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Abstract 

An overview of the continuum reguluization program is given. The 

program is traced from its roots in stochastic quantization, with emphasis 

on the examples of regularized gauge theory, the regular_ized general non­

linear sigma model and regularized quantum gravity. In its coordinate­

invariant form, the regularization is seen as entirely geometric: only the 

supermetric on field deformations is regularized, and the prescription pro­

vides universal nonperturbative invariant continuum regularization across 

all quantum field theory. 
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! . Introduction 

The continuum regularization program (1-13) is now complete, so this con­

ference provides an ideal opportunity to summarize our results and put the 

program in some perspective. Earlier partial reviews of the program are found 

in (14,15]. 

The starting point of the program is the observation that stochastic quan­

tization (16-18) sees to the heart of the ultraviolet problem. The result of the 

program is a universal geometric prescription for nonperturbative invariant con­

tinuum regularization of all quantum field theory. In spirit, the regulator might 

be compared to lattice gauge theory and lattice gravity, except that we preserve 

all relevant continuum symmetries including coordinate invariance. In fact, the 

regulator is interpreted as an invariant all-order covariant derivative or proper­

time regularization. 

In ita final coordinate-invariant form, the prescription is seen as entirely ge­

ometric, with all regularization contained in regularized DeWitt superstructures 

(19] on the space of field deformations. Indeed, as will become dear in these 

lectures, completion of the program has given birth to regularized (infinite­

dimensional) supergeometry. 

After a brief review of relevant background in Section 2, I will follow the 

historical development of the program, beginning with the regularization of the 

scalar prototype (3] (Section 3), gauge theory (1,2,4,5, !2] (Section 4), gauge 

theory with fermions (6] and superfield supersymmetry (i). Section 4 also re­

views the regularized Migdal-Makeenko equation (13] which is the projection of 

regularized large N gauge theory onto loop space. 

In Section 5, I introduce the universal geometric form of the regularization 

(8-10], which begins in phase space (9,11). The previous regularizations of the 

program (1-7] are special cases in nat space and nat superspace. As examples, 

I discuss the following topics. 

I. Nonperturbative geometric characterization of the Weyl anomaly in the 

presence of the regulator for the general two dimensional non-linear sigma 

model (Section 5.5). The anomaly is the invariant trace of the regularized 

supermetric [9]. 

.­\ _) 
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2. Regularized integration of the momenta (9) (Section 6), which is the rigor­

ous passage from regularized phase-space to regularized coordinate-space 

formulations. Regularized coordinate-space supergeometry is generated 

automatically in the passage. 

3. Regularized Euclidean quantum gravity (8-10) is discussed as an explicit 

example in Section 7. Here I also review the Schwinger-Dyson stabilization 

mechanism (8-10) and its stochastic counterpart (20, 8-10), which allows 

the treatment of bottomless actions such as Euclidean gravity. 

2. Background 

_2.1 Stochastic quantization 

The first stochastic process was studied by Langevin (16) in 1908. Reviews 

of the field through 1981 are found in (17). The subject was brought to the 

allenlion of particle physicists in 1981 by Parisi and Wu (18), whose proposal of 

fifth-lime stochastic quantization is an elegant covariant generalization of tJle 

real-time stochastic quantization studied earlier by Nelson (21). 

The formal (unregularized) coordinate-invariant stochastic processes (8-10) 

invented for use in the regularization program are generalizations of the following 

early work: processes on group manifolds (22), finite-dimensional coordinate­

invariant processes on arbitrary manifolds (23-25), and scalar phase-space pro­

cesses (26) on flat space and flat superspace. 

2.2 Advantages of stochastic quantization 

Deing a change of variable to a Gaussian noise '7, stochastic quantization 

is equivalent to action and Hamiltonian formulations. The important physical 

question has always been to find the advantages of the stochastic ~ethods. In 

fact, the approach has given birth to a number of new ideas which are by no 

means obvious in more conventional quantizations. Among these, I mention 

Zwanziger's nonperturbative gauge-fixing (27, 28), large N quenching (29, 30), 

large N master fields (30), stochastic stabilization (31), the QCD4 maps (32) 

which run in ordinary Euclidean time, and numerical applications in lattice 

gauge theory (33). The regularization program (1-15) itself stands high on the 

list since stochastic quantization sees into the ultraviolet problem (see Section 

2 
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3) in a way that the conventional quantizations cannot. 

2.3. Zwanziger's gauge fixing and the flow gauges 

I remark in particular on Zwanziger's stoc:;hastic ghostless d-dimensional 

gauge-fixing (27-28), since we employ it naturally in the program. The pro­

cedure is somewhat mysterious from the d-dimensional action point of view 

because it is in fact a Faddeev-Popov "flow gauge" fixing (28) 

Aj+l = a- 18 · Aj, a= 1, ... ,dim g (2.3.1) 

in a (d + 1)1limensional action formulation of the d1limensional gauge the­

ory. Not surprisingly, the flow gauges are also ghostless and infrared soft. The 

flow-gauge equivalence automatically (28) provides ordinary ( d + 1 )11imensional 

Slavnov-Taylor (34) and BRST identities (35) for Zwanziger's gauge-fixing of a 

d-dimensional theory. The flow gauges were independently rediscovered in (36), 

without discussion of the stochastic connection. 

2.4. Early regulator proposals 

Early ideas about stochastic regularization are found in (37-42). I note 

in particular that the regulator of Niemi and Wijewardhana (38) is a Parisi­

Sourlas (43) analogue of our scalar prototype in Section 3. The non-Markovian 

regularization of (39) is incompatible with Zwanziger's gauge-fixing (40). The 

regularization of Doering (42) is identical to the scalar prototype. 

2.5. Five formulations of quantum field theory. 

A quantum theory is defined by an action (S) and a supermetric (Q). For 

example 

Z = j(dx)v'Qe-s (2.5.1) 

is th.e action formulation. The variahle changes of stochastic quantization have 

explored the following system of five equivalent formulations 

Action +-> Schwinger-Dyson 

df l-- -- l -- -- l-- --
(d + 1) ! 

stochastic +-> Fokker-Planck +-> Fifth action (2.5.2) 

3 

~ .-



where the d-dimensional formulations above the dashed line correspond to the 

(d + I)-dimensional formulations below, which include the extra Markov time 

t (also called fictitious ot fifth time) as the (d + I)st dimension The stochastic 

process is the Nicolai map of the fifth action formulation. • Early work on Nico­

lai maps as stochastic processes include (43-46, 24, 32). The interpretation in 

(2.5.2) is d=number of space-time dimensions. To obtain d=number of spatial 

dimensions and t = ordinary time, read instead 

e-s ~¢~=(ground state wave function) 1 

action ~ Hamiltonian 

fifth action -+ action (2.5.3) 

so that the real time stochastic process is the Nicolai map of the ordinary d­

dimensional Euclidean action. This is the older interpretation of Feynman and 

of Nelson (21). 

Given ad-dimensional theory, our scheme regularizes only (1-3] 

l. the stochastic formulation in (d + I)-dimensions 

2. the Schwinger-Dyson formulation in d-dimensions. 

This is a consequence of the n<rgo theorem of Lee and Zion-Justin (47), who 

showed in 1972 that covariant-derivative regularization of the action fails at the 

one-loop level (gauge-invariant improvement of the propagator cancels against 

growth of the vertices): although no divergences are present in the regularized 

stochastic or Schwinger-Dyson formulations, any attempt to force the scheme 

into an action formulation, including Fokker-Pianck and fifth-actions, will re­

quire divergent action counterterms at fixed cutoff (2]. The final interpretation 

of the n<rgo theorem is that action formulations are an unnatural language for 

covariant derivative regularization. 

'The question of supersymmetry and stochastic pr<>eeMee arises at the fifth-action level 

(or the action level ror real time procesees). In ract, there is no fini~time supersymmetry (or 

rermions) BSSOCiated to a single stochastic process (4f>-46, 24, 32) since the determinants are 

defined with retarded boundary condition: Finite-time supersymmetriee are generally 81180ci­
ated to a family or distinct stochastic processes (24), although an infinite time supersymmetry 

may be present ror a single equilibrating process. 

.­
" 
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3. The Scalar Prototype 

The formal stochastic process in (d +I)-dimensions 

. 6S . r. 
<J>~(x,t) =-

6
</> (x,t) + vlil](x,t) (3.Ia) 

(IJ(x,t)II(Y,T)) = 2611(x- y)6(t- T) (3.Ib) 

corresponds to the scalar theory Z = f V</> exp( -S) in d-dimensions. We con­

sider instead the Markovian-regularized process (2) 

6S I l/l.,(xt) =-
6

</>(xt) + (dx).fi&R(D).,u'l(Y,t) 

where the regulator R may be taken as (2,5) 

R- { R.. = (1- ~)-" 
- Ru = exp(D/i\1} 

(power law) 

(heat kernel) 

(3.2) 

(3.3a) 

(3.3b) 

and o = o,.o,. is ordinary laplacian. The basic idea of the regularization scheme 

[1,2,14) is seen by choosing an interaction and expanding </>., into the usual 

Langevin tree graphs, each leg of which now ends in a regularized noise factor 

.,JAR!]. The loops of the theory are formed by contracting the white noise '1 

according to (3.1b), so that every closed loop contains at least one power of the 

regulator squared in the form liR1 • It is clear that the stochastic quantization 

has gone to the heart of the ultraviolet problem, and that our regularization of 

the noise will render the theory finite for proper choices of the regulator R. 

Detailed results (2) are as follows. For any polynomial int.eraction in d­

dimensions, the finite-time Green functions of the theory are ultraviolet-finite 

to all orders when we choose power law regularization 

R,.: n ~ [d;2] (3.4) 

where (x) is the greatest integer$ x. For the heat-kernel regulator Ru, all finite­

derivative composite operators are regularized to all orders for any interaction 

in arbitrary dimension. 

The regularized d-dimensional Schwinger-Dyson(SD) system (2) 

0 = (LF(</>)) (3.5a) 

5 
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f 6S 6 
L = - (dx) 6~(x) 6~(x) +All (3.5b) 

f 
f>l 

fl := (dx)(dy)lf;q,(D)-_ -- (3.5c) 

is equivalent to the stochastic formulation (3.2) under assumption of equilibra­

tion . Here F is an arbitrary functional of d-<limensional ~ and the structure ll 

(in the Schwinger-Dyson operator L) is a regularized super-Laplacian. In fact, 

we generally prefer the SD formulation, especially since it is often well--defined 

when the action is bottomless (see section 7). 

The regularized Langevin diagrams of (3.2), and the regularized Schwinger­

Dyson diagrams of (3.5), add to Feynman diagrams in the formal regulator limit 

R-+1 
A-oo 

(3.6) 

but the Langevin and Schwinger-Dyson diagrams are quite different in the pres­

ence of the regulator (2), and in no sense do they correspond to "regularized 

Feynman diagrams". This is another aspect of the non-action character of the 

regularization. 

6 

4. Gauge Theory 

4.1. Regularized Parisi-Wu equation 

(_ -" 

The regularized form of the Parisi-Wu process is [1,3,5) 

..t:(x,t) =- "i~:' (x,t) + v:6Z6(x,t) + /(dy)H':,(f).)'l!(y,t) .. 
('l:(x,t)'l~(y, r)) = 26°66,..,6"(x- y).S(t- r) 

(4.l.la) 

( 4.1.1b) 

where SYM is the Euclidean Yang-Mills action in d-<limensions and zo = o-•a­
Ao, a = 1... dim g, is Zwanziger's gauge--fixing. To maintain gauge covariance, 

the regulator ( 1,3,5) 

R{f).) = { Jl.. = {1- ;t\)-n 
Ru = exp(f)./Al) 

(4.1.2a) 

(4.l.2b) 

is taken as a function of the gauge--covariant Laplacian/:).= D,.(A)D,.(A), with 

D the· gauge--covariant derivative. 

The field-dependence of the regulator introduces two new features beyond 

the scalar prototype. In the first place, expansion of the regulator in powers of 

the field is easily organized into two new regulator vertices (1,3,5) corresponding 

to one - and two - gluon emission from regulator strings . The second feature 

is the need to choose a stochastic calculus ( 17) which corresponds to the value 

of the contractions 

( ( ) { 
0, Ito calculus 

R A A) '1 = 1- 0, otherwise 
(4.1.3) 

between the noise and its regulator prefactor. 

In fact, the regularization is gauge--invariant for any choice of stochastic 

calculus, so we work with an arbitrary choice. This generates the one--parameter 

-y-family of invariant regularized Schwinger-Dyson systems [1, 3,5) 

0 = (LF(A)) (4.1.4a) 

f ) [ 6SyM + Do6z6(x)] _f>_ + ll(-y) 
L = (dx - H:(x) ,. .SA:(x) ( 4.1.4b) 

f>l 
llh) = jCclx)(tly)[R2 (1:).))~~ 6A~(y)6A:(x' 

6~(1:).) 6 
+ "'j(clx)(tly)(clz)«;'.(f).) M~.(z) M:(x) (4.l.4.c) 

7 



which exhibits the stochastic ambiguity in the regularized gauge-invariant super­

Laplacian A b) h = 0 is Ito and-,= I is Stratonovich). Detailed analysis (1,3) 

of the Langevin and Schwinger-Dyson diagrams verifies finiteness of the gauge­

field Green functions to all orders when 

> [d+ 1]' ..., ~ 0 n- 2 

> [d+3]' ..., = 0 n- 4 

(4.1.5a) 

( 4.1.5b) 

is satisfied for the power-law regulator R,.. The result (4.1.5) shows that the 

contractions (4.1.3) ace the m011t singular diagrams in the theory. The heat­

kernel regulator RH regularizes all finite-derivative comp011ite operators uni­

formly acfOIIS all (d,'"'f) (5). 

The simplest regularization chOOIIC8 Ito calculus (-y = O) and the heat kernel 

regulator R,. Then only three diagrams, one of which contains a regulator 

vertex, Contribute to the photon mass at the one-loop level (5). The cancellation 

of these contributions, so that the photon remains massless, is a satisfying check 

of gauge invaciance of the regulator in all dimensions at once. 

Perturbative renormalization of the regularized scalae prototype and gauge 

theory ace discussed in (1,4). Only the standard action counterterms, and a 

Zwanziger countertcrm, are required. Regularized gauge theory with fermions is 

studied in (6), and the standard background gauge-field anomalies are obtained. 

Regularized superfield supersymmetry is discussed in (7). 

4.2. Regularized Migdai-Makeenko equation. 

The Migdal-Makeenko equation (48, 49) is a description of large N gauge 

theory as the invariant dynamics of Wilson loops. In fact, the first-;>rder (48) 

and second~rder (49) versions of this equation correspond respectively to the 

first- and second- order unregulacized Schwinger-Dyson systems 

0 = ( (- .s1~x) + 6A;(x)) W(A;C)) 

0 = (/(dx) (- .s:~x) + 6A~(x)) 6A~(x) W(A;CJ) 

~­. ,, 
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(4.2.Ja) 

(4.2.1b) 

where W(A;C) is any Wilson loop. The program regularizes only the second­

order system (4.2.lb), which is the formal h--+ oo limit of (4.1.4) with F = W. 

It follows that we will obtain a regularized form of the second-;>rder Migdai­

Makccnko equation (13) by projecting the regularized Schwinger-Dyson equa­

tions (4.1.4) of gauge theory onto loop space. We choose the heat kernel regulator 

and the Ito form 

A(-y = 0) = /(dx)(dy)(R"h(A.)J:~ _ ... ~~ ... (4.2.2) 

of the regularized super-Laplacian for simplicity. 

The crucial identity is the representation of the SU(N) heat-kernel regula­

tor RH = exp(A./ A2) as a Gaussian integral over particle variables [50, 48) 

1•1•)=11 J.' .• (Rl )ab = Vr e-1/2 o dr • Tr[taU(r )t•U(r .,)) 
H "II r(O)=s- . S'l/ II 

(4.2.3a) 

U(r.,.,) = Peill/;drr~(r)A~(r) (4.2.3b) 

where r,.(r), the regulator path, moves from x toy in regulator proper time 

t(A) = 4/A2 • The conventional measure is implied in (4.2.3) so that, for example 

1•(•)=1/ Vr e-1/2/;dr ""Tr(tatb) = 6ab(e2D/A' ):a:., 
r(O)=s-

(4.2.4) 

reproduces the zeroth-;>rder regulator. The general form ( 4.2.3) emphasizes that 

the full regulator may be interpreted as an invariant nonperturbative general­

ization of conventional one-loop proper-time regularization. 

The regularized second-;>rder Schwinger-Dyson system (4.1.4) is first writ­

ten in terms of two Laplacians, 

0 = ((A.t +A )W(A; C)) (4.2.5) 

where ll is tl>e regularized super-Laplacian (4.2.2) on the space of gauge fields 

and 
I 1"+0 , 62 

A.t = L do .. -o do 6x,.(o')6x,.<o> 
(4.2.6) 

is the Laplacian on loop-space (51, 49). Then standard large N manipulations 

of ll W with ( 4.2.3) result in the form (13) 

At II'(C) = ~ 1 dx,. 1 dy,,l•(<)=ll Vr e-l/lf: dr r'(•lJV[C.-11r 11:a:)II'(C11rTr11) !c !c r(O)=r 
(4.2.7a) 

9 
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W[C)::: (W(A;C)), A::: g1 N (4.2.7b) 

which is an ultraviolet regularized version of the second-<lrder Migdal-Makeenko 

equation. The infamous loop-crossing at z = 11 is smoothed over a domain ((A) 
of regulator proper time. This form of regularized gauge theory may be useful 

for nonperturbative analysis. 

10 
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5. The Geometry of Continuum Regularization 

5.1 Phase space 

The advance, coordinate-invariant regularization [8-10), which I am going 

to describe in this section, is a giant step from the previous examples since it 

allows us to see that the regularization is entirely geometric, and in fact universal 

across all quantum field theory. I should say before beginning that my orig~nal 

attempts to extend the program in this direction were frustrated by certain 

divergences of formal (unregularized) coordinate-invariant stochastic processes 

in coordinate-space. It was to avoid these divergences that I turned to phase 

space (9-11), which offers the following advantages. 

1. The formal coordinate-invariant phase-space processes (9), being free of 

such divergences, are easily regularized as above, thereby extending the 

regularization prescription to all theories with Liouville measure (9). 

2. Regularized integration of the momenta [9,11) provides a rigorous path 

back to regularized coordinate-invariant coordinate-space formulations. 

(8-11), thus resolving the original difficulties in coordinate space. 

3. The regularized phase-space processes require a minimum of regularized 

supergeometry, most of which emerges automatically during the transition 

to regularized coordinate space. 

Another point of note is that, in contrast to coordinate-space processes, 

the phaSe-space processes are in fact stochastically unambiguous (9, 11), that is 

independent of the choice of stochastic calculus. 

5.2. Coordinate-invariant phase-space processes 

The formal theories we wish to regularize are phase-space functional inte­

grals of the form 

Z = j Vwe- 111-P.•I, v..... = n d~r"'(~) "d<l>"' (~) 
( 

(5.2.1) 

where 11 is a general phase-space action and Vw is Liouville measure on a set of 

generic (field) coordinates .P"'(~) and conjugate momenta ITAf(0 . Here ~m are 

d-dimcnsional spacetime coordinates and { M} may include tensor indices; for 

ll 



example, 4>"'(0 = 9mn(~) is the metric on spacetime when we study regularized 

gravity. 

As a matter of orientation, the class of theories (5.2.)) contains at least two 

important categories: 

J. Non-covariant formulations, including real-time Hamiltonian and con­

strained Hamiltonian systems. 

2. Covariant formulations with DeWitt supermetric. 

In fact, the program regularizes both [9), but explicit examples have been studied 

only in the simpler second category, for which 

II=~ J<~)wMgMN(<f>)rrN + S(4>) (5.2.2) 

where fiMN is the DeWitt supermetric (19). These theories correspond to the 

coordinate-space functional integrals 

Z = j VtP£(4>) e-st•l, £(<f>) = fl del lfiMN{tf>{e)} 
( 

(5.2.3) 

on formal integration of the momenta. The action S(<f>) may be choeen, for 

example, as 

S = ~ /<~)fiMN9"'niJ,.<f>"'8n<f>N + ... {5.2.4) 

for the general non-linear sigma model, or the Einstein-Hilbert action for gravity 

as in section 7. 

.In what follows, I assume the existence, for all theories of the form {5.2.1), 

of an inner product on field deformations 

II64>W = J<~)fiMN(4>(e>)64>NW64>''1W 

fiMN(4>(e)) = EMA(4>(e))ENA(4>(e)) 

(5.2.5a) 

(5.2.5b) 

where fiMN is the DeWitt supermetric and EMA is its supervielbein. in particu­

lar, I will assume that the superstructures are covariant under the two types of 

coordinate-in variance 

e-+ e(e) (Einstein invariance) (5.2.6a) 

12 
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4>(~)-+ ~(4>(e)) (reparametrization invariance) (5.2.6b) 

that I wish to preserve in the regularization. In fact the superstructures are not 

uniquely determined by this requirement, so that, for example, 

fiMN = gmn;ro = e [~(g"'r gn• + g"'•gnr) + -yg"'ngro] (5.2.7b) 

is a one-parameter -y-family of supermetrics on deformations of the metric in 

the reparametrization frame with 9mn a tensor. 

The general formal coordinate-invariant phase-space processes which cor­

respond to the theories (5.2.1) are then (9,11) 

irM 
611 611 [; 

= - 6<f>M - fJfiMN 611"N + y fJCMA"'A (5.2.8a) 

611 
6rrM 

~M (5.2.8b) 

("'A(e,t)qs(e',t')) = 26"sc5"(e- e')cS(t- t') (5.2.8c) 

under assumption of equilibration. In fact, the processes equilibrate to (5.2.1) 

as expected for bounded II, the rate of equilibration being controlled by the 

positive parameter {J. The DeWitt superstructures (JMN and EMA appear in 

(5.2.8) as convenient auxiliary quantities or covariant kernels, independent of 

the specific structure of the phase-space action II. 

5.3 Uniqueness of the phase-space stochastic calculus. 

A remarkable property of the phase-space (second-order) processes (5.2.8) 

is that they are stochastically unambiguous [9,ll) 
.-----. 

EMA(4>)'1A = 0, (5.3.1) 

that is, independent of the choice of stochastic calculus. This phenomenon, 

and the contrasting ambiguity of first-<Jrder (Parisi-Wu) stochast.ic processes, 

has been understood diagrammatically (11) in terms of the response of first and 

second order retarded (,P(t) = 0 fort< 0) mechanical systems 

~,(t) = 6(t) (Parisi-Wu) 

~u(t) = t5(t) (phase-space) 

13 
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to an impulse at the origin. When interpreted as the stochastic Green functions 

of first and second order processes, the undetermined value of ~~ at t = 0 

is precisely the first-order stochastic ambiguity. Correspondingly, the softer 

unambiguous response ~u(O) = 0 of the Newtonian system (5.3.2b) guarantees 

the uniqueness of the phase-space stochastic calculus. 

5.4 Coordinate-invariant phase-space regularization 

The invariant-regularized form of the general phase-space process (5.2.8) 

is (9, ll) 

li-M(e,t) =-:;,(e,t) -IJ{iMN :~ (e,t) + ~ /(cJe')£t,(;A(''IA(e',t) 

(5.4.la) 

'M 61/ 4> ce.t> =-c({,t) 
V7rM 

(5.4.lb) 

('1AU,t)'ls(f,t')) = 26As6d(e- f)6(t- t') (5.4.lc) 

where the regulator R(~) = exp(~//\2 ) appears only in the regularized super­

vielbein 
t::"A (-) •N(' I 
"M(;A(' = R A M( • ENA(4><e » (5.4.2) 

which multiplies the noise. This geometric regularization is universal aci'OflB all 

quantum field theories at once since the regularized noise controls the closure 

of all loops as discussed above. Diagrammatic expansion of simple theories are 

studied in (11). 

The regularization is invariant under the covariances of the spacetime Lapla· 

cian ~. For example, the Laplacians of general relativity suffice to maintain Ein­

stein in variance of the regularization, in analogy with the gauge-covariant Lapla­

cian for gauge theory. I call such regularization provisional, since it would be 

preferable to maintain manifest covariance under field reparamctrizations ~(~) 
as well. A spacetime Laplacian which respects both Einstein and reparametriza­

tion invariance has been constructed for the general non-linear sigma model [9), 
hut the construction of such douhly-invariant Laplacians for gauge theory and 

gravity remains an open problem. 

14 
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The corresponding phase-space Schwinger-Dyson system (9,11) 

0 = ( {F,H} + IJ(j(cJe)CiMN :~fJ:,., + A,.)F(~,~rJ) (5.4.3a) 

A,. = j (cJe)(cJe')gt,(;N(' c_ u.~:- m (5.4.3b) 

Qt,(;N(' = j (cJe")!t,(;A("Ettc•,A(" (5.4.3c) 

= j (cJe")R(~)Mc ;Pc" R(~)Nc' ;QC" {ipq(t/>(f')) (5.4.3d) 

provides the equivalent d--dimensional form of the regularization. Here {F, H} 

is functional Poisson bracket anJ gt,(;N(' is the regularized supermetric, which 

appears in the regularized phase-space super-Laplacian A,. 

Although its formal large A limit is independent of the equilibration pa­

rameter /J, the regularized system (5.4.1) or (5.4.3) describes a /J-family of 

regularizations, analogous to latticeization ambiguities, among which the case 

1J -. oo is diagrammatically the simplest (ll). Similar regularization families 

were encountered earlier in the study of regularized gauge theory with fermions 

(6). 

5.5. Geometric characterization of the general Weyl anomaly 

As a first application of the phase-space regularization, I remark on the 

Einstein and reparametrization invariant regularization of the general non-linear 

sigma model (5.2.4) in two dimensions. With 8 the invariant trace of the stress 

tensor, the exact result (9) 

(/<de)es) = (Jcc~ewt,c; "'c) (5.5.1) 

is obtained from (5.4.3) for the all-order Weyl anomaly in the presence of the 

regulator. ·According to (5,5.1), the general nonperturbative anomaly is the 

invariant trace of the regularized supermetric. 

To compare (5.5.1) with known background field results, consider flat D­

dimcnsional superspace (target space) with CiMN = ebMN· In this frame, the 

Einstein and rcparamel.rizat.ion-invariant spacetime Laplacian [9) of the sigma 

15 



mO<lel reduces to the ordinary Einstein-invariant Laplacian on scalars, and the 

result 

(l(df,)e8) = l(~ie)e [ ~: + 2~~~' R(g) + O(A-
1
)] . (5.5.2) 

is obtained by heat-kernel expansion as expected (52). The general non-perturbative 

result (5.5.1) invites further analysis on non-trivial target manifolds fiMN· 
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6. Invariant Coordinate-Space Regularization 

I now discuss regularized integration (9) of the momenta at large {J to ob­

tain the corresponding form of coordinate-space regularization in the case of 

the general theory (5.2.2-3) with DeWitt measure. As in the case of regular­

ized Grassmann integration (6), integration of the momenta at finite {J seems 

prohibitively complex. 

Analysia of the regularized phase-apace Schwinger-Dyson system (5.4.3) in 

this case implies that the large {J momentum integration is still Gaussi.an, with 

the contraction rule 
,....---, A 

li'M({)li'N({') = (}M(;N(' (6.1) 

inside any average. As a result, .. the regularized coordinate-space Schwinger­

Dyson aystem (8,9) 

0 = (LF(~)) 

I 6S ~MN_!_ + fl 
L =- (df,) 6~" 6~ 

I I llf(;NE' D 6 
A= (d{)(d{ )(;A DJJNU'\6~111({) 

(6.2a) 

(6.2a) 

(6.2c) 

is obtained from the phase space equations (5.4.3). This system is the invariant­

regularized form of the general coordinate-space theory (5.2.3) with actionS(~) 

and DeWitt measure£ = ../0. The regularization now appears in the regularized 

inverse supermetric 

G!'(;N(' = l<df'>R(6.)M(iPE"R(ll)N('iQ("gPQ(~(e")) (6.3) 

of the regularized coordinate-space super-Laplacian A. Here D/D~M is super­

covariant derivative 

D 6 [ 6 ] D~Q({') 6~P({) = 6~Q({') 6:- 6d({- e')rZp(Q) 6~R({) (6.4) 

in terms of the superconnection f3p((}) of the supermetric fiMN· 

I remind the reader that I began in phase space in part to avoid 'certain 

divergences in formal coordinate-invariant coordinate-space formulations. Now 

17 

-~~-..... -· 



i-.. 

that we have obtained the regularized coordinate-space Schwinger-Dyson sys­

tem (6.2), we can see that the problem in the unregularized formulation was 

llf(;N(' D " MN ) d I d I Ml " (I ~ ,.,,.,, [;4>M(e) 1((1 (4>(() {) ((- 0)( -6 ((- 0 .\IN) .S4>Q{e) · 

(6.5) 

Moreover, with the hindsight of the result, we can give the universal coordinate­

space regularization rule (9) 

"MN<4><W"d<e- el> ..... a!'(;N(' 

(IMN(4>{e))t;d(O) -+ a!f(;N( 

£'MA<4><(>>"d<e- n ..... £!'(;A(' 

(6.6a) 

(6.6b) 

(6.6c) 

which may be used to attain regularization of more general coordinate-space 

Schwinger-Dyson systems and stochastic processes. In particular, Chan and I 

have used this rule to regularize gravity with an arbitrary power-law Euclidean 

measure (10) (see Section 7). 

The regularized Schwinger-Dyson system (6.2) also has stochastic oequiva­

lents. For example, the corresponding regularized Ito process is (9) 

~M<e> + af(;Qcr~ca<4><e>> = -aMN<4><e>> ;~<e> + J<de1 )£"!'';A(''IA(e'> 

(6.7a) 

(11A(e,t)'IBC(1 ,t1
)) = 26ABt;d(e- e')6(t- t1

) (6.7b) 

and regularized Stratonovich equivalents are given in (9). After this derivation 

from regularized phase-space, it was called to my attention that (6.7) is a regu­

larization, according to the rule (6.6), of an explicitly divergent formal process 
Wf(,Q(_.t;d(O)(IPQ ,£'!'(;A(' -+£'MAt;d(e- ('))independently noted by Rumpf{20). 

A A 

The previous regularizations of the program are special cases of the universal 

geometric coordinate-space regularization (6.2) and (6.7). For example, the 

choice 

4>M = A:, 'lA =·'I~ 

£'Af.4 =(lAIN = t;.,J>"b 
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(6.8a) 

(6.8b) 

c)~-- :::'1 

£!'(;A(' = R(6))(~.6.,., 
(I!I(;N(' = (Rl(6)m.6,.... 

(6.8c) 

(6.8d) 

in (6.2) and (6.7) results in the original (Ito) regularization (4.1.1) and (4.1.4) 

of gauge theory (1,3,5). The choice of flat superspace in (6.8b) is a choice of 

superspace coordinate system which corresponds to the gauge-invariant inner 

product 

UMIIl = J<de>M:M: (6.9) 

on the space of gauge-field deformations. This coordinate system and the par­

allel choice of gauge-covariant Laplacian 6 in R(6) mark the regularization 

(4.1.1) and (4.1.4) as gauge-invariant but provisional, since field reparametriza­

tion A( A) is not a manifest covariance of the system. 
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7. Regularized Quantum Gravity 

7.1. Schwinger-Dyson regularization 

As a non-trivial example of coordinate-invariant regularization, we have 

studiC(I the case of. quantum gravity (8-10) with ¢1111 = 9mn the spacetime 

metric in d-dimensions. The explicit form of the regularized coordinate-space 

Schwinger-Dyson system (6.2) for gravity is (8-10) 

0 = (LF(gmn)} 

· 6S ]-6- +11 
L = j(Je)[Cz9mn -Cimn;r•6g._ 6gmn 

A D _6 __ 
ll = j (d<)(ci{')vmn(;ro(' Dg •• (e') 6gmn(e) 

(7.l.la) 

(7.l.lb) 

(7.l.lc) 

where Vmn;r• is the inverse of the supermetric (5.2.7b) on deformations of the 

metric and v! .. , •• is its regularized form (6.3). We choose the heat kernel regu­

lator R = exp(~/A2 ) and the (provisional) spacetime Laplacian~= Cr"DmDn 
of general relativity on symmetric tensors of rank 2, which maintains Einstein in­

variance to all orders in tl\e regularized theory. I have also included a Zwanziger 

gauge-fixing term 

Czgm,. = DmZn + D,.Zm, (7.1.2) 

whose generic form (9) is always a gauge transformation, to fix the Einstein 

in variance. 

To complete the theory, we specify the Euclidean Einstein-Hilbert action 

and a convenient gauge choice 

s = :,J<de)eR 
1 I 

Zm = 
2

1C (IJnhnm - 21Jmhnn) 

9mn = 6mn + IChmn 

(7.1.3a) 

(7.1.3b) 

(7.1.3c) 

so that the system (7.1.1) describes regularized and gauge-fixed Euclidean Ein­

stein gravity with DeWitt measure in d-dimensions. 

Chan and I (10] have further generalize<! the theory (7.1.1-3) to include 
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regularization of arbitrary power-law measure 

~ b<e)", I 
~~DeWitt = 4(d + I }(d- 4) (7.1.4) 

and studied the expansion to all orders about flat space. Some highlights of the 

analysis are as follows. 

1. The theory is regularized to all orders as expected. A geometrization of 

previously-i>btained Schwinger-Dyson rules is obtained, including super­

connection vertices and regularized inverse supermetric vertices. 

2. The free regularized graviton propagator is 

(hmn {e)h •• (f))IO) 

[ 
T I + 2-y a.a. 8m8n ] 2e201A' 

= (I+ 2 _ d)mn;ro- 3 _ d + 
21

(6mn[J + 6••[]) (-=o-)((' 

(7.1.5a) 

lmnir• 
1 

= 2(6mr6no + 6m0 6,.,), Tmn;ro = 6mn6ro (7.1.5b) 

which is gauge-1!quivalent for all 1 (the supermetric parameter in (5.2.7b)) 

to the usual Euclidean Feynman gauge (first term). The result (7.1.5) also 

reflects the fact that the perturbation expansion is much simpler for the 

supermetric parameter choice 1 = -!, which we adopt for the explicit 

one-loop computations. 

3. A one-loop cosmological counterterm 

~c(d, v) = "2 
Ad [v J2- 7d- 2] 

(8rr)d/2 - 4 
(7.1.6) 

is required to stabilize the expansion about flat space. 

4. Including th~ contribution of the cosmological counterterm, we comput.e 

the one-loop graviton mass 

m graviton(d, v) = 0 (7.1. 7) 

as it should be in an Einstein-invariant regularization. 
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7.2. Schwinger-Dyson stabilization of Euclidean gravity 

As indicated in the results above, the differential Schwinger-Dyson formu­

lation has bypassed the question of integration contour for the gauge--invariant 

(10) unstable conformal mode of Euclidean gravity, giving directly the correct re­

sults of Gibbons, Hawking and Perry (53). This Schwinger-Dyson stabilization 

mechanism (8-10) should be considered as a variant of the original stochastic 

stabilization (31). It is instructive to see how the Schwinger-Dyson formula­

tion manages the stablization in a toy model whose portrayal, minus the tensor 

indices, is completely accurate. 

The simple second~rder Schwinger-Dyson equations 

dS d ,P 
L=---+-

dx dx dx2 
0 = (LF(x)), (7.2.1) 

correspond to the one-dimensional Boltzmann factor exp( -S(x)), according to 

the identities 0 = J dx(exp( -S)F')'. We adopt the Schwinger-Dyson description 

(7.2.1) as fundamental for any action S(x), whether or not the action is bounded, 

which leaves the question of integration contour for a later stage. The simple 

choices S(x) = ax2/2, F(x) = x2/2 in (7.2.1) give 

0 == (-ax2 + 1) (7.2.2) 

which is the prescription of Gibbons, Hawking and Perry (53) when a < 0. In 

fact, this is the mechanism by which the Schwinger-Dyson equations (7.1.1) pro­

duce the correct results for Euclidean gravity, although the action is unbounded 

and the stochastic formulation generally fails to equilibrate. 

7.3. Langevin regularization and the stabilization window 

Although the Schwinger-Dyson regularization and stabilization above is 

completely general across the ( d, v,"() parameter space of Euclidean gravity, 

there is a window in parameter space within which the same results can be 

obtained from the stochastic formulation. 

The regularized stochastic process (6.7) for DeWitt measure Euclidean 
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gravityl (8-10) 

-j~ ·c• 

:,9mn(e. t) + o~(;ro(r::::·<e. t) 

6S 
= -Omn;r•c-(e,t) + Czgmn(e,t) 

ug •• 

+ ~ j (df.')E!ne;ab(•'lab(e', t) (7.3.1) 

is equivalent to the Schwinger-Dyson system (7.1.1) on assumption of equilibra­

tion. In fact, equilibration of this process is observed in the negative supermetric 

(detO < 0) window (8-10) , 

d> 2, 
1 

-1 < "Y < ...:...d (7.3.2) 

because the effective drift term -0mn;ro6S/69mn in (7.3.1) is stabilized by the 

negative eigenvalue of its inverse supermetric prefactor. This result was indepen­

dently obtained by Riimpf (20) for the explicitly divergent unregularized form 

of the process. 

Within this window, it follows that the regularized stochastic process (7 .3.1) 

and the regularized Schwinger-Dyson system (7.1.1) are equivalent descriptions 

of regularized quantum gravity, although the Schwinger-Dyson stabilization is 

more general. 

I The explicitly divergent ({1:q(,ro("",\'6d(O)()'p9;.,(()) unregularized form oft he process (7.3.1) 

was noted independently in (20, 5·1). 
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