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Abstract

Relation merging is employed in relational databases in
order o reduce the need for joining relations. Merging,
however, can create unnormalized relations. In this paper
we propose a merging technique that preserves the high
(Boyce-Codd) normal form of relational schemas consist-
ing of relation-schemes, key dependencies, referential
integrity constraints, and null constraints. The additional
constraints generated by this merging technique can be
effectively maintained using the mechanisms provided by
several relational database management systems.

1. Introduction

Relational schema design usually pursues the development
of normalized schemas. Normalization leads to decreased
data redundancy and therefore implies simpler procedures
for maintaining database consistency and better update
performance. The normalization process tends to increase
the number of relations by splitting unnormalized relations
into smaller, normalized, relations. Conversely, decreasing
the number of relations in a database by merging relations
reduces the need for joining relations, and usually results
in a better access performance. The process of merging
relations, however, may conflict with normalization by
creating unnormalized relations. ldeally, the design pro-
cess should result in a relational schema which is both nor-
malized and has as few as possible relation-schemes. This
goal is pursued by both normalization (e.g. see [1]) and
Entity —Relationship oriented methodologies for designing
relational schemas (e.g. see {14]). We examine briefly the
shortcomings of the merging techniques involved in these
methodologies.

Relation merging was first used in syathesis normal-
izaton algorithms. Thus, the synthesis normalization
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T6SFOO098.

algorithin presented in [1] involves a step of merging rela-
tions with equivalent keys. Consider, for example, two
relation-schemes, TEACH (COURSE, FACULTY) and OFFER
(COURSE, DEPARTMENT), both having COURSE as key. Fol-
lowing the synthesis algorithm of [1], these relation-
schemes can be merged into a new relation-scheme whose
key is also COURSE: ASSIGN (COURSE, FACULTY, DEPART-
MENT). Suppose that the attributes of TEACH and OFFER
are not allowed to have null values. Then ASSIGN has
equivalent information-capacity [8] with TEACH and
OFFER, only if attributes FACULTY and DEPARTMENT are
allowed to have null values in ASSIGN, such that in every
ASSIGN tuple at least one of these attributes has a non-null
value. Such restrictions, defining the way in which nulls
should appear in relations, were disregarded in the early
normalization algorithms, These restrictions can be expli-
citly expressed using null constraints (9], or implicitly
expressed using the Universal Relation assumptions [10].

An altemative approach to relational schema design
has been proposed by the proponents of data models that
have more semantic intuition, such as the Entty-
Relationship (ER) [2] and Extended Entity-Relationship
(EER) ([11], [14])) models. The ER and EER models are
widely used for designing relational schemas: first, an ER
or EER schema is specified, and then the ER or EER
schema is translated into a relational schema. In [11] we
have shown that ER and EER schemas can be represented
by relational schemas in Boyce-Codd Normal Form
(BCNF), consisting of relation-schemes, key dependencies,
referential integrity constraints, and null constraints. For
example, following [11], the ER schema of figure 1() is
represented by the BCNF schema RS of figure 1(ii). Infor-
mally, object-sets are represented by relation-schemes,
existence dependencies implied by object connections are
represented by referential integrity constraints, and null-
value restrictions on EER attributes are expressed by null
(nulls-not-allowed) constraints. Regarding the goal of
reducing the number of relations in a database, the ques-
tion is whether a single relation-scheme can be used for
representing multiple object-sets.



Most ER and EER-oriented design methodologies
recommend using a single relation-scheme for represent-
ing a binary many -to-one relationship-set and the entity-
set involved in that relationship-set with a many cardinal-
ity. We have shown in [11] that methodologies such as
that of [14] result in relational schemas that are incon-
sistent with the semantics of the corresponding ER or EER
schema. Consider relational schema RS’ of figure 1(iii),
which, following [14], represents the ER schema of figure
1(i). Then, contrary to the semantics of the ER structure
of figure 1(i), RS’ allows a WORKS relation to include
tuples representing employees having a non-null assign-
ment DATE, even if these employees are not working on
any PROJECT (i.e. with a null NR value). Consequently,
additional constraints need to be specified in order to
ensure that the database is consistent with the semantics of
the corresponding ER schema. In relational schema RS,
for example, relational attribute DATE should be con-
strained to have a null value whenever attribute NR has a
null value in a WORKS relation in order (o represent accu-
rately the association of ER attribute DATE with
relationship-set WORKS; such restrictions can be expressed
using null constraints.

In this paper we propose a relation merging tech-
nique for velational schemas consisting of relation-
schemes, key dependencies, referential integrity con-
straints, and nuils-not-allowed constraints. We do not
consider alternative relational representations based on the
Universal Relation assumptions {10}, because their capa-
bility of expressing constraints is limited, and because
their underlying assumptions cannot be maintained using

commercial relational database management systems
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Fig. 1. Relational Schemas Representing an ER Schema,

(DBMS). We define a merging procedure that preserves
the information-capacity amd normal form of relational
schemas. We show that in general merging requires the
introduction of addiional null constraints for restricting
the way in which null values appear in merged relations.
For example, relation-scheme WORKS of figure 1(iii) must
be associated with null constraint DATEESNR (read ‘non-
null DATE requires non-null NR') in order to ensure that in
a WORKS relation attribute DATE has a null value whenever
attribute NR has a null value. It tums out that in certain
cases only nulls-not-allowed constraints (i.e. constraints
that restrict attributes to non-null values) are required. For
example, relation-schemes EMPLOYEE and MANAGES of
relational schema RS of figure 1(ii) can be merged into
relation-scheme EMPLOYEE' (§SN, NR), where attribute SSN
is not allowed to have null values, attribute NR is allowed
to bave null values, and no other null constraints need to
be specified.

Employing effectively the merging procedure pro-
posed in this paper depends on the capabilities of the
underlying relational DBMS. An increasing number of
commercial relational DBMSs support key dependencies,
referential integrity constraints (which are  key-based
inclusion dependencies), and nulls-not-allowed  con-
straints. For such systems we examine under what condi-
tions the merging procedure does not require the introduc-
tion of additional constraints. In general, however, the
merging technique presented in this paper may involve
more complex null constraints and non key-based inclu-
sion dependencies. Then the merging procedure can be
employed only if the underlying DBMS provides a
mechanism for maintaining such constraints and depen-
dencies, such as the triggers mechanism of SYBASE 4.0
[13] and the rules mechanism of INGRES 6.3 {6].

As mentioned above, relational schemas consisting
of relation-schemes, key dependencies, referential
integrity constraints, and null constraints may represent
EER schemas [11). Applying the merging procedure
developed in this paper on relational schema translations
of EER schemas shows that multiple object-sets are amen-
able for representation by a single relation-scheme not
only for the standard binary many-to-one relationship-set
case, but for more complex structures as well,

The paper is organized as follows. In section 2 we
introduce the relational concepts and notations used in this
paper. The background for the merging technigue is dis-
cussed in section 3. The merging technique is developed
in section 4. In section § we discuss several aspects of
applying our merging technigue to schemas of databases
developed using commercial relational DBMSs, and to
relational schema translations of EER schemas. We con-
clude the paper with a summary.,



2. Preliminary Definitions

We review briefly below the relational concepts used in
this paper; details concerning these concepts can be found
in textbooks such as {9].

A relation-scheme is a pair R;(X;), where R; is a
relation-scheme name and X; is a set of artributes. Every
attribute is associated with a domain, ang every reiation-
schemc is associated with a relation consasting of tuples .

We denote by 1 a tuple, and by 1 [W] the subtuple of
1 corresponding to the attributes of W. A null value is
denoted null, and a wple consisting of k null values is
denoted null*. A tuple is said to be total iff it has only
won-null values. Two attributes are said (0 be compatible
if they are associated with the same domain, and attribute
sets X and Y are said to be comparible iff there exists a
one-to-one correspondence of compatible attributes
between X and Y.

Let R,(X;) be a relation-scheme associated with
relation r;, and let W be a subset of X;. The projection
of r; on W is denoted my, (r;), and is equal to set of tuples
{t[(W:1|2 € r;}. The total projection of r; on W is
denoted mdy (r;), and is equal w the subset of toral
tuples of my (r;). Renaming W inr; to a set of attributes
Y compatible with W is denoted rename (r;; W «Y ),
and generates a relation associated with attribute set
(X;=W) Y, that is equal to set of tuples {t'|rer;,
1 [(Xi=Wl=1(X;—W], and ' [Y] =1 [W])].

Let Ri(X;) and R;(X;) be two relation-schemes
associated with relations r; and r;, respectively; let ¥ and
Z be two compatible and disjoint subsets of X; and X;,
respectively; let k; and &; denote the number of attributes
in X; and X;, respectively. The equi~join of r; and r; on
(Y = Z) is denoted r; de?rj, and is equal to set of tuples

{r1t[X;1e r,, t[X;) € r;, and ¢[Y]=1[Z]}. The outer-
equi-join of r; and r; on (Y = Z) is denoted r,«yb‘azr,», and
is equal to the union of three relations, ry, r,, and ry,
where: ry= réyb_dzrj. ry= |t tt[X,-]=dek', t(X;]ler;,

and Bt'e r; st t'[Y1=1(Z]), and ry={r|t{X;]e r;,
tIX;)=null™ and Bt" € r;y st t [Y)=1"[Z]}.

Let R;(X;) be a relation-scheme associated with
relation r;. A functional dependency over R; is a stale-
ment of the form R;: Y—Z, where Y and Z are subsets
of X' R;: Y—Z is satisfied by r; iff for every two tuples
of i, tand ', 1Y) =t [Y] unplies t[Z]=1'[Z]. A key
associated with R; is a subset of X;, K;, such that
R; . K;—X; is satisfied by every r; associated with R; and
there does not exist any proper subset of K; having this
property. A relation-scheme can be associated with several
candidate keys from wbich one primary key is chosen. If

all functional dependencies associated with R; involve in
their left-hand sides supersets of keys, then K; is said to be
in Boyce-Codd Normal Form (BCNF),

Let Ri(X;) and R;(X;) be two relation-schemes
associated with relations r; and r;, respectively. An inclu-
sion dependency is a statement of the form R; [Y] ¢ R, [Z],
where ¥ and Z are compatible subsets of X; and X;,
respectively, R;[Y] ¢ R;(Z] is satisfied by r; and r; iff
rly (r) € mdz (r;). If Z is the primary key of R; then
Ri[Y] < R;[Z}] is said to be key ~based, and Y is called a
SJoreign key in R;. Key-based inclusion dependencies are
usually called referential integrity constraints [4).

A relational scherna RS is a pair (R, A), where R is
a set of relation-schemes and A is a set of dependencies
and constraints over R. A database state r of (associated
with) RS consists of the relations associated with the
relation-schemes of R; state r is said 1o be consistent iff it
satisfies the dependencies and constraints of A,

It is well known in database design that the same
data can be structured in different ways, that is,
represented by different schemas, provided that these
schemas have equivalent information-capacities {8). We
are interested only in relational schemas that preserve the
atiribute values. This requirement is captured by the
information-capacity equivalence defined below, which
follows the definition of generic equivalence of (8).

Definition 2.1 . Two relational schemas, RS and RS, are
said to have equivalent information-capaciry iff there exist
total functions ¢ and ¢’ such that:

1. ¢ maps consistent database states of RS into con-
sistent database states of RS’

2. ¢’ maps consistent database states of RS’ into con-
sistent database states of RS,

3. the composition of ¢ followed by ¢ is the identity
on the set of all consistent database states of RS'; the
composition of ¢ followed by ¢ is the identity on
the set of all consistent database states of RS

4. For any database state r of RS, ¢ preserves the data
values of r ; similarly, for any database state r’ of
RS’ , ¢ preserves the data valuesof r’ .
Informally, a schema RS’ has equivalent

information-capacity with a schema RS, if RS’ can be
associated with the same number of database states as RS,
that is, not only every legal database state associated with
RS must be exactly reconstructed from its mapping into a
database state of RS’, but every database state associated
with RS’ must be mappable into a database state of RS

t A database state mapping ¢ is said to preserve the data values of
a database state r iff the values of §(r ) are included in r.



3. Background for Merging Relations

In this section we examine the main aspects of the merg-
ing technique developed in this paper, and introduce the
null constraints involved in this technique.

In a relational database, real-world objects are
represented by tuples and are identified by primary-key
values. We assume that every relation in a database
represents a homogeneous set of objects, and that relations
associated with compatible primary-keys represent
semantically compatible sets of real-world objects.
Accordingly, in order to avoid creating relations that may
represent heterogeneous sets of semantically incompatible
objects, we consider for merging only relation-schemes
that are associated with pairwise compatible primary-keys.

Let R denote a set of relation-schemes targeted for
merging, and let 7 denote the set of relations associated
with the relation-schemes of R. Merging must preserve
the tuples contained in the relations of 7, and therefore it
involves outer-equi-joining on (compatible) prismary-keys
the relations of F. However, instead of being joined
directly, the relations of 7 are outer-equi-joined with a
key--relation that contains all the primary-key values
appearing in the relatons of 7. The result of an outer-
equi-join may contain redundant attribute values that must
be¢ subsequently removed. Consequently, the merging
technique developed in the next section involves:

1. outer-equi-joining a key-relation with the relations
involved in merging; and

o

projecting out the redundant attribute values from
the result of the outer-equi-join above.

The key—relation is defined below.,

Definition 3.i. Let RS = (R, A) be a rclational schema,
and let R be a subsei of R consisting of relation-schemes
wat have pairwise compatible primary-keys. A relation-
scheme Ry (X, ) is said to be a key—relation of R iff (i) R,
has it primary-key, Kj, that is pairwise compatible with
each of the primary-keys of the relation-schemes in R, and
(ii) for every database state associated with RS, the rela-
tion associated with R, ry, satisfies the following condi-
tion: mg () =\_Ug ¢ g( rename (ng (r;), KieK,)). W

We consider in this paper relational schemas con-
sisting of relation-schemes, key dependencies, key-based
inclusion dependencics, and null consiraints. We show
below that for such schemas the key-relation of R can be
one of the relation-schemes of R.

Proposition 3.1, Let RS = (R, F U I U N) be a relational
schema, where R, F, I, and N denote sets of relation-
schemes, key dependencies, key-based inciusion depen-
dencies, and null constraints, respectively. Let R be a
subset of R consisting of relation-schemes that have

"
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pairwise compatible primary-keys. Let R, belong to R,
and let sets Refkey (R,, R and Refkey*(R,. R) be defined
recursively as follows:
¢ Refkey (Ro, R)=(R;| Ri e R\ Ri[K,)c R.IK,) e I);
o Refkey'(R, R)= Refkey (R, R) _
(R, ¢ Refkev(Ro B) Refkey*(R;, R).

Then my (r,) = UR, ¢ & (rename (e (r), KK ,)) for
every database state associated with RS,
iff R ={(R,) U Refkey' (R, R).
Proof Skeich. Straightforward, following the definition of
inclusion dependencies. W

Note that if a set of relation-schemes R defined as
above does not contain a key-relation, then a new
relation-scheme, Ry (K)), can be specified as a key-relation
of R, that is, so that K}, is pairwise compatible with e¢ach
of the primary-keys of the relation-schemes of R, and so
that for every database state associated with relational
schema RS, R, is associated with relation relation ry,
where r; = UR e & (rename (ng (r;), Ki «Ky)).

For example, let R comsist of relation-schemes
OFFER and TEACH of figure 2, and let ry and rp be rela-
tons associated with OFFER and TEACH, respectively. A
relation-scheme Re can be a key-relation of R if the
primary-key of R¢, say CN, is pairwise compatible with
O.CN and T.CN, and if the relation associated with R, re,
satisfies the following condition: men(re) = rename
(Toen(To), O.CN—CN) 1 rename ( Top.oniro), TCNCN).
Then merging relation-schemes OFFER and TEACH into a
new relation-scheme ASSIGN (see figure 2) involves a state
mapping defining the relation associated with ASSIGN :

{

$ v .
Ty =re To rr. Note that if relation-

CN=Q4WN ~ CN=TCN
schemes OFFER and TEACH are not involved in any inclu-
sion dependency, then atuributes 0.CN and T.ON are redun-
dant in ASSIGN; however, if OFFER and TEACH are involved
in the right-hand sides of two distinct inclusion dependen-

cies, then these attributes are not redundant in ASSIGN. If

relation-schemes OFFER and TEACH are involved in inclu-
sion dependency TEACH|T.CN] ¢ OFFER|O.CN] then, follow-
ing proposition 3.1, OFFER is a key-relation of R, and
merging OFFER with TEACH involves outer-equi-joining
relations ry and ry.

R = (OFFER (Q.CN, O.DN) . TEACH (T.CN, T.EN))
— Merge — ASSIGN (CN, O.CN, O.DN, T.CN, T.EN)
f_ﬁ_{ibreviations : CN=COURSE NUMBER, DN=DEFT NUMBER,
FN=FACULTY NAME, O=0FFER, T=TEACH

Fig. 2. Relation-Scheme Examples (kevs are underlined).




The result of an outer-equi-join is a relation, r,,, that
usually contains null values; these null values must be res-
tricted in order to ensure that the joined relations can be
reconstructed from r,, without losing or adding informa-
tion. Such restrictions are called null constraints and are
defined below. A null constraint is a single-tuple restric-
tion on where and how nulls should appear in a relation
[9]. In the following definitions R;(X;) denotes a relation-
scheme, and r; denotes a relation associated with R; (X;).

A null-existence constraint is a statcmnent of the
form R; : :YE5Z, where Y and Z are subsets of X;;
. YA Z is satisfied by r; iff for every tuple ¢ of r;,
r[Y ] is total only if t{Z] is total. A nulls-not-allowed con-
straint is a null-existence constraint of the form
R : @5 Z, that is satisfied iff every subtuple t[Z] of r;
is total. In relations associated with relation-scheme
ASSIGN of figure 2, for example, ASSIGN: T.CN™5 0.CN does
not allow tuples that contain null 0.CN values together with
non-null T.CN values, while ASSIGN:@"5 0.CN does not
allow tuples containing null 0.CN values.

A null-synchronization set ns a set of null-existence
constraints, of the form (R; : A; Evy | A; € Y}, denoted
R;:NS (Y)Y, R;: NS(Y) is mmﬂcd by r; iff for every
tuple t of r;, 1[Y] is either total or consists entirely of null
values (i.e. cannot be partly null). Consider relation-
scheme ASSIGN of figure 2; the two null-existence con-
straints of ASSIGN:NS (T.CN, T.FN) do not allow in relations
associated with ASSIGN tuples ¢ comtaining partly null
1 [T.CN, T.FN] subtuples.

A part-null constraint is a statement of the form
R, ' PN(Y,,... Y,,), where ¥;, 15j<m, is a subset of X;;
R, : PN(Y,,.... Y,,) is satisfied by r; iff for every tuple t of
ri, at least one subtuple ([Y;], 1sj<m, is toal. In rela-
tions associated with relation-scheme ASSIGN of figure 2,
for example, ASSIGN: PN ({O.CN, O.FN}, {T.CN. T.FN}) ensures
that in every tuple ¢ of such relations either subtuple
{[T.CN, T.FN], or subtuple 1 [0.CN, O.FN], or both are total.

Finally, a total-equality constraint is a statement of
the form R; : Y =L Z ., where Y and Z are compatible
subsets of X;; R; : ¥ =l Z is satisfied by r, iff for every
wple 1 of r;, 1[¥Y]=1[2Z]) whenever both 1[Y] and 1 {Z]
are total. Consider again relation-scheme ASSIGN of figure
2, total-equality constraint ASSIGN: T.CN=l O.CN ensures
that in every tuple of relatons associated with ASSIGN,
non-null values for attributes T.CN and O.CN are equal.

Inference axioms for null-existence constraints have
the form of the inference axioms for functional dependen-
cies (see [9]). Irference axioms for total-equality con-
straints are anatogous to the inference axioms for the
equality constraints of [7]. Null-existence, total-equality,
and part-null constraints do not interact with each other.

4. A Relation Merging Technique

In this section we develop a relation merging technique
that preserves the information-capacity and normal form
of the relational schemas on which it is applied.

4.1 Merging Relation—Schemes

We define below a procedure for merging relation-
schemes in relational schemas of the formmn
(R,Ful UN), where R, F, I, and N denote sets of
relation-schemes, key dependencies, key-based inclusion
dependencies, and null constraints, respectively; such a
schema is shown in figure 3. We assume that the attri-
butes are assigned globally unique names in the schema.
Let R be a subset of R consisting of relation-schemes
associated with pairwise compatible primary-keys; merg-
ing the relation-schemes of R implies mapping
(R,FuUl UN) into a new schema, (R, F"UI"UN"),
where R’ results by replacing the relation-schemes of R
with a new relation-scheme, R,,, and F’, I’, and N’ consist
of adjusted key dependencies, inclusion dependencies, and
null constraints, respectively. For the sake of simplicity,
we assume that initially the attributes associated with
relation-schemes of R are not allowed to have null values.

Definition 4.1. Let RS =(R, F Ul U N) be a relational
schema, where R, F, I, and N denote sets of relation-
schemes, key dependencies, key-based inclusion depen-
dencies, and null constraints, respectively. Let R be a
subset of R consisting of relation-schemes associated with
pairwise compatible primary-keys, so that every relation-
scheme R;(X;) of R is associated with nulls-not-allowed
constraint R; : ot Let Ry (X;) be a relation-scheme

Relation-Schemes (underlined keys )
(1) PERSON (P.SSN)  (5) DEPARTMENT (D.NAME)
(2) FACULTY (FSSN) (6) OFFER (0.C. NR O D. NAMF.)
(3) STUDENT (8.8SN)  (7) TEACH (T.C.NR.
(4) COURSE (C.NR) (8) AS‘SIST(A(‘N A 5 SSN)
Inclusion Dependencies
(1) FACULTY [F.SSN] [
(2) STUDENT [S.SSN) < PERSON [P.SSN)
(3) OFFER |0.C.NR] ¢ COURSE [C.NR]
(4) OFFER {0.D.NAME] & DEPARTMENT [D.NAME]
[
[os
[

PERSON [P.SSN}

(5) TEACH [T.C.NR] OFFER [O.C.NR}

(6) TEACH [T.F.SSN] FACULTY [T.SSN]
(7) ASSIST {A.C.NR) OFFER [0.C.NR]

(8) ASSIST [A.S.SSN] < STUDENT [S.SSN]
Null { nidls —not —allowed ) Constraints

(1)PERSON: @ JS P.SSN (5 DEPART MLNF @ EX DNAME
2) FACULTY: @ -5 FSSN  (6) OFFER: @ n-‘,o C.NR, O.D.NAME
(3) STUDENT: @-—-’5355N (7) TEACH: QJ-!)T( NR, T.ESSN
(4) COURSE: @ ESCNR  (8) ASSIST: @ ES A.CNR, AS.SSN
Abbrevzam o A=ASSIST, C=COURSE, D=DEPAKTMENT,
F=FACULTY, O=OFFER, S=STUDENT, T=TEACH

Fig. 3. A Relational Schema.




defined as follows: if R contains a key-relation, R,, then
Ry:=R,, Xp:=X,, and K;:=K,; otherwise X, = K}, where
K, is disjoint with the attribute sets associated with the
relation-schemes of R, and for every database state associ-
ated with RS, R, is associated with relation r,, where
= U, ¢ g (rename (1g (ri), Ki-Ky) ).

Merge (R) applied on RS generates relational schema

RS '=(R’,F'ul’ UN’") as follows:

1. R’ results by replacing in R the relation-schemes of R
with a new relation-scheme, R, (X, ), such that
K, =K, and X,, = X; Uraer X

2. F’ results by replacing the key dependencies involving
primary-Keys associated with the relation-schemes
of R with key dependency R,, : K,, —X,,;

3. N’ is generated as follows:

a. the nulls-not-allowed constraints associated with the
relation-schemes of R are replaced with nulls-not-
allowed constraint R,, 08X,

b. for every relation-scheme R;(X;) of R, if K, #K,,
where K; is the primary-key of R;, then total-
equality constraint R,, : K,, = X; is added to N”;

¢. for every relation-scheme R;(X;) of (R - {R; ), if
X; consists of more than one attribute, then the
null-existence constraints of null-synchronization
set R, : NS (X;) are added to N,

d. if R, does not belong to R, then part-null constraint
R,, : PN (X,,.., X,) involving the attribute sets
associated with relation-schemes R;(X;) of R,
1<i<n, is added toN";

e. for every inclusion dependency of !/ of the form
R;[Z] < R;[K;], where R; and R; belong to R if
K' # K, then null-existence conslraml R, :X; ~->X
is added to N';

4. 1" results by (a) replacing R; with R,, in every inclu-
sion dependency of I involving a relation-scheme
R; of R, (b) replacing K; with K,, in every inclusion
dependency of /', of the form R,, [Z] < R, [K;]; and
(¢) removing from /’ inclusion dependencies of the
form R, (K;] € R, [K,,]. where K; is the primary-
key of a relation-scheme of R .

Merge (R) is associated with two stare mappings, M and
n’, where m maps a database state r of RS into a database
state 7* of RS’, and " maps a database state r’ of RS’
into a database state F of RS, as follows:

N is identity for relations of r associated with relation-
schemes of (R — R); and maps set of relations 7 =
{r.lr; € r,r; is associated with R; of R\ into r,, as
follows: (i) r,, = ry; (ii) for each R, of R = (R,))

do ry, =rp DaK‘r,v;

m 5

n is wentity for relations of (r' —r,); and maps rela-
tion r,, into relations 7; = 7'c~LX/(r,,, ), where X; is the
attribute set of a relation-scheme R;(X;)of R. W

Merging the relation-schemes of R into a new
relation-scheme, R, involves defining the relation associ-
ated with R,,, r,,, as the outer-equi-join of a key-relation
with the relations of 7, where 7 consists of relations asso-
ciated with relation-schemes of R. The set of dependen-
cies and constraints generated by merging ensure that the
relations of 7 can always be reconstructed (by total projec-
tion) from r,,. Thus, the total-equality constraints require
the tuples of r,, to satisfy the join conditions involved in
the definition of r,,; attributes that are not associated with
the key-relation are allowed to have nuil values in r,,; the
null-existence constraints of a given null-synchronization
set ensure that in every tuple of r,,, a subtuple (of the form
t[X;]) corresponding to a tuple of a relation of ¥ cannot
have both null and non-null values; the part-null constraint
ensures that in every tuple of r,, there is at least one total
subtuple corresponding to a tuple of a relaton of r; the
(inner-relational) null-existence constraints generated in
step 3(e) express the inter-relational existence constraints
implied by the inclusion dependencies involving pairs of
relation-schemes of R. Finally, the key dependencies
removed in step 2 and the inclusion dependencies
removed in step 4(c), are implied by the new key depen-
dency and total-equality constraints, respectively by the
total-equality and null-existence constraints (generated in
step 3(e)), and therefore are redundant.

Two examples of applying Merge on the relational
schema of figure 3 are shown in figures 4 and 5; in both
examples the key-relation is relation-scheme COURSE,
While in the example shown in figure 4 merging involves
only relation-schemes COURSE, OFFER, and TEACH, in the
example shown in figure 5 merging involves an additional
relation-scheme, ASSIST. The following proposition shows
that Merge preserves the information-capacity (in the

Relation-Schemes 4, 6, and 7 are replaced by
COURSE’ (C.NR, O.C.NR, O.D.NAME, T.C.NR, T.F.S§N)

Inclusion Dependencies 3 to 7 are replaced by

() :COURSE' [O.D.NAME] ¢ DEPARTMENT [D.NAME)

(10) : COURSE' [T.F.SSN] G FACULTY [F.SSN]

(11): ASSIST [A.C.NR} < COURSE” [O.C.NR]

Null Constraints 4, 6, and 7 are replaced by the

© @B CNR: following null constraints for COURSE”:

(10) NS (O.CNR, O.D.NAME); (11) NS (T.C.NR, T.F.SSN);
(12) TCNRT.E.SSN E$0.C.NR,O.D.NAME;
(I3)CNR =L O.CNR; (14) C.NR=lT.C.NR

Fig. 4. Applying on Relational Schema of Fig. 3
Merge (COURSE, OFFER, TEACH),




sense of definition 2.1) and the normal form of the sche-
mas on which it is applied.

Proposition 4.1. Let RS, RS’, R, and Merge be defined
as in definition 4.1, so that RS = (R", F' W I" U N’ ) is the
result of applying Merge(R) on RS =(R,F Ul UN).
Then (i) RS and RS’ have equivalent information-
capacities; and (ii) the relation-schemes of R’ are in BCNF.
Proof Sketch. (i) The proof refers to the conditions of
definition 2.1, and regards only the relations affected by
merging; for the first two conditions, the proof follows the
definition of i and n’; for the third condition, the proof
follows from the fact that Merge preserves the primary-
keys associated with the relation-schemes of R, and that
the outer-equi-joins involved in M are on primary keys, the
last condition is obviously satisfied. (ii) The proof that all
functional dependencies implied by (F' Ul UN’) are
key dependencies is based on the fact that the closure of F
can be computed independently of I (see [3]), and on the
inference axioms for total-equality constraints and func-
tional dependencies (see (7]). &

The attributes involved in the total-equality con-
straints generaied by Merge scem o be removable
without any effect on the information-capacily of the rela-
tional schema. Since Merge preserves the normal form
(BCNF) of relational schemas, these potentially redundant
attributes are not a source of update anomalies [9].
Removing redundant attributes, however, simplifies the set
of null constraints associated with merged relation-
schemes, as well as reduces the size of the relations asso-
ciated with merged relation-schemes. A procedure for
removing redundant attribuies is specified below.

4.2 Removing Redundant Attributes

We define below the conditions characterizing redundant
attributes in relation-schemes generated by Merge , and
then specify a procedure for removing such attributes.

Relation-Schemes 4, 6, 7, and 8 are replaced by :
COURSE"(C.NR, O.C.NR, O.D.NAME, T.C.NR, T.F.8SN,

A.CNR, AS.5SN)
Inclusion Dependencles 3 to 8 are replaced by :

(9) : COURSE"” [0.D.NAME] ¢ DEPARTMENT [D.NAME]

(10) : COURSE" [T.F.SSN] ¢ FACULTY [F.SSN]

(11) : COURSIEE” [A.S.SSN] & STUDENT {S.SSN]

Null Constraints 4, 6, "/, and 8 are replaced by the
following null constraints for COURSE":

©) @B CNg; (19) NS (O.C.NR, O.D.NAME);
(11) NS (T.C.NR, T.E.SSN); (12) NS (A.C.NR, A.S.SSN);

(13) TCNR,TFSSN 50.C.NR‘O.D.NAME;
(14) A.CNR,A.S.SSN BO.C.NR.O.D.NAME;
(15) C.NR =l O.C.NR; (16) C.NR =l T.C.NR; (17) C.NR =} A.C.NR

Fig. 5. Applying on Relational Schema of Fig. 3
Merge (COURSE, OFFER, TEACH, ASSIST ).
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Definition 4.2. Let RS, RS’, R, and Merge be defined as
in definition 4.1, so that RS’ =(R’, F' UI'"UN") is the
result of applying Merge (R) on RS, and R, (X,,) is the
result of merging the relation-schemes of R. Let X; be a
subset of X,,, such that X; is associated with relation-
scheme R; of R, and let ¥; be a subset of X; involved in a
total-equality constraint associated with R,,, such that
Y; # K,,. Then Y, is said to be removable in R, if the fol-
lowing conditions are satisfied:
MiX,-rv, |21,
(2) Y; is not involved in the right-hand side of /” inclusion
dependencies of the form R; [Z] C R, [Y;]. R; #R,,.
(3) If Y; is involved in the left-hand side of an I’ inclusion
dependency of the form R, [Y;] < R;(K;], R; #R,,,
then for every subset of X,, W, involved in a total-
equality constraint associated with R, /' includes an
inclusion dependency of the form R, [W] C R, [K].
(4) Y; does not overlap with other foreign-keys of R,,, that
is, if attributes of ¥; are involved in the left-hand side
of an I’ inclusion dependency of the form
R,IWICR/[K;],%; #R,,,then W =Y,. B

For example, O.CNR, T.C.NR, and A.CNR are remov-
able attributes in relation-scheme COURSE” of figure 5.

Note that an attribute that is removable in a merged
relation-scheme associated with attribute set X,,, is not
necessarily removable in a merged relation-scheme associ-
ated with a proper subset of X,. Let R,(X,) and
R’ (X'y) result by applying Merge (R) and Merge (R"),
respectively, on a relational schema RS, where R’ is a
subset of R. Then X', is a subset of X,,, but because of
condition (2) of definition 4.2, a cornmon subset of X, and
X', can be removable in R,,, but not in R’,,. For exam-
ple, while attribute O.CNR is removable in relation-scheme
COURSE” of figure 5, 0.C.NR is not removable in relation-
scheme COURSE' of figure 4.

Definition 4.3. Let RS, RS’, R, and Merge be defined as
in definition 4.1, so that RS'= (R', F"UI"UN") is the
result of applying Merge (R) on RS, and R, (X,,) is the
result of merging the relation-schemes of R. Let Y; bea
subset of X,,, removable in R,,. Remove (Y;) applied on
RS’ generates RS” =(R"”, F" O I" WN")as follows:

1. R results by removing the attributes of Y; from attri-
bute set X, associated with R,,,;

2. F" results by replacing in key dependencies of F’ every
attribute 4 of Y; with an attribute of K, that
corresponds to A in a total-equality constraint of N';

3.1 results by replacing Y; with K,, in inclusion depen-
dencies of I” of the form R, [Y;] < R;[K;];

4. N results by removing (a) the attributes of ¥; from the
part-null and null-existence constraints of N', and

W [ T A TR RR TR 1T S TIRT! W (TR o
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(b) total-equality constraint R, : K,, =4 Y; from N’

Remove (Y;) is associated with two state mappings, |
and ', where | maps a database state r’ of RS’ intoa
database state r” of RS”,and p’' maps a database state
r’ of RS" intoadatabase state r’ of RS’, as follows;
f is identity for relations of r’ associated with
relation-schemes of (R’ — (R,, }); and maps relation

r'm associated with R, into r”p, = my _y (r'm):

is identity for relations of r” associated with
relation-schiemes of (R’ ~ {R,, ]); and maps relation

” . : . . e "
r” ., associated with R, , into 7 = r%, KNY
n =1

(rename (mg (mdg oy _p\(r"m)) Ky ¢ V7)) B

An example of applying Remove is shown in figure
6, where attributes O.C.NR, T.C.NR, and A.C.NR are succes-
sively removed from relation-scheme COURSE” of figure 5.
The following pioposition shows that Remove preserves
the information-capacity (in the sense of definition 2.1) of
the relational schemas on which it is applied.

Proposition 4.2. Let RS, RS’, R, and Merge be defined
as in definition 4.1, so that R, (X,,) in RS’ is the result of
merging the relation-schemes of R. Let RS”, Y;, and
Remove be defingd as in definition 4.3, so that ¥; is a
removable subset of X,,,, and RS " is the result of applying
Remove (Y;) on RS’. Then RS’ and RS’ have equivalent
information-capacities.

Proof Sketch. The proof regards only the relations (asso-
ciated with R,, ) affected by removal, and refers to the con-
ditions of definition 2.1. The last condition is obviously
satisfied. For the first two conditions, the proof follows
the definition of the state mappings; note that replacing
inclusion dependencies of the form R, [¥;] © R, [K;] with
R, [Km) & R;[K;] can be accomplished because of condi-
tions (3) and (4) of definition 4.2, For the third condition,
the proof follows from the fact that the primary-key of R,,
is not affected by Remove note that condition (1) of
definition 4.2 is essential for satisfying this condition, and
that if condition (2) of definition 4.2 is removed and the
replacement of Y; with K, in inclusion dependencies of
the form R;[Z] < R,, [Y;] is allowed, then the third condi-
tion of definition 2.1 would not be satisficd, ®

Remove is applied on COURSE" of figure 5 for:
O.CNR, TCNR, and A.CNR

Relation-Scheme COURSE” is replaced by

COURSE” (C.NR, O.D.NAME, T.F.SSN, A.$.SSN)
Inclusion Dependencies involving COURSE” are unchanged
Null Constraints involving COURSE” are replaced by :
@B CNR, TESSNESODNAME ASSSN B50.D.NAME

Fig. 6. Applying Remove on Relational Schema of Fig, §.

5. Applications of the Merging Technique

In this section we discuss several aspects of applying our
relation merging technique to relational databases that are
implemented using a commercial relational  database
management system (DBMS), or to relational schemas
developed using an EER-oriented design methodology.

5.1 Relation Merging for Relational DBMSs

The relation merging technigue developed in section 4
involves merging relation-schemes into a new (merged)
relation-scheme, and removing redundant attributes from
the merged relation-scheme; a merged relation-scheme is
associated with various null constraints, may be involved
in non key-based inclusion dependencies (that are not
referential integrity constraints), and may be associated
with candidate keys that are allowed to be null. Some
relational DBMSs do not have mechanisms for maintaining
general null constraints, candidate keys that are allowed to
be null, and non key-based inclusion dependencies; for
such DBMSs our merging technique can be applied only
when such constraints and dependencies are not generated.

Non key-based inclusion dependencies are not sup-
ported by DBMSs such as IBM's DB2 [5], but can be main-
tained in DBMSs such as SYBASE 4.0 [13] (using the
triggers mechanism) and INGRES 6.3 {6] (using the rules
mechanism). However, ¢ven in SYBASE and INGRES non
key-based inclusion dependencies are harder to maintain
then key-based inclusion dependencies. Keys that are
allowed to be null cannot be maintained in DBMSs (e.g.
SYBASE, INGRES) that consider all null values as identi-
cal. The conditions ensuring that Merge gencrates only
key-based inclusion dependencies and keys consisting
only of attributes that are not allowed to have null values,
are given below (the type of inclusion and key dependen-
cies is not affected by Remove ).

Proposition 5.1. Let RS, RS’, R, and Merge be defined
as in definition 4.1, so that RS = (R, F" U I" UN" ) is the
result of applying Merge (R) on RS, and R, (X,,) is the
result of merging the relation-schemes of R. Then (i) /7
contains only key-based inclusion dependencies iff every
relation-scheme R; (X;) of R that is not a key-relation, is
not involved in the right-hand side of inclusion dependen-
cies of the form R;[Z) C Ri(K;], R; ¢ R and (ii) the key
attributes associated with R, are not allowed to have null
values iff every relation-scheme R;(X;) of R that is not a
key-relation, is associated with a unique (primary) key.
Proof Sketch. The proof follows the specification of
Merge . B

Some DBMS5s provide mechanisms for maintaining
general null constraints. For example, the validproc
mechanism of DB2, the friggers mechanism of SYBASE
4.0, and the rules mechanisin of INGRES 6.3 ¢an be used



to maintain null constraints. However, these mechanisms
require tedious and error-prone specifications of pro-
cedures, and therefore are difficult to use. Conversely, all
relational DBMSs support declarative (non procedural)
specifications for nulls-not-allowed constraints. The fol-
lowing proposition gives the conditions ensuring that the
set of null constraints generated by Merge and simplified
by Remove , consists only of nulls-not-allowed constraints,

Proposition 5.2. Let RS, RS’, R, and Merge be defined
as in definition 4.1, so that RS’ is the resuit of applying
Merge(R) on RS =(R, F Ul UN), and R, (X,,) is the
result of merging the relation-schemes of R. Let Remove
and RS” be defined as ia definition 4.3, so that the result
of removing all removable attributes from R, (X,) by
applying Remove is RS”"=@R"”,F" wI”" UN")._Then
N"" contains only nuils-not-allowed constraints if R con-
tains a relation-scheme R, (X,) such that for every
relation-scheme R;(X;) of R, R; # R, the following con-
ditions are satisfied:

(1) R;[K;] ¢ Ry [Ky ] belongs to 1.

(2) |2} =1, where Z =X; - K;, (ie. R; has exactly one
non primary-key attribute).

(3) R; is not involved in the right-hand side of any inclu-
sion dependency of .
(4) In addition to R;{K;] ¢ Ri(K,]), R; can be involved
only in the left-hand sides of inclusion dependencies of
! baving the form R;[Z] < R;(K;] or R, [K;] < R, [K;],
where R; ¢R; bowever, if R;[K;] < R;[K;] belongs to
I then R, [K; ) < R;[K;] also belongs to /.
Proof Sketch. Note that condition (1) implies that
relation-scheme R, is a key-relation of R. For part-null
and total-equality constraints the proof follows from the
definitions of Merge and Remove. Regarding null-
synchronization sets, nuli-existence constraints with empty
right-hand sides are trivially satisfied. Finally, if all inclu-
sion dependencies of I involving relation-schemes of R in
both their left-hand and right-hand sides, are of the form
specified in (1) above, then Merge generates only null-
existence constraints that are either nulls-not-allowed con-
straints or belong to a null-synchronization set. W
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Fig. 7. An Extended Entity-Relationship Schema.,

5.2 Relation Merging for Relational Schema
Translations of EER Schemas

Relational schemas consisting of relation-schemes, key
dependencies, key-based inclusion dependencies, and null
constraints may represent EER schemas. The relational
schema of figure 3, for example, represents the EER
schema of figure 7. Translations of EER schemas into
relational schemas are discussed in detail in [11]. Note
that if in relational schema translations of EER schemas
every relation-scheme represents a single EER object-set,
then the set of null constraints consists only of nulls-not-
allowed constraints involving primary-keys and foreign-
keys [11] (e.g. see figure 3). These constraints express the
usual restriction of not allowing EER entity-identifier attri-
butes to bave null values, and comply with the simplifying
assumption in the definition of Merge .

ER and EER-oriented design methodologies for
relational schemas recommend using a single relation-
scheme for representing a binary many—to-one
relationship-set  and the entity-set involved in that
relationship-set with a many cardinality [14]. The result
of applying the merging procedure developed in this paper
on relational schema translations of EER schemas, shows
that a single relation-scheme can be used for representing
more complex structures as well (see figure 8). Such com-
pact representations are especially useful for representing
large generalization hierarchies whose specialization
entity-sets are not involved in relationship-sets (see figure
8(i)). In most cases these compact representations require
only additional null constraints. For example, in each of

Fig. 8. EER Structures Amenable for Representations
Involving a Single Relation,




the EER structures shown in figure 8 multiple object-sets
can be represented using a single relation-scheme; how-
ever, while for the EER schemas of figures 8(i) and 8(ii)
this representation involves general null constraints, for
the EER schemas of figures 8(iii) and 8(iv) whis representa-
tion involves only nulls-not-allowed constraints. The con-
ditions of proposition 5.2 imply that multiple object-sets
can be represented by a single relation involving only
nulls-not-allowed constraints, only if these maultiple
object-sets consist of:

(1) an entity-set E; and its specialization entity-sets, pro-
vided that these specialization entity-sets (a) have no
specializations of theit own and are directly general-
ized only by E;, (b) are not involved in relationship-
sets or weak entity-sets, and (c) have exactly one (not
inherited) attribute of their own (see figure 8(iii)); or

(2) an object-set O; and binar' many-to-one
relationship-sets in which O; is involved with a many
cardinality, provided that these relationship-sets (a)
have no attributes, (b) are not involved in any other
relationship-set, and (¢) O; is associated by these
relationship-sets with entity-sets that are not weak and
have single-attribute identifizrs (e.g. see figure 8(iv) ).

Consider, for example, the EER schema of figure 7.
Entity-set COURSE together with relationship-sets OFFER,
TEACH, and ASSIST do not satisfy the conditions above,
and, indeed, these object-sets can be represented using a
single relation-scheme (such as relation-scheme COURSE”
of figure 6) only if this relation-scheme is associated with
null-existence constraints. Conversely, relationship-sets
OFFER, TEACH, and ASSIST, satisfy conditions (2.a), (2.b),
and (2.c), and therefore can be represented using a single
relation-scheme that is associated only with nulls-not-
allowed constraints.

6. Summary

We have preseitted in this paper a merging \echnique for
relational schemas consisting of relation-schemes, key
dependencies, referential integrity constraints, and null
constraints. We have examined the conditions required
for using this technique with relational DBMSs that pro-
vide different mechanisms for maintaining null and
referenual integrity constraints, For relational schemas
developed using an EER-oriented design methodology, we
have shown that a relation-scheme can be used for
representing multiple object-sets not only for the standard
binary many-to-one relationship-set structure, but for
more complex structures as well,

Variations of the merging technique presented in
this paper have been implemented as part of a database
Schema Definition and Translation wol (SDT) {12]. Given

10

an EER schema, SDT generates the corresponding schema
definition for various relational DBMSs, such as DB2,
SYBASE 4.0, and INGRES 6.3. SDT provides the options
of (i) establishing a one-to-one correspondence between
the relation-schemes in the relational schema and the
object-sets in the EER schema (i.e. not using merging), or
(ii) using merging for reducing the number of relation-
schemes in the relational schema.
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