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LATTICE DEFECTS IN SPINELS 
I 

il 
Orner Oscar Van der Biest 

Inorganic Materials Research Division, Lawrence Berkeley Laboratory and 
Department of Materials Science and Engineering, College of Engineering; 

University of California, Berkeley, Calfironia 

ABSTRACT 

A theoretical and experimental study has been made of some lattice 

defects in the spinel structure. Analyses have been done on LiFeSOS 

single crystals using transmission electron microscopy. 

From geometric and energetic arguments it has been shown that for 

a 1/4<110> cation fault, the plane perpendicular to the displacement 

vector will have the lowest surface energy in a stoichiometric spinel. 

The influence of non-stoichiometry on the orientation of the fault plane 

is discussed.· 

Extended stacking faults have been found in flux grown lithium 

ferrite spinel single crystals, using high voltage electron microscopy. 

As predicted, the faults lie on {110} planes, and have a displacement 

vector of 1/4<110> which is always perpendicular to the fault plane. 

The faults form three-fold junctions but can also be terminated by a 

dislocation with Burgers vector b = 1/4<110>. 

At 750°C an order-disorder reaction takes place in lithium ferrite. 

The spacegroup symmetry is lowered from Fd3m (spinel structure) to 

P4
l

32 or P4
3

32. The ordered structure can exist in two enantiomorphous 

forms. 
I 

Simple electron m:lcroscopy techniques are described which I allow 
I' I 

one to detect the presence of two enantiomorphous forms of a structure 
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within an apparent single crystal. The first method consists of a 

,-
characterization of the interface between the two enantiomorphs. In 

the second method advantage is taken of violations in Friedel's law 

which can occur in non-centrosymmetrical crystals. Methods which can 

be used to determine the absolute configuration of the structure in a 

part of the crystal are discussed. These techniques have been illustrated 

by an analysis of the domain structure in ordered LiFe
S

0
8

• Consistent 

results were obtained with both methods. The first method yields a 

more complete description of the domain structure. 

Ordered lithium-ferrite contains boundaries of three different types 

(1) ordinary anti-phase boundaries, occurring within one enantiomorph, 

""'" characterized by a displacement vector R = 1/2 <110> ,(2) inversion 

boundaries characterized by an inversion operation, (3) boundaries 

described by an inversion and a translation. The contrast to be expected 

from each of these has been calculated. Each of these boundaries can 

be unambiguously identified by contrast experiments in the microscope. 

It has also been found that cation stacking faults can serve as a 

boundary between right and left-handed structures. In the ordered 

structure cation stacking faults can change character from {110} 1/4(110) 

type to {110} 1/4<112> type. 
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1. INTRODUCTION 

I 
In today's t~chno10~Y;, the performance of a product is often limited 

I 

by the properties of the materials used. The realization of a new 

design is often held up or made impossible by the lack of the required 

materials. There is a continuous need for new and better materials. In 

industry, there is always the pressure to find cheaper substitutes. 

Modern engineering designs often require materials with a combination 

of properties which are not available in a single material. Ideally, 

one would have the ability to design a material with a. particular 

application in mind, whereas now one has to adapt the design to existing 

materials. 

Whatever "materials design" there has been, it has often been 

based on empirical rules acquired through experience and which have 

to be supplemented by an extensive and expensive testing program. It 

is the goal of the modern materials scientist to be able to design a 

material from first principles, that is from the appropriate theoretical 

model. In the area of alloy design and especially in steels, one is 

corning close to this goal. In ceramic materials, however, one still 

has a very long way. to go. One reason for this is that the microstructure 

I 
of existing ceramic materials has not been characterized in as much 

detail and with the same resolution as metallic materials. Specifically, 

much is still to be learned about the mechanisms of phase transformations 

in these ceramic materia1s~ in particular, about the crystallographic 
! 

aspects, the early stages of a transformation and the role of crystal 

defects. 
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Line and planar defects have been shown ,to be very important in our 

understanding of phase transformations and mechanical properties in metals. 

Accordingly, these crystalline defects have received considerable 

attention in the scientific literature. By comparison, research on 

crystalline defects in ceramic compounds and minerals is in its infancy. 

Although the importance of these defects in the study of mechanical 

propertiesl and magnetic properties2 has been demonstrated, the bulk of 

published work has been done on simple ionic structures, e.g., Mg0
3 

4 and on layer structures. Recently, publications ~ave appeared 

d l ' "h ' , 1 b'd' 5 ea 1ng W1t trans1t10n meta car 1 es. 

The electron microscope is the main experimental tool available 

for the study of crystalline defects. Recent advances in thinning 

techniques and the increased penetration power available through high 

voltage microscopes has made virtually every material accessable, and 

as a result, there is now an increase in research in ceramics and minerals. 

Even if one limits oneself to ceramic materials, which find 

practical use, one finds a great diversity of crystal'structures. 

Dislocation reactions and planar defects which have been found in one 

crystal structure can generally not be expected to occur in other 

structures as their occurrence depends in large part on the details 

of the structure. Hence, these have to be examined theoretically 

and experimentally in each structure. 

In this work, a study is made of defects in the spinel structure. 

A great many compounds of practical significance take this structure. 

For instance, there are the refractory oxides MgAlZ04 and (MgFe) (AlCr)Zo4. 

The ferrites MFe
2

0
4

, where M can be one of many metallic cations, are 
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important because of their ferrimagnetic properties. A theoretical study 

is made here of the catiod stacking faults in the general spinel 
. I 

, 
structure. The predictions are compared with the experimental observations 

on lithium£errite(LiO.SFe2.S04)' This compound also exhibits an order-

d o d ° 6 1sor er react10n. The resulting domain structure can be predicted 

from structural considerations and has been verified experimentally. 

LiO.SFe2.S04 can be considered the prototype of a series of lithium 

containing spinels which form the same superstructure at lower 

temperatures: e.g. , there are LiMO. STil.SO 4' with M = Mg, Mn, Co, Zn, Cd; 

LiMO.SMn2.S04 with M = Mg, Zn; LiMGe
l

•
S

04 with M = Ni, Co, Zn 7 
and 

LiAlSOS' 
6 
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2. THE STRUCTURE AND PROPERTIES OF LITHIUM FERRITE 

Lithium ferrite is a ferrimagnetic material with some interesting 

technological properties which have been compiled by Von Aulock. 8 In 

polycrystalline form and with proper processing a rectangular hysteresis 

1 b· b . ·d 9-14 oop can . e 0 ta1ne . This makes lithium ferrite a material useful 

for switching devices. Moreover, it has a Curie temperature around 

630°C,8 which is much higher than any other commonly used ferrite. 

This means that around·room temperature its magnetic properties are 

less sensitive to temperature variations. Some of the properties which 

stand in the way of a widespread use of lithium ferrite for microwave 

applications are its low dc resistivity and its high dielectric loss. 

These properties have been related to lithium and oxygen loss during 

. 15-17 process1ng. 

Lithium ferrite (LiO. SFe2 ,S04) has an inverse spinel structure 

(general formula AB
2

0
4

) with Fe 3+ on tetrahedrally coordinated sites 

(A-sites) and a 3:1 mixture of Fe3+ and Li+ on the octahedral sites 

(B-sites). Below 750°C Fe3+ and Li+ on the octahedral sites order. 

The ordered structure will be described in detail iil Section 5.2. 

Some importantpropetties of the material show a marked dependence 

on the degree of order. Folen18 and Schnitzler, et al. 19 showed that 

the magneto-crystalline anisotropy constants for the ordered and dis-

ordered state are widely different especially at low temperatures. 

Denton and Spencer
20 

determined the ferrimagnetic resonance linewidth 

as a function of temperature for different states of order in the crystal. 

Another important property which shows a very strong dependency on the 

degree of order is the dc electrical resistivity. 
21 

According to Kato 

" 

it' 
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the room temperature resistivity of disordered polycrystalline lithium-

4 21 
ferrite increases; upon ordering by a, factor of about 5xlO. Kato 

studied the order-disorder reaction using electricci.l resistivity 

measuremerits, dilatometry and differe~tial thermal analysis. According 

to his results the transition temperature did not vary very much (±lOC) 

with deviations from stoichiometry to the lithium rich and iron rich 

side. The question can be raised here if the specimens used were truly 

homogeneous even though no second phases were detected by X-ray 

diffraction. A small thermal effect was found around the transition 

temperature but this observation could not be confirmed by Strickler 

and Roy.24 Kato 22 also determined the long range order parameter as 

a function of temperature. A curve was obtained which came close to the 

1 1 d b G h · 23 f C A one ca cu ate y ugen e1m or u
3 

u. The order disorder transitidn 

is accompanied by a slight change in lattice parameter (a . ~ 8. 33A at 
o 

d A / 2 10-5 h" 25) room temperature an ua a ~ 5. at t e trans1t10n temperature • 

Above the critical temperature for long range order, a state of 

short-range order repla:ces the superstructure. BruneI and de Bergevin
26 

measured the X-ray diffuse scattering due to short range order on quenched 

powder samples (temperatures 797°C and 893°C). A theory of X-ray diffuse 
I 

scattering in LiFe
5

0
8 

was proposed by Yamada andYoshimori. 27 The sites 
! 

on which the ordering takes place can be divided up into tetrahedra, which 

in the ordered structure c~ntain three iron and one lithium ion. It was 

proposed that in t,he short range ordered state the tetrahedra are still 

occupied by three iron andione lithium. Isodiffusion lines around 

reciprocal lattice points Jere calculated. After averaging these for a 

26 
powder sample, good agreement was obtained with the experimental results. 
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The physical picture emerging from this work is that the structure goes 

from long range order to short range order by randomisation of the iron 

and lithium ions on the tetrahedra. 

Some electron microscopic observations·on LiFeOZ by Ailpress Z8 are 

also of interest here. Small precipitates of LiO.SFeZ.So4 were found 

in this material,. Some of these precipitates in the ordered state 

exhibited internal boundaries along a crystallographic plane, which 

were interpreted as anti-phase boundaries. An electron metallographic 

study of the order disorder transition on bulk material has not yet 

appeared in the literature. 

i' 
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3. EXPERIMENTAL 

Flux grown single crystals of L,iFe
S

0
8 

were obtained from Airtron 

Litton Industries. Chemical analysis by flame photometry indicated that 

the crystals were slightly lithium deficient with an FelLi ratio of 

5.43. In diffraction patterns, the as received crystals displayed 

all the superlattice reflections which were reported by Schieber:9 

A Buerger's precession camera was used to check the spacegroup symmetry 

of the structures involved. 

Specimens for electron microscopy were prepared by two techniques, 

chemical polishing and ion bombardment. Chemical polishing was done 

by dipping a thin slice of the material in hot ortho~phosporic acid 

(250-300°C) and allowing it to dissolve until the specimen became· 

transparant at the edges. The success of the method was found to depend 

on the orientation of the slice. Slices parallel with (111) often 

showed a high density of etch pits in the microscope. Etching along 

internal boundaries e.g., stacking faults or anti-phase boundaries was 

also a problem. Another disadvantage of this technique was that the 

sample had to be held at a rather high temperature for about 15 min. 

This could change the microstructure e.g., the state of order in our 

I i 
case. Apart from ithe etching along boundaries the foils produced by 

this method were quite satisfactory. Foils were also obtained using 

an ion bombardment technique30 starting from standard thin sections 

(about 30~ thick). 

Both methods of preparation cause the appearance of characteristic 

artefacts in the foil. The surface of chemically polished foils is 

especially prone to radiation damage in the microscope. The dislocation 
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loops, which form as a result, have been observed and analysed by 

. 31 
De Jonghe and Thomas. Foils, prepared by ion bombardment, usually 

exhibit some surface irregularity, which is disturbing only when 

the crystal is in a strongly diffracting condition. A theory to. explain 

this surface topography has been put forward recently by Barber et al.
32 

Foils prepared by this. method did not exhibit the relatively large dis-

location loops which are prominerit in chemically polished foils; By 

preparing foils from the same specimen using the two methods of 

preparation, and comparing them, the artefacts introduced by either 

method could readily be distinguished from features, representative 

of the material. Thin areas damaged in the electron microscope could 

also be removed by ion bombardment after which the specimen was 

ready for examination again. All observations we're made using a 

Hitachi 650KV microscope equipped with a double axis high angle tilt 

stage allowing a tilt of ±30° in either direction. This attachment 

allowed the study of a particular defect under widely different 

diffracting conditions and helped considerably in the identification 

of the defects. Tilting into required orientations was greatly 

·33 facilitated by using the Kikuchi maps for silicon, which resemble 

closely those for the spinel structure, allowing for differences in 

structure factor. 



-9-

4. CATION STACKING FAULTS IN LITHIUM FERRITE SPINEL 

I 
: 4.1. Introduction 
:, 

A study of cation stacking faults in the normal spinel MgA1 20
4 

has 

b d b L ,34 1 . b h V 'I h d een rna e y eW1S on crysta s grown y t e erneUl met 0 • He found 

growth faults on {100} planes with a displacement vector R = 1/4<110> 

always at a 45 0 angle to the fault plane. Planar defects were also 

found which did not lie on a single crystallographic plane. Glide 

dislocations were found to be dissociated into two partials on {lID} planes 

with a shear fault in between. Lewis described in detail the configuration 

of the ions around the fault plane. His method of analysis will be 

35 
extended here. Baker and IWhelan found stacking faults in Fe

3
04 , formed 

by decomposition of aFe
2

0
3 

in the electron microscope. These stacking 

faults were lying on {lID} planes and they were capable of forming 

triple junctions. In the spinel CoFe
2

0
4 

on the other hand, De Jonghe 36 

did not find any extended faults. However, he did find evidence for a 

I 

slight dissociation of dislocations. 

4.2. Results 

4.2.1. Electron Microscopy--Disordered State 

Stackirigfaults were found in ordered crystals, in the as-received 

condition. They were also l found in partially ordered and disordered 

crystals, which were anneJled above the critical temperature for ordering 
I 

and quenched. In this section, the stacking faults will be described 

with reference to the disordered structure only. 

Stacking faults were sometimes abundantly present near the surface 

of a crystal (Fig. 1) but occasionally they were also found in foils 

taken from the interior. In Fig. 1 some faults are seen edge on 
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with their trace perpendicular to the operating reflection which is 

parallel with [011]. This shows that the fault plane is of the {llO} 

type. Trace analysis of other faults in the photograph also show that 

they lie on {lID} planes. This analysis was repeatedly confirmed in 

other foils. Two examples were found where the fault plane was not {llO}, 

in one case it was (112) and in another (123). These were the only two 

exceptions found. Notice also that. the faults often form three-fold 

junctions. 

The faults can be identified by the symmetry properties of the 

fringes (for a review see Ref. 37). 

The contrast at these faults show a fringes, as they are symmetrical 

in bright field. In fact, for spinel reflections,and these are the 

only ones to be discussed in this section, the faults have all 

the properties of ~ faults, which were derived by Van Landuyt, et al. 38 

Characteristically at parallel overlapping faults fringes disappear 

e.g., at A in Fig. I and at intersecting and overla,pping faults fringes 

remain continuous and parallel with the projected line of intersection 

e.g., at B in Fig. l~ 

Figure 2 shows three faults meeting along a line under different 

diffracting conditions. This set of diffraction experiments allows one 

to derive uniquely the displacement vector. A fault is invisible when 

g·R is an integer, where g is the operating reflection and R is the 

displacement vector characterizing the fault. However, one can always 

·add a lattice vector to the displacement vector without altering the 

physical configuration around the fault. The integer is thus in fact 

not uniquely determined. When we find three reflections for which the 

fault is out of contrast we can write three equations: 



,. 

'.' 

,J 

- -
g. ·R 

1. 
n. 

1. 

-11-

i(l, 2, 3) 

where n. must be ,zero or an integer. 
1.! 

(1) 

In order to keep the I integers on the right hand side' completely 

arbitrary, it is necessary to restrict the g. used in these equations 
1. 

to the lowest order g along a systematic row for which a fault goes 

out of contrast. Otherwise, one restricts the values of the integers 

e.g., if gi·R = n then (2g.)·R = 2n. and the integer on the right hand 
i 1. 1. 

side can only be even. 

At high voltages, it is not always simple to determine along a 

systematic row of reflections the lowest order reflection for which 

the fault goes out of contrast. Because of dynamical interaction between 

lower and higher order reflections one may observe a fault, although the 

phase angle a = 2rrg.R is zero for the reflection which is used to form 

the dark field image. 

In order for the Eq. (1) to have a solution, it is necessary that 

the three vectors g. are linearly independent. One can furthermore 
1. 

predict the following properties of the solutions ofEq. (1), where 

the n. are now arbitrary integers: (i) Every lattice vector will be a 
1. 

solution of these ,equations. This solution is of course a trivial 

- I one. (ii) If R is a solution of the system then -R is also a solution, 
I 

and these two solutions are not necessarily equivalEmt unless the 

difference betwee~ the two, vectors (viz, 2R) is also a lattice vector. 

(iii) A linear combination I of two solutions is also a solution. 

For the stacking fault marked A in Fig. 2 we can write the 
I I 

following equations: 
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(R [-uvw] and p, q, r are zero or.in tegers) 

u - 3v + w P 

u + v - 3w q 

u - v - w = r 

The solution of these equations yields: 

For p = 1, q 

R = [-p-Q+2r 
2 

-2p-Q+r 
4 

1 and r = 0 this yields: 

[- 3 1J - 1 -- 1-R 1, i 'i = [100] + j[Oll]+ i[Oll] 

The first two vectors at the right hand side are lattice vectors 

(the lattice is fcc). Thus the smallest displacemen~ vector describing 

the fault is R is 1/4[011] which is perpendicular to the fault plane. 

This type of analysis has been repeated many times and for all faults the 

displacement vector was found to be the 1/4(110) type with the dis-

placement vector perpendicular to the fault plane.· 

Figure 2 allows the verification to be made for the Burgers vector 

of the dislocation confining fault A. A screw dislocation is out of 

contrast when g·b = O. The dislocation il? out of contrast for g = 111 

and g = 022. Hence, b is parallel with the direction given by the cross 

product of these two vectors i.e., the [011] direction. In general, a 

dislocation confines a region of a crystal which is displaced with 

respect to the rest of the crystal. From the analysis of the stacking 

fault we have shown that the displacement is 1/4[011] + a lattice 

vector. From the g.b analysis this can be reduced now to 
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1/4[011] + I[Oll]. The Burgers vector of the dislocation will be the 

shortest one of -these, hence b = ±1/4[0Il]. 

4.2.2. Crystallographic Study of Cation Faults in Spinel 

In this section an analysis will be made of the- configuration of 

the ions around the fault plane for different orientations of the plane 

with respect to the displacement vector. 

All possible orientations of a 1/4<110> displacement vector with 

respect to the {100}, {110} and {Ill} planes have been investigated. 

These are the most important fault planes predicted or found in spinels. 

Throughout the discussion, the spinel structure will be idealized so 

that the anions form a perfect cubic closed packed lattice. The 

analysis will be done for a general spinel structure AB
2

04 • Assuming 

ideal stoichiometry in a normal spinel the average charges of the 

cations are A2+, B3+. In an inverse spinel the average charges are 

A3+, B
2

. S+. In a mixed spinel intermediate values of these charges 

will be found depending on the cation distribution. 

A model of a fault· can be constructed as follows: starting out 

from a perfect crystal one choses the location of the fault plane. It 

is better to chose this location between ionic layers so that it is 

clear whi~h ion belongs to which part of the crystal. If the dis
! 

placement vector does not lie in the plane of the fault a ,slice of 
i 

material with thickness n·R (n: unit vector normal to the fault plane) 
1 

I ' . 
has to be removed before the two parts can be joined by displacing 

one with respect to the other over the vector R. The resulting 
I 

ionic configuration for a number of faults is depicted in Figs. 3 through 
I 

i i 
7. 
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A first question which will be relevant to the subsequent development 
I 

is: does a particular fault leave an initially· stoichiometric crystal 

stoichiometric? The answer will be yes when no material has to be 

removed to create the fault Le., R·n = 0, or when the slice of 

material removed contains the species making up the crystal in stoichio-

metric proportions. This problem has been investigated for each orientation 

of the fault plane and the results are sununarized:in column 1 of Table I. 

It can be seen that all various possible fault vectors in relation to 

the fault planes have been considered. In order to derive these results 

it is necessary to study the stacking of the ions indifferent directions 

in particular the composition in each layer of ions has to be determined. 

In (100) directions the centers of the ions line up in planes parallel 

with {100} planes and spaced a distance a /8 apart. The arrangement of 
o 

the cations in these planes is shown in Figs 3 through 6. Choosing in each 

plane an identical two dimensional unit cell (see Fig. 4), one can 

determine the composition in each plane. The sequence is B
2

0
4

/A/B
2

0
4

/A. 

In order to create a {100} 1/4(110) type stacking fault it is necessary 

to remove two of these planes. Hence, the slice of material to be 

removed is stoichiometric. 

A projection of the structure on {110} is shown in Fig. 7. The 

composition of successive planes is: 

The planes are spaced a distance a 12/8 apart.· When a {l10} 1/4 (110) 
o 

fault is created two of these layers have to be removed.· The composition 

of the composite layer is AB
2

0
4

• Hence. creation of this fault leaves a 

.. , 

, . .. 
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stoichiometric crystal stoichiometric. 

A {110} 1/4(101) fau~t has a shear component and this requires 
I 

removal of only one of the {110} planes. Removal of an AB0
2 

layer 

leaves the crystal cation deficient and with an excess of B compared to 
, 

A. 
I 

Moreover, whether the spinel is normal or inverse, the fault will 

acquire a net negative charge. Unless some ions can take a different 

valence, this type of fault will not be formed. Removal of a B02 

layer leaves the crystal anion deficient, with an excess of A compared 

with B, but it leaves the fault positively charged. 

A similar analysis has been performed for faults of the {Ill} 1/4(110) 

type. The stacking on {Ill} planes has been described in detail by 

39 Hornstra. He used an extended abc notation to present the position 

of each ion. The result is given in Table II together with the composition 

of an identical two dimensional unit cell in each plane. The distance 

between the planes is a /3/24 and some of these planes may be empty. 
o 

The cations occur in two layers. One contains the octahedral ions 

40 
in the so called kagome arrangement. The two neighboring planes 

of the kagome plane are empty. The other layer is mixed layer 

containing both tetrahedral and octahedral ions and is spread out I ' I • 

over three planes. In order to create a III 1/4 110 fault, 

four of these planes have to be removed. The composition of the complete 
! 

slice of material depends on the exact position of the fault plane. If 
i 

a plane of oxygen ions forms the boundary then either a complete kagome 
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layer (composition B
3

04) or a mixed layer (composition A
2

B0
4

) is to 

be removed. If a B304 layer is.relIloved then the fault will be 

negative if the spinel is inverse and will be positive if the spinel is 

normal. Hence, for a specific distribution of the cations it is possible 

that this non-stoichiometric fault is neutral. The case of removal of 

a mixed layer is analogous. If the fault plane breaks up a mixed layer 

then the composition of removed material will be AB304 or AB04 . In both 

cases, however, the fault created would be electrically charged. 

It is noted here that each non-stoichiometric fault has its complement. 

The position of the fault plane is the same for both and so is the 

displacement vector. It will not be possible to determine by conventional 

electron microscopy techniques what kind of faults one deals with. One 

needs some other information e.g., the electro-neutrality condition, or 

the exact local chemical composition of the crystal. 

Faults have always been modeled here as intrinsic faults (removal 
. . 

of material). In the present case, with a 1/4(110) displacement vector 

one arrives at identical ionic configurations if the faults are modeled 

as extrinsic ones. 

A 1/4(110) vector is a lattice vector of the oxygen sublattice. 

Hence, only the stacking of cations will be affected and the faults can 

be called "cation stacking faults". It also follows that a 1/4(110) 

vector will connect interstitial sites with the same coordination in the 

oxygen fcc sublattice. Hence, a 1/4 <110> vector cannot change the 

coordination of the cation from octahedral to tetrahedral or vice versa. 

Moreover; in the case of the octahedral interstices, sites connected by 

a 1/4<110> vector are also nearest neighbor sites. In the perfect 
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spinel structure, some of these adjacent octahedral interstices are 

already occupied, so that,at a 1/4<llO~ 

I 

type fault these ions cannot 

be brought closer together. 
I 

Only the distance between an octahedral 

cation and a tetrahedral cation or between two tetrahedral cations can 

be affected. As was pointed out by Lewis34 one can describe t~ese 

cation faults as anti-phase boundaries, between anti-phase domains within 

which the partial filling of interstices with cations has stated at 

different points. 

It will be shown now that a {lIO} 1/4<110> fault is the fault with 

the lowest energy in an overall stoichiometric crystal. There are two 

major contributions to the surface free energy of a stacking fault in 

these ionic structures. (i) There can be a change in the distance 

between first, second, third, etc ••• nearest neighbors. (ii) There 

can be a change in the number of first, second, third etc ••• nearest 

neighbors. 

The latter contribution will be largely ignored here. A detailed 

analysis of the change in number of nearest neighbors for every fault 

plane would be quite complicated. This analysis would amount to an 

actual calculation of the energy of each type of fault. This is outside 

the scope of this ; work. Instead, attention will be focused on the 

relative energies 'of each :fault type and it will be sufficient to 

study how the intercation distances are changed for each orientation of 

the fault plane. lAs was p~inted out above, the coordination of the 

cations with respect to the anions remains unchanged. Only the change 

in coordination of the cat~ons relative to each other needs to be studied. 

I 
It is useful here to consider the spinel structure as a stacking of 

, 
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coordination polyhedra with cations in the centers and oxygen ions at 

the corners. In the perfect spinel structure, the o.ctahedra share 

edges with four other octahedra and share corners with six tetrahedra. 

The tetrahedra do not touch each other. Whenever these polyhedra share 

elements with a higher dimensionality than in the perfect structure, then 

the distance between the cations at the center of the polyhedra will be 

smaller. In spinels, these cations are high1y·charged. The strong 

repulsion between cations is expected to make up the major part of 

the surface free energy of the fault. The shorter the intercation 

distance, the higher the surface free energy of the fault will be. The 

actual ionic configuration depends on the relative orientation of R 

and the fault· plane. This has been studied with the help of projections 

of the structure and a three dimensional mode1.* The results have been 

summarized in Table I, columns 2 to 5. 

From a model of a {100} 1/4(110) fault (Fig. 3) it can be deduced 

that across the fault plane tetrahedra will share corners and octahedra 

will share faces with tetrahedra. The latter point was missed by Lewis,34 

who described a model for a shear fault on {lOO}, poInting out correctly 

that tetrahedra would share edges across the fault plane •. However, there 

is another possible ionic configuration when one chooses another <l10> 

direction as the shear direction (see Fig. 4) or another position of the 

* The following part of the analysis can be more easily understood with the 
help of a three dimensional model of the spinel structure. These models 
are available commercially e.g., by LAPINE, 6011 South Knox Avenue, 
Chicago, Illinois 60629. 

,. 

'" 

! 
. ! 
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fault plane. Such a configuration is also one with high energy, as 

octahedra and tetrahedra s!hare faces across the fault plane. Figure 5 

. I 
depicts a shear fault on {IIIO }. Again across the fault plane octahedra 

and tetrahedra share faces. This reduces the distance between octahedra 

and tetrahedra from 0.414a in the perfect structure to 0.217a in the 
o 0 

faulted structure i.e., a 49% reduction. 

In Figs. 6 and 7 a model of a {110} 1/4<110> fault is represented. 

The octahedra and tetrahedra retain their distance. The distance between 

tetrahedral ions has been reduced from 0.434a to 0.354a. This is only 
o 0 

a reduction of 18% and 0.354a is exactly the shortest distance between 
o 

octahedral ions in the spinel structure. 

39 
Faults of the {Ill} 1/4<110> type were discussed by Hornstra who 

also pointed out that octahedra and tetrahedra have a face in common 

at the fault plane. For fault planes were the stoichiometry is not con-

served the ionic configuration will also depend on the particular species 

one has removed to create a fault. For the faults of type {IIO} 1/4<101> 

and {Ill} 1/4<110>, fault planes can be found with low energy from the 

point of view of cation separation. However, in an overall stoichiometric 

crystal an equal surface area of the complementary fault plane has to 

exist. The latterihas then a very high energy. Moreover, some of these 

faults have to be excluded if they would leave the fault plane electrically 

charged. 

It can be seen from Table I that a {110} 1/4<110> fault will have 

the lowest energy in a stoi'chiometric crystal. For this particular 

orientation of the 'fault plane only the distance between the tetrahedral 

ions is changed. But this ~istance does not become smaller than the 
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smallest intercation distance in the spinel structure. 

4.3. Summary of Facts 

It has been found experimentally that lithium ferrite contains 

faults on {lID} planes. From contrast experiments it was shown that 

the displacement vector characterizing these faults is 1/4<110> 

with this vector always perpendicular to the fault plane. From the 

properties of the spinel structure it follows that these faults affect 

only the cations. From geometric and energetic arguinents it has been 

shown that in a stoichiometric spinel a {lID} 1/4<110> fault has the 

lowest surface free energy. The stoichiometry of the crystal is not 

affected by the introduction of such a fault. 

4.4. Discussion 

The frequent occurence of three-fold junctions in Fig. 1 can now 

easily be explained, if we allow only faults with the a displacement vector 

perpendicular to the plane. It is clear that such a fault cannot simply 

change planes. This would necessarily involve a dislocation (Fig. 7a). 

An example of this can be seen at C in Fig. 1, where one of the faults 

is edge-on. However, when three faults meet along a line (necessarily 

a <Ill> direction) there is no need to introduce a dislocation, as a 

Burgers circuit around the line would yield a zero displacement (Fig. 7b). 

Cation faults forming three-fold junctions were also observed in magnetite 

by Baker and Whelan. 35 These faults are presumably of the same type 

as the ones found here. In contrast a (100) 1/4[110] fault, found in 

MgAl
2

0
4 

can easily change to the (010) plane without the need for a 

dislocation. 

, . . 
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A central assumption in our analysis of cation faults in spinels 

has been that the ,I 'crystal ~s stoichiometric. Once this restriction is 
, I 

removed one cannot
l 

analyse I the faults anymore using as a model a rigid 
I 

structure of point atoms. Hence, one cannot predict from simple 

geometric arguments what the fault plane with the lowest energy will 

be. It is conceivable that point defects which necessarily have to be 

introduced in a non-stoichiometric crystal, will preferentially be 

found at the fault plane. For example, in the case of a {loa} 1/4(110) 

fault (Fig. 3) vacancies on tetrahedral sites could preferentially occupy 

those tetrahedral sites which are simultaneously close to an octahedral 

site and a tetrahedral site. This would lower drastically the free 

energy of the fault. The observations on MgAl
2

0
4 

were done indeed on 

a crystal with excess Al3+, which is expected to introduce excess vacancies 

on tetrahedral sites. 

In the case of LiFeSOS' a characterization of the point defect 

structure is hampered by the fact that: (i) no reliable method of 

analysis for lithium content exists; (ii) one needs the exact oxygen 

content of the sample, because iron can occur as either divalent or 

trivalent ions. In the present case, although chemical analysis indicated 

a lithium deficiency in the crystal, this does not necessarily prove that 

the crystals contain a large concentration of extrinsic vacancies, as a 
I 

lithium-deficient crystal can be derived from the stoichiometric one 

by the substitutio~ of 2Fe2+ for (Fe3+ + Li+). 

Other factors which may lead to a variation in the observed fault 

plane are the composition of the spinel and the thermal history. For 

instance, in flux grown CoFe204 no extended cation faults were observed. 36 



-22-

In MgAl
2

0
4 

crystals, faults were observed which did not lie on single 

34 
crystallographic planes. The latter were grown by the Verneuil process, 

a method of crystal growth which involves a steep temperature gradient ... 

In contrast the lithium ferrite crystals used in this work were grown· 

under near equilibrium conditions. 

..' 

.. 
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5. DOMAINS IN ORDERED LITHIUM FERRIT~ENANTIOMORPHISM 

5.1. Introduction 

When a structure be1o'pgs to a spacegroup which does not contain a 

, 
symmetry operation of the second sort, that is an operation which 

does not involve an inversion or a reflection, then it can exist in 

either a right-handed or a left-handed form. In some cases, these two 

forms have different spacegroups; that is, either one of an enantiomorphous 

pair of space groups. With ordinary X-ray diffraction techniques 

it is impossible to distinguish between these two enantiomorphous forms. 

It is necessary to include anomalous scattering in the calculations and 

often very accurate intensity measurements are necessary. The use of 

anomalous scattering of X-rays to determine the absolute configuration of 

41 I 
a structure has been reviewed by Ramaseshan. Recent contributions to 

thi's field include the use of the shape of X-ray intensity spectra 42 

and applications of the Kosse1 effect. 43 

These X-ray methods have their limitations. The structure should 

contain at least two different species, one of which should be an 

anomalous scatterer. The latter condition cannot always be fulfilled 

with commonly available X-ray wavelengths, for instance, if a struct'ure 

contains only light e1ement1s. 
44 " 

Iwasaki has shown that there may be 

some, so far imaginary, non-centrosymmetric structures, for which 

Friedel's law holds even with anomalous dispersion. In addition, one 

I 
would have to be sure that both forms of the structure do not coexist 

on a very fine scale viz smaller than the diameter of an X-ray beam, 

within an apparent single crystal. This will depend on whether or not it 

is possible to have a low energy interface between the two structures, 
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when the crystal axes in both remain ~ara11e1. 

In this section it will be shown that if both enantiomorphous forms 

do occur in the form of very small domains, the pres~nce of the right and 

left-handed forms can be confirmed using contrast experiments in the 

electron microscope. Two different methods have been used, the first 

method consists of an analysis of the interface between the two structures. 

This interface can be described by a set of geometrical operations which 

converts the structure on one side into the structure on the other side 

of the interface .. Using simple contrast experiments it can be ascertained 

whether or not the operations characterizing the interface contain an 

inversion operation. A similar method of analysis was used by MacLaren 

45 and Phakey in a study of Brazil twinning in quartz. The second method 

which can be used to confirm the results of the first, takes advantage 

of a violation of Friedel's law in electron diffraction. Exceptions to 

Friedel's law in electron diffraction were first observed by Thiessen 

and Moliere46 and later by Miyake and Uyeda. 47 A theoretical discussion 

f F 0 d l' lOb dOl hOb F °i· 48 o r1.e e·g aw 1.n n- eam ynam1.ca t eory was g1.ven y UJ moto, 

. 49 
Cowley and Moodie and recently bySernee1s, Snykers.,De1avignette, 

. 50 
Gevers and Ame1inckx, who specifically considered the contrast between 

domains related by an inversion operation in non-centrosynnnetrical crystals. 

5.2. Structural Information 

When disordered lithium ferrite orders, its spacegroup synnnetry is 

lowered from Fd3m to P4
1

32 or its enantiomorph P4332~ The atomic 

6 coordinates for the ions used in this work were given by Braun using the 

equivalent positions for P4
3

32 (No. 212 International Tables· for X-ray 

crystallography, 1965): 4 Li at (b); 12 Fe at (d) with x = 3/8; 



-25-

8 Fe at (c) with x = 0; 24 Oxygen at (c) with x = 1/8, y ~ -1/8, 

z = 1/8, 8 Oxygen at (c) with x = 3/8. Small corrections for these 

coordinat~s were neglected Le., we assumed that the disordered structure 

is an ideal spinel structure. The complete set of coordinates of the 

octahedral sites is given in Table III. A projection of these sites 

on the (100) plane is given in Fig. 9. 

Considering now one spacegroup only, it can be seen from Fig. 9 that 

the set of octahedral sites can be divided into four subsets, one of 

which contains only lithium ions and the other three only iron ions. 

When ordering sets in, the lithium ions can occupy any of these four 

subsets. After ordering, the single crystal is fragmented into domains 

in a way similar to ordered metallic phases (e.g., see Marcinkowski5l). 

Within each domain, the lithium ions will occupy only one subset and at 

the boundary between domains they,will be out of phase. These boundaries 

can be described by the vector which translates the lithium ions from 

one subset to another. A 1/2(110) type vector is a lattice vector of 

the disordered structure, hence, a translation of the ordered structure 

over this vector does not affect the oxygen ions or iron ions in 

tetrahedral sites, but it does transfer the Li ions from one subset to 
, , 

another. !This holds for either one of the spacegroups. 

So, there are actually eight different subsets out of the 16 

octahedral sites which the Li ions can occupy, and it is possible to 

have a boundary between any pair of these. The eight arrangements are 

enumerated in Table IV. The arrangements lL and lR have been taken 

rather arbitrarily as "basic" arrangements for P4
3

32 and P4
l

32 respectively. 

These two arrangements can be brought into coincidence with one another 
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by an inversion through the point (5/8,5/8,5/8), hence, the boundary 

between these two arrangements will be called an inversion boundary. 

On the other hand, a boundary between lL and 2R would not only involve 

an inversion through (5/8,5/8,5/8) but also a translation over a vector 

1/2[110]. 

This description of the boundaries is not unique. In principle, 

each boundary involving an inversion can be described as a pure inversion 

boundary by proper choice of the inversion point. Here the inversion 

point is considered to be fixed. In the context of this paper "inversion" 

means inversion through the point (5/8,5/8,5/8). The boundaries could 

also be described by means of a reflection operation, for instance with 

respect to the (110) planes, which mayor may not be accompanied by a 

translation. 

One could have a total of 28 boundaries between the eight possible 

arrangements. However, only seven boundaries, distinct in the geometrical 

operations characterizing them, can occur. These boundaries are indicated 

schematically in Fig. 10. There are three translation boundaries, one 

inversion boundary and three boundaries described by an inversion and a 

translation. All 28 boundaries are enumerated and classified in Table V. 

5.3. Contrast in the Electron Microscope 

5.3.1. Contrast at Domain Boundaries 

It is useful to consider here the two beam dynamical theory of 

. 53 
contrast at a stacking fault in crystals (e.g., see Whelan and Hirsh 

and Hirsch, Howie, Nicholson, Pashley and Whelan
52 j. The equations 

for the faulted crystal can be derived from those of the perfect crystal 

simply by modifying the Fourier coefficient of the crystal potential 
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in the bottom part of the crystal by a phase factor exp(ia), i.e., 

vt 
exp(ia) 

g 
(1) 

where b indicates the bottom of the crystal and t indicates the top 

(facing the electron beam). a = -2TIg·R, where R is the displacement 

of the bottom relative to the top and g is the reciprocal lattice vector 

corresponding to the reflection excited. It is understood here that the 

t -
potential of the top of the crystal V (r) and the potential of the bottom 

Vb(~) have both been referred to the same origin. Equation (1) implies 

that: 

Ft exp(ia) 
g 

(2) 

This equation yields another interpretation for the phase angle a: a is 

the difference between the phase angles in the structure ·factor expressions 

for the top and bottom of the crystal, calculated with respect to a 

common origin. 

In the case of a boundary between a left-handed and a right-handed 

crystal, we can write quite generally the following expression for the 

structure factor: 

2 2 2 
F = IF I exp(ia ) g g g 

r I rl . r F = F exp(1a) g g g 

In particular, for the moduli of the structure factor it follows 

regardless of choice origin: 
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Hence, it follows that: 

Fj/, ·r j/, r = FeXp(i(a. - a. » g g g g 

or 

Fj/, = Fr eXp(ia.) 
g g 

(3) 

with 

j/, r 
a. = a. - a. g g 

.. (4) 

, 
Considering now a boundary between the two enantiomorphs with the right-

handed structure at the top of the crystal facing the electron gun and 

the left-handed structure at .the bottom, Eq. (3) i~plies that 

vr exp(ia.) 
g 

(5) 

. Hence, the relationship between the crystalpotential. in the two parts of 

the crystal on either side of this boundary is the same as in the case 

of a stacking fault. The results of the two beam dynamical theory of 

contrast at a stacking fault apply equally well to this boundary. A 

boundary between two enantiomorphs will be imaged as a. fringes where a. 

is now equal to the difference in the phase angle of the structure 

factor expression calculated with respect to the same origin. This 

phase difference is independent of the actual choice of origin. 

In the dynamical theory of contrast the assumption is usually made 

that the crystal is centrosynunetric so that one can write V= V 
g -g 

(or F = F ). In a two beam case this assumption is not really 
g -g. 

necessary as one is free to chose the origin so that for a particular 

beam Ft 
g 

=Ft = Ft * which means that in the example above a.
r 

= o. 
-g g g 

It is 
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clear that this approach to the contrast problem at an inversion boundary 

will not be valid in the case of a many-beam situation, because it is 
il 
I 

then not possible to chose an origin so that the condition Vg 

simultaneously fulfilled for all the beams involved. 
) 

v 
-g 

is 

Using a simple structure factor program, the values of a were cal-

culated for each of the seven boundaries which occur in ordered LiFe508 . 

The atomic coordinates for the iron and lithium ions on the octahedral 

sites given in Table IV were used. The results are shown in Table VI. 

In the case of translation boundaries the value of ais also equal to 

-2ITg·R. Wherever a = ° or 2IT, a domain boundary will be out of contrast. 

For reflections of the type 110, 211, 103, 123, a takes the value 0, IT. 

For reflections of the type 102, 302 a takes the value 0, IT for translation 

boundaries but only ±rr/2 for inversion boundaries. For all spinel 

reflections a = 0 and the boundaries should be out of contrast. 

5.3.2. Contrast Between Domains 

In a second method, by which the presence of two enantiomorphous 

structures can be verified, one takes advantage of the violations in 

Friedel's law which take place in electron diffraction in certain multiple 

beam situations. What is meant by a violation of Friedel's law is that 

+g and -g do not have the same intensity even when the excitation errors 

are the same. At an inversion boundary, when +g is operating in one part 

of the crystal, -g is operating in the inverted part, with exactly the same 

excitation. When Friedel's law is violated then the domains should show 

up with different intensity. This situation is studied by Serneels, 

50 et al. and they concluded the following: (i) A multi-beam condition 

is necessary to observe any contrast at all. (ii) Friedel's law holds 
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for the direct beam in a general multiple beam situation. It does not 

hold in general in dark field. (iii) The difference in intensity 

depends strongly on the thickness of the crystal. (iv) If the only 

reflections excited belong·to a zone axis along which the crystal dis

plays a center of symmetry in projection, no contrast should be 

observed in' dark field. 

5.4. Results 

5.4.1. Translation and Inversion Domains 

From systematic extinctions in the precession photographs it was 

confirmed that the spacegroup of the disordered structure is Fd3m. The 

precession photographs of the ordered compound showed the presence of 

systematic extinctions required for the spacegroups P4l 32 and P4332. 

The non-:systematic extinctions in these photographs could be accounted 

for by the atomic positions given by Braun. 6 

Figure 11 shows a series of transmission electron micrographs taken 

under a vari~ty of diffraction conditions. Figure lla was taken under 

conditions approaching a two beam case as the 024 and 024 reflections 

are not allowed. Figures lIb, llc and lId were taken with a systematic 

row of reflections operating with the indicated reflection on the Ewald 

sphere. Although the presence of the systematic beams will alter the 

detail of the contrast at the boundary, it will not affect the visibility 

criteria derived for two beam conditions. The visibility or invisibility 

of the boundaries marked by a lower case letter in Fig. lla has been 

tabulated in Table VII. Comparison of these results with the calculations 

given in Table VI allows one to identify each of the boundaries with one 

of the seven types of boundaries possible. This identification is made 
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in the last column of Table VII. 

The internal consistency of the method of analysis can be checked 
I I 

by labelling each domain as follows: because at present, these electron 

microscopic methods do not yet allow the determination of the absolute 

configuration, it was assumed that the domain which runs vertically 

through the micrograph has a left-handed P4
3

32 arrangement. It was also 

assumed that it was the "basic" lL arrangement. The latter assumption 

is equivalent to choosing an origin. Once these assumptions are made, 

the arrangements of all the other domains can be found through the 

character of their boundaries derived in Table VII, and the use of 

Table V. This was done in Fig. lla. This labelling of domains provides 

a check, on the identification of the boundaries e.g.,-if a is a boundary 

between lL and 3R and b is a boundary between 3R and 4R, then clearly 

the character of c is fixed and c has to behave as a lL -4R boundary, 

i.e., I + T3. This has indeed been found by contrast experiments 

(Table VII). Hence, a complete internally consistent picture is obtained 

of the relationships between the domains. 

An independent check on these results is provided in Figs. lIe, llf 

and llg. The same area was imaged here under multi-beam conditions 
, I 

(Fig. llg), hence, one may expect violations of Friedel's Ilaw a,t 

inversion boundaries. The foil was wedge-shaped with thinner parts at 

the bottom of the pictures. The fringes in Fig. lIe running from right 

to left are thickness fringes. These remain continuous across the 

boundaries in the bright field picture. In dark field, however, these 

fringes change color at some boundaries (e.g., at a and c) but remain 

continuous across others (e.g., at j and g). The latter ones may be 

I 
I 
I, 
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expected to be translation boundaries whereas the first should be 

inversion boundaries. COniparison with Fig. lla shows that these boundaries 

are the same ones for which the first method showed that an inversion 

was involved. 

Figure 12 provides another example where the ,two enantiomorphous 

structures can be distinguished by a difference in background intensity. 

This specimen was chemically thinned and some etching had occurred at 

the boundaries. The presence of two strong "accidential" reflections was 

sufficient to provide a very strong contrast between enantiomorphous 

domains e.g., at A and B. There is no difference in background intensity 

across translation boundaries e.g., at C and D. 

The size of the domains depends on the thermal history of the sample. 

In the as received crystals, the domain size was of the order of 5~ 

(Fig. 13). In Fig. 11 and Fig. 12 the sample had been annealed at 850°C 

and was then slowly cooled in the furnace (approximately 100°C/hr). The 

sample in Fig. 14 had been quenched from 950°C in ,water, then annealed 

at 650°C for 100 min and shows a substantially smaller domain size. 

5.4.2. Stacking Faults in Ordered Lithium Ferrite 

In Section 4.2 it was shown that the cation faults can be described 

with respect to the spinel structure with a displacement vector 1/4<110> 

plus a spinel lattice vector. Upon ordering, the crystal looses some 

of its translational symmetry elements, the lattice reduces from face 

centered cubic to primitive cubic; and the fcc translation vectors of 

the type 1/2(110) are no longer lattice vectors. Hence, any combination 

of the displacement vector, with respect to the fcc lattice i.e., 1/4(110) 

with a 1/2{110> vector yields a possible displacement vector for cation 
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faults in the ordered structure. Some of these variants, however, are 

related by a translation vector of the primitive lattice, so that only 
I' 

four distinctively differ~nt displacement vectors can be generated, 

e.g., for a fault on the (110) plane we find Rl = 1/4[110] R2 = 1/4[110] 

R3 = 1/4[112] R4 = 1/4[112]. All other variants one may derive by 

combining 1/4[110] with any 1/2 <110> will differ froin one of these 

four only by a primitive cubic lattice vector. One can distinguish between 

the displacement vector of the 1/4(110) type and the 1/4(112) type by 

contrast experiments, using of course, superlattice reflections for this 

purpose. The distinction between +R and -R can be made by a determination 

of the sign of a when a = ±TI/2. 

An example of a 1/4(112) type fault is given in Fig. 15. Figure l5a 

shows that the fault vector cannot possibly be perpendicular to the 

fault plane as g'R would then be zero. Figure l5b confirms that the 

fault vector is lying in the plane of the fault. However, the analysis 

is not always as straight forward as in this example,because in the 

ordered structure an inversion can, occur at these cation stacking faults, 

as will be shown below. It is clear that a translation boundary with 

R = 1/2(110) can always join the cation stacking fault, without the need 

for a 

fault 

I 
dislocation at the junction. At this junction the cation stacking 

I 
I 

may change character, from 1/4(110) type to 1/4(112) type. 

Figure 16 shows three stacking faults on {110} planes meeting along 

a line. The displacement vector of these faults waS determined as 

1/4(110) plus a spinel lattice vector. The boundary 4 joining fault 1 

is a translation boundary. The contrast in Fig. l6d can be explained 

only if faults 1 and 2 are simultaneously boundaries between the left 
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and right-handed structure. The displacement vectors of these faults 

are: RIa = 1/4[101], ~b = 1/4[101], R2 = 1/4[110]. For g = 102, this 

yields for the phase angle: (lla = 1'1/2, (lIb = -1'1/2 and (l2=-Tf/2. Hence, 

If these faults were simple translation faults, they should be visible 

as (l fringes with (l = ±Tf/2. If these faults also included an inversion 

operation then a phase angle of ±Tf/2 would be added (see Table VI). Taking 

the plus sign yields: (lla = 1'1, (lIb = 0 and (l2 = O. Hence, the b part 

of fault 1 and fault 2 will be invisible. This matches the observations. 

Additional evidence that stacking faults can also serve as the 

boundary between enantiomorphous forms is givenin'Fig. 17. Figure l7a 

was taken under the diffraction conditions shown in Fig. l7b. Figure l7c 

shows that the fault ABC seen edge on in l7a is indeed a stacking fault. 

Analysis of the boundaries a and b showed that they were pure inversion 

boundaries. The difference in background contrast at A and C indicates 

that an inversion takes place at the stacking fault. However, there 

should not be any difference in background intensity at B. This is 

indeed observed. 

Figure 18 shows an interesting interaction between a translation 

boundary and a cation stacking fault. The translation boundary lies 

approximately on the (101) plane and is terminated by a dislocation 

with Burgers vector 1/2[101] (Fig. l8a). This dislocation, however, is 

dissociated into two partials with a 1/4[101] Burgers vector and a fault 

in between with the same displacement vector. The use of a higher order 

reflection in Fig. l8c reduces the image width of the dislocation, so 

55 that they are better resolved. 



-35-

5.5. Discussion 

The domain size in the ordered crystal depends on the heat 

I II 
treatment but is usually 'of the order of l~ or smaller and hence, well 

below the diameter of an X-ray beam. It is clear that a very fine 

intergrowth of the two enantio~orphous structures wouid give rise to a 

spurious center of symmetry in diffraction even when an X-ray wavelength 

is used for which iron is a strong anomalous scatterer. The success 

of the electron microscopic method does not depend on the presence of 

a particular atomic species in the compound. The method should also 

be applicable for structures containing only lightweight elements. 

In the multibeam method, the contrast in dark field arises due 

to a complex interaction betweenn beams. However, one cannot show in 

general that the difference in intensity between the inverted domains 

will be large enough to be detectable. This difference in intensity 

will depend on the details of the structure, the thickness of the sample 

and the diffraction conditions. 50 It is shown by S,erneels et al. that 

for very thick foils the contrast will be destroyed by absorption. 

The analysis of an inversion boundary using different g vectors 

should be applicable to all crystals in which enantiomorphous domains 

occur. The success of this method hinges on the fact that there is a 

difference in phase angle of a particular reflection for the two 

enantiomorphous structures when both are referred to the same reference 

frame. Reflections for which this phase angle difference is not equal 

to zero can always be found. This method has the additional advantage 
I 

that it yields a completg description of the interface between the two 
, 

structures. Not only can it be established that an inversion operation 
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is involved at the boundary but any additional translation can be 

determined as well. In general, these translations are not known a 

priori. In the case of ordered LiFe
5

0a a precise description of the 

domain structure can be given because. the ordered structure is derived 

from the relatively simple spinel structure. This is the reason why 

lithium ferrite forms an ideal case to illustrate the use of these 

electron microscopic techniques. 

For all practical purposes it might be sufficient to establish 

the presence of the two enantiomorphous forms within an apparent single 

crystal. The microscopic methods described in this paper have not yet 

been extended to determine the absolute configuration of the structure 

in a part of the crystal. In principle, this possibility exists. In 

the case of the multibeam method, one should be able to predict using 

a many-beam dynamical theory for non...;centrosymmetric crystals, which 

form whould show up bright in dark field for a given crystal thickness 

and diffraction conditions. In general, an electronic computer would 

have to be used for this. The problem is completely analogous to the 

absolute determination of the orientation of a non'"-centrosymmetrical crystal, 

which has reflection symmetry. This problem has been.solved for hexagonal 

54 . 
CdS by Goodman and Lehmpfuhl, who used a convergent beam technique 

and a multiple slice calculation for n-beam diffraction. In the case 

of the interface analysis, it should be possible to predict for an 

interface inclined with respect to the beam, which form is at the top of 

the crystal facing the electron gun. This can only be done when the 

difference in phase angle a is different from TI. In the case of 

ordered lithium ferrite this is the case for reflections of type 012 or 
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203 when a = ±TI/2. The problem is then reduced to a determination of 

the sign of,a andf is anatogous to the determination of the character of 
i 52 

a stacking fault in fcc metals (Hirsch, et al.). A systematic study 

of this problem for a = TI/2 has not yet been undertaken. 



-38-

6. GENERAL DISCUSSION 

From the results of the preceeding section, the following picture 

;' 
can be drawn regarding the crystalline defects in flux grown lithium 

ferrite crystals. The cation faults were found in crystals which had 

undergone different heat treatments as well as in crystals in the as 

grown condition. It is unlikely that these faults are in any way 

connected with the heat treatments. If they were, e.g., if they were 

due to thermal stresses during quenching, one would·expect shear faults 

confined by glissile dislocations. From the crystallographic study it 

is clear that they are not the result of cation vacancy aggregates, 

although vacancies can interact with them once they are formed. More 

probably, the faults were formed during growth of the crystals from the 

melt. The faults can be viewed as antiphase boundaries resulting from 

an ordering reaction in a disordered structure which can be derived 

from the spinel structure by randomization of the occupied and vacant 

interstitial sites. This structure may be an intermediate state during 

solidification from the melt. The faults would be the results of 

"growth accidents" during which the filling of interstices started at 

non-equivalent points in the structure. The fact that faults were found 

more abundantly near the surface of the crystals is consistent with this, 

as the probability of these growth accidents occurring increases as the 

crystal grows. 

Initially, the faults may not have been on single, low-index planes, 

but due to the low cooling rate, they could take a low energy configuration, 

which was shown to be on the {110} plane with a 1/4(110) displacement 

vector perpendicular to it. Some faults may have annealed out all together, 
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but in areas with a high fault density a domain structure could be 

expected as is indeed observed (Fig. 1). 

As far as the description of the faults is concerned, a {110} 

1/4(110) and a {l10} 1/4<112> fault are completely equivalent as these 

displacement vectors differ only by a lattice vector. In ordered 

lithium ferrite this is no longer the case. It is clear, however, that 

during the ordering reaction the Burgers vector of the grown-in dis-

location cannot change. Hence, the fundamental character of the faults 

ca~mot be changed. Along the fault plane, however, the faults can 

change from 1/4 (110) type to 1/4(112) type through interaction with 

1/2(110) type translation boundaries. The faults can also become the 

boundary betweenenantiomorphousforms of the ordered structure. 

It has been shown that cation stacking faults in magnetite can 

effectively pin magnetic domain walls.
2 

As lithium ferrite and magnetite 

are quite similar both structurally and chemically,the same phenomenon 

can be expected to occur in lithium ferrite. Hence, the distribution 

and density of these defects will influence the magnetic properties 

e.g., the initial permeability and coercive force. The fault density 

can only be controlled during preparation of the compound from the melt, 

from the vapor or Iby solid state reactions. These faults can be 

especially important in the production of thin films which are usually 

prepared under conditions far away from equilibrium. 

It has also been shown in ordered metallic systems that magnetic 

domain walls can be pinned by antiphase boundaries.
2 

It can be assumed 

that this is also 'the case in lithium ferrite. There is ample evidence 

;n the lite·rature8,18-20 that . t t t' rt' • some ~mpor an magne ~c prope ~es are 
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dependent upon the state of order of the system (see Section 2). There 

are also. indications that a correlation exists between the electrical 

conductivity of single crystal samples and the domain size in the 

. 56 
ordered structure. This domain size can be controlled by the 

proper heat treatment. No attempt has been made here to study the kinetics 

of the disorder-order reaction and the domain growth in a quantitative 

57 way. This will form the subject of a forthcoming study. In this 

work, the groundwork has been laid for a correct interpretation of the 

microstructure in the ordered phase. 
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Composition of Octahedra-
Fault Type Removed Material Tetrahedra 

Share 

Perfect --- CClrners 

(100) 1/4[110] A B2 04 faces 

(100) 1/4[011]1) --- faces 

corners 

(110) 1/4[110] A B2 04 corners 

,(110) 1/4[110] --- faces 

(110) 1/4[101] 
IA "°2 

corners 

B 02 faces 

(111) 1/4 (110] '"3 0, corners 

. A2 B 04 . corners 

r"3 0, cornets 

A B 04 faces 

(111) 1/4[liO] --- I faces 

---2) faces 

TABLE I 

Shortest 
A-B 

Distance 

d
1l3 

= .• 414a
o 

dIll .. ~217ao 

d111 = .217ao 

d113 ... 414ao 

d
U3 

0: .414ao 

dIU = • 217ao 

d
113 

IE .414ao 

dIll ... 217ao 

d
1l3 

... 414ao 

d1l3 ... 414ao 
dU3 = .414ao 

dIll ... 217ao 

dIll = .217ao 

dIU = .217a o 

Tetrahedra 
Tetrahedra 

Share 

---

corners 

--
edges 

corners 

---
---

edges 

edges 

--
corners 

corners 

---
edges 

Shortest 
A-A 

Distance 

dlll = .434uo 

dllO ... 3541;10 

dIll = .434ao 

d
100 

... 250a
o 

dUO" .354ao 

dIU ... 434ao 

dIll .. .434ao 

d100 ... 250ao 

d100 = .250ac; 

dIll = .434ao 

dUO"· • 354ao 

dUO" .354ao 

dIll ... 434ao 

d
100 

... 250a 
o 

1) The configuration of the ions depends on the exact position of the fault plane and the direction of shear. 

2) In case the fault plane breaks up a "mixed" cation.i1ayer. 

r 
+>-
0-
r 



Level 

14 

13 

12 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 

-1 

.' 
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TABLE II 

, I 

(13) 
(111) Stacking of Ions in the Spinel Structure 

Occupied Position Composition 

a 1,2,3,4 °4 

B304 (kagome) 

c 2,3,4 B3 

b 1,2,3,4 °4 

c 1 A A2B04 (mixed) 

a 1 B 

b 1 A 

c 1,2,3,4 °4 A B3 04 

b 2,3,4 B) 

a 1,2,3,4 °4 A B 04 

b 1 A 

c 1 B 

a 1 A 

• 
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Table III. Coordinates of octahedral sites. 

No. x y z 

1 0.625 0.625 0.625 

2 0.125 0.875 0.375 

3 0.375 0.125 0.875 

4 0.875 0.375 0.125 

5 0.125 0.375 0.875 

6 0.875 0.125 0.375 

7 0.375 0.875 0.125 

8 0.375 0.625 0.375 

9 0.375 0.375 0.625 

10 0.625' 0.375 0.375 

11 0.625 0.125 0.125 

12 0.125 0.625 0.125 

13 0.125 0.125 0.625 

14 0.875 0.875 0.625 

15 0.625 0.875 0.875 

16 0.875 0.625 0.875 
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Table IV. Atomic coordinates of the eight ordered arrangements. 

Symbol An;angement . Atomic Coordinates* 
i ! 

1L P4
3

32 
Li: 1, 2, 3, 4** 

2L P4332 + t[llO]t Li: 7, 10, 13, 16 

3L P4332 + t[lOl] Li: 6, 9, 12, 15 

4L P4332 + t[Oll] Li: 5, 8, 11, 14 

1R P4
1

32 Li: 1, 5, 6, 7 

2R P4132 + ¥[110] Li: 4, 8, 13, 15 

3R P4132 + t[101] Li: 3, 10, 12, 14 

4R P4132 + t[OllJ Li: 4, 9, 11, 16 

* The octahedral sites not occupied by lithium are occupied by 
the iron ions. Only the position of the lithium Ions are given. 
The position of the oxygen ions and tetrahedral ions are the 
same for all the ordered arrangements. 

** These numbers refer to the numbers of the octahedral sites as 
given in Table III. 
t 1 P4

3
32 + 2[110J means that this arrangement is derived from the 

"basic" P4
3

32 arrangement by giving the Li ions a displacement 

over a vector t[llO]. 
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Table V. Classification of Boundaries. * 

T 1 T2 T3 I I+T
1 

I+T
2 

I+T
3 

LL-2L 1L-3L lL-4L lL-1R 1L-2R 1L-3R lL-4R 

3L-4L 2L-4L 2L-3L 2L-2R 2L-IR 2L-4R 2L-3R 

lR-2R lR-3R lR-4R 3L-3R 3L-4R 3L-lR 3L-2R 

3R-I.R 3R-4R 2R-3R 4L-4R 4L-4R 4L-2R 4L-IR 

* Svmbols used in - , this table are explained in Table IV 
and in Fig. 10. 



-51-

Table VI. Values of the phase angle a. 

C T' 
1 

TZ 
I 

IT3 I I+T 
1 

I+T
Z 

I+T 
3 

110 0 'IT IT 0 0 'IT IT 

110 0 IT IT 'IT IT 0 0 

101 IT 0 IT 0 IT 0 IT 

101 'IT 0 IT IT 0 'IT 0 

011 'IT 'IT 0 0 'IT 'IT 0 

011 'IT 'IT 0 'IT 0 0 'IT 

112 0 'IT 'IT 0 0 'IT 'IT 

112 0 'IT 'IT 'IT 'IT 0 0 

112 0 'IT 'IT 'IT 'IT 0 0 

lIZ 0 'IT 'IT 0 0 'IT 'IT 

211 'IT 'IT 0 0 'IT 'IT 0 

211 'iT 'IT 0 'IT 0 0 'IT 

211 'IT 'IT 0 'IT 0 0 'IT 

211 IT 'IT 0 0 'IT 'IT 0 

121 'IT 0 'IT 0 IT 0 'IT 

121 IT 0 'IT 'IT 0 'IT 0 
I 

121 'IT 0 'IT 'IT 0 'IT 0 

121 'IT 0 'iT 0 'IT 0 'IT. 

120 'IT 'IT 0 'IT/2 -'IT /2 -'IT/2 'IT /2 

120 'IT 'IT 0 -'IT/2 'IT 12 'IT 12 -'IT/2 

210 'IT 0 'IT 'IT/2 -'IT 12 'IT/2 -'IT/2 

210 'IT 0 'IT 'IT 12 -'IT/2 'IT 12 -IT/Z 

OZl 0 'IT 'IT 'IT/2 'IT/2 -'lT/Z -Tr/Z 

021 0 'IT 'IT 'IT I 2 Tf 12 -'IT 12 -n/2 

012 'IT 0 'IT -n/2 n/2 -'lT/2 'IT 12 

012 'IT 0 'IT 'IT/2 -'IT/2 'IT/2 -'IT/2 

102 'IT 'IT 0 'IT/2 -n/2 -'IT/2 'IT I 2 

102 'IT n 0 -n/2 'IT/2 'IT/2 -'IT/2 

201 0 'IT 1f -n/2 -'lT/2 'IT/2 'IT/2 

201 0 'IT 'IT 'IT /2 'IT/2 -n/2 -'iT/2 
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Table VII. Analysis of Fig. II. 

Boundary1: g~110 g~Oll g=lOI ·.Type 

a NC ** NC Ct I+T 
2 

b NC C C Tl 
c NC C NC I+T

3 
d C NC C T3 
e HC C NC I+!3 
f C NC NC I+T

l 
g NC C C T 

1 
h C NC NC ·I+T 

1 
i C C NC T . 

2 
j C C NC T2 
k C NC NC I+T1 
i NC C NC I+T

3 

* The boundaries are labelled in Fig. lla. 

** NC: boundary not in contrast. 

tC: boundary in contrast. 
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FIGURE CAPTIONS 

Fig. 1. Typical arrangement of cation stacking faults in lithium ferrite. 

Notice at A, the disappearance of fringes at overlapping faults. 

At B three faults meet along a line. One fault is seen edge on. 

In the region where the other two overlap, fringes run parallel 

with the line of intersection. This arrangement of faults 

corresponds with the one in Fig. 8b. At C there is an arrangement 

corresponding with Fig. 8a (one fault seen edge-on). 

Fig. 2. Three faults meeting at a junction of fully ordered lithium 

ferrite. Only spinel reflections have been used in these photo-

graphs. These diffraction experiments allow one tp determine the 

displacement vector of these faults and the Burgers vector of the 

dislocation confining fault A. 

Fig. 3. Projection of an ideal spinel structure on the (001) plane. 

Oxygen ions have been omitted. A fault on (100) was introduced 

into the structure, with the displacement vector at 45° to the 

fault plane. For some ions the coordination polyhedra are shown. 

Octahedra and tetrahedra project as squares. In the perfect 

structure, octahedra and tetrahedra share corners, while across 

the faultplade they share faces (hatched area). Across the 

fault plane tetrahedra share corners, whereas in the perfect 

structure they do not touch. 

Fig. 4. Only three layers of ions are shown here. The shear necessary 

for a {001} 1/4(110) type fault are shown. The plane of the fault 

is parallel with the plane of the paper, and is·located between 

the layer at a and the layer at 1. Coordination tetrahedra 
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project as the smaller squares, octahedra as the large one. 

After shear in the [110] direction, tetrahedra share an edge 

(indicated by -.-.-) at c. After shear in the [110] direction 

a tetrahedron shares a face (hatched) with the octahedron at A 

and also with the octahedron at B (not shown). 

Fig. 5. Same type of projection as in Fig. 3. A fault on (110) was 

introduced with the displacement vector in the plane of the 

fault. Across the fault plane octahedra and tetrahedra share 

faces. 

Fig. 6. Same type of projection as in Fig. 3. A fault on (110) was 

introduced with the displacement vector orthogonal to the fault 

plane. Notice that octahedra and tetrahedra are riot displaced 

relative to one another. Tetrahedra, however, share corners 

across the fault plane. 

Fig. 7. Projection of an ideal spinel structure on the (110) plane. 

A two dimensional unit cell is shown, which can be used to 

determine the composition in successive (110) planes. A (110) 

1/4[110] fault has been introduced. Across the fault plane 

tetrahedral ions have an oxygen ion in common as a nearest 

neighbor. 

Fig. 8. Two possible modes by which a {110} 1/4<110> fault can change 

fault planes. (a) By leaving a dislocation at the junction. 

(b) When the three faults meet at a junction a dislocation is 

not necessary. 
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Projection of the octahedral sites on the (100) plane for the 

two enantiomprphs. ,The unit cell indicated is the conventional 

one for the P4
3

32 spacegroup. It is indicated how the 

octahedral sites are aligned in <all> directions with one Li 

ion followed by three Fe ions. 

Fig. 10. Schematic representation of the seven differentbol"ndaries in 

ordered LiFe
5

0
8

• The labels of the ordered arrangements are 

explained in Table II. 

Fig. 11. An identical area of an ordered crystal photographed under five 

different diffraction conditions. The operating reflections in 

(a), (b), (c) and (d) are indicated by vectors. The 

diffraction pattern corresponding to (e) and (f) is shown in 

(g) (BF: bright field; DF: dark field with reflection used 

indicated). The specimen was annealed at 850°C and furnace cooled. 

Fig. 12. Bright field (a) and two dark fields (b,c) showing that a few 

fairly strong reflections off the operating row are sufficient 

to produce strong differences in contrast between enantiomorphic 

domain (e.g., at A and B). Across translation boundaries there 

is no difference in background intensity (e.g., at C and D). 

The specimen was annealed at 850°C and furnace cooled. 

Fig. 13. Domains in a crystal in the as received condition. The domain 

size ~s of the order of 5~. 

Fig. 14. This specimen was annealed at 950°C for 30 min, water quenched, 

then annealed at 650°C for 100 min. The domain size is of the 

order of 0.2~. 
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Fig. 15. Fault A in this micrograph is an example of a 1/4(112) type 

fault in ordered lithium ferrite. The fault plane is (011) 

and R = ±1/4[2l1]. A ±1/4[011] displacement vector would have 

been out of contrast in (~) (g·R = 0) and iri contrast in (b) 

which is contrary to the observations. 

Fig. 16. Three stacking faults forming a triple junction in ordered 

lithium ferrite. The same area was photographed under four 

different diffraction conditions, characterized by the g vectors 

in the figures. 

Fig. 17. Figure l7a was taken under the conditions shown in Fig. l7b. 

Figure l7c was taken under the diffraction conditions indicated 

in the figure. 

Fig. 18. Contrast conditions are shown for a translation fault (a), 

a (101) fault (b) and 1/4[101] partials (c). Weak 1T contrast 

occurs in (b) due to the influence of the superlattice reflections 

in the systematic set. (c) shows the advantage of using high 

resolution images in ng (n = 6) in which the two partials 

are well resolved. 
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XBB 742-813 

Fig. 1. 
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g= i 1 j 

XBB 742-814 

Fig. 2. 
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a, 
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,....--------LEGAL NOTICE---------....... 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights . 
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