~————
1

LBL-2778 _
Preprint€

Submitted to Journal of
Chemical Physics

SEMICLASSICAL TREATMENT OF ATOM - ASYMMETRIC
ROTOR COLLISIONS; ROTATIONAL EXCITATION OF
FORMALDEHYDE AT LOW ENERGIES

~ Stuart D. Augustin and Wwilliam H. Miller

. June 1974

Prepared for the U. S. Atomic Energy Commission
under Contract W-7405-ENG-48

TWO-WEEK LOAN COPY

This is a Library Circulating Copy

For a personal retention copy, call
Tech. Info. Division, Ext. 5545

which may be borrowed for two weeks.

-2

LL2-1dT

A



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California. - :



—1ii- ' ~ 1LBL-2778

. SEMICLASSICAL TREATMENT OF ATOM - ASYMMETRIC ROTOR COLLISIONS;

) . *
ROTATIONAL FEXCITATION OF FORMALDEHYDE AT LOW ENERGIES

'Stuart D. Augustin and William H. MillerT

Department of Chemistry, and Inorganic Materials Research Division,
Lawrence Berkeley Laboratory; University of California
 Berkeley, California 94720



—.v—
ABSTRACT

The formalism necessary for the application of "classical

S-matrix" theory to collisions of an atom with a rigid asymmetric

" rotor is derived. This is applied to rotational excitation of

formaldehyde by H2 (taken to be spherically symmetric) at energies

from 10°K to 15°K. Classical Monte Carlo tréjectory calculations

" were also carried out for the same system in the energy range 10°K

to 40°K. The results support the proposal of Townes ard Cheung

that a collisional mechanism is responsible for the 111 > 110

anomalous absorption of.formaldehyde-in cool interstellar dust

clouds,



I.  INTRODUCTION. ‘ - -
The 1,; > 159

agaiﬁst the 2.7°K cosmic'background radiation in cool interstellar

transition of formaldehyde is seen in absorption

dust clouds, indicating that the lower state (111) hés a population

greater than would be expected if the system were in equilibrium

H

with the background radiation. - Townes and,Cheung3 have noted

that since. the 2 state spontaneously decays (via‘a'dipole—allowed

12

" transition) to the 1., state, while the 2: state spontaneously

11 11

decays to the llo‘staté, collisional excitation which favors the

212 over. the 211

enhancement of the population of_the»l11 state). They further

state could produce the observed "cooling" (i.e.,

3 L ’ ) .
argue” that since the 2 state corresponds to the rotational

12
angular momentum being predominantly about ﬁhe axisiperpendicular“
to the plane of the molecule, collisional excitation of fbrmaldehyde

from'a j = 1 state to a j = 2 state should indeed be preferentially

to the 2 state. The results of the calculations presented in

12
thls,paper—dO’show the cross sections for the 110 -> 212 and 111 > 212
excitations to be larger than those for the l10 > 21l_and 1ll > 2ll

gxcitafions, thus 1endihg support tb-the Townes—Cheung mechanism.

In the present calcul#tion the collision.partner_of formaldehyde
”is taken to be H2, which is assumed to bé-spherically symmetric. A
model potéential ié'uéed which,’althoﬁgh probably not an accurate
representation of the actﬁal potenfial, shéuld"give the esseﬁtial
. featurés of tHevcol1ision process‘correctly. All internal degrees
of freedoﬁ of Héuand all vibrational degrees.of_freedom of formaldehyde

are ignored.,



‘Tﬁe crosé‘sections for the rotationgi excitation transitions
have been obtained by Monfe Carlo trajecfory methods4 and by
applicétiOn of “classical S-matrix" theory,5 a semiclassical
approach lthat uses numerically computed classicai trajectdries
in combination with essential quantum mechanic;l features. A
npmber,of applicatiohss-7 to atom-diatom collision processes have
shown that this semiclassical theory is offen an accurate des-
cription of the quantum effects ig molecular collisions; the present
work is the first application of it.to collisions involving a
polyatomic molecﬁle. The classical Monte Carlo calculations are
much simpler to carry out and wefe done for the energy range.10—40°K.
The semicléssipal calculations were performed at four -energies in V
the.range 10f15°K'to‘provide a cheék on the reliability of the
purel& classical results}. Apart from an interference structure
in Ehe‘semiclassical results, the two approaches are in reasomable
agreement.,

The paper is organized as follows: Section II discusses first
how an isolated asymmetric rotor is déscfibed semiclaésicallj.
Classical S—-matrix theoryvfor atom-asymmetric rotor collisions is
» summarized in Section III, along with speéific aspects of the pré—
sent applicationé§ the way in whiéh Monte Carlo trajectory calculations
were carriéd out is also described here and in Appendix C. The results

of the calculations are presented and discussed in Section IV.



II. SEMICLASSICAL DESCRIPTION OF THE ISOLATED ASYMMETRIC ROTOR.

In order to apply classical S-matrix the'ory5 to a bimolecﬁlar'

collision process it is first necessary to describe the internal

quantum states (i.e., rotational-vibrational states) of the iso-

lated collision partners. This section, therefore, considers the
semiclassical description of an isolated asymmetric rotor.

. : : . 8 . e : -
Consider an asymmetric rotor with principal moments of

¢

inertia I, I, I such that 1 > I_> I_. Letting A = =,
x? Ty' Tz z A x _ ZIX
B = ;%*j C = 5%%1 the asymmetry parameter K is defined by
v z , ‘ : . :
2B - A-C
K=—"%"¢ (2.1)
For a prolate symmetric top Iy = Ié and Kk = =1 while for a oblate

symmetric top IX = Iy and ¥ = +1.

The rigid asymmetrié rotor has three degrees of freedom, and
its classical Hamiltonian can be written as
T

. ‘ 2 2 2 2.2 2 2
H(J,m,k; qj?qm,ak) = B(j -k”) cos + A(37-k7) sin q * Ck™ (2.2)

' This gives the Hamiltonian 4in terms of the action-angle variables

of the system: j is the magnitude of the rotational angular

momentum, m is 'its component along a space-fixed z axis, and k is
its component alongva body-fixed z axis. The q's are the angle

variables conjugate to the momenta j,k, and m. In the oblate

‘symmetric rotor limit, B = A, and the Hamiltonian becomes

s IO I
H(J,m,k; qj,qm,qk) = B(j"-k") - (B-C) k _ (2.3a)



-

In the prolate syﬁmetric'rotor limit (B =’C).one‘needs to define
k' to be the projection of 3 along the body fixed x axis, and the

Hamiltonian then becomes

H(j,m,k'; qj,qm,qk,) = B(j -k 2) + (A -B) k' . (2.3b)

Since (2.2) haé no dependence on q, or qj) it can readily be seen
that j and m are conserved. lLikewise for a symmetric top k (or k')
‘is also conserved. '

The traditional way of_quantizing the asymﬁetric rétor semi~
classically9 is to realize thaﬁ it is essentially a system with

only one degree of freedom, with.j appéaring in the Hamiltonian

simply as a parameter; i.e., the one-dimensional Hamiltonian is

N L ra2..2 e 2 2
Hj(k,qk) = (§j7-k") (A sin q, + B cos qk)
+ C kz .
One then applies the Bohr-Sommerfeld quantum condition to this
one dimensional system in order to quantize the k-degree of

freedom:

2nh(n + ) =gfda kla,3.B) (2.4)

where k(qk,j,E) is determined from the Hamiltonian by conservation

of energy:

Nﬁd

2 ' .
E —Lji(A-sinz.qk.+ B cosz.q

C - A sin 9



Equatioﬁ (2.4) éan now'in ﬁrinciple Be invérted to give E(j,n).
" This #xocedure, however, gives.reiatively.pdor resﬁlts for the
_lowest.quantum states which are our present concern, It woﬁld
be désirable, therefore, to be able to use the corfect quantum
) Kd
values fbr the energy,lévels within -an iﬁterﬁally consistent semi-

classical framework.

For this purpose we define a new momentum variable n by

. 2
n® = 1+ ‘jz'z-(1~v<) Ix | ) (2.6)

where'jX and jz are the cdmponents of 3 along the corresponding

body-fixed axes. It may be noted that in the oblate limit

2 2

. ‘o
k=4 n" =2 kz and in the prolate limit (x = -1) n° = -2.k ~.~°

The classical Hamiltonian in terms of this new variable is given .,
'by

Tl e N L .2 .(} -¢) 2 : ‘
HEens q459) = B - =5~ 0 (2.7a)

 so that n2 is a constant of the mOtidn. If one lets j-2 = hz i3 + 1),
2 . o

v2 = 353 a‘= th etc., then (2.7a) becomes
- ‘
- , |
| He=bj(j +1) - (a -c) C)_V _ _ | (2.7b)

2

so that v is related to the guantum mechanical quantity E(K)‘by8
v , ,
E(k) = xj(G + 1) = v . . ' . ‘ (2.8)

The rotatibnallstate of the asymmetric rotor can now be described

within: the semiclassical framework by specifying the quantum number




j and the quantity v (determined from tabulated yalueS‘Of E (K)).
Appendix A carries out the caunonical transformations necessary to

replace k by n.



‘atom~diatom rotational-vibrational svstem:

III. SEMICLASSICAL THEORY OF'ATOMfASYMMETRIC ROTOR COLLISIONS; METHODOLOGY

The cross section for the inelastic process

CH,0 (jl,\),l) + Hy > CH,0. (j;z,vz) + H,

is given by

2

- _
| - - 2
0. \ws v (B) = 5= . 2;(2J+1) E sy . .

| G0

j,v
21,22 1171

where £ is the orbital angular momentum quantum number for relative
translation of the collision parthers, j and v are the quantities

that define the rotational state of the isolated formaldehyde as

in equation (2.7b), J is the total angular momentum quantum number,

rotational (j) plus orbital (&), of the composité system, E is the

initial translational energy, and U is the reduced mass of the

collision'partners. The reader will recognize that (3.1) is identical -
in form to . the expression for rotational-vibrational excitation in

‘ 1 , Lo
the atom-diatom collision system, 0 except that here'v is related to

'the.cpmponents of j about body fixed axes rather than being a vibrational

- quantum number. The sums over 21 and 22 in (3.1) result from an average

and a sum over the initial and final m states of the rotor, respectively.

‘The semiclassical épproximation to the S~matrix elements in (3.1)

is constructed according to the general prescription that has been

given, ? Again, the expression is of the same form as that for the

10,6d



b

' | . ) 3(2 )j sV )- Iy |
sj IR (E)‘=-E ['(—Zwih)3 8(2 22 )],2 (3.2)

where the sum indicates a sum of such terms for all trajectories
which obey the correct initial and final boundary conditions; see
ref. 5 and 10 for more details.

In order to use equations (3.1) and (3.2) it is necessary

2 . .2 2 2 .
that J° be quantized everywhere and that j ,2, and Vv be quantized
in the initial and fihal asymptotic regions. J2 and‘JL2 are

quantized by the usual Langer prescription

P gD’

32 sn? (g +%—)2 , - (3.3)

v2 is‘"quantized" by setting it equal to the value determined from Egq.
(2.8)‘by j-ah& the quaﬁtum valué of E(k). The quantum mechanical
quantizétion of j2 (i.e., j2 > hzj(j + 1)) Qas retained because it

was felt that this would be more accurate for treating the low
rotational levels whichbwere of interest in_this caléulation.

The numerically integraced classical tréjectories needgd to
evaluate Eq. (3.2) may bé computed in any convenient set of canonical
variables as long as the propef transformétion t§ the Q,j,v,qz,qj,qv
set is performed in the initial and final asymptotic‘regions.

Formaldehyde is almost a prolate symmetric top (k = -0.9610644 for

the adopted geometry) so that the component of angular momentum along



‘ centers of mass. (i.e., u =

‘the CO bond axis of isolated formaldehyde is almost comserved.

Since the relationship between k and n is also not very tractable

' ' . . 12
- (see Appendix Ab it was decided to compute the trajectories

in the Q,,j,k,qg,qj,qk set of canonical coordinates. Appendix
B gives the canonical transformations and necessary relations
for this coordinate set.

The classical Hamiltonian is given in this set of canonical

~ variables by

P 2 2
" : R 2 .2 , 2 2
: H(PRa'Q',J k3 R’qz’q-sqk) = 20 + 9 + 3 [C Sln. qk + B cos qk]
S 2uR B :
2 2 L2 ’ |
+ k© (A - B cos q - C sin qk) +V (R, ¥,0) {3.4)

where R is the distance between the centers of mass of the collision

' partners and u is the reduced mass for the relative motion of the

CE29~TE2. ). The potentlal energy depends

. CHZO
on only the three parameters %R,Y,C), where Y 1s the angle between R

and the body—fixed z axis of formaldehyde, and C.is the angle between

> ) .
R and the corresponding x axis.

. A model potential of ‘the form

i » -
Vv = }1;1 F, exp [-R;°/S;1 | (3.5)

. 'was adopted for the hydrogen,molecule—formaldehyde interaction. This
.type of potential was used in order to make'the results comparable

: . . .2 .
with quantum mechanical calculations™ which were in progress at the



~10-
time .this work was begun. The sum is over the four. atoms making
‘up the formaldehyde and Ri2 is the équare of the distance between
the ith atom of formaldehyde and the H2 center of mass, Table I
lists the values of the parameters that were chosen for this work.

' of the atoms for the

The S, vai;es were chosen so that the "sizes'
energy range considered Qould be coﬁparable to the usual Van der
Waals radii of theée elements in organic compounds.

This model potential is admittedly quiﬁe crude in that it
neglecté the long range attractive forces and that the short range
‘repulsion is not steep enough. Howevér, the quantity of interest
for the astrophysical problem is the relative size of two cross
sections, so that the detailed form of the pbtential beyond that
which determines the effec;ive sizes of . the atoms may not significantly
affect the result. The presumed effect of an attractive part of the
‘potential would be to give the collision ﬁartner a higher kinetic
energy'ﬁhen it hits the repulsive.wall. It would be more important
in grazing collisions, but at the kineticvenergies considered it is
probable that these collisions would not be able to effect the
necessary ené:gy'transfer. Consequently, it is believed that the
major‘éffect of the neglected attractive wéll on the inelastic cross
sections would'Be to shift the results in energy without dramatically
;affecting their shape.

The étructure‘of formaidehyde given in fef. 8 was adoptéd for

7

this work since it is the same as that used in ref. 2 and 3. The

“

. . 8 . .
values given for the rotational constants are AO = 282,106 Mc;

Bo = 38,834 Mc; and Co = 34,004 Mc which correspond to an asymmetry
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parameter K of ~0.9610644, The a&opted struqthre and the
poordinate syste@.used afe shown in Figure 1. The yalues of
the structural parameters with respéct'td-the center of mass
as showﬁ in Figurg 1b are then: r = 0.9943 as T, = 1.2925'ao,
Ty = 2,9948 a&,'6 = 37.296.V.Thg enetgies.and values of v for
all the j = 1 and j = 2 rotatioﬁal states of formaldehyde are
given in Table II. Ihe distances réquired in Eq. (3.5) are now
given in_terms of the structural parametérs and the potential

paranmeters (R,Y,C) by

R 2 R2 +r 2 _ 2 Rr cosY
) o
R 2 Rz +r 2 +2Rr cosyY
c c c
2 2 2 ,
RH = R" + Ty + 2 R Ty (sin § cos ¢ ~ cos Y cos §)

=

ol
==
+
=

jan]
!

2 R 1, (sin § cos £ + cos ¥ cos §) (3.6)

Eveniat the low collision ehergiés emﬁloyed the excitation
.of the j = 1 states to j = 2 states is a'ﬁclassically alfL_owed"l3
pfocess, i,e., there are real-valued classigal trajectories which
lead tp these transitions. (There will also be somé‘coﬁtribution
from complex—Valued claséical trajectories, but thislhas been

' ignoréd in the preseﬁt work.) 1In general there are a number of
different classical trajeétories (up to 8 in the present application)
which contribute fo each specific S-matrix element; because of the
.small difference in the cléséical actiong aloﬁg such trajectories

it is important not to use the ''primitive" semiclassical expression,
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Eq. (3.2), but rather the appropriate uniform asymptotic

4 ) :
6c,6d,1 The semiclassical results discussed in

expression.
the following section have all been "uniformized" in this way.
Fér the Monte Carlo trajszctory calculations it was decided
‘to modify the standard .pfocedures4 somewhat because only a few
values of J, 21, and 22 contribute to the sums in Eq. (3.1) at
these low coliision energies. Proceeding along the 1iﬁes of
‘ref. 6¢5'therefore, J and 21 were retained aé integers and
the Monte Carlo §rocedure used to calculate the square médulus
of S-matrix elements individually, Appendix C gives‘the details
oflthis as it pertains to the atom-asymmetric rotor collision

system. °
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IV. RESULTS AND DISCUSSION.

' The cross sections for the rotational excitation of the 111

.. and 1l states to the 2., and 2l states of formaldehyde are shown

0 12 1

' in‘Figufe 2; the solid 1ine'is-the result of the Monte Caflo
classiqal trajectory calculatioen, éﬁd the points are the semi-~
classical values at energieg of 10, 11, 12, and 15°K. ~ The
‘semicléssical results show a strbﬁgiinterference structure which
is not quenched By‘the sums in Eq. (3.1).bécause so few terms
contribute. As éxpectgd;ls the purely classical results do not
‘reprodﬁce this structure but appear to give the a&eragé result
réagonably well, Sincé these cross sectioﬁs would be averaged
over aiémobth distribution of tfanslationél energies in computing
rate constants, the inﬁerference structure would not likely be |
important; if this is the case,-then the classical Monte Carlo
results would be sufficient. This isvéﬁite encouraging, of
"course; for the classical Monte Carlo trajectory qalculations are
considéfably easier to cérry out than the semiclassical ones.
Figure 3a shows tﬁe classical Monte Carlo results for the
1., ~» 1- éross section as a function of céllisioﬁ energy L.

11 710

Since microscopic reversibility implies- that

i Y49 =573 Qg * 1) o . (4.1)

o 10 © *11’

1 10 levgls, Ae = 0.23182°K,

where Ae is the splitting of the'l1 and 1

4

10 11 11 10

essentially equal at the energies E considered.

the cross sections for the 1. > 1., and 1. > 1, transitions are
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Although a number"of_addit_ional'coppiicationsl6 must be taken
into account in:a'complete analysis of the "anomalous" absorﬁtion
of formaldehyde, the following treatment may be of interest. If’
the rate of the dipole-allowed sbontaneous decay of the j = 2

states to the j = 1 states (i.a., 2., = 1.. and 2

127 11 11 7 o) vere

infinitely fast compared to inelastic collision rates, and if the
11 states were neglibly slow,

radiative rates between the 110 and 1
“then simple‘c'onsiderations3 imply that the steady-state ratio R

of population of the 1ll state to .that of the 110 state would be

R= [0y = 19) + 02, = 1;4)]

oo

[6(1;4 « 1;)) + 02, «1;))] R 4.2)

This quantity is shown as.a function of colliSion energy in Figure
3b, the Cross séctioné being Lhé Monte Carlo trajectory results
from Figures 2 and 3a. 'The.tempe:atufe T relating the 1ll and 110
levels is defined}by

R = exp (Ae/kT) S | (4.3)
R = 1,1 and 1.2, for example, implies a temperature T = 2.4°K and
' 1.36K, respectively. With fhe cross sections replaced by ones
suitéﬁiy averaged over trénslational energy—-—which wouid effecﬁively
smooth out the R versus E relatibn in Figure 3b--this is in good
.qualitative agreement with the obéerVed; population'ratio correspondimg
to T v 1.8°K. |

In summary, therefore, the results of our calculations do

show_that rotational excitation of formaldehyde from the l11 and



- =15~
'110 levels. to ?hé 24, level is favored oYe#'that to the 2,y level,
in accord with Townes and'Cheung,3 ahd the ﬁagnitudé of thgveffect
is consiétent wifh this beigg the'cooling mechanism responéible
for the anémaloué absorption of formaldehyde'iﬂ iﬁtefstellar‘dust
clouds. The weakest aspect of thevpreseﬁt célculationé is probably-
the interaction potential, although it would also.be useful to

have completely quantum mechanical scattering calculations to

check the reliability of the classical and.semiclaésical results.
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* APPENDIX A. SEMICLASSICAL TREATMENT OF THE ASYMMETRIC ROTOR

Let x,y,z be the principal axes of the molecule with

I_>1

5 2 > IX. For a prolate symmetric top Iy = Iz and for an

y
oblate symmetric top IX = Iy. The classical Hamiltonian is

waxz .Iywyz ,.IzwzZ o :
Hf 5 + 2_+‘ 5 : . (A.1)

where the w's are the angular velocities about the appropriate
axes. Now introducing the Eulasr angles 0,4, of the body17 we

have

(.0‘{ = (I) sin O sin l!) +é cos ¥ : .

wy = é sin 6 cos ¥ - 6 sin P

w, = $ cos O + ¢ : (A.2)
so that

p¢ = wax sin O sin Y + Iywy151n 0 cos Y + Izwz cos 8

Pg = Ix@x cos Y -~ ?ywy sin Y

pw = Izwz . » ' (A.3)

are the momenta conjugate to the Euler angles. Inverting the

momentum relations gives -
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p, sin'y , p, cos O sin Y
jo=Iw, = — + p, cos U - v
X X% sin 6 ) ' sin 9
p, cos ¥ | : - o :
I ) a c ¢os 8 cos
Iy sin O Pg Sin ¥ » Py sin 6 (a.4)
i, =o»,

for the body fixed components of the rotational angular momentum.

- The Hamiltonian is now

: o : _ . 2
: ‘ py sin U] _ . Py, cos 6 .sin ¥
H(esfb»lp’PeaP(papw) = A _';E"e_— + pe.COS Y - sin ©
beos v p eosboosv]?
) o Py 0« 2 ‘
+ B [—%;E—E—- Pg sin U | sin 0 + pr (A.5)
‘where A = ;l;-~B -k c - 2 and the s uare of the magnitude -
e a 2IX3 21 s 2-[2 s5q ‘ agn e
of the angular momentum is -
2 .2 2 2 2 1 |2 2 |
i =37+ 3 " +3 " =p, + p, +p, = 2p, p, cos %] (a.6)
x Ty Tdg TP Yo [ o TPy T Py Py
L P 2B A =~ C
- The asymmetry parameter ¥ is defined by K = A -¢ %o that
. K =+ 1 for an oblate symmetric top and kK = - 1 for a prolate symretric

top. The quantity E(K)fwhich can be calculated quantum mechanically

is defined by

2 E =.<a‘+ c) i G+ L + (é-—.c) E (K) (A.7)

)

) .
where a = h" A etc. -
We'now_eliminate Py in favor of j, the magnitude of the rotational

. ' . . 16
angular momentum by a canonical transformation using an F2 generator.
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This generator is

—

1 j2 cos 0 -mk

5 212) (520

F, (0,6,0,3,mk) = ¢ m+ k+j cos

-1 |m cos & -k ~1lk cos 9 -m
- m cos e -k cos — (A.8)
5 4 e
sin © Vj'—m‘2 A | sin © ”sz-kz
where m = p¢ is the component of 3 along the space-fixed z axis
and k = pw is the.component of 3 along the body-fixed z axis,
Now the new coordinates (which are the coordinates canonically
conjugate to j,m,k) and the transformed Hamiltonian are
—1‘ j2'COS'é';‘mk . -
qj = cos (a.9)
,- ‘J’j 2_R2V' 4242 : :
: ~1]mcos 6 - k -
q, = ¢ - cos | ————=xz=
. Q/.E 2
sin 0% j -m
' -l11k'cos 6 - m
q =¥ = cos o
. .2 ,2
’ sin 8% 3 -k" |
H{j,k,m,q.,q, ,q ) = j2 [A sihz q, + B cos2 q, ]
; ] ] 3 j 3 lc’ m ] k k
+ k2 [C - A sin® Qe --'B.cos2 qk] (A.10)

)

Since 9 is the only coordinate present in the Hamiltonian, it is

now obvious that j and m are coaserved whereas k is not (unless A = B).
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It éan now be seen from (A.10) that we have an effectively
~ one-dimensional problem and that the semicléséical energy levels
might be calculated by applying the Bohr-Sommerfeld quantization -
" rules to the k, 9y system (with j as a constant parameter). This
would give
| 1

- 1 27 E -~ jz.(A.sinzqk + B coszqkilz o S

27h [n + =)= dq, | — : (A.11)
2 k .2 .2
0 C - A sin q - B cos 9 _

with 32 = 12§ (§ + 1). In the limit A = B (¢ = +1) we would get

the correct quantum result that n = K_ but in the limit B = C

+
(k = —1) we will not get n = k_. This is because the integral in

2

@a.11) is singular for jz(B - 4) sin
_ so that the solution in the x = +1 limit will not go smoothly into
the solution in the K = -1 limit.

It is then desirable to seek a new momentum in which the

N . ' . 2
quantization can be carried out. Define n" by

n2 = (1 + k) jéz - (1 - K)“sz_ ‘ - (A.12)

. so that the classical'Hamiltonian becomes

Cisa .2 (A~-¢C 2 ' :
H-(J smsnsqjsqmaqn) = B‘ J - '(—'_2"—')_ N | ‘. (A.13)

It is clear now that n2 is conserved and that if we let j2 = hzj(j+1)
D) 2 ) _ :
and v_'='D~ , the Hamiltonian is

hz
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H=bj G +1) -259.2 ‘ _ 4 (A.14)

Comparing (A.14) with (A.7) it can be seen that v is simply related

to E(K) by

E(k) =i (3 +1) - v2 ‘ , (A.15)

In the limit of k = +1, j_ = hk _jand in the limit k = -1, j_=hk_>

C 2 . . . . . .
so that n~ has the correct behavior in the two limits, In order

to transform from the k, q, set to the n;'qn set we have that
n o= A+ - Q- (7 -1 sin’ q ' (A.16)

The F, generator that eliminates k in favor of n2 is given by

2

S . | 2 _ 2 . 2
F, (3,1,4,5q) = mq_+ jq_ +fdxlfgn (-0 sin SN 1))
B J _ J 0 (L +x) + (1 - k) sin'x

Now n2 has the diﬁensioné of (momentum)z, ﬁut it can be seen from
(A.12) that n2 can take on either positive or negative values.

The integral in (A.i7) must be worked out séparately for the t&o

"signs of>n2, and it will'be seen that no logical inconsistencies
result from allowing n2 to be less than zero. Indeed, the case

that nz =.0 is exactly the point at which (A.11) becomes discontinuous.

: 2
For the case that n > 0 we have that

’ . L ,_n2 4 .2(1_K)
FZ (j’n’qj ’qk) = mq_m + JQJ + s TT(.Ys AN 'I'—' »TJ1(A.183a)
vV a+) In +j7(1-k) ] nH (=)
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where
Csin’q In3% (107

]

sin' vy =

[n2+j2(l—K)sin2qk

2 _ (-0 [12as0 = v’

T = (A.- lsb)
+K .2 2
S N RO
and T (¢,n,k) is the elliptic integral of the third kind
) ¢ P Y d";< ; . V .
H (»¢:n’k) =f - [—"—-* B .
0  (14n 'sinz. o) %1—1(4 sin® a e
The coordinate conjugate to n is given by
q nFyL,r) (2.19)

n.: - v
| “%l(1+l<)‘[_j2(1-l<) + %)

~da

. is the elliptic integral of the

‘kz.sin2 o

o ¢
- where F(¢,k) =f .
first kind and Y, r are the same as in (A.18b).

For n2'< 0 not all values of 9 areb'ﬁczlas,'sically allowed.

~ Since k (nz,qk) is given by

[z Z .2 . | | ‘
x "‘%F*(l K) 3 sin- qp v C (A.20a)
7 . » 8 '

(14+€) + (1-k) sin %

and k must be real, we must have .

)

n% &+ (1-x) 3% sin? .20 | o (A.20D)



If the integral in (A.17) is done considering the limits
on qk by (A.20b) we get f@r nz <0

2

n.

Y- (1) 320

Foldomagsq) =may + 3 a5 -

' .2 ; 2
x TGy, LA oy Cpyr, e (A.21)
. i (A-x)
. 1 L2, 1 .
where r' = = and sin” y' = —-—5—-[7 and r as in (A.18b)],
T sin'y
and
32
-

q, = = > F(y";r') - | (a.22)
ﬁ[(l—K)[j (1) - n"]

‘The Eas. (A.19) and (A.22) are all that is needed to apply

_classiéal S-matrix theory to collisions of an asymmetric rotor.

The appropriate value of nz for a quantum state of the rotor can

- be obtained from the quantum mechanical valueé of E(k) by Eq..

(A.15).‘ Although thefeyis no% no-néed to. cbtain a semiclassical

‘ prediction.of the energy levels, sﬁch a pfediction is possiblé.

In order to quantizé the asymmetric rqtdr semiclassically we

use the Bohr-Sommerfeld quantization rule -

2th(n + o) = 0 ndg | o - (A.23) .

where n is an integer and 0 is an arbitraty constant to be adjusted.

The integral in (A.23) has parametric dependence on the energy and

the magnitude of the angular momentum, which we take to be its
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quantumnvaluefYVj(j+l).. Since‘nvis a qbnstanp‘of the motion the

integral is just the -change in qn over a cbmplete cycle., Now if
the left hand side’of (A.23) is 27h (k+ +‘a+) for n2 greater than

or less than zero respectively, we get

| - - PN DI
0?0 k) (k, +a)’ = — 4y K (m) 5 (A.264a)
| ST G A + 0 |
and ‘
2 o . AvAKZ(i)
nT <0 :(A=x) (k_+a)" =—; 7 (A.24D)
. T [5G+ (I+) - V7]
A TG @) - v ey ge e e
where m = 5 and K (m) is the complete
(T4 1333+ (A-x) + v7]
elliptic integfal of the first kind.' By analogyfwith (A.12) it
may be desirable to combine (A.24a) and (A.24b) by defining:
oo e G oyl - (e G +ad? o (a.2s)
SR 5 + -1 - , '

'vwhile letting vz have the same sign as NZ. It can be seen that
- the difficulties in (A 11) arise where vz = O and that (A.24a)

‘_vand (A 24b) pass smoothly through this boundary if (A 25) is used.
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. APPENDIX B. ACTION - ANGLEVVARIABLESiFCR'ATOM'*‘ASYMMETRIC ROTOR 'COLLISIONS

In this section, Fhe conventions with regard to the rotor are
the same as in Appendik A; Let E'bg the vector from the center of
mass of the rotor to the atomn, and'd and B be the altitude énd
azimuth respéctively of this vector; The Hamiltonian is

2 I

2.& + R2 éz sin2 o) +-€? (é sin 67sin Y + é cos w)z

B=2 @2 +r
2 .
I ..o . -o‘ ZIZ L) .2 .
“+'fg (9 sin 8 cos ¥ - § sin Y)~ + 5 (¢ cos € + P)° + V(R,Y,2) (B.1l)
where Yy is the angle between R and the body fixed z axis and T is

the angle between R and the body fixed x axis. Therefore

cos Y = cos O cos a + sin O sin o sin (¢-B)
‘cos £ = sin ¢ [cos a sin 6 - cos 6 sin d éin (6-B)1]

+ cos U] sin“a‘éos (d-B) - . ' ' - (B.2)

In terms of the canonical momenta H is

p 2. p 2 ﬁ 2 , cos 6 . w 2
- . . : p,cos B sin
H=2_R + OL2+ g 5 +%v[p¢———~—yzize+pe‘cosw'-i T ]
H 2UR 2yR"sin" o : sin

' 2
. 12 Cp
{p cos ¥ - Py sin ¥ - Py £2§~9—59§Ji] + + V(R,v,2) (B.3)

+ .
N

¢ sin 6 sin ©

are as in Appendix A and

where 3D . s
Py P¢ Pw

Pp T MR
2'
P, = MR

. . ‘ .
Pp = ustinzqﬁ o (8.32)
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(note that p is thé.réduced mass ofvthe "twg—body" system where
one_body is thé atom and the oﬁher is the roforj Since ¢ andiB
only occur in the combination (¢-8),$ can be re?laced by the new
' variable € = (¢~B). This is done by the F3 geperator |

Fy (4,85 €,8) = -Bpg ~ €p, | ' | (B.4)
whicﬁ gives the'new“momenta P, = p¢ =.m. and M = p€'+ Pgs the
projection of_the total anguléf monentum on the-space-fixed z
axis;v The QfBifal éngular momentum % is now introduced by an

F, type generator using

22 pa’ . (em)?
=, + R
2LRT. 2uR7sin” o

| o | - (8.5)
p . =1} % cos o (M—m)cos a
F,(g,B8,0;%,m,M) = me + BM + L cos [—————-————] - (M-m) cos [; .3
2 Z
| - - @2 —(@—m) 1nav2 —(M—m3

The new coordinates are

2 e

3

—IIT(M-m) coé'd

B - cos ‘
. _ ' | sin aﬂlz-— (M-m) ZJ

-

+ cos-l [ (M-m) cos a - _ ‘ | (B.6)

Q; =€
: . \’ 2 2
_sin o YL = (M-n) "]

The F2 generator in Eq.- (A6) is now used (w1th replaced by Q ) and the

el
N
Il

)

new coordinates are
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¢ = cos_l[ j_z cos - mk]
T

- —l[:k cos _E’,"m]
9 = Y ~ cos ——————e—
' sin 6V %1’
< =q, - coéaL[nlgos 5 -k } | 3.7
m > .
sin 0 \j j"—m2 ’

' The spa.ce fixed components of 3 and ¥ are now given by

© e s _ 2 2
jy=-sin (Q+ q) ¥i" - m
Co Q/.z 2

j, = cos (@ + 4 ) ¥i" -
j,=m

L

| ﬁ\fzz 2 o '
. v- cos Q, - (M-m) : .
2 2= " sin sz 22 -— (M-m)2

y

V4 t

g = (M-m) i SR | O (5.8)

P

so that the magnitude of the total angular momentum J is given bty

JZ = j2 + 22 + 2m(M-m) + Q%Z—mz 9,2-(M-m)2 sin a o (B.9)

It is now desired to replace w by J, and to express Y and f in terms

of the final angle variables, The first is done with the generator
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F4 (3,8,M,m; J,j,z,M)

2.2 2. 2 [ 2 2 2 2 2 2],
-l V[(J +37=07) - 2m J + 0 sin—l m{J +L -1 )-MJI-2"-37)

gy’ | eyeiem”

J sin

L
2.2 020 2 o [,2,.2 2
+ ] ,Sin_l -m(J =L ) 2] + M sin 1|4y =4 = 2MMem)
£EYi --m2 ' L ZQJJZ-MZ #2, —(M—m)2
2.2 2 S | =
- m .sinm:L (0 =j =) - 2m(M—-m) o ' - (B.10) ;
2 QIj -m % -(M—m) . v ‘
‘ where 52 = —J4 - j4 - ‘2,4 + 2J2j2 + 2J22,2 + 2j252,2
The new .coordinat.es are
r . - 3’
R | ‘m(J2+j%422)'4'2Mj2 |
q. = q , + sin :
¥ ] 2
: | & |
-11, (J2+ 2— 2) M (J2—92—‘7)] - ’
=t . J 1 .
qz_ q 9 + sin | .
. E'VQ —(M—m)
: r2, .2 .2,
q'M.= Qz + sin—l (J7+L 3 ) 2M (M-m)
| 2 —LI \[2, ~ (M- m)
-1 M(J2+j2—£2) - omi?
q ;- sin ‘
. )
' g B . (8.11)

.

" Because of the overall rotational symmetry of the system, M can be
set equal to zero irithout loss of generality. The two potential

parameters are given in this set of coordinates and momenta by



ein

cos (=

9.

29 \32i2

sin g, sin q,
b QJ]

[2 £ k cos vy - & sinq,] + cos q_ [cos q, sin q.
Z k 2 *j

n

.2 2 2 : B - o ' p
-fﬁ&l;;l_:&—l sin q, cos qj] _ _ (B.12)

223

The Hamiltonian is now given by

+V (R,Y,2)

' 2 5 4 L2 '
+ j2 [A sin? 9 + B cos” qkj + k? [C~A sin 9, - B c052

(B.13)

]
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APPLIDIX C. MONTE - CARLO TECHNIQUE FOR ASTMVILTRIC ROTOR WRA‘QITIOU

Priﬁcipally because the second "quantum numbei”;Vv, for
defining the state‘oé the asymmetric rotor is not anfiﬁteéer,,
and may be imgginary, séverai modifications must be‘made in
the standard Monte-Carlo claséical ﬁrajectory fechniqnevfor
evaluating'theVCross séctions. The classical S—mitrix.result

for the total cross section (see Egqs. 3.1 and 3.2) is given by

. Ly
(2 3+ 1) .
RO 1( e (:zJl ¥ 1)2 : | 2 : NI IROLERN I D
. i 2 j - h (C.2)
here s7 (8 _ [(__zm)s 3(22,32,\)2) 7 10(Ry3yaVy38 5315V /M (C.2)
Rg2dgsVyitysd)sV (qﬁl,q 4, '
: V1
Equation'C,l is transformed to a form suitable for Monte-Carlo
~evaluation by ignoring the phase in (C.2) and averaging over
final quantum numbers so ﬁhat the Jacobian factor in (C.Q) cancels
out, 1 _ -
We first'épproximate the infirnite sum over £, bj an integral
over 22. 1f this integral is then transforwed into an integral
. ()A./)
over d ql, the factor(?q‘ which arises cancels with the Jacobjian
. 8 '
in the squargrof the S-matrix element., We now heve:
. 2 ) - . . C_y
. 1h £
G, \SEl. v = e b2 (qJ“f']) ? f ad (——T—:*) S 5
J92Vy7y5Y 2E(25,+1)J=0 20 27 (”ri‘)
9(3,,V,) -1
X | C.3
a(q, q ) ( )
Jl’ \)l
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To complete remove the Jacobian we want to average j, and v, over

"quantum number' intervals. This is straightforward for i, but

not for v, since this is non-integer for the desired final state

and may be imaginary. Because of this last difficulty we average

over a Vv, interval rather than a v, interval and take the averages
2

of the v values for the various states as the endpoints.

We now have

N . ) ] . . ‘v J+Jl —‘24—_ ‘) .
_ _ﬂn2 , - rtop 9y
o, L& = — h (zJ+1\ . d(\) ) S dcf;)
Jz’ 231°N1 2UE(2j,+1) J=0 5-1; 32-— Viow "
: -1 |
. 2 2 2 |9(q, q,) )
.(Vtop vlow) (2mh) e

2 : 2 . L 2
where Vv and Vv, are the endpoints of the V7 :interval. It is now
-~ top “low ‘ : :

~desired to cancel out the Jacobian entirely by changing the integrals

2
over 32 and Vv

2 to 1ntegrals over q% and q, -

1 , 1 :
Slnce 1t is more convenlent to compute the traJectorles in the k,q,

set of canonical variables rather than the v,qv Set, we would‘like
expression-to involve oniy the former set. From the results in Appendix

A we have that

dq. . ' '
V1 ‘ !

o , . , 2 2z ¢
aéki .“k;TK) + (1-k) sin 9 %#vl +731-(31+l) (1-x) sin” q

(C.5)
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o 2, ' - 2
80 .that J d(\)z) = 2\)2 f-dvz = ).\)2 S Tq dq\)
v 1
L
av, (aﬁoi)
= 2\)2 S 'aq\) a_ql’ qul
i ¥

If we insert a function ¥ that is one if a ‘trajectory falls in the

appropriate j,, v; "box" and sero otherwise we get finally

. . BN £ 5 ' q, q
: w2 : 1 -1 7.\ 5.\ k
: h % )
o (B) e oL S anl>f(21rl)f d(21rl)

3paVgtigeyy 2ME (2541) A J=0 zl=|J-Jl| 0 0 0

XV,
2 C.6)

X

. V(l""() + (1-Kx) sin qkl V\)l le(Jla'—l) (l—K). sin qkl

‘where A is-thé length of the vg_”box". Ea. (C.6) is now in a form

amenable to Monte-Carlo evaluation 'and is the desired result.
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TABLE I. Values of Parameters Chosen for the Model Potential

_ ' 2
Atom Fi-(Hartrees) N Si (ao )
o ’ 1.0 - 0.88333
C 1.0 - ' 0.970
H | 1.0  0.75667

1,2
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TABLE II. Formaldehyde Energy Levels®

State (J
k

01

10

02

11

00

11

12

21

20

B R

0.

3.49579

15.17141

15.40323
10.48396
21.93119
22.62665
57.65349

57.65691

N

=3
]

0.03894

.=1.92213

—1.96166‘

0.11738
~1.80532
~1.92213
-7.80532

-7.80590
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The standard ordering of rotational constants as indicated at

the beginning:of SectiOn.II would make the C-0 axis the x axis

of the molecule. The component of'g on this,axis (k' of Eq.
(2.3b)) is thus a nearly cdnsgrved quéntity. For mathematical
simplicity, the CO axis will be taken to ﬁe the body fiﬁed Z axis
in the remainder of this section so that the prime on k' will be

dropped.‘
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Figure 1.

Figure 2.

Figure 3.
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FIGURE CAPTIONS

(a) The geometry of formaldehyde; see ref. 8.

(b) The coordinate syétem for formaldehyde.

Cross sections for the indicated rotational excitations
in Hz'(spherically symmetric ) + H2CO collisions as a
function of initial rélative translational energy; The
solid lines are the results of the Monte Carlo classical
trajectory calculacions and the points the semiclassical
valﬁés; the solid (open) points correspond to the upper
(iower) curvé; The eﬁergetic threshold for all four

transitions is 7°K %+ "N ,5°K (see Table II).

(a) Cross section .for the.lll +'llO (and essentially

also the 110>+'11

P .
HZCO’ as a function of initial translational energy.

(b) The cross section ratio, defined by Eq. (4.2),

l) transition in collisions H2 and

as a function of initial translational energy.
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