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I. INTRODUCTION. 

The 111 + 110 transitioll of formaldehyde is seen in absorption 

against the 2.7°K cosmic background radiation in cool interstellar 

dust clouds, indicating that the lm.;er state (111) has a population 

greater than would be expected if the system were in equi.librium 

wi th the baCkg~~und radia tioD , 1,2 . To"mes and Cheung 3 have noted 

that since the 212 state spontaneously decays (via a dipole-allowed 

transition) to the 111 state, \.Jhile the 211 state spontaneously 

d~cays to the 110 state, collisional excitation which favors the 

212 over the 211 state could produce the obsetved "cooling" (1. e. , 

enhancement of the population of the 111 state). They further 

3 
argll:e that since the 212 stat.e corresponds to the rotational 

angular momentum being predominantly about the a."'<:is'perpendicular 

to the plane of the molecule, collisional excitation of formaldehyde 

from a j= 1 state to a j = 2 state should indeed be preferentially 

to the 212 state. The results of the calculations presented in 

this paper do show the cross sections for the 110 + 212 and 111 + 212 

excitations to be larger than those for the 110 + 211 and 111 + 211 

~xcitations, thus lending support to·the Townes-Cheung mechanism. 

In·the present calculation the collision partner of formaldehyde 

is taken to be H
2

, which is as sumed to be' spherically symmetric. A 

model potential is used .\.;hich ,although probably not an accurate 

representation of the actual potential, should give the essential 

features of the collision prpcess correctly. All internal degrees 

of freedom of H2 and all vibrational degre~s of freedom of formaldehyde 

are ignored. 
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The cross sections for the rotati'onal excitation transitions 

. 4 
have been obtained by Monte Carlo trajectory methods and by 

5 application of "classical S-matrix" theory, a semiclassical 

approach that uses numerically computed classical trajectories 

in combination with essential quantum mechanical features. A 

. 5-7 
number of applications to atom-diatom collision processes have 

shown that this semiclassical theory is often an accurate des-

criptibn of the quantum effects in molecular collisions; the present 

work is the first application of it to collisions involving a 

polyatomic molecule. The classical Monte Carlo calculations are 

much simpler to carry out and were done for the energy range IO-40oK. 

The semiclassical calculations were performed at four energies in 

the range IO-15°K to provide a check on the reliability of the 

purely classical results. Apart from an interference structure 

in the semiclassical results, the two approaches are in reasonable 

agreement. 

The paper is organized as follows: Section II discusses first 

how an isolated asymmetric rotor is described semiclassically. 

Classical S-matrix theory for atom-asymmetric rotor collisions is 

summarized in Section III, along with specific aspects of the pre-

sent applications; the way in which Monte Carlo trajectory calculations 

were carried out is also described here and in Appendix C. The results 

of the calculations are presented and discussed in Section IV. 
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II. SEMICLASSICAL DESCRIPTION OF THE ISOLATED ASYMNETRIC ROTOR. 

In order to apply classical S-matrix thebry5 to a 1;>imolec·ular 

collision process it is first necessary to describe the internal 

quantum states (Le., rotational-vibrational states) of the iso-

lated collision partners. This section, therefore, considers the 

semiclassical description of an isolated asyrrnnetric rotor. 

C "d t . 8" h " " 1 f ons~ er an asymme r~c rotor w~t pr~nc~pa moments 0 

inertia I , I , I 
x Y z 

1 1 
B = 21 ' C = 2"1"; 

y z 

such that 1z ~ Iy~ Ix'. Letting A =2~ , 
x 

the asymmetry parameter K is defined by 

K = 2B - A - C 
A - C 

For a prolate sYID~etric top I 
y 

I and K = -1 while for a oblate 
z 

symmetric top I = I and K = +1. x y 

The rigid asymmetric rotor has three degrees of freedom, and 

its classical Hamiltonian can be vrritten as 

This gives the Hamiltonian ,in terms of the action-angle variables 

of the system: j is the magnitude of the rotational angular 

momentum, m is 'its component along a space-fixed z axis, and k is 

its component along a body-fixed z axis. The q'sare the angle 

variables conjugate to the momenta j.k. and m. In the oblate 

symmetric rotor limit, B = A,. and the Hamiltonian becomes 

(2.1) 

(2.3a) 
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In the prol~te symmetric rotor limit (B ='C) one needs to define 

-+ 
k' to be the projection of j along the body fixed x axis, and the 

Hamiltonian then becomes 

(2.3b) 

Since (2.2) has no dependence on ~ or q., it can readily be seen 
.. .\ . J. 

that j and m are conserved. Likewise for a symmetric top k (or k') 

is also conserved. 

The traditional way of quantizing the asynnnetric rotor semi-
9 

classically is to realize that it is essentially a system with 

only.£!!!:. degree of freedom, with j appearing in the Hamiltonian 

simply as a parameter; Le., the one-dimensional Hamiltonian is 

H
j 

(k,qk) = (j2.:..1/) (A sin
2 

qk + B cos2 qk) 

+ C k
2 

One then applies the Bohr-Sommerfeld quantum condition to this 

one dimensional system in order: to quantize the k-degree of 

freedom: 

where k(qk,j,E) is determined from the Hamiltonian by conservation 

of energy: 

(2.4) 

(2.5) 
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Equation (2.4) can nOH in principle be inverted to give E(j,n). 

This p.rocedure, however, gives relatively poor results for the 

lm..rest quantum states Hhich are our present concern. It wo·uld 

be desirable, therefore, to be able to use the correct quantum 

values for the energy levels Hithinan internally consistent semi-

classical frame,..rork. 

For this purpose we define a new momentum variable n by 

2 n (1 ) ' 2 (1 )' 2 + K J~ - - K J x 

-+ 
where j and j z. are the components of j along the corresponding . x 

body-fixed axes. It may be noted that in the oblate limit 

(K = +1) n2 = 2 k2 and in the prolate limit (K = -1) n2 = _2k'2. 

The classical Hamiltonian in terms of this new variable is given 

by 

( ) = BJ,2 _ if:... -2 C) n2 
H j ,n; qj' qn 

.' 

(2.6) 

(2.7 a) 

so that 
2 

v2 = n
2

, 
h 

n2 is a constant of the motion. If one lets j2 = n2 j(j + 1), 

2 a = h A etc., then (2, 7a) becomes 

(a-c)·i 
H = bj(j + 1) -

2 

. 8 
so that V is related to the quantum mechanical quantity E(K) by 

E(K) = Kj(j + 1) - v2 

The rotationa.l state of the tlsymmetric rotor can now be described 

(2.7b) 

(2.8) 

\o7ithin the semiclassical frameHork by specifying the quantum number 
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j and the quantity V (determined from tabulated values·of E (K). 

,Appendix A 'carries out the carll'Jnical transformations necessary to 

replace k by n. 
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III. SEHICLASSICAL THEORY OF _ATON~ASY~NETRIC ROTOR COLLISIONS;' NETHODOLOGY 

The cross section for the inelastic process 

is given by 

00 

rrh 2 L (2 J + 1) L: 
(211E) ( 2j l + l)J=O Q,1,Q,2 

where Q, is the orbital angular momentum quantum number for relative 

translation of the collision partners, j and v are the quantities 

that define the rotational state of the isolated formaldehyde as 

'in equation (2.7b), j is the total angular momentum'quantum number, 

rotational (j) plus orbital (£), of the composite system, E is the 

initial translational energy, and II is the reduced mass of the 

collision partners. The reader will recognize that (3.1) is identical 

in form to, the expression for rotational-vibrational excitation in 

the atom-diatom collis:i..on system,IO except that here V is related to 

(3.1) 

thecpmponents of j about body fixed axes rather than being a vibrational 

quantum number. The sums over Q,l and 9'2 in (3.1) result from an average 

and a sum over the initial and final m states of the rotor, respectively. 

The semiclassical approximation to the S-matrix elements in (3.1) 

is constructed according to the general prescription that has been 

. - 5,10 A' h " f h f h' f glven. ga1n, t e expre3S10n 1S 0 t e same arm as t at or the 

10 6d 
atom-diatom rotational-vibrati.onal system: ' 
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= L [(-2Tf i Ii)3 (3.2) 

where the sum indicates a sum of such terms for all trajectories 

which obey the correct initial and final boundary conditions; see 

ref. 5 and 10 for more details. 

In order to use eauations (3.1) and (3.2) it is necessary 

2 d h d 1 .2 0
2 d 2 b . d that J be quantize everyw ere an tlat J ,.>0 , an \) e quantJ.ze 

in the initial and fina~ as)~ptotic regions. 

quantized by the usual Langer prescription 

;/. 2 -+ li 2 (;/. + 1) 2 
. 2 

·J2 -+ li 2 (J +1.)2 
2 

2 2 
J and;/. are 

(3.3) 

2 \)is "quantized" by setting it equal to the value determined from Eq. 

(2.8) by jand the quantum value of E(K). The quantum mechanical 

quantizatioIl. of j2 (Le., j2 -> li
2j (j + 1)) was retained because it 

was felt that this would be more accurate for treating the low 

rotational levels which were of interest in this calculation. 

The numerically integrated classic.al traj ectories needed to 

evaluate Eq. (3.2) may be computed in any convenient set of canonical 

variables as long as the proper transformation to the £,j,\),qo,q.,q 
. .>0 J \) 

set"is performed in the initial arid final asymptotic regions. 

Formaldehyde is almost a prolate symmetric top (K = -0.9610644 for 

the adopted geometry) so that the component of angular momentum along 



-9-

the CO bond axis of isolated fonnaldehyde is almost conserved.
11 

Since the relationship between k and n is also not very tractable 

(see Appendix A~ it was decided to compute the trajectories
I2 

in the ~tjtk,q~,qj,qk set of canonical coordinates. Appendix 

B gives the canonical transformations and necessary relations 

for this coordinate set. 

The classical Hamiltonian is given in this set'of canonical 

variables by 

.2 ·[C . 2 B 2 ] J Sln qk +. cos qk 

(3~4) 

where R is the distance bet~veen the centers of mass of the collision 

partners and ]1 is the reduced mass for the relative motion of the 
. m IlL. 

(
. . . CH20 H2 centers of mass 1.e., ]1 = ). The potential energy depends 

~I + mCHZO 
on only the three parameters ~R,y,I;;), where y is the angle between it 

and the body-fixed z axis of formaldehyde, and I;; is the angle between 

-+ 
R and the corresponding x axis. 

A model potential oJ ·the fonn 

4 2 
V=:"'" Fl. exp [-R. /S.] (3.5) L....J .1 1 

1=1 

was adopted for the hydrogen. molecule-formaldehyde interaction. This 

type of potential was used in order to make the results comparable 

with quantum mechanical calculations
2 

which were in progress at the 
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time, this work was begun., The sum is over the four a toms making 

2 
up the, formaldehyde and R. is the square of the distance between 

). 

the ith atom of formaldehyde and the H2 center of mass. Table I 

lists the values of the parameters that were chosen for this woik. 

The S. values were chosen so that the "sizes" of the atoms for the 
1 

energy range considered would be comparable to the usual Van der 

Waals radii of these elements in organic compounds. 

This model potential is admittedly quite crude .in that it 

neglects the long range attractive forces and that the sho,rt range 

repulsion is not steep enough. HQ"tvever, the quantity of interest 

for the astrophysical problem is the relative size of two cross 

sections, so that the detailed form of the potential beyond that 

which'determines the effective sizes of the atoms may not significantly 

affect the result. The presumed effect of an attractive part of the 

potential would be to give the collision partner a higher kinetic 

energy when it hits the repulsive \val1. It would be more important 

in grazing collisions, but at the kinetic energies considered it is 

probable that these colHsions \V'Ould not be able to effect the 

necessary energy transfer. Consequently, it is believed that the 

major effect of the neglected attractive well on the inelastic cross 

sections would be to shift the results in energy without dramatically 

, affecting their shape. 

The structure of formaldehyde given in ref. 8 ,,,as adopted for 

this ,,,ark since it is the same as that used in ref. 2 and 3. The 

, 8 
values given for the rotational constants are A = 282,106 Mc; 

o 

B = 38,834 Mc; and C = 34, OO!. 'He which correspond to an aSylnmetry 
a a 
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parameter·K of -0.9610644. The. adopted structure and the 

·coordinate system used are sho,,'u in Figure 1. The values of 

the structural parameters with respect to: the center of mass 

as shown in Figure lb are then: r = 0.9943 a ,r = 1.2925 a o ' 
o 0 c 

37.29° • . the energies and values of \} for 

all the j= 1 and j = 2 rotational states of formaldehyde ate 

given in Table II. The distances required in Eq. (3.5) are now 

given in terms of the structural parameters and the potential 

parameters (R,y,Z;;) by 

R 2 R2 + 
2 - 2 R = r r cos y 

0 0 0 

R 2 = R2 + r 2. + 2 R r cos y 
c c c 

2 R2 + 2 
+ 2 R r

H 
(sin 0 cos S - cos y cos 0) REI = r H 

1 

~ R2 + 2 
- 2 R (sin ~ coss + cos Y cos Q) = r

H 
r

H 
2 

Even at the low collision energies employed the excitation 

of the j = I states to j = 2 states is a "classically allowedn13 

process, i.e., there are real-valued classical trajectories which 

lead to these transitions. (ThE:!re will also be some contribution 

from complex-valued classical trajectories, but this has been 

ignored in the present work.) In general there area number of 

(3.6) 

different classical trajectories (up to 8in the present applica,tion) 

which contribute to each speci:f.:ic S-matrix element; because of the 
. 

small difference in the classi.cal actions along such trajector~es 

it is itr.portant not to use the "primitive" semiclassical expr~ssion, 
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Eq. (3.2),. but rather the appropriate uniform .asymptotic 

. 6c,6d,14. ~ I· 1 d d expressl0n. . The semlC aSSlcal resu ts iscusse in 

the following section have all been "uniformized" in this way. 

For the Monte Carlo trajectory calculations it was decided 

4 to modify the standard :procedures somet\That because only a fe\\T 

values of J, iI' and i2 contribute to the sums in Eq. (3.1) at 

these low collision energies. Proceeding along the lines of 

ref. 6c~ therefore, J and i l were retained as integers and 

the Monte Carlo· procedure used to calculate the square modulus 

of S-matrix elements individually. Appendix C gives the details 

of this as it pertains to the atom-asymmetric rotor collision 

system. 
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IV. RESULTS AND DISCUSSION. 

The 'cross sections for the rotational excitation of the 111 

and 110 states to the 212 ar.d 211 states of formaldehyde are shown 

in Figure 2; the solid line is the result of the Mont~ Carlo 

classical trajectory calculation, and the points are the semi~ 

classical values at energies of 10, 11, 12, and 15°K. The . 
semiclassical results show a strong interference structure which 

is not quenched by the sums in Eq. (3.1) because so fe~., terms 

contribute. 
. 15 

As expected, the purely classical results do not 

reproduce this structure but appear to give the average result 

re'asonably well. Since these cross sections would be averaged 

over a smo'oth distribution of translational energies in computing 

rate constants, the interference structure would not likely be 

important; if this is the case, then the cla.ssical Monte Carlo 

results would be sufficient. This is quite encouraging, of 

course, for the classical Monte Carlo trajectory calculations are 

considerably easier to carry out than the semiclassical ones. 

Figure 3a shows the classical Monte Carlo results for the 

111 -+ 110 cross section as a function of collision 'energy E. 

Since microscopic reversibility implies that 

E 
'E - M:. ., 

where 6E is the splitting of the 111 and 110 levels, f1E = O.23l82°K, 

the cross sections for the 110 -+ 111 and 111 -~ 110 transitions are 

essentially equal at the energies E considered. 
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Although a number of additional complications
16 

must be taken 

into account in 'a complete analysis of the "anomalous'! absorpti.on 

of formaldehyde, the following treatment may be of interest. If 

the rate of the dipole-allowed spontaneous decay of the j = 2 

states to the j = 1 states (i. 2., 212 -+ III and 211 -+ 110) were 

infinitely fast compared to inelastic collision rates, and if the 

radiative rates between the ll(l and 111 states ,.;ere neglibly slow, 

then simple'considerations3 imply that the steady-state ratio R 

of population ,of the 111 state to ,that of the 1
10 

state would be 

This quantity is shown asa function of collision energy in Figure 

3b, the cross sections being the Monte Carlo trajectory results 

from Figures 2 and 3a.The temperature T relating the 111 and 110 

levels is defined by 

R= exp (t).E/kT) 

R = 1.1 and 1.2, for example, implies a temperature T = 2.4°K and 

1. 3°K, respectively. With the cross sections replaced by ones 

(4.2) 

(4.3) 

suitably averaged over translational energy--which would effectively 

smooth out the R versus E relation in Figure 3b--this is in good 

qualitative 
'1 . 

agreement with the observed population ratio corresponding 

In surr~ary. therefore, the results of our calculations do 

show that rotational excitation of formaldehyde from the 111 and 
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110 levels. to the 212 level is fav:ored over that to the 211 level, 

in accord \-lith Townes and Cheung, 
3 

and the magnitude of the effect 

is consistent with this being the cooling mechanism responsible 

for the anomalous absorption of formaldehyde in interstellar dust 

clouds. The w'eakest aspect of the present calculations is probably 

the interaction pptential, although it would also be useful to 

have completely quantum mechanical scattering calculations to 

check the reliability of the classical and semiclassical results. 
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APPENDIX A. SEHICLASSICAL TREATMENT OF THE ASYMNETRIC ROTOR 

Let x,y,z be the principal axes of the molecule w'ith 

I > I > I. For a prolate synnnetric top Iy = I z and for an z - y - x 

oblate symmetric top I x I. The classical Hamiltonian is 
y 

H = 
I W 2 
x x 

2 

2 2-
IyWy . IzWz 

+ 2 + -2--' 

where the w's are the angular velocities about the appropriate 

axes. Now introducing the Euler angles e,~,~ of the bodyl7 we 

have 

· .. 
W = ~ sin e sin ~ + e cos l/J x 

• . 
W = ~ sin e cos ~- e I::iin ~ y 

• . 
W = cp cos e +~ z 

so that 

p~ = I w sin e sin .~ + I w sin e cos ~ + I w cos e x x y y z z 

Pe = I W cos ~ - I w sin ~ x.x .y y 

PljJ .- r w 
z z 

are the momenta conjugate to the Euler angles. Inverting the 

momentum relations gives 

(A. I) 

(A.2) 

(A.3) 
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= I w xx 

Pcp sfn~ p~ cos- 0 sin ~-
= e + P cos ~ _. 8 sin 0 sin 

Pcp cos ~ cos e-cos lp - Pe sin IjJ - PtjJ sin e sin e 

Pz 

for the body fixed components of the rotational angular momentum. 

The Hamiltonian is now 

[

Pq{OS tjJ 
+ B . 8 S1n 

A [pe. sin tjJ PtlJ'cos e. sin 
= 8m e + Pe _ cos tjJ - sin 8 

- P e sin 
_P1!J cos. cos ~ - . e ] 2 

tjJ sin e 

-1 
where A = ll" B -

x 

1 1 n' C = 2I and the square of the magnitude 
y z 

of the angular momentum is 

-t2 
J 

2 
Pe + 

1 
. 28 sin 

(A.4) 

(A.5) 

2B ~A ~ C 
The asynunetry parameter ~: is defined by K = A _ C so that 

K = + 1 for an oblate syinmetric top and K = - 1 for a prolate symmetric 

top. The quantity E(K) which can be calculated quantum mechanically 

is defined by 

2 E (a + c) j (j + 1) + (a- c) E (K) (A.7) 

where a = h 2 A etc. 

We now eliminate P8 in favor of j, the magnitude of the rotational 

16 angular momentum by a canonical transformation using an F2 generator •. 
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This generator is 

F2 (e.¢.~.j,m.k) 

-+ 
where m = p is the component of j along the space-fixed z axis 

. ¢ 
-+ 

and k = PlJ! is the. componen t of j along the body-f L;ced z axis. 

Nm.)' the new coordinates (which are the coordinates canonically 

conjugate to j,m,k) and the transformed Hamiltonian are 

~= ¢- -1 [m cos e -- k J 
cos . -r-:z-2 

sm el j - -m-

-1 
cos 

[

kCOS e - m ] 

sin e{l-k2 
. 

Since qk is the only coordinate present in the Hamiltonian, it is 

(A.8) 

(A.9) 

(A.10) 

nm.)' obvious that j and m are conserved 'tqhereas k is not (unless A = B). 
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It can now be seen from (A.IO) that we have an effectively 

one-dimensional problem and that the semiclassical energy levels 

might be calculated by applY,ing the Bohr-Sonrrnerfe1d quantization 

rules to the k, qk system (\<dth j as a .constant parameter). This 

~vou1d give 

with j2 = Ii. 2j (j + 1). In the limit A = B (K == +1) ~ve would get 

the correct quantum result that n = k but in the 1iniit B = C -+ 
(K = -1) ~ve will not get n = k. This is because the integral in 

(A. II) 

~~11) is singular for j2(B - A) Sin2qk 2 2 
k [(B - C) + (B - A) sin qk] 

so that the solution in the K = +1 limit will not go smoothly into 

the solution in the K = -1 limit. 

It is then desirable to seek a new momentum in which the 

quantization can be carried out. Define n2 by 

so that the classical Hamiltonian becomes 

. (A - C) 2 
n 2 

(A.12) 

(A. 13) 

It is· clear now that n2 is conserved and that if ~ve let j2 = Ii. 2j (j+l) 
2 

\)2 ·n· ., and - ,the Hamiltonian is - ~2 
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. (a - c) 2 
H = bj (j + 1) - 2 v (A.14) 

Comparing (A.14) with (A.7) it can be ·seen that V is simply related 

to E(K) by 

2 
Kj (j + 1) - V (A.15) 

In the limit of K = +1, j = 11k and in the limit K = -1, j = hk , 
x +'·z -

so that n2 has the correct behavior in the two limits. In order 

to transform from the k, qk set to the n, qn set 've have that 

n 
2 ·2 2 = (1 + K)k - (1 ~ K) (j - k ) 

2 
The F2 generator that eliminates k in favor of n is given by 

2 (1 ).2. 2 n + - K J Sln x 

(1 + K) + (1 - K) sin2x 

2 2 Now n has the dimensions of (momentum) , but it can be seen from 

2 (A.12) that n can take on either positive or negative values. 

The integral in (A.l7) must be worked out separately for the tw·o 

2 . signs of n , and it 'viII be seen that no logical inconsistencies 

result from allowing n2 to be les~ than zero. Indeed, the case 

(A.16) 

(A.17) 

that n2 = 0 is exactly the potnt at which (A. 11) becomes discontinuous. 

2 
For the case thatn > 0 \.fe have that 

~ 2 2 (l+K)In. +j (l-K)] 
( 

j2(1_K) ~ 
'IT Y, 2 2 ,r (A.18a) 

n +j (l-K) 
roo + ju. + 

'In -J 
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2 [22(, 'J sin qk n +j l-K) 

2' 2 2 
[n +j (l-K)sin qk] 

and IT (¢,n,k) is the elliptic integral of the third kind 

f ¢ , ,d'~i 
IT (<I> , n ,k) = 2 ~J L ' 

o (l+nsin a) Vl-k sin
L 

a • 

Tbe coordinate conjugate ton is given by 

n F (y,r) , 

qn = ... 1 2 ' 2 
l(I+K)[j (l-K) + n ] 

where , f cP da 
F(<I>,k) = ~1=' ==== is the elliptic integral of the 

, 0, I k2 . 2 
" '- Sln a 

first kind and y, r are the same as in (A.ISb). 

For 

Since k 

2, 0 n < 

2 
(n ,qk) 

n2 
+ 

(I+K) 

not all v:'llues of qk are'classically allowed. 

is given by 

(l-K) .2 sin 
2 

e(t: J 

+ (l-K) sin 2 
qk 

and kmust be real, we must have' 

222 
n + (l-K) j sin qk ~ 0 

(A.lSb) 

(A.l9) 

(A.20a) 

(A.20b) 
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If the integral in (A.I7) is done considering the limits 

2 
on qk by (A.20b) we get for n < 0 

where r' 

and 

qn = 

ma +J' q.-
-m J 

2 
n 

I 2 2 
l<l-K)[(I+K)j -n ] 

x 
],2(1_1<) + T12 

II (y', - , r') - F (y', r') 
j2(l_K) 

I 2 y' 1 
[y and r in (A.18b)] , = - and· sin = ---- as r 2 si.n y 

";~n2 . 
F(Y",r') 

~(l-K) [j 2 (1+1<) 2 
- n ] 

'The Eqs. (A.19) and (A.22) are all that is needed to apply 

classical S-matrix theory to collisions of an asymmetric rotor. 

2 
The appropriate value of n for a quantum state of the rotor can 

be obtained from the quantum E1echanical values of E(K) by Eq •. 

(A.lS). Although there is now no need to obtain a semiclassical 

prediction of the energy +evels, such a prediction is possible. 

In order to quantize the as}1IIIIletric rotor semiclassically ~.;e 

use the Bohr-Sommerfeld quantization rule' 

2nn (n + a) = (J5 n dq 
n 

(A.21) 

(A.22) 

(A. 23) 

\.;ihere n is an integer and a is an arbitraty constant to be adjusted. 

The integral in (A.23) has parametric dependence on the energy and 

the magnitude of the angular momentum, ¥7hich we take to be its 
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quantum value 11 V j (j+l). Since n is a constant of the motion the 

integral is just the'change in q over a complete cycle. Now if 
n 

2 
the left hand side of (A.23) is 27Th (k± + a±) for n greater than 

or less. than zero respectively, we get 

2 : (l+K) 
. 2 4 '}'K2

(m) n > 0 (k+ + a+) = 
n2Ij(j+l)(1-K) + v2

] 
and . 1 

2 'J 4 ,,} K2 (m) 
n < 0 : (l=K) (k +a )'" == ? 

v
2

] - n-U (j+l) (1+K) 

where m 
. (l-K) . [j (j+l) (l+K) :- V

2 ] 
= and K (m) is the complete 

(l+K) [j (j+l) (l-K) + v2
] 

elliptic integral of the first kind. By analogy with (A.12) it . 

may be desirable to combine (A.24a) and-(A.24b) by defining· 

while letting v2 have .thesame sign as N
2

• It can be seen that 

2 
the difficulties in (A. 11) arise where V == 0 and that (A.24a) 

and (A.24b) pass smoothly through this boundary if (A.25) is used. 

(A.24a) 

(A. 24b) 

CA.25) 
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APPENDIX B. ACTION - ANGLE VARIABLES FOR ATOM..; A SY}1}ffiTR IC ROTOR COLLISIONS 

In this section, the conventions with regard to the rotor are 
. . . 

-+ 
the same as in Appendix A. l.et Rbe the vector from the center of 

mass of the rotor to the atom, and a and S be the altitude and 

azimuth respectively of this vector. The Hamiltonian is 

.. 1 . . 
H= .b!.. (R? + R2 

-2 + R2 02 2 2 
a sin a) +2 (<Jl sin eO>sin l/J + e cos l/J) 

2 
p 

2 

I .. 1 .. 0 . 
1/1)2 

• 2 . +J cos I/J +~ (<I> sin e - a sin (<I> cos e + l/J) + V(R,y,s) (B.I) 
2 2 

-r • 
"tvhere y is the angle between R and the body fixed z axis and s is 

-+ . 
the angle between R and the body fixed x axis. Therefore 

cos y cos e cos a + sin e ~in a sin (<I>-S) 

cos S = sin l/J [cos a sin e - cos e sin a sin (¢-S)] 

+ cos l/J sin a cos (<p-S)· 

In terms of the canonical momenta H is 

2 2 2 

H 
PR Pa + 

Ps +A ~<I> sin p 
.Cbs l/J =-- +-- e + Pe 2jJ 2pR2 2 2 2 sin 

2lJR S1f1 a 
2 

+! ~<I> cos P ·cos e cos T~ sin ~J - Pl/J l!! + 
2 sin e - Pe sin e 2 

2, 
P lIR ex a t-' 

(B.2) 

Ppcos e :in l/JJ2 
sin 

± V(R,y,s) (B.3) 

(n.J2-) 
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(not~ that II is the reduced mass of the l!t~.,o-body" system where 

one body is the atom and the other is the rotor) Since <t> andlS 

onl,yoccur in the combination (cjl-S),:P can be replaced by the new 

variable £ = (cjl-8). This is done by the F3 generator 

F3 (</>,S; £,8) = -8pS - £Pcjl (B.4) 

which gives the ne\11 momenta P
E 

= PiP = m and M = P
E 

+ PS' the 

projection of the total angular momentum on the space-fixed z 

axis. The orbital angular momentum t is now introduced by an 

F2 type generator using 

n 2 _ pel ' (JvI_Iil):2 
~ - "2 + 2 2 

2J..iR 2lJR sin a 

The new coordinates are 

-1 ' 1 tosa -J = cos . 2 2 
-(M-m) 

8 -: 

== E -I- cos-I [(M-m) cos a J 
' " sin a Vt2-(M-m) 2 

(B.5) 

-IEM-m)COS a 'J cos __ 

ina,,/t 2_ (H-m) : 

(B.6) 

The F2 generator in Eq. (A6) is now used (with ¢'replaced by 03) and the 

new coordinates are 



q. ' 
J 

q 
m 
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cos ..L-_____ _ -1 [ '." 2eos e - mkJ 

~J -

- Q -3 

. ,,22":2. 2' 
j -k j -;0 .. 

-1 [k eDSe - m ] cos ~" 

eV 2 2 sin j-k 

. -1 [m c. os 8 -.k J cos 
-V .) 2 

sin e j-m 

The space fixed components of j and 1: are now given by 

jx sin (Q2 + qui) ~.2 2 = - -m J 

jy (Q2 + ~) ~j2 2 
= cos - m 

jz = m 

Q
2 
~>I,2 ? 

>I, - cos - (N-m) ~ 
x 

Q2~ >1,2 R, sin ( ,2 = - - M-Illj 
yz 

>I, 
z (M-m) 

so that the magnitude of the total angular momentum J is given by 

(B.7) 

(B.8) 

(B.9) 

It is now desired to rep1acerr, by J, and to express y and S in terms 

of the final angle variables~ The first is done \vtth the ge.nerator 

, . 
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F4 (j,l,M,m; J,j,l,M) 

+ j 
. -1 

Sln 

. -1 
,-, m Sln 

[ 

2 2 2 ' ] (J -j ~1 ) - 2m(M~m) 

2 ~~2_m2 ~y,2_(M_m)2 

The ne~,y coordinates are 

q. = q' .. + 
J J 

q' = q' + 
11 

q -
J 

-1'[' (J2 ~2 ·.2), , M (J2 0
2 .2)1 • m +.:.v ~J - - -~, -=.Ll.. 

sm J 
' . E;,' ~ 12_ (H-m) 2 , 

Because of the overall rotat jonal synllnetry of the system, M can be 

set equal to zero 'idthout loss of g:::nerality. The two potential 

parameters are given in this set of coordinates and momenta ,by 

(B .10) 

(B. 11) 
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~j !:-k~" [CJ" 
2 ") ') 

cos y q9, + (J ~r-r) 
sin q£ sin j 

cos q~ 22. .J J 

cos i;; 

The Hamiltonian is now given by 

.2 [ . 2 2. 1,2 [ J A Sln qk + B cos qk J + t'.. C-A 

+ V (R,y,z:) 

qJ 

'? 
sin~ 

(B.12) 

(B.13) 
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APPEiillIX; C. HUNTE - CARLO TECH~aQUE FO?, ,',SY.""L~n~IC kOTO!\ TR.,.;l!S ITIOL,iS 

Pr'incipally because the second "qu:1ntum numbet."" ,v, for 

defining the state of the asycnnetric rotor is not an integer, 

and may be imaginary, se'veral TI!odifications must be made in 

the standard Honte-Carlo classical trajectory technique for 

evaluating the cross sections. The classical S-mattix result 

for the total cross section (see Eqs. 3.1 and 3~2) is given by 

where SJ (E) 
£2,j2,v2;1l ,j1,V

L 

= 

00 

Equation C.1 is transformed to a form suitable for Hont,e-Carlo 

evaluation by ignoring the phase in (C.2) and averaging'over 

final quantum numbers so that the Jacobian factor in (C.2) cancels 

out. 

We first approximate the infinite su~ over t.) by ari integral 
'"' 

I 

over £2' If this inter'ral is then transformed into an integral 

over d q~. the factor(:~~) "hich arises cancels with the JacobIan 

in the square of the S-maErix , .... lement. \;e no'.,) h::'38 
. ~; 

(2J+1) L 

1"1 

1 
f ci 
o 

(C .1) 

(c. 3) 
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To complete remove the Jacobian we want to average j2 and ~2 over 

"quantum number" intervals. This is straightfonJard for j 2 but 

not for ~2 since this is non-integer for tht~ desir~d rJnal st2te 

and may be imaginary. Because of this last difficulty \,7e 2v.erag:2 

over a 

of the 

? 

~2 
2 

~ 

interval rather than a ~2 interval and take the averages 

values for the various states as the endpoints. 

We now have 

2 
-rrh E (2J+1~~ p~ 

211E( 2j l+l) J=O 9.~J",j fj2 ~ 1 . 1 ~ 

2 
'J 

J~oP 
~ 

low 

1 
x 2 2 

1 

(2nh) 2 [

d (j 2 ' ~ 2) ]-1 

d (qJ' qv) 
l'l 

(C.4) 

(v - vI ) . top ow 

2 2 2 
where V and V

l 
are the encipoints of the ~ interval. I t is nm" 

top O"T 

desir~d to cancel out the Jacobian entirely by changing the integrals 

2 
over j2and ~2 to integrals over qi and q 

-'I ~.L 
Since it is more convenient to compute the trajectories in the k,Ql. 

i\. 

set of canonical variibles rather than the ~,q~ set, we would like 

expression to involve only the former set. Frdm the results in Appendix 

A we have that 

~(l+K) + (l-K) " 2 
Sln q ~r~ L +. J"l (J'

l
+ 1.) (l-K) 

k '1 1 
2 

sin 
(C.5) 
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dV
2 2 J dv .. = 2vJ v2 2 2 aq-
VI 

= J (aV2)(d~V1)· dql 
2v2 aqv. a'll' <'1 

.1. ~l 

If we insert a function X that is one if a trajectory falls in the 

. . . 2 lib . "d h· f . 11 approprlate J 2' v2 ox an' '.2ro ('t ennse He get lna y 

(J (E) = 

j 2 ' v 2 +j 1 ~ vI 

7Th 2 V 00 1 E 
2~E (2j +1)& J=O 

1 

J+jr 

E 
Q, =IJ-j ,. 

1 1 

IG.tl)l(qjl)l (qkl). Jd-J-Jd-o 27T 0 27T 0 . 27T 

x (C .6) 

2 
where b. is the length of the v

2 
"box". Eq. (C.6) is now in a form 

amenable to Monte-Carlo evaluation and is the. desired result. 
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TABLE 1. Values cif Parameters Chosen for the Nadel Potential 

Atom F. «Har trees) S. (a 2) 
~ 1 0 

0 1.0 . 0.88333 

C 1.0 0.970 

Hl ,2 1.0 0.75667 
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TABLE II. 
. a 

Formaldehyde Energy Levels 

2 
·2 

State (Jk_k} . E (OK) n 
\J 

= h 2 . 

000 0 a 

101 3.49579 0.03894 

III 15.17141 -1. 92213 

110 15.40323 -1. 96106 

202 10.48396 0.11738 

212 21. 93119 -1. 80532 

211 22.62663 -1. 92213 

221 57.65349 -7.80532 

220 
57.65691 -7.80590 
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FIGURE CAPTIONS 

Figure 1. (a) The geometry of formaldel:yde; see ref. 8. 

(b) The coordinate system for formaldehyde. 

Figure 2. Cross sections for the indicated rotational excitations 

in H2 (spherically symmetric) + H2CO collisions as a 

function of initial relative translational energy. The 

solid lines are the results of the Honte Carlo classical 

trajectory calculacions and the points the semiclassical 

values; the solid (open) points correspond to the upper 

(lower) curve. The energetic threshold for all four 

transitions is rK ± 'V ~5°K (see Table II). 

Figure 3. (a) Cross section -for the III + 110 (and essentially 

also the 1
10 

+-1
11

) transition in collisions H2 and 
) 

H2CO, as a function of initial translational energy. 

(b) The cross section ratio, defined by Eq. (4.2), 

as a function of initial translational energy. 

., 



-37-

.H 

(0) 

oo~----

I.. 1.12~----1 

H 

x 
( b) y 

Center 
of Mass 

z ~ ro--,,<;:--r~ 

o 

XBL745-6394 

Fig.· 1 



-38~ 

5------~_.------

4 

3 

2 -
0 III ~211 

....... 
NO 

0 ........ 
C 
0 - 0 U 
(J) 5 (f) 

(/) 
(/) 

0 
lo.. 4 0 

111~212 

3 
(9. 

2 0 
IIO~211 

Jo 

G 

10 30 40 

XBL745-6395 

Fig. 2' 



,-.... 

NO 
0 

"--' 

c 
0 -U 
<l> 

(j) 

(/) 
(/) 

0 
lo..... 

0 

o -

-39-

(0) 

12 

III~IIO· 
8 

4 

O~------------------.~~--------~~-----------
1.3~--------~--------~--------~--------~ 

( b) 

1.2 

o 
0:: I. 1 

1.0----------~--------~----------~--------~ o 10 30 40 

XBL 745-6396 

Fig. 3 



r-----------------LEGALNOTICE------------------~ 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 



TECHNICAL INFORMATION DIVISION 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 


