 1T 1T 0 0 1T 1T 0 

211 1T 1T 0 1T 0 0 1T 

211 1T 1T 0 1T 0 0 1T 

211 1T 1T 0 0 1T .1T 0 

121 1T 0 1T 0 1T 0 1T 

121 1T 0 1T '1T 0 1T 0 

121 1T 0 1T' 1T 0 1T 0 

121 1T 0 1T 0 1T 0 1T 

120 1T 1T 0 1T/2 -1T/2 -1T /2 1T/2 

120 1T 1T 0 -1T/2 1T /2 1T/2 -1T/2 

210 1T 0 1T 1T/2 -1T/2 1T/2 -1T /2 

210 1T 0 1T 1T/2 -1T/2 1T/2 -1T /2 

021 0 1T 1T 1T/2 1T/2, -1T/2 -1T/2 

021 0 1T 1T 1T/2 1T /2 -1T/2 -1T/2 

012 1T 0 1T -1T/2 'ir/2 -1T/2 1T /2 
"' 

012 1T 0 1T 1T/2 -1T/2 1T/2 -1T/2 

102 1T 1T 0 1T/2 -1T/2 -1T/2 1T/2 

102 1T 1T 0 -1T/2 1T/2 1T/2 -1T/2 

201 0 1T 1T """1T/2 -1T/2 1T/2 1T/2 

201 0 1T 1T 1T/2 1T/2 -1T/2 -1T/2 
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Table 5. Analysis of Fig. 3. 

Boundary* g=110 g=011 g=101 Type 

a NC** NC Ct I+T2 
b NC C C T1 
c NC C NC I+T3 
d C NC C T3 
e NC C NC I:T3 
f C NC NC I+T

1 
g NC C C T1 
h C NC NC I+T

1 
i C C NC T2 
j C C NC T2 
k C NC NC I+T1 
1. HC C NC I+T

3 

* The boundaries are labelled in Fig. 3a. 
** NC: boundary not in contrast. 
tC: boundary in contrast. 
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FIGURE CAPTIONS 

Fig. 1. Projection of the octahedral sites on the (100) plane for the 

two enantiomorphs. The unit cell indicated is the conventional 

one for the P4)32 spacegroup. It is indicated how the octahedral 

sites are aligned in· <OIl) directions with one Liion followed 

by three Fe ions. 

Fig. 2. Schematic representation of the seven di.fferent boundaries·in 

ordered LiFe
5

0S• The labels of the ordered arrangements are 

explained in Table 2. 

Fig. 3. An identical area of an ordered crystal photographed under five 

di.fferent diffraction conditions. The operating reflections in 

Figs. 3a, 3b, 3c, and 3d are indicated by vectors. The diffraction 

pattern corresponding to Figs. 3e and 3f is· shown in Fig. 3g 

(BF: bright field; DF: dark field with reflection used indicated). 

Fig. 4. Bright field (a) and two dark fields (b,c) shoWing that a few 

fairly strong reflections off the operating row are sufficient 

to produce strong differences in contrast between enantiomorphic 

domain (e.g., at A and B). Across translation boundaries there 

is no difference in background intensity (e.g., at C and D). 

Fig. 5. Three stacking faults forming a triple junction in ordered 

lithium ferrite. The same area was photographed under four 

different diffraction conditions, characterized by the g vectors 

in the figures. 

Fig. 6. Figure 6a was taken under the conditions shown in Fig. 6b. Fig. 6c 

was taken under the diffraction conditions indicated in the figure. 

' .. 
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@ 8 Fe or Li atom at a level n,00/8 above the plane of the.paper 

X8L 745-6281 

Fig. 1 
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P4 3 32+ ~ [Oil] 
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Fig. 2 

P4,32 

P4 , 32 + ~ [t 10J 

P4,32+ ~ [lOIJ 

P4, 32+~ [OllJ 

X8L 738-16368 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig • . 6 



P-----------------LEGALNOTICE------------------~ 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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