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Mass Transfer in a Small Aspect Ratio Rotating Disk CVD Reactor 

Abstract 

Daniel T. Schwartz* and Rolf H. Muller 
Materials and Chemical Sciences Division 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, CA 94720 

The effects of reactant injection velocity, substrate rotation, and fluid properties on 

thin film deposition in a small aspect ratio rotating disk chemical vapor deposition (CVD) 

reactor are analyzed by solving the Navier-Stokes and species continuity equations using 

perturbation techniques. The analysis applies to deposition of a mass-transfer-limited 

species in the core region of the reactor, where edge effects are negligible. Explicit 

· analytical solutions for the deposition rate at the reactive substrate are found in the limiting 

cases of large and small Peclet numbers (Pe). A thin concentration boundary layer with 

characteristics that depend on the Reynolds (Re) and Schmidt (Sc) numbers forms on the 

rotating disk substrate when Pe is large. The deposition rate for large Pe is shown to be 

-O(Pe113) when Re<<1, -O(Pe112) when Re>>l and Sc<<1, and -O(Re112Sc113) when 

Re>> 1 and Sc>> 1. Two-term Sherwood number expansions are shown to agree with 

exact numerical results to within 10% for the range of Sc, Re, and Rossby numbers 

employed in CVD. Applications of these analytical results to develop guidelines for the 

operation of rotating disk CVD reactors are discussed. 

* Author to whom correspondence should be addressed. 
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Introduction 

The growth of thin film materials for electronic device applications requires a high 

degree of composition and thickness uniformity over large areas. Chemical vapor 

deposition (CVD) is a common technique employed to form thin layers that satisfy 

uniformity requirements, but deposition in these systems is generally limited by the rate of 

reactant mass transfer to the substrate surface (Thompson et al., 1989; Tompa et al .• 1989). 

The deposition of a mass-transfer-limited species is spatially unif-orm when the 

concentration boundary layer induced by the reactive substrate is independent of the 

transverse coordinates. Hence, a major design goal for CVD reactors is to develop 

configurations that have uniform mass transfer accessibility, i.e. a spatially flat 

concentration boundary layer (Houtman et al., 1986; Patnaik et al, 1989). 

Modem CVD reactor designs are often based on axisymmetric rotating flows 

where a substrate disk. spins with angular velOcity n and a reactant stream is injected axially 

towards the substrate with a uniform velocity V (Wang et al., 1986). This reactor 

configuration is sometimes called a stagnation point flow reactor when Q=() (Houtman et 

al, 1986), a rotating disk metalorganic CVD reactor (Thompson et al., 1989; Tompa et al., 

1989), or an organometalic vapor phase epitaxy reactor (Wang et al., 1986; Patnaik et al., 

1989), but here we simply refer to this as a rotating disk reactor (RDR) or a small aspect 

ratio rotating disk reactor (SARDR), when the reactor aspect ratio (=UR, see Fig. 1) is less 

than one. 

In the absence of edge effects (i.e. self-similar flow), the SARDR has a planar 

concentration boundary layer that extends over the entire reactive substrate, even when 

large axial thermal gradients exist (Evans and Greif, 1988). Convective transport in a 

SARDR can be considerably more complex than the self-similar case when edge and 

buoyancy effects are taken into account (Houtman et al., 1986; Evans and Greif, 1987; 

Patnaik et al., 1989). But, flow visualization (Wang et al., 1986) and numerical studies 
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(Houtman et al., 1986; Evans and Greif, 1987) have established operating conditions where 

the RDR response is, for all practical purposes, indistinguishable from the simple one

dimensional, self-similar system. The study of Houtman et al. (1986) is particularly 

relevant here, since they demonstrated that reducing the reactor aspect ratio from 0.9 to 0.2 

displaced edge effects to all but a small region near the perimeter of the reactor. Moreover, 

both Houtman et al. (1986) and Evans and Greif (1987) have shown that even when the 

reactor aspect ratio was 0(1), a self-similar core region remained in the reactor when forced 

flow dominated natural convection.- The presence of a self-similar core region in a 

SARDR with edges is fortuitous since, in general, this is not assured for confined 

axisymmetric rotating flows (Brady and Durlofsky, 1987). 

In the self-similar core region of a SARDR (or as the reactor aspect ratio 

approaches zero) mass transfer is characterized by convective transport between an infinite 

rotating substrate disk with an infinite coaxial porous injector. This configuration is shown 

schematically in Fig. 1. 

Only limited studies are reported in the literature for heat and mass transfer in the 

self-similar SARDR configuration. Gorla (1984) has numerically analyzed heat transfer in 

the related problem of an infinite porous slider bearing with a constant property Newtonian 

fluid impinging on a translating plane. His numerical results were limited to four Prandtl 

numbers (Pr) in the range 0.7SPI'S10 and select Reynolds numbers (Re) in the range 

O.OlSReSSO. Evans and Greif (1988) have recently presented a thorough numerical 

analysis of self-similar flow and heat transfer in the SARDR when helium is the injected 

fluid. Their study included the effects of disk rotation, fluid injection, and temperature 

dependent physical properties. They found that large temperature differences between the 

porous injection disk and the rotating disk can significantly modify heat transfer in the 

system due to the axial variation of physical properties. Unfortunately, the results 

presented by Evans and Greif were restricted to the injection of helium gas, since those 

were the physical properties used in the model. They also considered temperature 
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independent properties for a fluid with a Prandtl number of Pr=0.67. To the best of our 

knowledge, no analytical solutions to the problem of convective heat or mass transfer in a 
. J. 

SARDR are currently available in the literature. 

In this paper we present perturbation expansions for the concentration field and 

deposition rate induced by a mass-transfer-limited reaction on the rotating disk of a self

similar SARDR. Since a SARDR is often operated with many different injection fluids 

and temperatures, we derive expressions valid over a wide range of Schmidt numbers 

(analogous to Pr in heat transfer), Reynolds numbers, and Ross by numbers (a measure of 

axial flow to rotational flow strength). In the first part of the Results section, perturbation 

solutions are presented for flow in the SARDR. The velocity field expansions are then 

applied to the convective-diffusion equation to derive perturbation expansions for the 

concentration field and Sherwood number (a dimensionless mass transfer coefficient that is 

analogous to the Nusselt number) at the rotating disk. The Discussion section is devoted to 

a comparison of our perturbation solutions with numerical solutions available· in the 

literature (Wang, 1974; Gorla, 1984; Evans and Greif, 1988). Our results for the 

Sherwood number are found to match numerical results to within 5% over the entire range 

" of Schmidt and Reynolds numbers computed by Gorla (1984). The perturbation solutions 

are also compared with Evans and Greifs numerical results as a function of the inverse 

Rossby number (a}, and agreement to within 5% is found when 0S<XS10. For a>lO, the 

Sherwood number at the rotating disk is given to within 8% by the mass transfer rate to a 

disk rotating in an infinite medium. From these comparisons, we show that the overlap of 

perturbation expansions with different domains of validity provide good estimates of the 

Sherwood number at the rotating disk of a SARDR for any value of Re and Sc. 
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Problem Formulation 

Flow field 

Two coaxial disks of infinite extent are taken to form the boundaries of the 

SARDR. Heterogeneous reaction occurs at the reactive substrate disk (z = 0) and reactant 

fluid is injected from the porous injection disk (z = L), see Fig. 1. The bottom disk rotates 

with an angular velocity of n. The injected fluid is assumed to be incompressible (Mach 

number<< 1), Newtonian, and to have constant physical properties (kinematic viscosity v 

and density p ). In addition, the injected fluid is assumed to contain the reactant as a minor 

component in an inert carrier fluid, as is commonly found in CVD (Thompson et al., 1989); 

volume changes due to_ reaction stoichiometry are therefore neglected. Total mass 

continuity requires that axisymmetric flow confmed between the boundaries of the SARDR 

must be self-similar in form, and the velocity field is given by 

v = rf(z)er + rg(z)e9 + w(z)ez , (1) 

where f = v;r is the radial flow function, g = vefr is the azimuthal flow function, w = Vz is 

the axial velocity, r is the radial position, and the unit vector~ for a cylindrical coordinate 

system (r, e, z) are given by er ea. and Cz. The flow functions f, g, and w are functions of 

axial position z only. The nondimensionalized radial and azimuthal components of the 

momentum equation are 

(2a) 

-+2Re W--G- =0, d
2
G ( dG dW) 

dTl2 dTl dTl 
(2b) 

and the axial component of momentum is 
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-- + Re 2W- + -- = 0. d
2
w ( dW 1 aP) 

d112 d11 4 ~ 
(2c) 

Note that mass continuity 

dW 
-- F = 0 
d11 ' 

(3) 

was used to derive Eq. 2. The Reynolds number for this system is defined as Re = VL/V, 

11 = z/L is the axial distance, A.= r/L is the radial distance, ex= nuv is the inverse of a 

rotational Rossby number that measures the relative strength of azimuthal (rotational) flow 

to axial (injection) flow, P = 2p/pV2 is dimensionless pressure, W = -w/2V, G = g/0., and 

F = fUV. For Eqs. 2a and 2c to be compatible, the pressure field must take the form 

(4) 

where A is the radial pressure coefficient, and ~ is a function of 11 that is determined from 

Eq. 2c. The governing equations 2- 4 arc an exact formulation of the Navier-Stokes 

equations that are decoupled from species continuity by the assumption of negligible 

volume change upon reaction and composition independent physical properties. 

At the surface of the rotating disk (11 = 0) there is no slip or penetration of fluid, 

dW 
W(O) = dT1 (0) = 0, 

G(O) = 1, 

while at the upper disk (11 = 1) there is uniform axial injection 

1 
W(l) = 2, 

(Sa) 

(Sb) 

(6a) 
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and no slip, 

dW 
d11 (1) = 0, (6b) . 

G(1) = ·0. (6c) 

It is interesting to note that the equation governing W is third order (see Eq. 2a), but there 

are four conditions at the boundary that must be satisfied. The additional constraint is used 

to determine the unknown radial pressure coefficient A. 

Concentration field 

Steady mass transport of a dilute species in the self-similar SARDR is governed by 
. . 

axial convection and diffusion, i.e., 

(7) 

where c is the concentration of the reactant species, and D is the (constant) species 

diffusivity for the dilute reactant. At the substrate disk surface (z = 0) a heterogeneous 

reaction is consuming the reactant at the mass-transfer-limited rate, so that 

c=O, (8) 

and at the injection disk (z = L) 

(9) 

where the concentration discharged from the porous disk is given by ci . 

The nondimensional formofEq. 7 is 

(10) 
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where Pe= VUD=ReSc is the Peclet number, Sc=U/D is the Schmidt number, and C=c/ci is 

the dimensionless concentration. The dimensionless boundary condition at 11=0 is 

C(O) = 0, (11) 

and at 11=1, we have 

C(l) = 1. (12) 

The molar flux at the surface of the rotating disk can be written in terms of a mass 

transfer coefficient h: 

Nondimensionalizing Eq. 13 provides an expression for the Sherwood number, Sh, 

Sh = ~0), 
drl· 

(13) 

(14) 

where Sh = hL/D. The Sherwood number is proportional to the deposition rate of a mass

transfer-limited species in CVD (see Eq. 87) and is also equivalent to the Nusselt number 

in heat transfer. 

Asymptotic Flow Results 

In this section, the limiting cases of low and high Reynolds number flow in the self

similar SARDR are considered. Elkouh (1968) has analyzed low Reynolds number 

injection flows confined between coaxial rotating porous disks. We extend Elkouh's 

treatment by formally consider flows dominated by rotation, including the limiting case of 

low Re flows driven solely by the rotating disk (i.e. niJV-+oo). By considering separately 

the limiting cases of rotation-dominated and injection-dominated flows, the restrictions on 

Re and a necessary to balance inertial terms in the radial momentum equation are clarified. 

The equations analyzed here (Eqs. 2 - 6) are therefore nondimensionalized in a manner 
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somewhat different from those solved by Elkouh. The high Reynolds number self-similar 

flow of injected and rotating fluid confined between coaxial rotating disks has been 

analyzed in detail by Wang and Watson (1979). Since the flow field plays an imponant 

role in our derivation of convective mass transfer in the SARDR, we include here a brief 

accounting of known asymptotic results for the hydrodynamics. Most of the steps in the 

derivation of the perturbation solutions are excluded and the interested reader is referred to 

Elkouh (1968) and Wang and Watson (1979) for details on the solution methodology for 

Re<<1 andRe>> 1 flows, respective!¥. 

Low Reynolds number flow 

When a?-<< 1 injection flow dominates rotational flow, and solutions for_Eqs. 2 ~ 6 

are found using the straightforward expansions 

. 
W = W0 + ReW1 + O(Re2) , (15a) 

(15b) 

and 

A = Re'1 Ao + A1 + O(Re) . (15c) 

Equations 15a-c are inserted into Eqs. 2 - 6 and terms of comparable order as Re-+0 are 

solved, yielding 

(16a) 

Go = 1 - 11, (16b) 

A0 = 6, (16c) 

9 



and 
27 3a2 

A1 = 35 - 10 · 

(17a) 

(17b) 

(17c) 

It is interesting to note that the azimuthal flow function G is independent of a. (to the order 

calculated), but the axial flow W does depend on a. As a2~0 the axial flow takes on the 

form of a pure injection flow with no contribution from centrifugal forces. 

When rotational flow dominates over injection flow (i.e. a2:>>1), it is worthwhile 

rescaling the governing equations to balance the inertial terms in Eq. 2a. A new set of 

dimensionless variables are defined in the following manner: W = aW, G = G, A = a 2 A, 

Re = a.Re = OL 2 /V, where we note that the Reynolds number is now based on the 

rotational velocity of the disk. Substituting these variables into Eqs. 2a and 2b provides the 

rescaled radial and azimuthal momentum equations 

3- ( 2n7 ( -; J dW - -dW dW - -
-- + Re 2W--- -. + G2 +A = 0 
d~3 d~2 d~ 

and 

2- ( - -) dG - _dG -dW 
-+2Re W--G- =0. 
d~2 d~ dr! 

The boundary conditions are 

and 

- dW -
W =- =0, G=l at ~=0, 

d~ 

dW- 1-
-=0,W=-,G=O at~=l. 
dT1 2a 

(18a) 

(18b) 

(19a,b,c) 

(20a,b,c) 
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Straightforward expansions analogous to Eqs. 15a-c are written for W, G, and A in terms 

of a series in Re , 

(21a) 

(21b) 

and 

(21c) 

Collecting terms of comparable order as Re-+0 and solving for W n• Gn, and An gives 

and 

- 3 2 1 3 w = -n - ...... Tl • 0 2a a 

0 0 = 1 - 11. 

- 6 
Ao = -, 

a 

27 3 
Al = 35a2 - 10 . 

(22a) 

(22b) 

(22c) 

(23b) 

(23c) · 

In the limit of a 2-+oo, the flow field, represented by Eqs. 21- 23, takes the low Reynolds 

number form of a purely rotational flow confined between a rotating disk and a stationary 

disk (Lance and Rogers, 1962). The formal difference between the large and small a 
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expansions (Eqs. 15 and 21) is that a constraint on the product aRe (i.e. Re<<1) must be 

satisfied by Eq. 21, whereas Eq. 15 need only satisfy the constraint Re<<l. 

Note that the perturbation solution scaled for a 2>>1 (Eqs. 21-23) are identical to 

the solution scaled for a 2<<1 (Eqs. 15-17) when a= 1. It is plain that the solutions for 

a.~> 1 and a 2<<1 overlap in the intermediate range of a 2 - 0(1), since the criteria used in 

formulating Eqs. 15 and 21, Re<<1 and Re <<1, respectively, are both satisfied 

simultaneously. In fact, either set of expansions (Eqs. 15 or 21) hold for small Reynolds 

numbers, provided that all of the inertial terms are small, including centrifugal forces. In 

other words, for any finite ex there exists a value of Re sufficiently small for all inertial 

terms in the radial momentum equation 2a to be negligible at leading order; rescaling Eqs. 

15 (to get Eqs. 21) simply illuminates the conditions where the inertial terms are balanced 

for large ex. 

High Reynolds number flow with £mite a 

High Reynolds number axisymmetric rotating flows with no injection of fluid have 

been intensely studied owing to their self-similar form, the multiplicity of possible steady 

state solutions (Zandbergen and Dijkstra,. 1987), and the sensitivity of flow to edge effects 

(Brady and Durlofsky, 1987). Injection-dominated high Reynolds number axisymmetric 

flows seem to be less complex in their structure (Wang, 1974; Wang and Watson, 1979). 

We first consider the case of pure injection with no rotation (ex=O), and then modifications 

to the far-field equations are presented to account for the rotating substrate disk. 

When ex=O the radial momentum equation 2a is decoup1ed from Eq. 2b. 

Differentiating Eq. 2a with respect to. 11 yields the fourth order differential equation 

(24) 
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At the substrate disk surface, Eqs. Sa hold, and at the upper disk Eqs. 6a and 6b must be 

satisfied. Mass continuity, Eq. 3, provides an equation for determining the radial flow 

function F, and the radial pressure gradient is determined from Eqs. 2a and 4, once W is 

known. Equation 24 becomes singular when Re~oo , indicating that a boundary layer 

forms near the bottom disk. The governing equation 24 and its boundary conditions are 

identical to the equations for boundary layer flow beneath a circular porous slider bearing 

(Wang, 1974). In his studies of slider bearings, Wang found that the thickness of the 

viscous boundary layer that forms near the plane 11=0 scaled as O(Re"112), when Re~oo. 

This scaling gave rise to an inner solution series of the form 

W(11) = Re"112 W0 + Re~1 W1 + O(Re-312) • (25) 

The uniformly valid large Reynolds number two-term composite solution to Eq. 24 is 

(Wang, 1974) 

where ~ = -{Re 11 is the stretched inner variable for the boundary layer region, m=0.56894 

is a constant found in matching the inner and outer solutions, and cp(~) is the classic 

solution for axisymmetric stagnation point flow against a stationary flat plate (Homann, 

1936). The function <p(~) was derived by Homann as a series solution 

<p(~) = ao +a~~~+ ~~2 + a3~3 + a4~4 + as~s + ... (27) 

where~ are constants. The firSt twenty five terms ofEq. 'Z7 were tabulated originally by 

Homann; the coefficients ao and a1 are identically zero. 

When the bottom disk rotates, the composite solution series for W resembles Eq. 

26, except that numerical techniques must be used to determine the rotating boundary layer 

contribution to the composite expansion (Wang and Watson, 1979). In the outer region of 

the boundary layer, the flow field is modified by the presence of the rotating disk; this is 

seen by comparing the far-field behavior of the inner expansion for the two cases of no 
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rotation and finite rotation of the substrate. When ex=O, Homann's function <p(;) has the 

limiting form 

lim <p(~) = ~- m 
;~ 

(28) 

where m is the constant given following Eq. 26. Recall that ; is the stretched inner 

variable. Wang and Watson (1979) have shown that the far-field function, Eq. 28, can be 

generalized when the bottom disk rotates and the injection disk is stationary, i.e., 

~ <p(;) = ~- M(ex), (29) 

where M(ex) now depends on the value of ex. Thus, Eq. 29 changes the matching criteria 

between the inner and outer solutions when the substrate rotates. The function M(ex) has 

been determined numerically by Wang and Watson for ex= 0, 5, and 10. In this range of ex, 

M( a) is nearly linear, and the function is given approximately by 

M(ex) = 0.56894- 0.1105 ex, (30) 

for 0~10. M(O) is identical to the constant m. The two-term expansion for the axial 

component of flow is found by inserting Eq. 29 into Eq. 26 and replacing m with M(ex): 

(31) 

where M(a) is given approximately by Eq. 30. It is important to recognize that Eq. 31 

breaks down when~ [ = -{Re 11]- 0(1) (or smaller) since the function <p(~) given by Eq. 

29 is not valid for that region of the inner layer. 

High Reynolds number rotational flow (a-+oo) 

It was noted in the preceding section that the stability and structure of high 

Reynolds number flows dominated by rotation is complex. One of the high Reynolds 

number solution branches found by Mellor, Chapple, and Stokes (1968) for self-similar 

flow with no injection from the porous disk (i.e. Re~- and ex2~-) takes the form of a 

von K3rmim flow induced by a rotating disk in an infmite quiescent medium. Brady and 

Durlofsky (1987) also found a high Reynolds number (Re>250) solution branch that 
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resembled von Kannan rotating disk flow when finite disks with open edges were 

analyzed. Many CVD reactor models have assumed that von Kannan free-disk flow was 

applicable in their derivation of convective mass transport. Nonetheless, flow and mass 

transfer with large Re and large a. is not analyzed in detail here. Rather, we consider 

briefly in the Discussion section the limiting behavior of free-disk mass transfer and 

compare that with Evans and Greifs (1988) numerical solutions. Readers interested in 

free-disk mass transfer in CVD reactors are referred to Olander (1967), Pollard and 

Newman (1980), and Hitchman and Curtis (1982) for additional information. 

Mass Transfer in the SARDR 

Reactant species are transported to the substrate surface Tl=O by convection and 

diffusion, see Eq. 10. The importance of convective transport relative to diffusive transport 

is characterized by the Peclet number (Pe = Vl.JD) for the system. For Pe>> 1, convection 

is the dominant mode of mass transfer, except for a region very near the reactive substrate 

surface. Conversely, for Pe<<1, diffusion is the dominant mode of mass transfer. 

A general solution to the convective-diffusion equation 10 and its boundary 

conditions, Eqs. 11 and 12, is 

C(Tl) = 
1 

(32) 

J ex{-2Pe jw<~>d+y 
0 

where 't andy are dummy variables of integration. Numerical methods must be used in 

general to solve these integrals. Explicit solution to the integrals in Eq. 32 can be found for 

certain simple forms of the axial velocity W, but not with the axial velocities presented in 

the preceding section. Perturbation techniques offer an alternative to solving Eq. 32. Using 
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perturbation analysis, limiting cases of large and small Peclet numbers can be solved 

explicitly. These limiting cases are analyzed in the following sections. 

Small Peclet Number Mass Transfer (Pe<<l) 

As noted above, small Peclet number mass transfer is dominated by diffusive transport. 

Nevertheless, convection modifies the pure diffusion (Pe~O) limit. The concentration 

field is expressed as the regular perturbation series 

(33) 

Substituting Eq. 33 into Eqs. 10 - 12, and collecting terms of comparable order as Pe---70 

provides the governing equations and boundary conditions for C0 , C1, and higher order 

functions. The zeroth-order equation is 

d2Co - 0 
2 - • 

d11 
(34) 

with the boundary conditions 

(35) 

and 

(36) 

The solution to Eqs. 34 - 36 is 

Co = 11 · (37) 

The fliSt-order equation includes the effects of convection and is given by 

(38) 

with the boundary conditions 
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(39a,b) 

Equation 38 is integrated twice to obtain C1, once the dimensionless axial velocity 

W is specified. The boundary conditions (Eqs. 39a and 39b) are used to specify the 

constants of integration. In the following three subsections, the limiting forms of W 

presented earlier are used to derive C1 and the Sherwood number at the reactive disk 

surface. 

Pe<<l mass transfer with Re, Re<.<l 

First we consider the concentration field perturbation C1 introduced by injection 

dominated (~1) low Reynolds number flow. Substituting Eqs. 15a-17a into Eq. 38, and 

integrating twice yields the solution for cl: 

1 4 1 5 
C1 = K1 + K211 - 4fl + "'iQ11 + 

(40) 

where the integration constants, K1=0 and K2=0.15 + Re[0.004008 + 0.001429a2], are 

determined from Eqs. 39a and 39b. 

The quantity of interest for deposition studies is the Sherwood number, Sh, 

evaluated at the reactive disk 11=0. The Sherwood number is proportional to the deposition 

rate (see Eq. 87) and is given in our variables by the derivative of C with respect to 11· 

Differentiating Eq. 33 with respect to 11 and inserting Eqs. 37 and 40, we find 

Sh = 1 + Pe (0.15 + Re[0.004008 + 0.001429a2l) + O(Pe2), (41) 

when Pe<<l, Re<<l, and asl. 

The effects of rotation-dominated (~1) low Reynolds number flow on small Peclet 

number mass transfer are calculated next. Recall that the axial velocity was rescaled for 

flows dominated by rotation. Inserting the rescaled axial velocity, W=aW, into the 
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convective-diffusion equation and defining a new Peclet number based on the angular 

velocity of the disk, Pe = aPe = !lL 2/D, gives an equation identical to Eq. 10 with Pe 

replacing Pe. A regular perturbation series in powers of Pe (analogous to Eq. 33) is 

inserted into the convective-diffusion equation. The solution to the zeroth-order equation 

remains Eq. 37. The frrst-order equation is identical to Eq. 38 with W replacing W. The 

solution to the first-order equation. using W given by Eqs. 21a-23a, is 

1 4 1 s 
Ct = Kt + K211 - ---'11 + '::-11 + 

40. lOa. 

Re - - + --+- 1"0(\11 + 1'W\11 ll + ll (42) -~( 13 1 f 4 ( 9 1 fs 1 6 1 7 1 8 1 9) 
- 840a.2 - 120 700a.2 600 - 180 1260 - 560a.2 25200.2 , 

where K1=0 and K2;.,0.15/a. + Re[0.001429 + 0.004008/a.2]. The Sherwood number at 

the reactive disk surface is 

Sh = 1 + Pe (o.15/a. + Re[0.0014~9 + 0.004008/a.l]) + O(Pe2) (43) 

when Pe<<1, Re<<1, and ~1. 

Pe<<l mass trallsfer with Re>>l 

In this section, we consider the first-order concentration field perturbation in the 

SARDR system when Pe<<1 and Re>>l. For small Peclet numbers we know that 

concentration variations occur over the geometric length scale, i.e. 0(1), whereas the 

hydrodynamic boundary layer thickness is 0(Re·1f2), for large Re. It is appropriate in this 

case to use the hydrodynamic approximation given by Eq. 31. Substituting Eq. 31 into Eq. 

38 and integrating twice yields 

(44) 
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where K1=0 and K2=0.25- 0.5 M(a)Re-tfl. The Sherwood number at 11=0 is 

Sh = 1 + Pe ( 0.25 - 0.5 M(a)Re-1fl) + O(Pe2) (45) 

when Pe<<l, Re>>1, and a finite. M(<X) is given by Eq. 30 when O~<XS10. 

Large Peclet Number Mass Transfer (Pe>> 1) 

When Pe>> 1, concentration gradients are negligible throughout the SARDR, except 

in the neighborhood of the reactive substrate disk. The nature of the concentration 

boundary layer that forms near 11=0 depends on the Reynolds number of the flow. When 

Re is small, the characteristic hydrodynamic length scale is ftxed by the geometric length 

and is 0(1). But for large Re, a hydrodynamic boundary layer with thickness 0(Re-1fl) 

forms near the bottom disk. Since a hydrodynamic boundary layer and a concentration 

boundary layer both exists when Re>> 1 and Pe>> 1, the solution technique employed 

depends on whether the concentration boundary layer is confmed within, or is external to, 

the hydrodynamic boundary layer. The effects of the different flow regimes and boundary 

layer structures on large Peclet number mass transfer are illustrated in the following 

subsections. 

Pe>>l mass transfer with small Reynolds numbers 

Axial flow in the vicinity of the substrate disk can be represented by a Taylor 

series expansion in terms of 11, i.e., 

1 1 II 2 . 1 Ill 3 
W = W(O) + W (0)11 + 2 W (0)11 + 6 W (0)11 + ... , ( 46) 

where the prime ( ' ) denotes differentiation with respect to 11· An identical expansion can 

be written for W. The first two terms on the right hand side of Eq. 46 are identically zero 

from the boundary conditions (Eqs. Sa). Substituting the frrst two nonzero terms of Eq. 46 
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into Eq. 10 provides a governing equation for mass transfer that is accurate near the reactive 

disk: 

(47) 

It is interesting to note that in the case of small Reynolds number flows, W"(O) and W"'(O) 

[or W"(O) and W"'(O)] are 0(1) functions (see Eqs. 81-84). Hence, Eq. 47 _can be solved 

for small Reynolds numbers, subject to the boundary conditions Eqs. 11 and 12, without 

specifying W"(O) or W"'(O) a priori. 

Equation 47 is solved using the method of matched asymptotic expansions. A 

small parameter e is defined as 

(48) 

for Pe>> 1. The outer expansion series 

cfJ = C~ + eC~ + O(el) (49) 

is substituted for C in Eq. 47 and terms of comparable order in e are collected to give 

d~ 
-=O • 
d11 

(50) 

where n = 0 and 1. Solving Eq. 50 subject to boundary condition Eq. 12 provides the outer 

expansion solutions dg = 1 and c~ = 0. 

We define a stretched variable ~ in the boundary layer near 11=0, 

(!!." (0))1/3 1 
~=\ 3 e 11 • 

(51) 

and expand C in the inner region as an E power series 
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I I 2 
C = CO<~) + eC1(~) + O(e) . (52) 

Substituting Eqs. 48, 51, and 52 into Eq. 47 and equating terms of comparable magnitude 

as e~O provides the zeroth-order inner equation 

(53) 

the first-order inner equation 

2 I I I 
d C1 dC1 ( 3 )t/3 dCo 
-- + 3 2-- w"' o 3 -d~2 . ~ d~ · - - ( ) W"(0)4 ~ d~ ' 

(54) 

and higher order equations. At the substrate disk surface ~=0, the boundary conditions are 

~(0) = ~(0) = 0 , (55) 

and far from the disk as ~~oo, the boundary conditions matched with the outer solutions 

are 

~(oo) = 1, d.(oo) = 0 . (56) 

The solution to the zeroth-order equation 53, subject to the boundary conditions, Eqs. 55 

and 56, is 

(57) 

where r(a) is the gamma function of a, and r(4/3) = 0.89298. The solution to the first

order equation is found by substituting Eq. 57 into the right hand side of Eq. 54 and 

21 



Integrating twice. Applying the boundary conditions (Eqs. 55 and 56) to the double 

integration yields 

~ 

1 W"'(O) ( 3 )1/3 J ( r(~) ) 
c, = 4r(D w" (o)• e . .; 3r{D - "I' dy , (58) 

where r(S/3) = 0.90275. The composite expansion is. identical to the inner solution series. 

The Sherwood number at the bottom disk, derived by differentiating Eq. 52 with 

respect to 11 and inserting the inner solutions, Eqs. 57 and 58, is 

1 (!!_"(0))1/3 r(~) W"'(O) 
Sh = r(i) \ 3 Pe

113 
+ 

12
r(i)2 W''(Ol + O(Pe"

113
J • (59) 

when Pe>> 1 and Re<<l. The Sherwood number for rotation-dominated small Re is 

identical to Eq. 59 with Pe replacing Pe, W"(O) replacing W"(O), and W"'(O) replacing 

W"'(O). The values ofW"(O) and W"'(O) are given by Eqs. 81 and 82, respectively, and 

W"(O) and W'"(O) are given by Eqs. 83 and 84, respectively. 

Pe>> 1 mass transfer with large Reynolds numbers and !mite a 

When the Peclet number and the Reynolds number are both large, hydrodynamic 

and concentration boundary layers form near the substrate disk surface. Two limiting 

situations may arise when both a hydrOdynamic and concentration boundary layer exist; the 

concentration boundary layer may be much thicker than the hydrodynamic layer, or vice 

versa. The relative thickness of the hydrodynamic boundary layer to the concentration 

boundary layer depends on the value of the Schmidt number (Sc=u/D) (Bird et al., 1960). 
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When Sc<<1. the concentration boundary layer is much thicker than the hydrodynamic 

boundary layer, while the opposite is true for Sc>>1. 

We consider first the case where the Schmidt number is small, Re is large, and their 

product, the Peclet number, is also large. In this situation, variations in concentration occur 

over a distance much greater than the hydrodynamic boundary layer thickness O(Re·112), 

but much less than the geometric length 0(1). When Sc is small, the axial velocity, Eq. 31, 

is substituted into the convective-diffusion equation to yield 

(60) 

where M(a.) is given by Eq. 30 when 0~10. Equations 11 and 12, are applied at 11 = 0 

and Tl = 1, respectively. Equation 60 is solved using the method of matched asymptotic 

expansions. The least degenerate form of Eq. 60 arises when a small parameter e is defined 

by 

e = Pe"112 • (61) 

The outer expansion series is identical to Eq. 49, where e is now defined by Eq. 61, and the 

solution to each outer expansion term is dg = 1, and d; = 0, for all integers ~1. 

A stretched inner variable X is defined in the concentration boundary layer 

(62) 

and C is expanded with an e power series 

C = ~{X) + e~{X) + O(el) (63) 
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Substituting Eqs. 61, 62, and 63 into Eq. 60 and equating terms of comparable magnitude 

as e.-+0 provides the zeroth-order equation 

d2C~ dC~ 
dX2 + ( (2 + 4M(a)Re-112) X- 2M(a)Sc112) dX = 0 , (64) 

the first-order equation 

2 I J I 
dCt dc1 dC0 
dX2 + ( (2 + 4M(a)Re-112) X- 2M(a)Sc112) dX = ( 1 + 2M(a)Re·11l) X2 dX , (65) 

and higher order equations. At the disk surface X=O, the boundary conditions are 

·c{,(O) = ~(0) = 0 , (66) 
. 

and far from the disk as X.-+oo, the boundary conditions matched with the outer solutions 

are 

c{,(oo) = 1 and ~(oo) = 0. (67) 

The solution to the zeroth-order equation 64, subject to the boundary conditions, Eqs. 66 

and67, is 

X 

c{, = i j e·[(l +2M(a)ae-'flrr2- 2M(a)Sc1~ dy, (68) 

where 
00 

1 = J e -[(1 + '1M(a)Re·
112yf - 2M(a)Sc

112y] dy . (69) 

The solution to the fU'St-order equation 65. with Eq. 68 substituted into the right hand side, 

and subject to the boundary conditions, Eqs. 66 and 67, is 
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X 

J _ J(1+2M(<X)Re·l/2 • .3 ) -[(1+2M(a)Re·l!lrf-2M(a)Sc1fly] 
C1 - 3 I ·y + K e dy , 

0 . 

(70) 

where K is an integration constant given by 

00 

K = _ 1 + 2M( <X)Re·l/2 J . .3 -[(1 + 2M(a)Re·1flyf. 2M(a)Sc1fly] 
3~ ·re ~- (71) 

The composite solution for C is identical to the inner solution series. 

Solutions for the integrals I and K are necessary in order to obtain an explicit 

formulation of the Sherwood number at the rotating disk. The integral I can be 

approximated by. taking advantage of the fact that Sc is small and Re is large. Writing Eq. 

69 as the sum of.two integrals, 

sclll 

I = It + I2 = J e -[(1 + 2M(a)Re-lf2yf- 2M(a)Sclfly] dy + 

00 

r e -[(1 + 2M(a)Re·1f2yf - 2M(a)Sc1fly] dy , (72) 
scf!l 

we see that the exponential integrand in I1 can be expanded as a Taylor series since 

(1+2MRe·112}'f- 2MSc11'ly << 1 for small Sc and ye [O,Sc112]. The exponential in I2 is 

approximated with exp(-r ), since r>> (2MRe·112.y2 -2MSc1fly) for small Sc, large Re, 

andy greater than Sc112• Given these approximations, the asymptotic solution to 11 for 

small Sc112 and large Re is 

(73a) 

and the asymptotic solution to integral I2 for small Sc112 and large Re is 
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(73b) 

The integral I is found by summing I1 and I2 : 

(74) 

where Sc is small andRe is large. The integral K, Eq. 71, is broken into two integrals and 

solved in a manner analogous to Eq. 72, subject to the same approximations. The 

asymptotic solutions for K1 and K2, 

1 + 2M(a)Re·lf2 (1 2 2 1 1 1n 3) 
K1 - -

3 
I2 . 4Sc + [5M(a) - 6 - j"M(a)Re· ~Sc , (75a) 

and 

- 1 + 2M(a)Re·l/2 (1 S ) e-Sc 
K2 - 6I2 + c ' (75b) 

are valid when S~<<l and R~>> 1 . The sum of K1 and K2 is K. The Sherwood number at 

the rotating disk is given by 

(76) 

when Pe>>l, Re>>l, and Sc<<l. 

Note from the zeroth and first-order equations 64 and 65 that in the limit Re~oo 

and Sc~. the large Peclet number concentration field expansion is 

and the Sherwood number expansion is 

(78) 
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We next consider large Re flow and large Pe mass transfer when the concentration 

boundary layer is confined within the hydrodynamic boundary layer, i.e. Sc>> 1. A 

solution to the flow field very near the Tl=O substrate disk is necessary in order to determine 

the Sherwood number. For the case of a rotating disk, an explicit analytical expression for 

the axial velocity in the hydrodynamic boundary layer is unknown, but when the bottom 

disk is stationary the axial velocity is given by Eq. 26. Here we consider convective mass 

transfer in the limit of invicid Re~oo flow with no rotation at the bottom disk (a=O) and 

Sc>>l. 

Since the concentration boundary layer lies well within the hydrodynamic 

boundary layer, it is useful to rescale the convective-diffusion equation with the 

hydrodynamic boundary layer thickness. Substituting the stretched variable ~ = ...[Re 'Tl and 

the invicid (Re~) limit ofEq. 26 into Eq. 10 rescales the convective-diffusion equation 

with respect to the hydrodynamic boundary layer thickness: 

(79) 

where Sc>> 1 and <p(~) is the classic stagnation point flow solution (see Eq. 27). The 

boundary conditions for Eq. 79 are C(O) = 0 and C(oo) = 1 . Equation 79 describes mass 

transfer in an axisymmetric stagnation point flow, and asymptotic solutions to this equation 

are known for Sc>>l (Chin and Tsang, 1978). The Sherwood number expansion at the 

substrate disk surface, derived by Chin and Tsang (written here in our variables), is 

Sh = 0.85002 Re112 Sc113 { 1 - 0.084593 sc·113 - 0.016368 sc·213 -

0.0057398 sc·1 + 0.0014288 Sc413 + 0.0013088 sc·513 + O(Sc"2)} , (80) 
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w.hen Re~oo, a.=O, and Sc>> 1. Chin and Tsang have shown that the asymptotic 

expansion, Eq. 80, is accurate to within one percent of numerical solutions for Schmidt 

numbers as low as Sc=O. 7. 

Discussion 

The penurbation expansions given in the Results section were derived by 

considering limiting values of the dimensionless parameters a, Re, Sc, and Pe, or 

combinations of those parameters. Unfonunately, CVD reactors are rarely operated with 

exttemely large or small Peclet or Reynolds numbers (Patnaik et al., 1989). This means 

that it is necessary to fmd the the range of parameters where the Sherwood number 

expansions are accurate. In this section, we determine .the domains of validity for the 

derived two-term expansions by comparing our analytical expressions for the Sherwood 

number with numerical results available in the literature. 

We begin with the flow field. Recall that W"(O) and W"'(O) are the first two 

nonzero coefficients in the Taylor series (Eq. 46) and they are functions that can be 

determined from the asymptotic expansions Eqs. 15a, 21a, and 25. For small Reynolds 

numbers and a.2:s;1, W"(O) and W"'(O) are 

.. (13 a2) W (0) = 3 + Re 70 + 10 (81) 

and 

"' . (27 7a2) W (0) = -6 - Re 35 + 10 . (82) 

When the Reynolds number is small and al~1, W''(O) and W"'(O) are 

W(O)=-+Re --+--.. 3 -( 13 1) 
a 70a2 10 

(83) 

and 
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-m 6 - ( 27 7 a2) 
W (0) = - a - Re 35a2 + 10 ' (84) 

and when the Reynolds number is large and CJ.=O, · 

W"(O) = - 1.13788 Re"112 - 1 + 1.317238 Re112 (85) 

and 

w'"(O) = -Re . (86) 

Recall that Eq. 31 is not valid near the rotating substrate, so evaluating its derivatives at the 

rotating disk (11=0) is not appropriate. Shown in Fig. 2 is a comparison between the 

asymptotic expansions for W"(O) and W"'(O)- Eqs. 81, 82, 85, and 86- and the 

numerical results of Wang (1974) as functions of Re when a= 0. Figure 2 shows that the . . . 

low Reynolds number asymptotic expansion holds well even when Re = 10. The 

numerical values of W"(O) and W"'(O) deviate from Eqs. 81 and 82, by 5% and 21%,. 

respectively, when Re=22.5 (and <X=O). The numerical results also show that the flow field 

has not yet attained the high Reynolds number asymptotic behavior when Re=53.75 (the 
. . 

largest Re data point shown in Fig. 2). The deviation between the numerical results at 

Re=53.75 and the asymptotic Eqs. 49 and 50 is about 16% for both expansions. As Re is 

increased, the accuracy of the large Reynolds numb<? expansions are expected to improve. 

Figure 2 does not include the effects of disk rotation. Lance and Rogers (1962) 

have computed results for rotational flow where one disk is stationary and the other rotates, 

and there is no injection of fluid (i.e. a?-~). The calculated values for w" (0) showed that 

small Re behavior is maintained when ReS15, and large Re asymptotic response is found 

when Re~250. This suggests that the low Reynolds number flow near the bottom disk can 

be estimated by Eq. 81 or Eq. 83 for any a when Re or Re is approximately 10 or less. 
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We next consider the accuracy of the Sherwood number expansions. The 

Sherwood number is directly proportional to the deposition rate of a mass-transfer-limited 

species through the relationship 

(87) 

where v d is the deposition rate of the species, rod is the molecular weight of the deposit 

species, and Pd is the deposit density. Characterizing the parameter space where the 

Sherwood number expansions are valid is more involved than analyzing the 

hydrodynamics near the substrate disk, since the Sherwood number response is determined 

by a greater array of dimensionless parameters. 

In Figs. 3 - 6, the Sherwood number is plotted against the Reynolds number for 

four different values of the Schmidt number and a--o. We choose plots of Sh versus Re 

for constant Sc because one generally has a given set of physical properties that ·flx Sc, 

while changing the injection flow rate, the disk gap, or the angular velocity of the disk 

changes a and-Re in the reactor. The reader should keep in mind that the analogy between 

heat and mass is followed here; for the case of heat transfer, the Prandtl number is 

analogous the the Schmidt number and the Nusselt number is analogous to the Sherwood 

number. 

We begin the discussion of mass transfer with Figs. 4 and 5, since those flgures 

contain numerical data from Gorla (1984) as well as the perturbation solutions derived in 

the Results section. Figure 4 shows the dependence of Sh on Re for a typical CVD 

reactant Schmidt number of Sc=0.7. Gorla's numerical results fall within 2% of Eq. 41 

when ReSS and within 0.5% of Eq. 80 for Rc210 . Equation 41 was derived for Re<<1 

and Pe<<1, but we see when a=O and Sc=0.7 the expansion holds even for Re=5 and 

Pe=3.5. Similarly, Eq. 80 was derived for Re~oo, Pe>>1, and Sc>>1, but Eq. 80 holds 

even when Re=10, Sc=0.7, and Pe=7. Also plotted in Fig. 4 is Eq. 76, which was derived 
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for large Re, large Pe, and small Sc. Equation 76 provides a value for Sh that is somewhat 

larger than Gorla's numerical results when Re>10 and Sc=0.7. The deviation between Eqs. 

76 and 80 for high Reynolds numbers is approximately 7% at this Schmidt number. Note 

also that Eqs. 41 and 80 nearly overlap at Re==7; the two expansions are within 6% of each 

other at that Re. Thus, it is possible to obtain the Sherwood number at the substrate to 

within 6% for any Reynolds number by using simple analytical expressions when Sc=0.7 

and a=O. 

Shown in Fig. 5 is Sh versus Re for a Schmidt number of Sc=10 and a=O. Three 

expansions are plotted along with Gorla's numerical results. It is interesting to note that Eq. 

_ 59 serves as an intermediate Sherwood number expansion that overlaps with Eq. 41 to 

within 0.5% at Re==0.4 and also overlaps with Eq. 80 to within 5% at Re==13. Each one of 

Gorla's numerical data points falls within 3% of an expansion. Therefore, the approximate 

analytical solutions given by Eqs. 41, 59, and 80, provide estimates for the Sherwood 

number at the substrate disk that are accurate to within approximately 3% over the entire 

range ofRe, when Sc=10 and a=~. 

Also included in the series of Sh vs. Replots are Figs. 3 and 6, for Sc=0.01 and 

Sc=lOO, respectively. When the Schmidt number is small (see Fig. 3), Eq. 45 provides an 

intermediate expansion that overlaps with Eqs. 41 and 76 to within 5%. Similarly, when Sc 

is large (see Fig. 6), Eq. 59 provides an intermediate expansion that overlaps with Eqs. 41 

and 80 to within 5%. The results shown in Figs. 3-6 indicate that an ad hoc matching of 

expansions derived in the Results section provides approximations for the Sherwood 

number that are accurate to better than ±10% for any combination of Sc, Re, and Pe, when 

a--o. The appropriate intermediate expansion is determined by finding the best overlap of 

solutions. 

Numerical results that show the effects of a rotating disk (i.e. a~) in the self

similar SARDR are limited. Evans and Greif (1988) have recently performed an analysis 

of self-similar heat transfer in the SARDR system. They show the effects of a on the 
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Nusselt number for a single Reynolds number (Re=7.842) and Prandtl number (Pr=0.67). 

Plotted in Fig. 7 (using our variables) are the numerical results of Evans and Greif and Eq. 

45 versus ex, for Sc=0.67. Eq. 45 is used because Re=7.842 falls in the intermediate region 

where Eqs. 41 and 80 (or Eq. 76)are the least accurate for this Sc, see Fig. 4. Also plotted 

in Fig. 7 is the expression for the Sherwood number of an infinite rotating disk in an 

infinite medium as a function of the Reynolds number (Hitchman and Curtis, 1982): 

Sh = 0.40 (Sc Re ex)112 • (88) 

Hitchman and Curtis report that Eq. 88, which is written here in our variable, is accurate to 

within 5% of the exact Sherwood number over the range 0.6SScS6. 

Figure 7 shows that the two-term Sh expansion (Eq. 45) deviates from Evans and 

Greifs numerical results by less than 5% for ex in the range 0ScxS10. Much of this 

deviation may come from errors in our linear approximation of M(ex), Eq. 30. For large ex, 

Sh has a square root dependence on ex that follows from Eq. 88, but Evans and Greifs . 

exact numerical values are approximately 7% below the free-disk mass transfer rate. 

All of the perturbation expansions derived in the Results section are expected to 

break down when either Pe - 0(1) or Re - 0(1). It is rather remarkable that the Sh 

expansions are accurate to within 10% of the actual values when both Pe andRe are 0(1), 

as Figs. 4 and 7 show. In fact, a general trend is observed in Figs. 3 through 7 regarding 

the crossover point for switching between expansions. Expansions based on high 

Reynolds number flows (Eqs. 45, 76, and 80) are used when Re~12. When ReS12, the 

low Reynolds number expansions (Eqs. 41 and 59) are used. Moreover, the low Peclet 

number expansions (Eqs. 41 and 45) are observed to be accurate up to PeSS, provided that 

the Reynolds number constraints for the fluid mechanics are satisfied. In Fig. 3, for 

example, Eq. 41 breaks down at Pe-0.2, but that is due to the break down of the low 

Reynolds number fluid mechanics rather than the break down of the si:nall Peclet number 

constraint on the expansion. Likewise, the high Pe expansions (Eqs. 59, 76, and 80) 

appear to hold for Pe~5. The fact that the analytical expansions nearly overlap and are 
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accurate at intermediate values of Pe andRe indicates that the Sherwood number (and 

therefore the deposition rate) can be found to better than ±1 0% for any value of Re, Pe, and 

Sc in parameter space, at least when a=O. 

Implications and Concluding Remarks 

We conclude by considering the strengths and shortcomings of applying the model 

presented here to CVD systems. The design and operation of CVD reactors has been 

aided significantly by sophisticated numerical studies of the hydrodynamic and transport 

processes that occur in the reactor. Two-dimensional simulations allow reactor designers to 

ascertain the desirable operating regimes where deposition is essentially one-dimensional. 

Unfortunately, much of the fundamental work in CVD transport has required the 

computational power of advanced supercomputerS (Houtman et al., 1986; Evans and Greif, 

1987, 1988; Patnaik et al., 1989) and this limits, to a degree, the general availability of such 

solution techniques. Once the parameter space for one-dimensional, self-similar reactor 

behavior is known from multidimensional models or experiments, then flexible analytical 

solutions are useful for providing additional guidelines for the reactor operation. In this 

paper, we have derived analytical expressions that account for the effects of injection flow 

rate, the angular velocity of the substrate, and the physical properties of the injected fluid 

and reactant. Our results compare favorably with numerical simulations. 

Several factors that are known to influence the deposition rate and uniformity in 

CVD have been omitted here. The principal effect neglected is the temperature dependence 

of physical properties. In CVD, the rotating disk is generally heated to many hundreds of 

degrees above the temperature of the injected fluid, and this can cause buoyancy driven 

flows that are undesirable. Deposit uniformity can be maintained in a rotating disk CVD 

reactor provided that well established constraints on the ~iashof and Reynolds numbers are 

satisfied (Houtman et al., 1986; Evans and Greif, 1987; Patnaik et al., 1989). But axial 

temperature variations can still modify convective transport in a one-dimensional rotating 

' 
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disk CVD reactor. Evans and Greif (1988) have shown that the Nusselt number 

(analogous to Sh) at a heated rotating disk can be less than half the value of a nearly 

ambient rotating disk in the self-similar SARDR. A less important effect that was 

neglected is Soret diffusion. An order of magnitude analysis of this phenomena has been 

given by Patnaik et al. ( 1989). 

We are currently extending the results reported here to consider the two-site 

adsorption limited kinetics of CdTe organometalic vapor phase epitaxy, the effects of 

operational parameters on waste reactant discharged from the CVD reactor, and the design 

of uniform fluid injectors. 
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Notation 
A = dimensionless radial pressure coefficient, -(1/2/..)dP/dA, 

A = A/a.2 

c = concentration, mole/m3 

C = dimensionless concentration, c/ci 

D = mass diffusivity, m2/s 

er,e9,ez = unit vectors in cylindrical coordinates 

f = radial flow function, s-1 

F = dimensionless radial flow function, f1IY 

F = a.F 

g = azimuthal flow function, s-1 

G = dimensionless azimuthal flow function, g/0 

G=G 

h = mass transfer coefficient, m/s 

L = gap thickness between coaxial disks, m 

m = stagnation point flow constant, 0.56894 

M(a.) = far-field rotational constant, 0.56894- 0.1105a., when OS<XSlO 

p = pressure, kg/m·s 

P = dimensionless pressure, 2p/p V2 

Pe = Peclet number, VI../D 

Pe = rotational Peclet number, OI}/D 

R = disk radius, m 

Re = Reynolds number, VL/U 

Re = rotational Reynolds number, OL2/U 

Sc = Schmidt number, u/D 

Sh = Sherwood number, bUD 

v = velocity vector, m/s 

v d = deposition rate, m/s 

V = injection velocity, m/s 

w = axial velocity, m/s 

W = dimensionless axial velocity, -w/2V 

W = a.W 

z = axial distance, m 
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Greek letters 
a = inverse Rossby number, QlJV 

e = perturbation parameter 

r(a) = gamma function of a 

Tl = dimensionless axial distance, z/L 
A. = dimensionless radial distance, r/L 

n = angular velocity of disk, s"1 

<p(~) = dimensionless axial velocity in stagnation point flow 

<I» = axial pressure function 

p = fluid density, kg/m3 

Pd = deposit density, kg/m3 

md = molecular weight of deposit species, kg/kg-:mole 
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Figure Captions 

Fig. 1 Schematic diagram of a small aspect ratio (=LIR) rotating disk CVD reactor. Fluid 

with dilute reactant is injected at the disk z=L and reaction occurs at the rotating substrate 

disk z=O. 

Fig. 2 Plot of the second and third derivatives of axial velocity evaluated at the substrate 

disk (W"(O) and -W"'(O)) versus Reynolds number for no rotation of the substrate (a=O). 

Comparison between exact numerical results of Wang (1974) and perturbation expansions, 

Eqs. 81, 82, 85, and 86. Smooth curves are perturbation solutions and data points are 

numerical solutions. W"(O) is denoted by(--) and (e), and -W"'(O) is denoted by(---) 

and (X). 

Fig. 3 Sherwood versus Reynolds number plot for no substrate rotation (i:X=O) and 

Sc=O.Ol. Perturbation expansions are given by Eqs. 41 (--), 45 (- - -),and 76 

(---). 

Fig. 4 Sherwood versus Reynolds number plot for no substrate rotation (a=O) and 

Sc=0.7 . Comparison between exact numerical results of Gorla (e) and perturbation 

expansions, Eqs. 41 (--), 76 (---),and 80 (---) . 

Fig. S Sherwood versus Reynolds number plot for no substrate rotation (a=O) and 

Sc=10. Comparison between exact numerical results of Gorla (e) and perturbation 

expansions, Eqs. 41 (--),59 (---),and 80 (---). 
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Fig. 6 Sherwood versus Reynolds number plot for no substrate rotation (a=O) and 

Sc=lOO. Perturbation expansions are given by Eqs. 41 (--),59(---), and 80 

(---). 

Fig. 7 Substrate rotation effect. Sherwood versus inverse Rossby number plot for 

Sc=0.67 and Re=7.842. Comparison between exact numerical results of Evans and Greif 

(1988) (e), perturbation expansion, Eq. 45 (--),and solution for a rotating disk in an 

infinite medium, Eq. 88 (---). 
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Fig. 1 Schematic diagram of a small aspect ratio (=1./R) rotating disk CVD reactor. Fluid 

with dilute reactant is injected at the disk z=L and reaction occurs at the rotating substrate 

disk z=O. 
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Fig. 2 Plot of the second and third derivatives of axial velocity evaluated at the substrate 

disk (W"(O) and -W"'(O)) versus Reynolds number for no rotation of the substrate (a=O). 

Comparison between exact ntunerical results of Wang (1974) and perturbation expansions, 

Eqs. 81, 82, 85, and 86. Smooth cmves are penurbation solutions and data points are 

numerical solutions. W"(O) is denoted by(-) and (e), and -W'"(O) is denoted by(---) 

and(X). 
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Fig. 3 Sherwood versus Reynolds number plot for no substrate rotation (a=O) and 

Sc=O.Ol. Perturba~on expansions are given by Eqs. 41 (-), 45 (- - -), and 76 

(---). 
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Fig. 4 Sherwood versus Reynolds number plot for no substrate rotation ( a=O) and 

Sc=0.7 . Comparison between exact numerical results of Gorla (e) and perturbation 

expansions, Eqs. 41 (-), 76 (---),and 80 (---). 
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Fig. S Sherwood versus Reynolds number plot for no substrate rotation ( a=O) and 

Sc=lO. Comparison between exact numerical results of Gorla (e) and perturbation 

expansions, Eqs. 41 (-),59(---), and 80 (---). 



a=O 

Sc=IOO 

Eq. (59) 

J"' 
Eq. (41) / 

,~ ,;, 
,,~ ,, / ,, / ,, / ,, / 

,,' / ,, 

Eq. (80) / 
/ 

/ , / ,, 
'/ 

,~ 
,~ 
~ 

XBL 899-3267 

Fig. 6 Sherwood versus Reynolds number plot for no substrate rotation ( a=O) and 

Sc=lOO. Perturbation expansions are given by Eqs. 41 (-),59(---), and 80 

(---). 
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Fig. 7 Substrate rotation effect. Sherwood versus inverse Rossby number plot for 

Sc=0.67 and Re=7.842. Comparison between exact numerical results of Evans and Greif 

(1988) (e), perturbation expansion, Eq. 45 (-),and solution for a rotating disk in an 

infinite medium , Eq. 88 (---). 
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