
..• 

:~ .~. ' ~ 

~ 11· ' 

1 

LBL-27751 
Preprint 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

Physics Division 

Mathematics Department 

To be submitted for publication 

Constrained Random Walks and Vortex 
Filaments in Turbulence Theory 

A.J. Chorin 

August 1989 
For Reference 

Not to be taken from this room 

., 

' 
I:D -Cl 

10 

Ul 
0 

r .... 
an 

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098. ., 0 
IJ.IU 
"1'< 
-< . ..... 

r 
I:D 
r 
I 

ru 
-.J 
-.J 
Ul ..... 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the · 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 

• 



.. 

·• 

LBL-27751 

CONSTRAINED RANDOM WALKS AND VORTEX FILAMENTS IN 
TURBULENCE THEORY* 

Alexandre Joel Chorin 

Department of Mathematics 
University of California 

and 
Lawrence Berkeley Laboratory 

Berkeley, California 94 720 

August 1989 

* This work was supported in part by the Applied Mathematical Sciences Subprogram 
of the Office of Energy Research, U.S. Department of Energy, under Contract Number 
DE-AC03-76SF000098. 



CONSTRAINED RANDOM WALKS AND VORTEX FILAMENTS IN 
TURBULENCE THEORY 

Abstract 

We consider a simplified model of vorticity configurations in the inertial range of 

• turbulent flow, in which vortex filaments are viewed as random walks in thermal equi­

librium subjected to the constraints of helicity and energy conservation. The model is 

simple enough so that its properties can be investigated by a relatively straightforward 

Monte-Carlo method: a pivot algorithm with Metropolis weighting. Reasonable values are 

obtained for the intermittency di~ension D, a Kolmogorov-like exponent /, and higher 

moments of the velocity derivatives. Qualitative conclusions are drawn regarding the origin 

of non-gaussian velocity statistics and regarding analogies with polymers and with systems 

near a critical point . 
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Introduction 

Three dimensional incompressible flow can be approximated by following the evolu-

tion of a collection of vortex tubes, and discretizations that consider finite collections of 

tubes lead to vortex approximations [2],[4],[7],[18],[21]. One can consider the finite approx-

imations as models of the N a vier-Stokes equations and examine their statistical properties 

in the hope of gaining an understanding of turbulence. One must of course be aware that 

the properties of finite systems do not necessarily survive the passage to the limit of a con-

tinuous system. In particular, the finite systems greatly simplify the geometric complexity 

of the microstructures that occur in real turbulence. 

The inertial range of scales in turbulent motion is the range of scales intermediate 

between the scales on which the fluid is stirred and the scales on which its energy is 

dissipated. These scales play a key role in the dynamics of turbulence. In the inertial 

range, turbulent flow can be viewed as being in approximate thermal equilibrium. If 

one represents the flow on these scales by a collection of vortex tubes, one can appeal 

to methods of analysis adapted from other branches of statistical mechanics [10],[11],[13]. 

The analyses and the calculations in earlier work along these lines are quite difficult. In the 

present paper we present simplified models of vortex configurations in the inertial range, 

simple enough so that their properties can be examined by relatively simple mathematical 

tools and also so that the results are easy to interpret. The price of relative simplicity is 

of course a certain unfaithfulness to the true equations of motion. 

We shall replace the vortex tubes by vortex filaments, i.e., tubes with point cross­

section. Various issues that have to do with the shape of the cross-section are thus avoided, 

but a major mechanism responsible for the formation of an inertial range is removed. The 

filaments are assumed to form a suspension sufficiently dilute so that the spectrum for 
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large wave numbers can be determined by the properties of one of them. The filaments ,., 

are supposed to be random walks in space, subjected to two constraints: self avoidance 

(which implies in particular a fixed helicity) and a weak form of energy conservation. The 

filaments are studied by a simulation on a lattice (thus removing one form of intermittency 

[10]); they are generated by a combination of a pivot algorithm [22],[25] and Metropolis 

sampling [5]. The model will be justified heuristically. 
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· Even though the model is simple and the numerical method used to investigate it 

straightforward, the amount of computer time needed to complete the calculations is 

formidable, and the results are not complete. The reason for the large amount of la­

bor emerges as one of the qualitative conclusions from the model. The results obtained 

are consistent with earlier results and conjectures. The model shows how global conserva­

tion properties can produce an inertial range, and provides a heuristic explanation for the 

appearance of non-gaussian velocity statistics. The vorticity (intermittency) dimension D 

is in acceptable agreement with earlier results (but one must be careful to notice that it is 

defined differently here than in earlier calculations). The inertial exponent 1 that charac­

terizes the energy spectrum is as close to what one knows as the model allows. Analogies 

with polymer systems and with critical phenomena appear naturally. In particular, sup­

port is given to the notion that as the viscosity tends to zero, a turbulent flow approaches 

a critical point. This observation explains the difficulty in extracting information about 

inertial exponents from numerical calculations; the inertial exponent is a critical exponent 

and as such is difficult to calculate. 

The qualitative behavior of the model supports the conjectures made in [7],[8],[9], 

that the inertial range properties are due to the appearance of folded vortex tubes, which 

behave on large scales as self-avoiding walks, and on small scales contain a large number 

of folds ( = "hairpins") that are needed to satisfy the constraint of energy conservation. 

The rest of the paper is divided into the following sections: vortex methods; vortex 

folding; some scaling properties of fluid turbulence; polymers, self-avoiding walks and the 

pivot algorithm; simple models of folded vortex tubes; properties of the filament models; 

numerical results; and conclusions . 

Vortex motion 

The equations of motion of an ideal incompressible fluid in three space dimensions are 

D€ 
--= = -(c · V)u Dt ~ --

div 1! = 0, S, = curl1f, 

(I a) 

(lb, lc) 

where D / Dt is the material derivative, V is the differentiation vector, 1! is the velocity, 
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and_{ is the vorticity. We shall consider a flow without boundaries, and assume that initial 

conditions f (t = 0) are available when needed. Equations (1b,1c) can be solved for.!! and 

yield 

(2) 

where * denotes a convolution and K is the matrix kernel 

where r. = (x1 , x 2 , x 3 ) is the position vector and r = lr.l· Equation (2) is known as the 

Biot-Savart formula. Equations (1) have the following Lagrangean representation: 

(3a) 

where ~ is a point moving with the fluid and .!! is the velocity at ~- Equation (3a) is 

supplemented by the constraints 

div _{ = 0, { f ·dE= constant (in space and time) 
jE . 

(3b, 3c) 

where E is a cross ... section of a "vortex tube", i.e., a set of integral lines of E issuing from 

a closed curve nowhere tangent to f Equation (3a) states that f moves with the flow, 

and equations (3b,3c) express the conservation of angular momentum in a flow of constant 

entropy. If the flow is viscous rather than ideal, a Laplacian off must be added to equation 

(1a) and a noise term to equation (3a). (For details, see e.g. [14].) 

It is a well known fact that in turbulent flow vortex tubes stretch [2],[13]. As a result, 

the "enstrophy" Z J lfl 2d~ increases, possibly to infinity in a finite time [6],[7]. In 

general, dZ / dt > 0. The energy E of the flow can be written as 

E = ! I lul 2 dx = _!_I dx I dx' E(~) . E(~'). 
2 - - 81r - - lx- x'l (4) 

The last expression is the "Lamb integral" [23]. We must have dE/dt ~ 0 in the absence 

of a stirring force. An additional invariant is the helieity H = J _{ · 1f. d~. 

The problem of solving equations (3) is equivalent to the problem of solving equa­

tions (1) and is equally intractable. A more tractable problem is obtained by discretizing 

4 

• 

, 

.. 



• 

equations (3): Consider a finite collection of vortex tubes of finite cross-section that ap­

proximate an initial vorticity distribution, and consider the motion of these tubes as defined 

by equations (3). To define the motion one has to make a decision as to the evolution of 

the cross-sections of the tubes. This is not a trivial matter, since the cross-sections can 

flatten or distort in various ways; here we want to make the simplest possible assumption 

and assume that the cross-sections of the tubes start out as circles and remain so; the 

radii of these circles can vary. One can show that the solutions of equations (1) can be 

approximated by a collection of vortex tubes with circular cross-sections [1],[3],[4],[7],[18] 

whose number must of course increase as the approximation is improved. 

We consider the motion of a fixed number of such approximating vortex tubes. The 

statistical mechanics of such a collection of tubes is interesting because it sheds light on 

the behavior of numerical algorithms, and also because it constitutes a plausible cartoon 

of turbulence in which the great variety of micro-structures that appears in real fluid 

mechanics is replaced by the set of those structures that can be constructed from tubes 

of fixed circular cross-section. One cannot always claim that the results obtained from 

this model carry over to real turbulence as the number of tubes is increased; for example, 

spectral densities derived from discrete models do not necessarily survive a passage to the 

limit of a continuous vorticity distribution [13]. 

Vortex folding 

We now present a heuristic analysis that explains why tubular vortices in a finite 

collection must fold. Consider a single long vortex tube V of unit circulation; V has a non­

zero, small, circular cross section, with a radius that can vary along the tube. Suppose V 

can be approximately covered by N circular cylinders Ii, i = 1, ... , N, of equal lengths l 

and radii Pi, i = 1, ... , N. The energy E can be approximated byE (see equation (4)): 

N N N 

87rE = L L Eij + LEii 
f=l i=l 
i-#i 

where 

E- .. - J d J d ,s(~). s(~') 
''- ~ ~ I 'I . I; I; X- X 
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Let !i be a vector lying along the axis of the cylinder Ii, originating at the center of I,, of 

length l!i I = l, and pointing in the direction of_{ in I, (assumed to be constant). If I, and 

I; are far from each other and li- il is the distance between them, then 

- t .. t. 
E -· -1 

'i ~ 1· ·1· 't-J 

Assume this last relation holds approximately whenever i =/= j. If i = j, Ei; is a function 

of the radius Pi of I,, Ei;---.. oo as Pi---.. 0 (for an analysis, see [10]). Thus 

(5) 

with dEii/ dpi < 0. We shall call the double sum on the right hand side the "exchange 

energy" and the single sum the "self-energy" . 

Suppose now that the tube V is stretched by the velocity field that includes the 

velocity field that it itself induces, in such a way that its volume is preserved. Suppose 

that the support of the new stretched tube V can still be approximated by a collection 

of cylinders of lengths l; their number N' will be larger than N, and most of their cross 

sections will be smaller than before. Thus the sum I: E,, will increase because it will have 

more and larger entries. As the radii tend to zero, this sum will diverge. If E, the total 

energy, remains bounded, then the double sum over i,j must decrease, i.e., the tube must 

fold. Thus the vortex segments I, arrange themselves in such a way that they shield the 

incipient singularity due to the singular Biot-Savart kernel. Note that this phenomenon has 

no analogue in two space dimensions, where there is no stretching and where "self-energies" 

can be safely subtracted from the total energy in defining a Hamiltonian. 

A simple one-dimensional cartoon of equation (6) is: 

where N is finite and fixed, the ti are Ising-like spins, i.e., vectors that can point either up 

(ti = 1) or down (ti = -1), li- il is the distance between the position of ti and t;, and 

E,, is a function of a parameter p- 1 that increases monotonically. Suppose the "spins" 
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are located at the nodes of a regular lattice, most of whose nodes are empty. The "spins" 

can move to empty locations or flip (i.e., change signs); p-1 increasing is interpreted as a 

stretching of the "spins". In [9] a sequence of spin configurations is constructed, such that 

the "energy" E remains fixed. The Eii increase, and thus the double sum must decrease; 

this requires the "spins" to bunch up as closely as possible on the lattice, with neighboring 

"spins" having opposite signs. 

An interpretation of vortex folding in terms of capacity theory [16] can be found in 

[7],{8], and an analogy with the instability of the ground state of a collection of fermions 

to the formation of Cooper pairs can be found in [13]. 

A vortex tube cannot intersect itself as it evolves; this is a consequence of helicity 

conservation [26] and of the smoothness of the Euler flow map [19]; thus, to a first approx­

imation, one can view a vortex tube as a non-self-intersecting tube folded so as to satisfy 

the constraint of energy conservation. 

Some scaling properties of fluid turbulence 

We now list some of the properties of turbulence in an incompressible fluid that we 

shall be studying with the model described below. 

Consider a compact set A filled with fluid. The enstrophy in A is ZA = JA l..{l 2 d~. An 

e-support of the vorticity is a set A€ such that 

i.e., a set that contains all but a fraction e. of Z. Suppose one can construct a smallest A€ 

(up to negligibly small changes) for a given e. Call it the e-support of the vorticity and 

denote it also by A€. One can readily see that as a result of vortex stretching A€ shrinks . 

It is consistent with the available numerical results and theory to assume that fort large 

enough the Hausdorff dimension D€ of A€ tends to a limit D # 3 as e ~ 0. (For example, 

for the model problem Ut + (u 2 /2)x = 0, E = ux, A€ for t > t* and any f < 1 is the set of 

points where the shocks are located, with t* = time of formation of the first shock, and 

D = 0 fort > t*.) D, if it is well defined, is a measure of the intermittency of the flow (for 

more details, see [7],[8],[10]). 
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An attempt was made in [7] to estimate D by extrapolation from a noisy initial value 

problem; it yielded the value D ""' 2.5. A more robust calculation [8] based on scaling 

arguments yielded a dimension""' 2.35 for a set containing Af. Both calculations took into 

account in an essential way the changes in the non-zero cross-sections of the vortex tubes. 

An experimental study of the Hausdorff dimension of a vortex sheet in a turbulent flow 

[30] (not quite the same problem) yielded a similar valueD""' 2.35. 

The energy spectrum E(k) of homogeneous turbulence is calculated by the integration 

of the Fourier transform of the trace of the velocity correlation tensor over the sphere of 

radius k = 11£1, where 1£ is the wave vector dual to the separation!· The mean energy at a 

point is J
0
00 E(k)dk. Similarly, the vorticity spectrum Z(k) is calculated from the vorticity 

correlation function, and the equality Z(k) = k2 E(k) reflects the definition .£ = curl.!! 

[2]. It is generally believed that in the inertial (= equilibrium) range E(k) ""'k-"1 where 

1 is the inertial (Kolmogorov) exponent. A widely accepted value for 1 is 1 = 5/3. In 

some recent work it has been postulated that 1 = 5/3 is a "mean-field" value and that 

intermittency corrections proportional to (3-D) are needed to account for the effect of 

fluctuations. It has been shown in [8],[10] that 1 = 5/3 already takes into account the 

effects of intermittency and fluctuations; 1 = 5/3 and D < 3 are fully compatible. 

Polymers, self-avoiding walks and the pivot algorithm 

We now present a short discussion of polymers and self-avoiding walks that will soon 

be connected with the preceding discussion of vortex tubes. 

A polymer can be viewed as a long string of beads connected by rods, randomly 

placed in space, with arbitrary angles between the rods [17]. If (rN) denotes the average 

distance between the first and the N-th bead, one expects (rN) ""'NP- for large N, where 

J.L is a characteristic exponent. In the simple model of a polymer that we just described 

one obtains J.L = 1/2 from the central limit theorem. If one requires that the polymer 

be self-avoiding, i.e., if one assumes that the beads have a finite volume and cannot si-

multaneously occupy the same location, then J.L = J.Lo = the Flory exponent. Intuitively, 

J.Lo > 1/2; an elegant thermodynamic argument [17] yields J.Lo = 3/5 (the Flory value) in 

three dimensional space. More generally, additional constraints on the polymer produce 
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different values of the exponent p,. 

A polymer can be modelled as a random walk on a lattice. If the constraint of self­

avoidance is not imposed, the random walk can be generated by a random walker who 

leaves the origin in a cubic lattice and at each step has an equal probability of stepping 

forth in each of the 6 available directions. We shall call such a walk a "free" walk. If 

the polymer is self-avoiding, the walker must be prevented from visiting the same location 

twice; the result is a self-avoiding walk on a lattice. At equilibrium one assumes that each 

possible self-avoiding walk of N steps has an equal probability of occurring. If (rN) is the 

average end-to-end length of a self-avoiding walk with N steps, p,0 ,....._ log(rN) I log N for 

large N. Numerical experiments with such walks corroborate the heuristic value p,0 = 315 

[25]. 

Given the exponent p,, one can estimate the correlation function for the polymer [17]. 

Take a point on the polymer, there are on the average N ,....._ r 11JJ. beads in a sphere of 

radius r centered at that point; there are,....._ rC 1/JJ.)- 1 beads between rand r + dr; the bead 

density at a distance r is thus,....._ r(lfp.)- 1 lr2 = r(l/p.)-s, i.e., the correlation function for 

small r behaves as r(l/p.)-3 (r must be small to avoid corrections due to the finite length 

of the polymer and the possible presence of other polymer chains in the ambient medium). 

One can define the spectrum of the polymer as the Fourier transform of the correlation 

function; if k is the radial wave number, a simple calculation or even a dimensional analysis 

yields a spectrum,....._ k- 1/JJ. for large k. 

We will wish to make an analogy between polymers and vortex tubes and thus compare 

the polymer spectrum with the energy spectrum defined above. To obtain the analogue 

of the vorticity spectrum Z(k) one has to average the polymer spectrum over a sphere 

of radius k, which adds a factor ,....._ k2 , and then to obtain an "energy" spectrum one has 

to divide by k2 , and thus for a polymer E(k) ,....._ k- 1/JJ. for large k. In particular, for a 

self-avoiding polymer, E(k) ,....._ k- 513 , and for a "free" polymer E(k) ,....._ k- 2 • 

Consider the center line of the polymer. Its Hausdorff dimension is D = 1 I p,, as can 

be read from the scaling relation N = (rN) 1 1~-'. Thus E(k) = k-"1, 1 = D, where 1 = 1111· 

Thus, for a polymer, dimension and inertial exponent are related, with d1 I dD = 1 > 0 

[11]. 
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The problem of generating lattice self-avoiding walks on the computer in order to 

calculate p, is far from trivial. An effective algorithm for doing so is the pivot algorithm 

described in [25]. Consider the set of automorphisms of the cubic lattice; they can be 

represented by the set of matrices with columns gi, i = 1, 2, 3, such that gi = uil1r(i), 

where Ui = ±1, i = 1, 2, 3, 1r(i) is a permutation of (1,2,3), and l; is the unit vector in the 

direction i. One can readily generate an algorithm that generates one of these matrices, 

with each matrix having an equal probability of being chosen. 

To construct self-avoiding walks with N steps, start with a simple self-avoiding walk 

(for example, a straight line). Pick a point on that walk other than an end-point, with all 

points having an equal probability of being picked. Turn all the points to the right of the 

point picked by an automorphism chosen at random ("to the right" means "furthest from 

the first point as one travels along the chain"). Check if the resulting walk is self-avoiding. 

If it is, take it; if it is not, consider the preceding self-avoiding walk to be the next member 

of the sequence of walks; then repeat the procedure. In [25] it is shown that this algorithm 

produces a sequence of self-avoiding walks with the right probability distribution and with 

high efficiency (O(N) operators for generating a new N-step random walk independent of 

the earlier ones in the sequence). Computational details and a description of the various 

precautions that must be taken are also contained in [25]. It should be mentioned that in 

particular a certain number of steps must be taken before the sample walks are used or 

else the result may be unduly influenced by the starting configuration. The exponent p, 

can be evaluated from the formula p,0 = log ( r N) / log N. The error in p,0 as a function 

of the number n of configurations over which one averages can be estimated as follows: 

suppose UN is a measure of the uncertainty in (rN)· Then an estimate of the statistical 

error in J-to is 

(6) 

If the successive sample walks were statistically independent one could easily estimate uN. 

However, the sample walks are not independent. In fact, the limit N -+ oo defines a 

critical point for self-avoiding walks and the achievement of independence is hampered by 

the phenomenon of critical slow-down [5]. If one estimates UN by the standard deviation, as 
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if the successive estimates were independent, the resulting value of eN is an underestimate 

of the error. We shall not carry out an analysis of this situation. The reasons for this 

cavalier procedure will be described in due course. The fact that the limit N ---+- oo is a 

critical limit will be of significance for the final conclusions of this paper. 

A simple model of folded vortex tubes 

Our simplified model of an ensemble of vortex tubes will be an ensemble of self­

avoiding walks, endowed with a direction so as to make the links in the walk into vectors, 

and subjected to a weak form of an energy conservation constraint patterned after equation 

(5). 

It is important to note at the outset that by losing information about the structure of 

the vortex cores (and thus replacing the tubes by filaments) we lose a lotof information~ 

The analysis in earlier work ([7],[8],[9]) relies heavily on a careful balancing of the energy 

increases due to the reduction in vortex cores during stretching and the energy decreases 

that result from folding. What will be displayed below is more a cartoon than a complete 

model. A careful analysis must be made of what information can be expected from such 

a model. However, the simplicity of the model leads to calculations that are conceptually 

simple and thus the result is informative. 

It was shown above that the energy of a vortex system could be approximately divided 

into a self-energy (that cannot be evaluated without information about vortex cores) and 

an exchange energy defined by the double sum in equation (5). The analogue of that 

double from the filament on the lattice is 

~~e-·e· E = L-L- _, -J 

• "_J.. li- il ' ,.,..., 
(7) 

where ~i is a unit vector pointing in one of the six directions (±1, 0, 0), (0, ±1, 0), (0, 0, ±1), 

i is an index characterizing the location, and li- ;'I is the distance between the locations i 

and j (specifically, between the centers of the lattice links that issue from locations i and 

j). The length of the lattice links can be taken as 1 without loss of generality. By the 

time a vortex tube has become a filament the self-energy is large so the exchange energy 

E should be small. On the other hand various filaments can absorb and emit energy so 
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no specific bound can be placed on E. A reasonable version of energy conservation is 

one in which each self-avoiding vortex, i.e., an oriented self-avoiding walk, is assigned a 

statistical weight proportional to exp(-E/T), where E is given by (7) and Tis a small 

"temperature". 

T is a measure of the uncertainty in the model. The total energy available to a filament 

depends on.the other filaments and on the evolution of the self-energy, which is not taken 

into account because the cross-sections are not known. T = oo produces a self-avoiding 

filament. T very small may lead to a single realizable configuration that minimizes E. We 

wish to pick T small enough to have an effective energy constraint but not so small that 

there are no fluctuations. In effect, we have a one-parameter family of models, and we are 

interested in the models that correspond to the smaller values ofT. In practice, T "small" 

will turn out to define the model adequately. To generate such energy-constrained, self­

avoiding vortex filaments one need only modify slightly the pivot algorithm described above 

by a Metropolis rejection technique [5]: given a self-avoiding walk with energy E = Eozd, 

generate another self-avoiding walk by the pivot algorithm, calculate its energy Enew, and 

accept this new walk with probability p =min [ 1, exp( -(Eold- Enew)/T)]. If a new walk 

is not accepted, the previous walk is taken as the next in the sequence of realizations of 

the walk. The ergodicity and detailed balance conditions for the modified sampling follow 

trivially from those for the pivot algorithm. 

All the energy constrained vortex filaments will be self-avoiding, and we shall refer 

to them simply as energy constrained filaments. One can endow both a free random walk 

and a self-avoiding walk with a direction and thus obtain a "free" vortex filament or a 

"self-avoiding" vortex filament. These will be used in the numerical work below. 

One can reformulate the model as a free random walk weighted by a weight propor­

tional to e-H/T, where 

(8) 

(for the generation of self-avoiding walks by means of </>f., see [24]). 

The conjecture made in [8],[10] was that the equilibrium configuration of vortex fila­

ments can be approximated by allowing vortex tubes to stretch subject only to the con-

12 
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straints of energy and helicity conservation. It was further conjectured that energy con­

servation creates folded tangles which affect the Hausdorff dimension of the support of 

the vorticity, and that the large scale behavior of vortex tubes was determined by the 

constraint of conservation of helicity, which is equivalent to self-avoidance. It was further 

conjectured that the effects of a vortex cross-section of finite capacity and of the vector 

nature of the vorticity conspire to create a spectrum with the same exponent as the self­

avoiding walk, i.e., a Kolmogorov spectrum. We shall check some of these conjectures on 

our models, remarking that one important ingredient (a variable cross-section) is missing. 

A discussion of hairpins that does not rely on a vortex representation can be found 

e.g. in [29]. 

Properties of the filament models 

We now list various computable properties of the model, the values they can be ex­

pected to assume, and their relation to properties of real fluid turbulence. 

The Hausdorff dimension D of the vortex filaments can be calculated as before: D = 

1/p,, J.L = limN-+oo{log(rN)/logN). One should be very careful when one tries to identify 

this quality with the dimension D calculated, e.g., in [8], which is strongly dependent on 

the variation in the cross-section of tubes. 

In the case of vortex filaments, it is no longer true that in E(k) ""' k-'Y one has 

"' = 1/ p,, since the vector nature of the vorticity must be taken into account. Let {(r) = 
( 6 (r), 6 (r), €3 (r)) be the vorticity at a position r in physical space. The correlation 

between {{0) and {(r) is the average of L:i €i{O)€,(r). Consider a sphere of radius r = lrl, 
and the function 

t/>(r) = L L €i(O) €i(r'). 
l.!'l5r i 

Suppose t/>(r) has the form t/>(r) ,..... rP.', p,' = constant. An analysis that follows step-by­

step the analysis of the correlation function and the spectrum in the polymer case yields 

E(k) ""' k-'Y for large k with "' = 1/ p,'. Note that p,' =I p,; the simple relation between"' 

and D in the polymer case is lost. 

To estimate p,', consider a vortex filament on a lattice, having N links, generated by 
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the algorithms described in the preceding section. Let £ (j) = ( 6 (j), 6 (j), 6 (j)) be the 

vorticity vector at the location "f along the filament; £(j) points in one of six possible 

directions. For large N, 

1./ = log(rN) / log(¢N), 

where (rN) is the average distance between the first and N-th links (say between their 

centers), and (¢N) is the average value of the sum 

N 3 

tPN = L L €i(i)€i(io), io fixed. 
j=l i=l 

¢N replaces the N of the scalar formula for J.L. Note that ¢N is simply the scalar product 

of E sU~ with a£ at a fixed location; to avoid edge effects, i.e., to avoid the consequences 

of the fact that the constraint of self-avoidance and energy conservation are less restrictive 

at the ends of a finite filament than in the middle, pick j 0 far from the ends (e.g., in the 

middle). An error estimate for J.L' can be obtained by the obvious generalization of (6): 

where uN,ti'rv are estimates of the uncertainties in (rN), (¢N), respectively. A crude esti­

mate of eN can be obtained by calculating u N, u'rv as if the successive estimates of r N, ¢ N 

were independent. 

Note that ¢N :::; TN, and thus f..£ 1 ~ 1, "Y:::; 1. These inequalities remind us forcefully 

that the filament model is unrealistic; the cross section of vortex tubes has an important 

role. In particular, an unstretched vortex configuration is a straight line, and thus J.L' = 1, 

"f = 1, while for an unstretched vortex configuration in a.real fluid "Y > 3 (the condition that 

• 

Z(k), the vorticity spectrum, be integrable and thus£, the vorticity field, be locally in L2 ). ,, 

A local cascade non-intermittent model yields "Y = 2 (see [10]); the discrepancy between 

these models is a reflection of the drastic and unrealistic assumptions in local cascade 

models. Note furthermore that a spectrum with "Y :::; 1 has an infinite energy density (as 

indeed it should with vortex filaments carrying the vorticity). The implications of these 

facts for numerical computation are discussed in the concluding section of this paper. 

To see what the computed values of J.L' and "Y = 1/ f../,1 in the model can tell us about 

real flow, consider a few simple situations. As was already stated above, for an unstretched 

14 



• 

filament p,' = 1, 'Y = 1. If the vortex filament is free, the orientations of the vortex segments 

are uncorrelated, p,' = oo, 'Y = 0 (this situation was already discussed in [11]). J.L' thus 

measures the amount of disorder in the systems. If the turbulence spectrum is created by 

the constraints, one should expect 1 < p,' < oo, 0 < 'Y < 1, corresponding qualitatively to 

the inequalities for the Kolmogorov exponent 'Yo= 5/3: 0 <'Yo < 3, 0 <'Yo < 2 that yield 

a value of 'Y intermediate between 0 and the value that corresponds to a non-turbulent 

medium. 

Note that in the model d"'f/dD < 0, the opposite situation from the polymer case; 

however, for a fluid d"'f / dD > 0, since as D increases in the model, the corresponding 

fluid vortex is more stretched, and thus the support of the enstrophy is smaller. Another 

manifestation of this discrepancy between reality and our model is that in a fluid that 

starts from rest the value of D decreases to its equilibrium value [7], while here the value 

of D will increase to its equilibrium value. 

Given a vortex filament, the velocity field at a point~ in space is obtained by a discrete 

form of the Biot-Savart law (2): 

u(~) =I:~(~- ~;)e;, 
j 

(10) 

where the sum is over the filaments,~; is the center of the j-th link and 5..; is its vorticity 

vector. This formula can be differentiated to yield derivatives of .!f.. 

Given a random variable 'TJ with mean 0, its skewness S and flatness F are defined 

asS= ('TJ 3 )/('TJ2) 312 , F = ('TJ 4 )/('TJ 2) 2 , where the brackets denote averages. We shall be 

calculating below the skewness and flatness of the derivatives of u. For a gaussian variable, 

S = 0, F = 3. Note that even for a free filament, the components of the velocity vector 

cannot be gaussian. For a free filament, the large N limit of (10) behaves like 

J K(~- w)dw 

where w is vector valued Brownian motion. Such integrals have been analyzed in [27],[28] 

for the simpler case of scalar w and a kernel in L 2 , and the result is not gaussian; such 

integrals are not mere sums of independent variables to which the central limit theorem 

applies. The Biot-Savart kernel produces a non-gaussian velocity field. Note however that 
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the skewness of the velocity derivatives should, in our model, be zero; that skewness is a 

measure of energy transport across scales [2] and thus should be zero at equilibrium. To 

evaluate that skewness in an equilibrium model one needs either a Kubo formula [15] or a 

model of hairpin formation and removal [12] that is beyond the resolution of the present 

model. 

Numerical results 

We shall now display numerical results from calculations with free, self-avoiding and 

constrained filaments. In each case, N, the number of links in the filament and n, the 

number of realizations of the filament, are numerical parameters. In the constrained case 

T, the "temperature", is an additional parameter. ·In the case of a free filament, each 

realization can be generated from scratch by allowing a random walker to perform N steps 

on a lattice, and successive realizations are independent.· 

(a) Results for free filaments. These are included as a check on the validity of 

the overall procedure. A detailed convergence study as a function of N and n will not 

be displayed in this case. With N = 801, n = 105 we obtain J.£ = .488 ± 4 x 10-3 (the 

error estimate is simply the standard deviation of the estimate). The exact value is of 

course J.£ = .5. The corresponding computed dimension is D = 2.049 ± 0.016 (the exact 

value is D = 2). The calculated value of J.£1 is J.£1 = 96±?, where ? denotes the fact that 

the estimate (6) is indefinite, one of the arguments of the logarithms being negative. The 

exact value is J.£' = oo. The corresponding computed value of "Y is "Y = 0.01±?, the exact 

value being "Y = 0. 

The skewness of aujax calculated at the mid-point of the filament, isS= -0.037 ± 

0.076, an estimate quite compatible with S = 0. The flatness F of auj ax evaluated at 

the same point is F = 4.89 ± .11, a non-gaussian value, as we expect. A single filament, 

most of which is contained within a box of size ""'N112 , does not represent homogeneous 

turbulence, and thus it is not clear that one should compare this value to the value ""' 3.4 

in homogeneous turbulence [2]. In a wake F takes values between 3 and 4.5 [20]. 

·With values of N within our computational grasp (see the discussion below) it was 

not possible to evaluate velocity differences u(.~) - u(~') for 1~- ~'Jlarge enough to have 
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u(~), u(~') independent and yet have both ~ and ~' within a region with a substantial 

number of segments, thus the decay of the flatness of the velocity differences as the distance 

1~- ~'I increases cannot be compared with what happens in experiments. The correlation 

tensor has the correct qualitative form, but as explained in [2], this is mostly a consequence 

of div u = 0 and sheds little light on the model. 

(b) Self-avoiding filaments. These are generated by the pivot algorithm. The 

values of p, converge rapidly (for a detailed analysis, see [25]). With N 2:: 500, n > 104 , 

the estimates of p, are within 1% of the Flory value p, = 0.6, with error estimates under 

1%. The corresponding dimension is D = 1.66. The skewness S of aujax is also zero with 

great accuracy. 

In tables I and II we display computed values of p,' and F for several moderate values of 

Nand n. The first N configurations are discarded to reduce the dependance on the initial 

configuration. The error estimates are calculated as if the successive realizations were 

independent. They are thus underestimates, but should not be catastrophically off since 

the acceptance rate of the pivot algorithm at these values of N is around 50% (i.e., about 

50% of the proposed foldings turn out to be self-avoiding and are accepted); this value is 

consistent with the estimates in [25]. Furthermore, the moves in the pivot algorithm are 

quite radical, and thus independence of successive realization should not be far from being 

an acceptable supposition. A careful analysis of critical slow-down as N -+ oo has turned 

out to be impractical because of the slow convergence. 

From table III it appears that p,' converges to ,...., 2.5, and thus 'Y converges to ,...., 0.4. 

This is a key result in the present paper. The value 0.4 is intermediate between 0 and the 

no-intermittency value (here, 'Y = 1), just like the Kolmogorov exponent. The calculation 

. shows that an inertial exponent can be generated by a non-local constraint, and under the 

assumption of thermal equilibrium. F, the flatness, converges more slowly, but remains 

above the gaussian value F = 3, as can be seen from table IV. 

(c) Constrained random walks. This is of course the main model; it contains 

an additional parameter, the "temperature" T, which we would like to choose as small as 

possible in order to enforce the constraint of energy conservation, as discussed before. If T · 

is too small the acceptance ratio, i.e., the fraction of moves in the weighted pivot algorithm 
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Table I 

p,1 as a function of N and n for a self-avoiding filament (I = 1/ p,'). 

. .. 
n\N 401 501 601 701 801 

104 2.96 ± 0.25 1.83 ± 0.06 2.04 ± 0.24 3.19 ± 0.49 4.75 ± 0.63 (I 

5 ·104 2.65 ± 0.15 2.67 ± 0.10 2.34 ± 0.18 2.74 ± 0.36 2.95 ± 0.40 
105 2.76 ± 0.16 2.44 ± 0.06 2.63 ± 0.20 2.54 ± 0.39 2.90 ± 0;33 

2 ·105 2.56 ± 0.12 2.53 ± 0.03 2.78 ± 0.18 
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n\N 

Table IT 

The flatness F as a function of N and n for a self-avoiding filament. 

501 

3.51 ± 0.14 
4.28 ± 0.08 
4.66 ± 0.06 

601 

5.90 ± 0.18 
6.02 ± 0.13 
5.98 ± 0.10 

19 

701 

3.71 ± 0.12 
6.11 ± 0.23 
5.67 ± 0.14 

801 

4.11 ± 0.16 
3.18 ± 0.05 
3.81 ± 0.05 



Table III 

D = 1/ J.£ as a function of Nand n for a constrained random walk, T = 14. 

n\N 501 

2.45 ± 0.06 
2.36 ± 0.02 
2.33 ± 0.01 

20 

701 

2.47 ± 0.04 
2.44 ± 0.02 
2.44 ± 0.02 

••• 



Table IV 

The flatness F as a function of Nand n for a constrained random walk, T = 14. 

n\N 501 701 

104 1.96 ± 0.36 2.27 
1), 5 ·104 3.71 ± 0.5 6.41 ± 2.6 

105 3.76 ± 0.4 5.26 ± 0.7 
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that is accepted, becomes very small and the results are not significant. 

The exponent J..L that determines the dimension D = 1/ J..L converges reasonably well. 

In table III we display values of D obtained with T = 14 and various choices of N and 

n. The error estimates are obtained from (9), where the uncertainty is estimated as 

10 times the standard deviation, a plausible estimate since the acceptance ratio is 15%. 

It is reasonable to conclude that D at this value of T is around 2.5; if one disregards 

the difference in definition, this conclusion agrees with earlier determinations of related 

dimensions [6],[7],[8]. The runs summarized in table III are as large as we can afford; 

remember that the calculation of the energy E is O(N2 ), and at these values of N fast 

summation methods are not very helpful. The slightly larger values of D for a larger N 

may be a consequence of the fact that a fixed T produces a more severe constraint for 

a larger filament (with a larger set of posible values of E). In table IV we display some 

computed values of the flatness which are consistent with the runs previously described. 

The skewness is, as before, near zero. In all the calculations, the first 5N configurations 

are discarded. 

It is important to examine the dependence of J..L and D on the "temperature" T. For 

T = 10, N = 501, n = 104 we found D = 2.58, with an acceptance ratio of 9%, which 

makes the uncertainty large. Longer runs with the same values ofT and N have a steadily 

decreasing acceptance ratio. With larger values of N and T = 10 the acceptance ratio tends 

to zero-the configurations get stuck at a fixed point. On the other hand, for T > 15 the 

calculated values ofD decrease-at T = 21 they remain just above 2. Thus T = 14 seems 

to be the smallest practical value. 

In none of the cases do we display the energy E. In the free case the energy should 

be near zero, in the self-avoiding case it should be positive, and in the constrained case it 

should be smaller than in the self-avoiding case. All these expectations are fulfilled, but 

the values of E depend on N, and we have not been able to find a convincing scaling that 

will clearly present the dominant trends. 

One of the most interesting quantities is of course "Y = 1/ J..L'; unfortunately, the cal­

culation of J..L' does not converge as a function of N for the values of N we can afford. 

A calculation with N = 701, n = 105 costs about 10 hours of Cray XMP time, and at 
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N = 701 we are very far from convergence. The reason is clear; if D = 2.5, then TN""' N°.4; 

even with N = 1000 most of the segments are within a sphere of radius less than 10-too 

close to the scale on which the folds are forming to distinguish the large scale structure of 

the vorticity field which we conjecture is dominated by the constraint of self-avoidance. In 

particular, with N = 501, T = 14, n = 105. (4> N) is negative, presumably as a result of the 
' 

folds; with N = 701, T = 14, n = 105, (4>N) is positive, with J.L' calculated as -2.36±0.37 

To show the qualitative effects of self-avoidance and energy conservation, we display 

in figures 1 and 2 some typical configurations. In figure 1 we display the first 100 links in 

a self-avoiding walk with N = 501, after n = 104 steps. In figure 2 we display the first 200 

links in a constrained walk, with T = 14, after n = 104 steps with N = 501. The energy 

constraint creates tangles which presumably simply avoid each other in the large, since 

there should be no energy gain or loss in getting complicated tangles close to each other. 

Conclusions 

The model described above is a simplified version of a model of the inertial range in 

which the flow is dominated by vortex filaments in thermal equilibrium. The model has • 
similarities to a polymer system for which it is known that a critical point is approached as 

the number of links N tends to infinity. Since vortex filaments become longer and thinner 

as the viscosity tends to zero, this analogy gives a concrete content to the conjecture that 

a turbulent flow approaches a critical state as the viscosity tends to zero, as is suggested 

by the strong coupling between scales. The Biot-Savart law that produces a velocity field 

from the filamentary vorticity produces non-gaussian velocity statistics. 

The Hausdorff dimension D of the support of the vorticity produced by the model is 

near 2.5, in agreement with the values of D calculated in earlier work. The difference in 

the definition of D should be noted. 

For a self-avoiding filament model there is an inertial range exponent, with a value 

that corresponds to an intermittent flow. This observation shows how an inertial range can 

be produced by global constraints in an equilibrium model. The conjecture that such an 

exponent is also produced in the constrained filament model could not be verified because 

of limitations in computing power. One could argue that in spectral calculations (see e.g. 
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[31]) one tries to stay as far as possible from the critical point v = 0 (v =viscosity) while 

still having an inertial range, a strategy that is difficult to follow with vortex methods or 

vortex models. The calculations here should make one wary of all numerical determinations 

of Kolmogorov's exponent. Calculations of that exponent based on vortex methods must 

take the vortex cores into account. 
' 

The model lends support to the idea that in vortex calculations the folds ("hairpins") 

can be removed in a systematic way. A first attempt to carry out such a removal is described 

in [12]. A more systematic attempt that makes use of a phenomenological Hamiltonian of 

the form (8) will be described elsewhere. 

Note: the programs used to perform the calculations above are available from the 

author. 
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Fig. 1. A self avoiding walk. 
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Fig. 2. A constrained random walk. 
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