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Theoretical Methods 

for the Study of Chemical Dynamics 

Nancy Makri 

Abstract 

Theoretical methods are developed for studying the dynamics of chemical reac

tions. Many chemical processes can be adequately described as a "system" of one or 

two reaction coordinates coupled to a "bath" of harmonic oscillators. Such a fonnula

tion of the problem has obvious advantages, as it is often possible to integrate out the 

hannonic bath, thus reducing the many degree of freedom problem to a one or two 

dimensional calculation. A basis set which explicitly incorporates the coupling pro

vides an approximate but fairly accurate way of eliminating the hannonic bath. The 

time dependent self consistent field approximation is also considered as another 

approximate way of accomplishing the same goal and is generalized to a multi

configurational procedure. A simple semiclassical model for incorporating tunneling 

effects in classical trajectory simulations is constructed and shown to give excellent 

results over a variety of conditions. 

Feynman path integration provides an exact way of calculating quantum dynami

cal properties and is in principle applicable to problems of involving many degrees of 

freedom. However, the standard Monte Carlo methodology which must be used to 

evaluate the multidimensional integrals that occur, is not directly applicable to the path 

integral expression for the real time propagator, because the integrand of the latter is 

highly oscillatory. A technique which helps circumvent this problem by sampling 

about the stationary phase points of the integrand is developed and illustrated with 

several numerical applications. A new effective real time propagator is also con

structed, which is localized and devoid of rapid oscillations. Finally, accurate 
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approximations to the short time propagator are derived, which drastically improve the 

convergence characteristics of path integrals. These techniques are expected to extend 

the applicability of path integral calculations to more complex chemical problems. 
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I. Introduction 

One of the most fundamental problems in chemistry is understanding how chem

ical reactions occur, i.e., how reactant species are transformed into products. Such a 

description is the goal of chemical reaction dynamics,u.l-1.2] which in recent years 

has evolved into a very active field in physical chemistry. Due to major advances in 

experimental excitation and detection techniques, it is now possible to measure quan-

tum state-specific properties of fairly complicated molecules and to probe the dynam

ics of chemical reactions at the molecular level and at very short times. Most of 

these advances have come from the development in the past 2-3 decades of molecular 

beam [1.3-1.9] and laser [1.10-1.15] techniques. 

With the advent of crossed molecular beam methods [1.3-1.9] in the late 1950's, it 

became possible to study chemical reactions at the microscopic single collision level. 

In simple molecular beam experiments, a beam of reactant molecules is directed 

toward a beam of target molecules and the reactive scattering that takes place is 

observed, yielding finally the reaction cross-section as a function of the collision 

energy. In other experiments, a laser is used to excite one of the reactant molecules, 

thus initiating a unimolecular reaction. The measurement of angular, velocity and 

quantum state population distributions. of the products is the result of such experi-

ments. 

Even though the above techniques provide very useful chemical information 

about a reaction, they are unable to follow the actual dynamics of the process in 

detail, i.e., the evolution from reactants to products through the transition state. 

Because the latter is very short lived (typically of the order of femtoseconds), special 

ultrafast laser techniques must be utilized in order to obtain experimentally a picture 

of the reaction process in real time. Ultrafast experiments [1.16-1.26] have become 

possible in recent years, as laser pulses as short as only a few femtoseconds are now 

available in the laboratory. Typical femtosecond experiments use a laser pulse to 
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excite one of the reactant molecules, thus initiating a reaction; subsequent laser 

pulses of femtosecond duration are used to probe the time evolution of the initially 

prepared state. Apart from practical problems, the actual limitation of such experi

ments is or, course imposed by the time-energy uncertainty principle. 

On the other hand, the quantitative theoretical description of the dynamics dur

ing chemical reactions is as yet less developed. The basic reason for this is that even 

though all of the desirable information about a quantum system is encompassed in 

the SchrOdinger equation, the latter is in practice impossible to solve if several cou

pled degrees of freedom are involved. One must thus resort to approximate methods 

for calculating quantum mechanical properties of non-separable multidimensional sys

tems. While considerable progress has been made during the past· few decades in 

developing approximate schemes for this purpose, there is presently no general 

method that succeeds in providing the answer to this problem. 

The fundamental assumption that is common in all molecular dynamics calcula

tions is the Born-Oppenheimer approximation, which is justified on the basis of the 

separation of time scales between electronic and nuclear degrees of freedom. This 

hypothesis allows separation of the electronic motion from that of the nuclei and 

leads to a potential energy surface on which the chemical event takes place. Non

adiabatic couplings constitute corrections to the Born- Oppenheimer approximation; 

inclusion of more than one Born-Oppenheimer potential surfaces in the calculation is 

necessary when such non-adiabatic effects are large. 

The main difficulty in fully quantum mechanical calculations is their nonlocal 

nature, which is inherent in the SchrOdinger equation. Basis set methods provide a 

straightforward and virtually exact way of solving quantum problems. However, the 

size of the basis set that is required grows exponentially with the number of degrees . 

of freedom. It is thus relatively trivial to deal with one or two degrees of freedom 

by simple matrix diagonalization in a basis set, but prohibitively difficult for three or 
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more degrees of freedom. Thus, although the first quantum reactive scattering calcu

lations [1.27-~.30] for the collinear H +H 2 reaction were performed using the coupled 

channel method [1.31] more than a decade ago, application of the same techniques to 

fully three-dimensional c9llision problems remains a sufficiently difficult task. 

Even though significant progress has been made in developing approximate 

methods for solving quantum mechanical problems and a lot of effort continues to be 

devoted to this goal, it is often not necessary to solve the full quantum mechanical 

state to state problem in order to calculate certain properties. This is so because 

atoms and molecules are relatively heavy particles, and because suitable averages 

often tend to wash out quantum effects. In such cases, the most widely used method 

is the classical trajectory approachP.32-1.36] In this treatment, the motion of the 

nuclei on the Born-Oppenheimer potential surface is calculated by solving Newton's 

equations of motion. The method is easily implemented and has been applied to a 

large number of classical problems. Moreover, classical trajectory calculations can 

be combined with the generalized Langevin equation to allow the description of sys

tems in contact with a thermal bath. Despite the general success of the method, 

severe problems often arise; these are connected with the inability of classical 

mechanics to describe quantum effects such as tunneling and zero point energy, 

which are ubiquitous in chemical reactions. 

Semiclassical theory [1.37-1.61] provides the link between classical and qu~tum 

mechanics and serves both as a computational tool and as a conceptual framework 

for interpreting quantum effects in chemical phenomena. The theory employs an 

expansion in Planck's constant 11 and relies heavily on the topological properties of 

the potential involved. A very popular semiclassical dynamical method is the Gaus

sian wavepacket approximationp·62-1.74] which has been applied to many systems 

with success. Nevertheless, semiclassical methods are not straightforward to imple

ment in most cases. Although semiclassical mechanics is a well understood theory 
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-
for one dimensional potentials, this is not so for general systems of higher dimen-

sionality and complicated topology. Chaotic behavior and other nonlinear 

effects,[1.75-1.78] which play an important role in intramolecular vibrational energy 

redistribution (IVR),u.79-1.83] complicate the semiclassical picture. The problem of 

semiclassical quantization is intimately connected with the existence of global con

stants of the motion and thus with the problem of integrability in many dimensions, 

and remains an active area of research. 

Time dependent quantum mechanical methods [1.84-1.96) often possess advantages 

for studying dynamical processes. The goal of the time dependent approach is to 

solve the time dependent SchrOdinger equation directly, subject to the given initial 

conditions. If the reaction of interest is completed in relatively short time, as is often 

the case, time dependent calculations can be much more economical than solving the 

complete time independent quannim. problem (i.e., computing the full scattering 

matrix, or extracting the eigenstates and eigenvalues by numerical diagonalization of 

the Hamiltonian in a basis set). Perhaps the most successful technique is the split 

operator method, [1.92-1.93] which utilizes the Fast Fourier Transform (FFf) algo

rithm [1.92-1.96] and is thus very efficient. Unfortunately, the method suffers from the 

same shortcomings as most other fully quantum mechanical methods, i.e., its applica

bility is limited to problems of low dimenSionality. 

Feynman's idea of path integration [1.97-1.98] provides the most powerful and 

attractive tool for dealing with systems ofinany degrees of freedom. Unlike the 

above methods, which are limited to problems of only a few degrees of freedom, 

path integration is in principle applicable to systems of high dimensionality. As 

such, it has found extensive use in statistical mechanics for the calculation of equili

brium properties of large systems.[1·99-1.108) Another useful feature of the path 

integral methodology is that it can be used to integrate out harmonic degrees of free

dom exactly. This is done by introducing a non local influence functional which 
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describes the effect of the harmonic bath on the quantum system. Despite these 

advantages, though, the use of path integral techniques in the study of dynamical 

processes has so far been limited. [1.109-1.121] The reason for this is that standard 

Monte Carlo techniques (which are routinely used as a computational tool for per

forming multidimensional integration) are not directly applicable to ,the case of the 

real time propagator, exp( -iHt lit), for which the integrand is oscillatory. However, 

new techniques have recently been developed,[1.122-1.12S] whereby Monte Carlo path 

integration can be efficiently performed for the real time propagator. These tech

niques have generated optimism for studying the dynamics of relatively fast but fairly 

complex che~cal reactions. 

A class of reactions of particular interest to the Miller group are hydrogen atom 

transfer reactions in polyatomic molecules, e.g., the symmetric isomerization of 

malonaldehyde. 

--
or the unimolecular isomerization of hydrogen isocyanide, 

HNC-+HCN. 

At low temperatures these reactions proceed primarily via tunneling, but at higher 

temperatures there is a significant probability of the system having an energy above 

the potential barrier. It is thus of interest to study the effects of tunneling on the 

thermally averaged reaction rate. Such processes involve large amplitude motion in 

only one or two coordinates ("reaction coordinates"), while all the other vibrational 

modes behave like locally harmonic degrees of freedom which affect the reaction of 

interest through coupling to the reaction coordinate. This picture leads to the reac

tion path (or reaction surface) Hamiltonian formalism,[1.126-1.131] in which the 



6 

reaction coordinates constitute the "system" and the remaining degrees of freedom are 

the "hannonic bath". Having expressed the Hamiltonian according to this model, one 

tries to integrate out the bath after taking into consideration its effect on the system, 

thus reducing the problem to a one (or two) dimensional one. 

This Thesis is divided into two parts. Part A describes the development of 

approximate techniques that seem promising for studying the dynamics of systems 

with several degrees of freedom. Chapters II and ill present methods specifically 

developed for dealing· with system-bath problems. In Chapter II a basis set method is 

described, which provides an approximate way to eliminate the bath degrees of free

dom, thus leading to an effective Hamiltonian matrix of small dimensionality. 

Chapter ill explores the possibility of using time dependent mean -field approxima

tions in the study of similar problems. A semiclassical model for calculating tunnel

ing rates by integrating the classical equations of motion - a relatively easy task even 

for multidimensional systems - is described in Chapter. IV. 

Part B of this Thesis deals almost exclusively with path integral methods. 

Chapter V develops a technique for performing integration of oscillatory integrands 

of the type that occur in the path integral formulation of the quantum propagator 

using the standard Monte Carlo methodology. This is achieved by introducing a 

weighting function which is constructed to sample primarily about the stationary 

phase points of the integrand. In Chapter VI it is shown that the highly oscillatory 

behavior of the real tillle propagator can be eliminated if the properties of the 

wavefunction are properly exploited; an effective propagator is constructed, which is 

well suited for Monte Carlo path integration. Finally, Chapter VII presents a sys

tematic scheme for improving on the short time approximation for the propagator. 

By using a short time propagator which is valid for longer time increment, the neces

sary number of integration variables in a path integral can be drastically reduced, 

resulting in significant savings. 

... 
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II. The Shifted Oscillator Basis Set 

1. Introduction 

The model of a system, consisting of a few interesting degrees of freedom, is 

ubiquitous in chemistry and physics. It is obviously a common situation in statistical 

mechaniCs, where the bath may consist of 1023 degrees of freedom, but it is also a 

very relevant and useful point of view in the field of reaction dynamics where the 

bath may consist of relatively few (e.g., 3-20) degrees of freedom, though still too 

many to be able to treat the complete system plus bath without approximation. 

The specific system-bath model that has concerned this group in recent years 

arises from the reaction path (or reaction surface) Hamiltonian [2.1] description of a 

reactive process in a polyatomic molecular system. The reaction coordinate (or coor

dinates) constitute the system, and the remaining degrees of freedom, which are 

locally harmonic vibrations perpendicular to the reaction path (or reaction surface), 

are the ba"th. In this chapter, though, we consider the simpler generic system-bath 

model that has been considered by many workers, which is characterized by the 

Hamiltonian 

(2.1) 

The system here is the reaction coordinate s. The potential V o(s) has the topology 

of the chemical process being described; an intramolecular H-atom transfer process, 

for example, would be characterized by a double well potential function. The bath 

consists of harmonic oscillators, which are linearly coupled to the system. 

The universal strategy for dealing with a system-bath situation is to find some 

way, exact or approximate, to eliminate the bath and then to deal accurately with the 

system. Feynman path integral methodology [2.2) is one very attractive way for doing 

this that our group, [2.3) and many others, [2.4-2.8) have used. The most powerful 
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feature of this approach is that the path integral over the bath degrees of freedom can 

be performed analytically, so that one is left with a path integral for only one degree 

of freedom which must be performed numerically. For the case of real time dynam

ics (Le., the propagator e-iHt~, however, numerical (Le., Monte Carlo) path integra

tion is a non-trivial task, [2.5-2.7] in particular if the desired information is contained in 

the long time dynamics. 

If one were dealing only with the quantum mechanics of a one (or two) degree 

of freedom system, then much simpler than evaluating a path integral would be to 

diagonalize a matrix representation of the Hamiltonian in a basis set. This has been 

seen,[2.9] for example, in evaluating quantum mechanical reactive flux correlation 

functions. This is because, as a rule of thumb, basis sets for molecular problems typ

ically require 10-20 basis functions per degree of freedom; it is thus relatively trivial 

to deal with one or two degrees of freedom by straightforward matrix diagonalizil- . ': 

tion, but not so for more than three degrees of freedom. 

The best of all possible strategies, therefore, would be to use the path integral 

methodology to eliminate bath degrees of freedom, and then to solve the quantum 

mechanics of the low-dimensional system by basis set methods. Unfortunately, this 

seems not to be possible; once the bath modes have been dealt with by path integra

tion, the quantum mechanics for the system does not correspond to a local 

SchrOdinger equation, so that one is forced to deal with it also by path integral 

methods. 

The purpose of this Chapter [217] is to describe progress we have made using 

basis set methods to deal With system-bath problems. As with the path integral 

approach, we first take account of the bath degrees of freedom and eliminate them 

from the problem, and then deal accurately with the system. Unlike the path integral 

approach, though, these basis set methods are unable to incorporate the effects of the 

bath exactly . How well they are able to do so mU'st thus be tested, and we consider 
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some analytic and numerical examples in the paper. The results are very encourag

ing that relatively simple basis sets can account for the effect of the bath on the sys

tem quite accurately. Once the bath degrees of freedom have been eliminated, the 

quantum mechanics for the system is dealt with simply by diagonalizing a Hamil

tonian matrix whose dimension is only that of the basis set for the system degrees of 

freedom (i.e., a small matrix). 

2. The linearly shifted. oscillator basis 

The Hamiltonian under consideration is that in Eq. (2.1). To motivate the choice 

of basis set below, consider first a self-consistent field (SCF) approximation to the 

wavefunction 

'!'(s ,Q) = X(S)TIUk(Qk)' 
k 

(2.2) 

Taking the diagonal matrix element of the Hamiltonian with respect to X(s) gives the 

following effective Hamiltonian for the Q degrees of freedom: 

(2.3) 

Equation (2.3) is recognized to be the Hamiltonian for a set of uncoupled, linearly 

displaced harmonic oscillators, the eigenfunctions of which are 

with 

(2.4) 

where 'lit is the standard harmonic oscillator eigenfunction with frequency Wk and 

vibrational quantum number nk' 

We are not interested at the moment in making an SCF approximation, but the 

above discussion suggests the following basis set for the complete system-bath 



.. 
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Hamiltonian: 

where 

'l'iO(SQ) == <.s .Qlin> = 'Xi (S )II$ni (Qk-Al). 
k 
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(2.5a) 

(2.5b) 

Using the shifted oscillator basis functions in Eq. (2.5) takes some account of the 

coupling directly in the basis set. The amount of the shift for the kth oscillator. A1. 
is proportional to the expectation value of the force f k (s) with respect to basis func

tion 'Xi (s) and is thus different for different values of i. The basis 'Xi (s) for the sys

tem is unspecified at present. 

It is straightforward to construct the matrix representation of the Hamiltonian 

(2.1) in the basis (2.4). and one obtains 

where 

and F is the Franck-Condon factor between oscillator basis functions. 

Fi 'o',i 0 = nfdQA: C/»n'i (Qk -Ai) $"1 (QA: -Ai)· 
A: 

(2.7) 

Were is necessary to diagonalize this entire matrix. then nothing has been 

accomplished. As a zeroth order approximation. therefore. we choose the pan of the 

'-
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Hamiltonian matrix that is diagonal in the bath quantum numbers 0; i.e., 

H·~Ol. = a, U.J1. 
I D .ID D .~~I .J' (2.8a) 

where Hi'~i=Hi'D.iD. From Eq. (2.6) one sees that this zeroth order effective system 

Hamiltonian (ESH) is 

where 

Hi~i = Fi·~d<Xi' IHs IXi> + 1:[<Xi' IXi>1iolk(nk~h) 
k 

(2.8b) 

We will discuss later how the off-diagonal matrix elements . in the bath can be 

included perturbatively to obtain an ESH to higher order, but the present discussion 

will deal with the zeroth approximation, Eq. (2.8). 

By neglecting off-diagonal matrix elements in the bath quantum numbers, the 

only remaining step is to diagonalize the ESH, Eq. (2.8), whose dimension is the 

number of Xi basis functions. It should be emphasized, though, that the effect of the 

coupling between system and bath has not been neglected by this approximation 

because the coupling functions / k (s) enter via the quantities 'Ai -<Xi 1/ k IXi >; these 

parameters enter the ESH most importantly via the Franck-Condon factors in Eq. 

(2.8). For the ground state of the bath, 0=0, for example, the Franck-Condon factor 

is 

(2.9) 

which shows that the coupling functions / k (s) enter the ESH nonlinearly. 

Another obvious, but important feature of the ESH of Eq. (2.8) is that a linear 

transformation of the basis Xi, 



.. 

Xi -+ D.jUj,i' 
j 
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(2. lOa) 

does not lead to a unitary transfonnation of the Hamiltonian matrix; i.e., with Eq. 

. (2.lOa) one does not have 

H"'~i -+ L U// Hl,j Uj ,i' 
j,/ 

(2. lOb) 

This is because the ESH involves the basis functions Xi via the parameters 'Ai [Eq. 

(2.5b)] in a nonlinear fashion. The eigenvalues of the ESH are thus not invariant to 

a linear transfonnation of the {Xi} basis, and this raises the question of which kind 

of basis {Xi} gives the best approximation to the true eigenvalues of the complete 

system-bath Hamiltonian. 

It is our intuitive feeling that the shifted oscillator basis of Eq. (2.5) will do the 

best job of describing the effect of the bath on the zeroth 9rder effective syst~m 

Hamiltonian Eq. (2.9), if the {Xi} basis is chosen to be one that is localized in coor

dinate space. The floating Gaussian basi~, 

(2.11) 

over some grid of si values (see Fig. 2-1), as used recently by Hamilton and 

Light,[2.10] is an example of what we mean by a localized basis. In contrast, the 

eigenfunctions of the potential V o(s), which one might have guessed to be the best 

Xi (s) basis, will typically be delocalized, and in our view the shifted oscilla~or basis 

then does not do as good as a job of describing the effect of the bath in the zeroth 

order ESH . 

To illustrate the validity of this point of view we consider the two-state approxi

mation for a symmetric double well potential V o(s); cf. Fig. 2-2. With the specific 

choice 

(2.12) 
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Fig.2e l 

The floating Gaussian basis set [cr. Eq. (~.11)]. 

this -becomes the model considered by Harris and Silbey,[2.l1] and a number of oth

ers. [2.4] The phenomenon to be described is the effect of the coupling, Eq. (2.12), on 

the tunneling splitting of the two lowest vibration levels. In the two-state approxima

tion, and with the zeroth order ESH of Eq. (2.9) (with n=O), this splitting is given by 

the usual expression 

(2.13) 

With the localized basis, Eq. (2.11) with Xl(s) located at sl=-a and X2(s) at s2=T-a, 

it is quite straightforward to show that Eq. (2.13) giv.es 

(2.14) 

where AE'O=2<XIIHs1X2> is the splitting that would result if there were no coupling 

to the bath (CA:=O), the Franck-Condon factor is 

[ 
2 ] o 2 CA: 

F 1.2 = exp -a 1: 3' 
A: 'lim COA: 

(2.15) 
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e, 

and nonorthogonality has been neglected. This is essentially the correct result, as 

obtained by other workers;[2.4,2.11] the Franck-Condon factor "renormalizes" the tun

neling integral. 

H, on the other hand, one chooses the two-state basis to be the delocalized func

tions Xg (s) and Xu (s) [which are better approximations to the eigenfunctions of the 

potential V o(s )], 

-S 

! 
~ 
"ffi-....... 
>-

5.0 

0.0 

-5.0 

-10.0-t-----r---,.-----,.----. 
-O.B -0.4 

Fig. 2-1 

0.0 
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The double well potential V rl.,s). 
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-
1 

Xg (s) = n [Xl(S }+X2(S )], (2.16a) 

(2. 16b) 

t!ten one can easily show that Eq. (2.15) gives 

(2.17) 

i.e., in this case the zeroth order ESH shows no effect of the coupling on the tunnel-

ing splitting, which is incorrect. 

This example illustrates very dramatically that the eigenvalues of the zeroth 

order effective system Hamiltonian, Eq. (2.9), are not invariant to a linear transfonna

tion of the {Xi} basis, and furthennore that the effect of coupling to the bath is best 

described by the zeroth order ESH if the {Xi} basis is chosen to be localized. Thus, 

one should not choose the basis {Xi} to try to diagonalize the potential V o(s), for the 

zeroth order ESH then does not do a good job of incorporating the effect of coupling 

to the bath. By choosing a localized basis the effective system Hamiltonian matrix 

Hi~i is very nondiagonal, but the effect of coupling to the bath is described well. 

One then diagonalizes Hl.i. 

The situation is somewhat reminiscent of the path integral methodology.[2.2-2.4] 

According to the latter, one makes progress by doing the path integral over the har

monic bath first, and afterwards solving the quantum mechanics (i.e., doing the path 

integral) for the system degree of freedom. The analogy with the present basis set 

methodology is that one does not choose the basis {Xi} to try to diagonalize the s 

degree of freedom first, but rather chooses it so that when n~n' matrix elements are 

neglected the effect of coupling to the bath is described well by the zeroth order 

ESH. With this choice of the {Xi} basis, the effective system Hamiltonian matrix 

H,'" is then diagonalized. 

j' 
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3. Application of the shifted oscillator basis: a numerical example 

To test the above ideas more fully, we have carried out numerical calculations 

for the model discussed in Section 2, i.e., tunneling splitting in a symmetric double 

well potential [see also Ref. 2.17]. The specific form of the potential is 

. (2.18) 

with the constants chosen so that the barrier height is 7.8 kcallmol and the minima 

are located at S =±O.53X; the mass is chosen to be that of a hydrogen atom. These 

values correspond roughly to ,the double-well potential for H-atom transfer in 

malonaldehyde: 

H 
/ 

o 0 
I " 

/c~ /C, 
H C H , 

H 

that we have treated earlier by other means.[2.l2] 

(2.19) 

We considered two types of coupling: (i) Linear coupling, Le., f k(S )=CkS, 

which breaks the even symmetry of the double-well potential (one may think of such 

a coupling as applying in the case of malonaldehyde to a C-O stretch), and (ii) qua

dratic coupling, i.e., iJ,(s)=c"s2, which preserves the symmetry. (The 0-0 wag in 

malonaldehyde is an example of this type of mode). 

As the coupling is turned on, the two wells move away from one another and 

their depth increases, Le., the height of the barrier increases. As a consequence, the 

tunneling splitting drops off very rapidly as a function of the coupling strength. 

Furthermore, the potential shows a singularity (Le., an infinitely deep well) above 

some value of the coupling constant in the case of the quadratic coupling, and there

fore becomes unphysical. For these reasons, we have incorporated the tenn 
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(2.20) 

in the potential. [2.13] The addition of this term guarantees that the height of the bar

rier remains constant with increasing coupling constant. The only effect of the cou-

pling is then to change the shape of the double well, Le., to shift the locati~n of the 

minima. Contour plots of the double well potential surface coupled to one oscillator 

are shown in Figs. 2-3(a), 2-3(b) and 2-3(c) for the cases of no coupling, linear cou

pling, and quadratic coupling, respectively. 

Il'l -I 
~ I~~~~~--~~--~~~~~~~ 

-0.8 -0.4 0.0 0.4 0.8 

s,A 

Fig.2-3(a) 

Contour plot of lhe uncoupled potential surface 

Vo<s) + ~mm2Q2 

for 0>=298 em -I, The numbers labeling the curves indicate the height of the potential surface 

in kcal/mol. 
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-0.8 -0.4 0.0 0.4 0.8 
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Fig. 2-3(b),(c) 

Contour plot of the potential surface 

V O<s) + ~ mCl)2[Q-f (s)/mCl)2)2 

(b) 

with CF298 em -1. (b) Linear coupling, f (s)=cs, with c =0.093 mdyn/A. (c) Quadratic cou

pling, f (S)=cs2, with c=O.24 mdyn/A2. The numbers labeling the curves indicate the height 

of the potential surface in kcallmol. 
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Only one oscillator is used for these calculations, so in addition to diagonalizing 

the zeroth order effective system Hamiltonian, Eq. (2.9), it is possible to diagonalize 

the complete system-bath Hamiltonian, Eq. (2.6), to obtain the exact result. To illus

trate the applicability of the method, we considered two extreme cases: a fast 

(co:::3000 cm -1) and a slo~ (co:::300 em -1) bath. 

Fig. l-4 

0.00 

-0.02 

-0.04 

exact results 
£SH with n=O 

-0.06 '----'-----JI..-._...L...._--L_----J 

0.0 0.2 0.' 0.6 0.8 1.0 
c2

, (mdynA)2 

Tunneling splitting for the lowest doublet in the case of fast Q 

motion (CJ)::2980 cm -1) vs. the square of the coupling constant c 

for linear coupling. The results with the ESH. 11 =0, have been 

optimized variationally. !lEo is the tunneling splitting at c=O. 

.• 



Fig. 2-5 
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0.02· 

0.01 

exact results 
[SH with n=O 

0.00 "'--__ "'---..,.-_"'---__ .l...-_---J 

0.0 1.0 2.0 3.0 •. 0 
c2, (mdynj.!. 2) 2 

Tmmeling splitting for the lowest doublet in the case of fast Q 

motion (C1):::2980 em -1) vs. the square of the coupling constant c 

for quadratic coupling. The results With the ESH. 11 =0. have been 

optimized variationally. llEo is the tunneling splitting at c=O. 
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The case of the fast harmonic bath is very easy to deal with, as one would 

expect: The potential along the Q coordinate rises very steeply and the spacing 

betw~n the one dimensional eigenvalues is large. The ESH with n =0 would then be 

very efficient in describing the lowest doublet of the double well, and indeed this is 

the case. The exact result is alreru:ly obtained by including the n=l excited state of 

the Q oscillator. Figures 2-4 and 2-5 show the . tunneling splitting, referenced to the , 
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value with no coupling, as a function of the coupling constant c. The linearity of the 

curves in Fig. 2-4 (linear coupling) is an illustration of the approximate result given 

by Eq. (2.15), and the decrease of the splitting is a consequence of the increase (with 

respect to the uncoupled case) in the distance between the two minima. The slight 

increase of the tunneling splitting in Fig. 2-5 is a result of the higher curvature of 

the wells, which shifts the eigenvalues higher up with respect to the barrier. 

Fig. l-6 

HI 
exact results 
ESH with n=O 
SCF + 2x2 CI 
2nd order pert. tho 

, 
1~1~--~--~--~--~_\--~ 

0.000 0.002 0.004 0.006 0.008 0.010 
c2

, cmdyn/.l) 2 
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The case of the low frequency bath, on the other hand, is considerably more 

challenging because the Q eigenstates are now closely packed and mix strongly. As 

many as five excited states were required for the tunneling splittings to converge to 

two significant figures at large couplings. The damping of the splitting is much 

greater here, since a much larger Q amplitude is involved with significant probability 

within the broader harmonic potential. The results from the ESH with n =0 are not as 
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good as in the case of fast Q motion. They can be optimized by varying the width 

of the Gaussians, a nonlinear parameter. The optimum width is larger here than in 

the high frequency case, as expected intuitively. 

The optimized zeroth order version of this calculation is correct to within a fac

tor of 4, even when the coupling is so strong as to have altered the splitting by two 

orders of magnitude (cf. Fig 2-6). This is quite encouraging, particularly so when one 

notes that if the zeroth order Hamiltonian, Eq. (2.8), were used without the oscillator 

basis being shifted, the splitting would be independent of the coupling. Thus, the 

shifted oscillator basis, even at the zeroth order level, does a reasonably good job of 

describing the effect of coupling to the bath on the system. 

Furthermore, it is relatively simple to go beyond the zeroth level of the theory 

and include off-diagonal coupling in the ESH, without much more computational 

effort. The methodology for this is known variably as VanVleck perturbation 

theory,[2.14] LOwdinpartitioning theory,[2.15] or the Feshbach optical potential [2.16] (in 

scattering theory). For the present situation, this gives the effective system Hamil

tonian matrix, through second order in the off-diagonal bath coupling, as 

(2.21) 

The first term of Eq. (2.20) is the zeroth order ESH matrix considered so far, and the 

second term the approximate (second order pertuibation theory) contribution from 

nondiagonal coupling (n'~n) in the bath. [The notation (Mj" ,i'" )-1 is shorthand for 

the (i" ,i"') element of the inverse of the matrix (Mj" ,i'" ).] 

The results of the application of this method are very satisfactory. In the high 

frequency case, the splittings obtained this way are essentially indistinguishable from 

the exact ones. The second order low frequency results, although still different from 

the exact ones, nevertheless represent an appreciable improvement over the zeroth 

order ESH results, as is obvious from Figures 2-6 and 2-7. It is worth emphasizing 

that this approximation is particularly good, especially for low couplings, and is easy 

0, 
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to implement, because it does not increase the size of the matrix to be diagonalized. 

Of course, since no variational principle holds here, there is no criterion for the qual-

ity of the results and optimization is not possible. 

4. Vibrationally adiabatic basis and SCF calculation 

As mentioned above, the idea underlying the construction of the shifted oscilla

tor basis is that the matrix element of the coupling function fie (s) with respect to the 

S -basis function :Xi represents the average force felt as s=si' If the Gaussians are 

peaked aro,:!nd Si'-as is the case in the high frequency limit, then 

which represents the instantaneous force at si' Since the basis functions Xi (s) are 

localized to the regions S =si' the replacement of fA: (si) by fA: (s) would not make a 

significant difference. This suggests the vibration ally adiabatic basis for the coupled 

oscillators, 

(2.22) 

The matrix elements of the Hamiltonian with respect to this basis do not involve any 

Franck-Condon factors and the eigenvalues are thus invariant to any linear transfor

mation of the basis functions. The vibrationally adiabatic basis has been tested and 

found to be very similar to the basis discussed above in the limit of high frequencies. 

On the other hand, the more demanding case is that with the low frequency 

bath, as shown above. One may suggest adopting an SCF scheme, as motivated in 

Section 2, i.e., average over the fast S motion and solve iteratively. We tested this 

idea vs. the ones mentioned above, and the results are shown in Fig. 2-6. 

In order tQ apply the analytic SCF scheme, we expand the S eigenfunctions in 

terms of Gaussian basis functions: 

-~-



Xi (s) = 'LCi/Xj (S), 
j 
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(2.23) 

where the coefficients' Cij are to be detennined. The matrix elements of the effective 

SCF Hamiltonian are 

H.ff(f .SCF = <",., lu Iv. > 
, .' Jl.l ... As Jl.l 

(2.24) 

For the SCF scheme to succeed in the case of linear coupling, the initial 

coefficients must not represent a symmetric function, otherwise the odd symmetry of 

the coupling force would give <Xi Ifk lXi>=O. One iteration is enough to break the 

even symmetry of the uncoupled problem, so that the eigenfunctions after each itera

tion are asymmetric. Starting from a left (or right) localized function, we obtain a 

left (or right) localized solution. The method converges within 10-20 iterations, and 

the SCF limit is reached with approximately 25 Gaussians. The left and the right 

solution constitute a pair of degenerate eigenfunctions at the SCF level, and one must 

perfonn a 2x2 configuration interaction (CI) calculation to obtain tunneling split

tings. Since the calculation of the splittings for the lowest doublet involves only the 

ground state SCF solution, which is the one that was optimized, the results are 

expected to be good. Figure 2-6 shows' that the SCF splittings are somewhat worse 

L"tan the zeroth order ESH splittings at high val!les of the coupling, but they are sub-

stantially better at low couplings. However, the results obtained by second order per

turbation theory are by far the best ones obtained within this level of computational 

effon, so that the SCF scheme does not constitute any improvement. 

On the other hand, the SCF results are less promising in the case of quadratic 

coupling, where their disagreement from the exact calculations is large. This is to be 

expected, since both of the g and u solutions are involved in the calculation of the 

tunneling splitting, while only the lowest (g) wavefunction has been optimized. 
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5. Concluding remarks 

It is seen that the shifted oscillator basis presented in Section 2, even in its 

zeroth order version, does a very good job of describing the effect on a reaction 

coordinate of coupling to a harmonic bath, even when the effect of the coupling is 

quite large. (For this to be true, however, it is necessary that a localized basis set be 

used' for the reaction coordinate). The numerical examples treated in this paper util

ized only one mode for the harmonic bath - so as to be able to compare with exact 

values - but it should be clear that the methods of Sections 2 and 3 ~e readily appli

cable with little additional effort to the case of many harmonic bath modes. Applica

tion to a three-atom model incorporating the basic features of H atom. transfer in 

mal on aldehyde further demonstrated the efficiency and success of the method. We 

believe that the shifted oscillator basis should find extensive use in studying the 

dynamics of isomerization reactions in poly atomic molecules . 
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III .. The TDSCF Approximation 

1. Introduction 

As discussed in Chapter II, dynamical processes in poly atomic molecules can 

often be described as a "system" of one or two "interesting" degrees of freedom that 

characterize the process of interest, plus a "bath" of the many remaining degrees of 

freedom which, though coupled to the "system", do not playa principal role. Very 

often the bath is taken to be a set of harmonic modes (with perhaps variable frequen

cies, functions of the system coordinates). An example of such a model is the reac

tion' path (or surface) Hamiltonian, [3.1] where the "system" is the reaction coordinate 

(Le. the distance along the minimum energy reaction path through the transition 

state), and the "bath" are local harmonic vibrations orthogonal to the reaction path. 

Since it is not possible in general to deal accurately with more than three or so 

degrees of freedom by brute force quantum mechanical methods, all strategies for 

treating. the dynamics of "system-bath" models involve eliminating the "bath" degrees 

of freedom, after taking account of their effect on the "system" as best as possible, 

and then dealing with the few degrees of freedom of the system by straightforward 

means. 

In Chapter II we presented a simple basis set method capable of providing a 

good description of the effect of bath coupling on tunneling in a symmetric double 

well potential (the system). The key to the accuracy of this model is that one uses a 

localized basis set for the system, and a basis set for the harmonic bath that has, its 

equilibrium position shifted to incorporate the average effect of the coupling. [3.2] 

One needs only to diagonalize a Hamiltonian matrix whose dimension is that of the 

number of basis functions of the system. The principal limitation of this model - at 

least in its zeroth order version which is computationally the simplest - is that it is 

not able to describe energy transfer between system and bath, a feature that would 
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clearly be important in very asymmetric double well problems, e.g. exothennic iso

merizations. 

The purpose of this Chapter [3.12] is to explore another class of approximate 

models for treating system-bath dynamics, namely the time-dependent self consistent 

field (IDSCF) approximation. [3.3-3.6] Its potential advantage over the zeroth order 

basis set method noted above is that it can describe energy transfer between system 

and bath. Though a fully quantum mechanical method, the IDSCF approach has a 

very semiclassical character to it, especially with regard to the harmonic bath. Since 

several different groups [3.7-3.9] are currently advocating these "quantum system" plus 

"classical bath" approaches, it is of interest to see how useful they are for describing 

the effect of bath coupling on isomerizations. 

We first consider the standard (single configuration) TDSCF scheme, noting that 

for this problem [3.10] it is identical to the semiclassical Ehrenfest model, [3.11] i.e. 

"quantum system plus classical bath". Unfortunately, this model is totally inadequate 

for our test problem, a double well potential coupled to a harmonic bath. The essen

tial difficulty, which is inherent to this approximation, is that the bath responds only 

to the average force exerted on it by the system, rather than a force that is different 

for different values of the system coordinate. 

We have therefore generalized the IDSCF procedure to a multi-configuration 

treatment. [3.12] Specifically, the wavefunction for the double well system is divided 

into two components, with a different bath wavefunction for each component. The 

time-dependence of all the wavefunctions is detennined from the time-dependent 

variational principle.[3.13] This multi-configuration TDSCF (MC-IDSCF ) model is 

seen to provide a much better description of the effect of coupling on tunneling in 

the double well system. 

Section 2 gives the formal development of the single and multi- (two-) 

configuration treatment of the system-bath problem, and results of application to a 
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symmetric double well system coupled to a hannonic bath are presented is Section 3. 

Discussion of these results and some concluding remarks appear in Sectiono 4. 

2. The TDSCF equations for the system-bath model 

The model under consideration is described by the Hamiltonian 

= Hs + L H~ - L Qk fle(s) (3.1) 
Ie Ie 

Here s is the reaction coordinate and Q 1> Q 2, ... , QN are the hannonic degrees of 

freedom that constitute the bath, which is linearly coupled to the system. For the 

specific examples treated in this Chapter V o(s) is a double well potential function 

corresponding roughly to motion of a hydrogen atom with a barrier of 6 kcaVmol. 

a) Single configuration TDSCF 

Consider first the standard TDSCF scheme, with the wavefunction represented 

by a single Hartree product: 

'I'(s, Q; t) = X(s; t) n <Pn. (Qk; t) 
Ie 

Substitution of Eq. (3.2) into the time-dependent SchrOdinger equation 

H'I' = ill~'¥ at 
and projection onto n <<Pn. I gives [3.14] the TDSCF equation for X(s; t) : 

Ie 

(3.2) 

(3.3) 

(3.4a) 
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while projection onto <X I II <~1It' I gives the IDSCF equation for ~nlt : 
, K"*k 

in aa ~n (Qk; t) = [ HQ• - favQk + Hs - in <XIii> 
t It <xx> 

<x If K Ix> <~nlt' IQK I~nlt'> <~n.' IHQIt, I~n.'> - L + L --:----
K"*k <xix> <~n.' I~,,*,> K~ <~n.' I~,,*,> 

(3.4b) 

Equations (3.4a) and (3.4b) can be simplified by defining the functions X and 

<1>,,* that include appropriate phase factors: 

. ( <qI. I~" > 
!.1 dt [DQ - illl: It :I: 1 

. 11 o. It <ell. Iell .. > 
X (s; t) = x(s; t) e • :I: (3.5a) : 

Then the equations to be solved become 

a <<1>,,* (t) IQk 1<1>,,* (t » 
in atX(s; t) = [Hs - f <<I>,,*(t)I<I>n.(t» fk(S)] xes; t) (3.6a) 

. a <X (t ) If k IX (t » 
In -at<l>IIt(Qk; t) = [HQ. - <X(t)IX(t» Qk] <I>,..(Qk; t). (3.6b) 

The IDSCF scheme proceeds by solving the N+ 1 differential equations, one for 

each mode. Thus the time evolution of each mode is governed by a time-dependent 

potential which is the average of the full interaction potential over all other modes. 
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Notice that the IDSCF equations are not linear and therefore the rate depends on the 

initial conditions. 

In the present application, where the bath consists of only hannonic degrees of 

freedom linearly coupled to the system, one can actually solve Equations (3.6b) 

analytically; this is because they have the form of uncoupled, linearly forced har

monic oscillators. Specifically, the time-dependent bath wavefunctions <l>n/Qk; t), 

the solution of Eq. (3.6b), are given by 

(3.7) -
where K is the Feynman kernel (propagator) [3.15] 

(3.8a) 

In the last equation, Sfl is the classical action for the k th oscillator: 

(3.8b) 

It is then straightforward to show that the expectation value of Qk that appears in Eq. 

(3.6a) is given by 

+ ---L- t d( sinco
k 
(t-() <X «() If k Ix (t' » (3.9) 

m cok 0 <X «()IX (t'» . 
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Eq. (3.9) is the same as the classical expression for the position of a forced oscillator 

at time t, in terms of the initial position <<I>ni (0) IQk l<I>ni (0» and initial momentum 

<<I>ni(O)IPk 1<I>n.(O». 

Thus, the problem reduces to the solution of only one differential equation, 

namely Eq. (3.6a), which is closed by virtue of Eq. (3.9). This result has been 

obtained previously,[3.l0] where it was emphasized that Eq. (3.6a) plus Eq. (3.9) is 

essentially the SchrOdinger equation analog of the classical generalized Langevin 

equation; i.e., equations (3.6a) and (3.9) have memory effects [X (t) depends on X (t') 

for (<1] and a "random force" that involves initial conditions of the bath. The full 

quantum mechanical solution can be easily obtained by expanding X (s; t) in a basis 

set. 

It is easy to show that equations (3.4a) and (3.4b) conserve the norm of the 

wavefunction for each mode, as well as the average total energy, i.e., 

and 

.!!.<'I'(t ) IH 1'I'(t» = O. 
dt . 

b) Multi-configuration TDSCF 

As noted in the Introduction (and vide infra), the standard single configuration 

TDSCF is completely inadequate for describing the effect of the bath on the rate of 

tunneling between the two local minima of the double well potential V o(s). This is 

perhaps to be expected of any such mean field approximation when the coupling 

between the degrees of freedom is of a very specific nature. The root of the problem 

can be seen in Eq. (3.6), where the oscillator wavefunction is determined by the 

average force, 

<X (t) I f k IX (t» = fds X· (s; t) f k (s ) X (s; t). 
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If the force f k (s) varies significantly from the region of one local minimum of V o(s ) 

to the other, then one intuitively feels that the oscillator should experience these 

varying forces in a more specific fashion than simply the average. This is true even 

more so when one is wishing to describe the rate of passage from one local 

minimum to the other. 

To this end we consider a two-configuration 'IDSCF trial wavefunction [3.12] for 

the present case of a double well reaction coordinate. To simplify the notation, we 

restrict the description below to the case where the bath consists of only one har

monic mode and drop the subscripts k, but it should be clear that the method should 

apply in the case of many modes in general, with the number of differential equa

tions being linearly related to the number of modes. The specific form of the 

wavefunction is thus 

(3. lOa) 

where the subscripts "a" and "b" refer to the two wells of the double well potential 

V o(s ). The transition state divides the reaction coordinate into two distinct regions 

that correspond to the two wells. Thus, the wavefunctions of the two configurations 

in the reaction coordinate can be taken to be orthogonal to one another: 

(3.lOb) 

Substitution of Eq. (lOa) into the SchrOdinger equation, as before, gives the coupled 

differential equations 

a <CPa IQ I CPa > <CPa IHQ I CPa > . <CPa I cPa > 
i n-:l

t 
Xa = [Hs - I f (s) + I - In I ] Xa 

CJ <CPa CPa> <CPa CPa> <CPa CPa> 

<CPa ICPb> <CPa IQ ICPb> <CPa IHQ ICPb> 
+ [ <CPa I CPa > Hs - <CPa ICPa> f (s) + <CPa I CPa > 

. <CPa IcPb> . <CPa ICPb> . -In lXb- ln x 
<CPa I CPa > <CPa ICPa> b 

(3.lla) 
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. a <Xa If IXa> <Xa IHs IXa> . <Xa liz > 
In-<\> = [HQ - Q + - In ] <\> at a <Xa IXa> <Xa IXa> <Xa IXa> a 

(3.llb) 

and similarly for Xb' <\>b. 

Because of the pre sense of the <<\>a lci>a> tenn in Eq. (3.lla) and the <Xa IXa> 

tenn in Eq. (3.llb), it is difficult to solve these equations simultaneously. (One 

would have to evaluate <<\>a lci>a> of Eq. (3.lla) using Eq. (3.llb), which contains 

<Xa liz>, so that :t Xa would be expressed in terms of <Xa liz>.) This problem can 

be overcome by introducing appropriate phase factors: 

(3.l2a) 

(3.12b) 

cl>a(Q; t) = <\>aCQ; t) eiy(t) (3.l2c) 

(3.l2d) 

It is easily verified that with the choice 

y(t) = -a(t), o(t) = -~(t) (3.13) 

any diagonal coordinate-independent tenn in Eq. (3.lla) (plus the corresponding 

equation for Xb), or in Eq. (3.11 b) (Plus the corresponding equation for <\>b)' but not 

in both pairS, can be eliminated. Specifically, by defining 

(3.l4a) 

(3.l4b) 

equations (3.lla) and (3.llb) reduce to 



44 

<cl> a Icl>b> <<1» a IQ Icl>b> 
+ [ Hs - f(s) 

<cl> a Icl> a> <cl> a Icl> a> 

<cl>a IHQ Icl>b> . <cl>a'l4>b> 
+ -In ]Xb 

<cl> a 1<1» a> <cl> a Icl> a> 

(3.15a) 

. a <Xa If lXa> 
In-<l> =[HQ - Q]cl> at a <X IX > a a a 

(3.15b) 

and similarly for Xb and <1»b. Equations (3.15a) and (3.15b) conserve the total 

energy. 

. So far, the MC-IDSCF equations, Eq. (3.15), involve no approximations other 

than the MC-IDSCF ansatz for the wavefunction, Eq. (3.10). Unlike the single 

configuration TDSCF equations, however, here it is not possible to solve Eq. (3.15b) 

analytically for the oscillator wavefunctions cl> a (Q; t) and cl>b (Q; t); this is because 

there are now two oscillator wave functions (for each bath mode), rather than just 

one, and the equations for the two are coupled to each other. For a problem with N 

bath modes, the complete quantum-mechanical solution of the 2(N + 1) equations that 

are involved in this method is still a relatively simple calculation for N not too large, 

especially if this is compared to a fuil basis set calculation. 

Nevertheless, it would clearly be a considerable simplification if one could solve 

the equations for the bath modes analytically and thus eliminate them from the prob

lem. This can be done approximately by neglecting the terms in Eq. (3.150) that 

couple cl>a and cl>b. Thus Eq. (3.15b) is approximated by 
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(3.16) 

which, likeEq. (3.6b), can be solved analytically by using the Feynman kernel; a 

similar approximate equation' holds for <l»b. In the case of zero coupling, Eq. (3.16) 

is exact For non-zero coupling, the physical meaning of this approximation, Eq. 

(3.16), is that the time-dependent force that the bath wavefunction <I» a experiences is 

determined by averaging the force f (s) only over the region of well "a", i.e. with 

respect to the wavefunction Xa (s; t), 

<Xa (t) If lXa (t » 
<X~ (t)lXa (t» ' 

rather than averaging it over both wells as happens in single configuration TDSCF. 

, Note here that Xa (s; t) is itself not normalized to 1, but rather <Xa (t ) 1Xa (t» is the 

probability that the system is in well "a" at time t. 

Therefore, with Eq. (3.16) approximating Eq. (3.15b), <l»a i$ given by Equations 

(3.7) and (3.8), and similarly for <l»b. It is then possible to evaluate analytically the 

overlap quantities <<I»a l<I»b> and <<I»a IQ l<I»b> that appear in Eq. (3.15a) for Xa; 

these expressions are 

and 

i Q ! d( (fb(t'}-! .. «()]cosw 
= <<I»a (Q-q; 0) leo I <l»b (Q; 0» 

x exp{ 2:::
ro [..ELf d( fa«()sinro(t-() - q 2cosrot 

mrot mro 0 

-fa «()f a «(')] sinro(' sinro(t -,()]), (3.17a) 
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lQ ! df Ifl>«(~f .. (t')lcosw' 
+ <CI> a (Q -q; 0) I Q e 11 0 lcI>b (Q; 0» COSOlt 

+ [smoot t d( ! a (t' )COSOlt' - COSOlt t d( ! b (t' )sinOl(] 
moo 0 moo 0 

iQ ! dt Ifl>«(~f .. «()]cosw' 
x <cI>a (Q-q; 0) I ell 0 lcI>b (Q; O»} 

<; 2 t d( ( dr' ffb«()!b«(')-!a«()!a«(')] sinOlt"sinOl(t-()]}, (3.17b) 
moo 0 0 

where 

q(t) = _1_ f d( [fb«()-!a(f)]sinOl(. 
moo 0 

(3.17c) 

With this approximation, Eq: (3.16), for the bath dynamics, the problem has thus 

been reduced to only the two coupled equations for Xa (s; t) and Xb (s; t), i.e.," Eq. 
. . 

(3.15a) [with Eq. (3.17)] for Xa and a similar one for Xb. 

3. Numerical application: tunneling rate in a double well 

To test the various TDSCF schemes presented in Section 2, calculations were 

carried out for a summetric double well potential V o(s) coupled to a bath consisting 

of one hannonic oscillator. [3.12] (The limitation to one or two bath modes for these 

tests is necessary in order to be able to generate exact results for comparison.) The 

specific form of V o(s) is 
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where the two constants are chosen so that (with the mass m equal to that of an H 

atom) the frequency at the local minima is 1530 cm -1 and the height of the barrier is 

6.3 kcallmol, roughly typical of an H atom transfer process. The frequency of the 

bath mode is 2980 cm -1. The time evolution of a state initially localized in well "a" 

of the double well potential, as determined by TDSCF, was studied and compared to 

the exact time evolution, obtained by basis set calculations. 

The potential surface of Eq. (3.1) for the case of one bath mode and f (s) = cs 

(linear coupling) is shown in Fig. 3-1. The wavefunction for the initial state was 

chosen to be of the form 

O<c 
.d 

a 

Fig.3-1 . 

'P(s, Q; 0) = ~(s) ~o(Q -A). 

D.<t 
s,A 

Contour plot of the potential 

0.7 

1 
V(s .Q) = Vo(s) + 1:mCJ)2Q2 - f (s)Q. f (s)=cs. 

with c=O.39 mdyn/A for CJl=2980 cm -1. The numbers labeling the curves indicate 

the height of the potential surface in kcaJ/mol. 

(3.18a) 
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Here Xo is a Gaussian that is centered at the minimum of well "a" and corresponds 

to the lowest eigenstate of the locally harmonic potential, 

A. = _<X_o_lf_1io>_ 
mro2 

(3.18b) 

is the shift in the Q coordinate from Q =0 due to the coupling, and $0 is the ground 

state harmonic oscillator function of frequency ro. 

(a) 

(b) 

Fig. J..l 

The orthogonal basis functions Xi of Eq. (3.19). These are orthogonalized Gaussians 

that span the reaction coordinate. (a) The set of all (25) basis functions that were 

used in the double well calculation of Section 3. (b) Only two such basis functions 

are shown for clarity. 
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Consider first the single configuration TDSCF approach. Eq. (3.6a), with Eq. 

(3.9), is solved by expanding X (s; t) in an orthononnal basis set: 

M 
X(s; t) = L ci(t) xi(s); (3.19a) 

i=1 

<x. Ix·> = (5 .. 
I J IJ' (3.19b) 

thereby converting the equation for X (s; t) into a set of M first order ordinary 

differential equations for the coefficients {Ci (t)}. The basis functions Xi (s) are 

chosen to be localized about grid points si; specifically, they are the orthogonalized 

distributed Gaussians used recently by Hamilton and Light [3.16], and here they are 

distributed over the region encompassing both potential wells (and the barrier 

between them). The basis functions Xi (s) are shown in Fig. 3-2. The survival proba

bility 

P (t) = kx (0) IX (t»12, (3:20) -

is plotted as a function of the time t, and from this the tunneling period is obtained 

for a given coupling constant. If t is the time at which P (t) decays to zero, the tun

neling splitting of the ground state is given by 

llE = 7tn. 
t 

(3.21) 

The time evolution of the initial state of Eq. (3.18) for the case of zero coupling 

is shown in. Fig. 3-3. Plotted is the absolute square of the wavefunction, 

I'¥(s, Q; t)12, as a function of t for total time t, i.e., half the tunneling period. Fig. 

3-4 shows the corresponding survival probability, Eq. (3.20), for c=O. The high fre

quency beats are due to the mixing of other eigenstates of the double well (mainly 

the third and fourth) besides the lowest two in the wave function at t=O. 

The single configuration lDSCF calculation is obviously exact in the case of 

zero coupling. Fig. 3-5, however, which show~ how llE varies as the coupling con

stant C is increased from zero, shows that this single configuration TDSCF 
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approximation is extremely poor for essentially any non-zero value of c. It greatly 

overestimates the degree to which the coupling diminishes the tunneling splitting. 

We thus move on to the two-configuration MC-TDSCF model. The functions 

Xa and Xb of Equations (3.12a) and (3.12b) are expanded as follows: 

Fig. J..3 

MI2 
Xa(s; t) = L cia(t)xi(s) 

i=l 

M 
Xb(s; t) = L Cib(t)xj(S), 

i=M/2+1 

Time evolution of the wavefunction given by Eq. (3.18) for the 

case of zero coupling. Ploued is the probability density • 

1'I'(s. Q; t) 12. as a function of the reaction coordinate s and the 

time t. The time evolution was computed by basis set expansion. 

(3.22a) 

(3.22b) 
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Fig. J.4 

The survival probability, Eq. (3.20), for the Wlcoupled double well 

potential V fl,.s) as a function of time t . 
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where {Xi (s )} are the localized basis functions noted above; Xi (s) is localized in well 

"a" for iSM 12 and in well "b" if i >M 12. Note that, by construction, <.X.a IXb > = 0 

at all times. 

The exact TDSCF equations [Eqs. (3.15a) and (3.15b)] are solved numerically 

by expanding ~ a (Q; t) and ~b (Q; t) in another basis· set: 

K 
~a (Q; t) = l:dja (OVi (Q) (3.23a) 

;=1 

K 
~b(Q; t) = l:dib(t)Vi(Q) (3.23b) 

i=1 

where {Vi (Q)} is aIso an orthogonalized distributed Gaussian basis. Note that here 

<~a I~b>;a!:() (in the special case of zero coupling, <~a l~b>=l). 
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Tunneling splitting between the two lowest levels of the double well poten

tial as a function of the square of the co~pling constant c for ro=2980 cm -1. 

The solid line indicates the exact results. The dashed line shows the results 

of the exact solution of the two-configuration MC-TDSCF equations, Eq. 

(3.15a) and (3.1Sb), while the dotted line shows the results of the approxi

mate. analytically solvable MC-TDSCF model. with Eq. (3.16) replacing 

Eq. (3.1Sb). The single configuration TDSCF results are shown by the 

chain-dashed tiDe. The tunneling splittings that are calculated by using the 

shifted oscillator basis of Chapter n are in this case practically indistin

guishable from the exact results. 
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The results of this MC-IDSCF calculation, as seen in Fig. 3-5, are orders of 

magnitude better than the one-configuration results. Also shown in Fig. 3-5 are the 

results of the approximate MC-IDSCF model [where the exact equation for the bath 

wavefu!lction, Eq. (3.15b), is replaced by the approximate, analytically solvable Eq. 

(3.16)], and they are seen to be only slightly less accurate than the values from the 

exact MC-TDSCF calculation. 

Thus the MC-TDSCF model (two configurations for this example) is seen to be 

a dramatic improvement over the standard, single configuration TDSCF description 

for this model of an isomerization process. It is encouraging, too, that the approxi

mate version of the MC-TDSCF approach is almost as accurate as the exact version;. 

for the former allows one to eliminate the bath degrees of freedom completely analyt

ically and thus be left with only the two coupled equations for the two configurations 

of the reaction coordinate. 

Finally, though, even the exact version of the MC-TDSCF model does not give 

results for this example that are as accurate as the shifted oscillator basis set model 

presented in Chapter II [see also Ref. 3.2]. For the coupling strengths shown in Fig. 

3-5, the results given by the latter approach are indistinguishable (within the resolu

tion of the figure) from the exact values shown there. 

4. Concluding remarks 

Perhaps the most striking result of this work is how poorly the standard, single 

configuration IDSCF model works for describing the effect of system-bath coupling 

on the isomerization rate. This is particularly disturbing because for this system, this 

treatment is equivalent to the "quantum system" plus "classical bath" model that 

many workers hope will be sufficient to describe the effect of a bath on a system of 

interest. Our results thus suggest caution in this regard. (It is worth pointing out that· 

one could improve the single configuration IDSCF results by defining new 
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coordinates that are linear combinations of the system coordinate and the bath coordi

nates. This is not desirable for these system-bath problems, though, because it would 

prevent one from integrating out the bath degrees of freedom.) 

The, multi-configuration IDSCF description, however, is seen to correct the 

major shortcoming of the single configuration model. Here each "configuration", or 

component, of the system wavefunction has its own separate bath wavefunction, and 

each bath wavefunction responds only to the force averaged over its associated 

configuration of the system. The equations of Section 2b can clearly be extended to 

deal with more than two configurations. The MC-IDSCF equations are more com

plicated than the standard IDSCF, but with the approximate version - which was 

seen to be almost as accurate as the exact MC-IDSCF - the number of coupled 

equations to be solved numerically is only the 'number of configurations of the sys

tem. 

The MC-TDSCF approach should thus find considerable utility for treating the 

dynamics of these system-bath problems. 
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IV. A Semiclassical Tunneling Model 

1. Introduction 

Classical mechanics is known to provide a powerful method for studying the 

dyriamics of large molecular systems. [4.1] Unlike quantum mechanical methods, which 

become prohibitively difficult to implement as the dimensionality of the system 

increases, the classical equations of motion are comparatively easy to solve even for 

systems with many degrees of freedom. The fact that atoms and molecules are rela

tively heavy particles suggests that chemical reactions should in general be success

fully approximated by classical trajectory simulations. Indeed, use of classical 

mechanics in molecular processes has been found to yield results that agree well with 

those of quantum calculations, in particular if the comparison is made on averaged 

rather than state-to-state properties; this is so because suitable averaging tends to 

smear out quantum effects.[4.2] 

Perhaps the most serious limitation of classical mechanics, which hinders its 

application to many interesting chemical problems, is its inability to describe tunnel

ing effects. However, the quantum mechanical phenomenon of tunneling is often 

quite prominent in chemical reac~ons that involve significant motion of light atoms. 

Typical examples include unimolecular dissociation or isomerization, e.g., 

H2CO ~ H2 + CO, 

--
H, 

o 0 
\I I 
C C 

H/ 'C; 'H 
I 
H 

as well as' bimolecular reactions that invoive H-atom transfer, e.g., 

(4.1) 

(4.2) 



H2+H ~H +H2, 

H2+F ~H +HF. 
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(4.3) 

(4.4) 

There do exist "rigorous" semiclassical theories that describe how classical trajec

tories tunnel, e.g., classical S-matrix theory [4.3] and the "instanton" (periodic orbit in 

pure imaginary time) model,[4.4.4.5] but they are difficult to apply routinely to sizable 

(e.g., more than three atom) molecular systems. There also exist a host of simple tun

neling corrections to transition state theory [4.6] expressions for thermal rate constants; 

these often work well for this purpose, but they are not applicable to more general 

dynamical phenomena. 

What we seek is a semiclassical model, as generally applicable as possible, for 

including tunneling in a classical trajectory simulation of the full molecular dynam

ics; the purpose of this Chapter· is to present such a model. The model we have 

developed is similar in spirit to the Tully-Preston [4.7] surface hopping model for 

electronically non-adiabatic processes. In the Tully-Preston model a classical trajec

tory moving on one potential energy surface (i.e., Born-Oppenheimer electronic state) 

has a probability of making "hops", i.e., instantaneous transitions, to another potential 

energy surface at cenain times. In the tunneling model presented herein the classical 

trajectory evolving in one classically allowed region of space will, at specific times, 

have a probability for making an instantaneous (in real time) transition to another 

classically allowed region of space. The model may also be viewed as the classical 

version of the semiclassical branching model of Waite and Miller,[4.8] but generalized 

to allow for a more general tunneling path. This more general tunneling path is very 

closely related to that used by Heller and Brown [4.9] in their semiclassical treatment 

of radiationless transitions. 

In Section 2 we first give a qualitative discussion/motivation for the model, and 

then define it more precisely. Section 3 gives the results of some test calculations on 

model Hamiltonians that illustrate some of its quantitative features. More 
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specifically, we present in that Section calculations of the tunneling splitting in sym

metric double wells and of the unimolecular decay rate for quasi-bound initial states. 

In general the model is seen to provide an excellent description of these tunneling 

phenomena over a wide range of conditions (e.g., coupling constants, different sym-

metries of coupling). Finally, some concluding remarks appear in Section 4. 

2. The semiclassical tunneling model 

a) One dimensional case 

It is well known that the rate of unimolecular decay from a one-~ensional 

well, as in Fig. 4-1, is given semiclassically (and,accurately!) by [4.10] 

(4.5a) 

where co is the vibrational frequency in the well and e-29 is the probability of tunnel- ~'. . . . 

ing through the barrier; 9 is the classical action integral through the barrier, 

E 

x 

Fig. 4-1 

A typical one-dirnensional potential for unimolecular decay (cf. 

Section 2a). An energy level that corresponds to a quasi-bound 

state is indicated. 
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9 = ! 1m J p (x )d.x. 
barrier 

(4.5b) 

Since ro/21t is the frequency that the trajectory experiences a classical turning 

point at the barrier, one may interpret Eq. (4.5) as a classical trajectory that oscillates 

in the well, tunneling out with probability e-29 every time it "hits" the barrier. If the 

particle· is considered to be in the well at time t=O, the net probability that the parti

cle has tUnneled, Pnet(t), is [4.11] 

Pnet(t) = D(t-t")P,, (4.6a) 

" 
where h (~) is the usual step function (=1 if ~>O, =0 if ~<O), ttl are the vanous "tun-

, 
neling times", the times that the classical trajectory x(t) is at its outer turning point 

(Le., "hits the barrier"), and 

P - e-29 ,,- (4.6b) 

is the tunneling probability for time tIl (here the same at each tunneling time). Fig. 

4-2 indicates the "staircase" character of P net (t). Averaging over the initial phase of 

the vibrational motion in the well will smooth out these steps, and it is not hard to 

see that the tunneling rate of Eq. (4.5a) is equivalently given by the slope of the 

averaged net tunneling probability P net (t), i.e., 

(4.6c) 

The above discussion, which involves tunneling probabilities, applies to uni-

molecular dissociation, as pictured in Fig. 4-1, and also to isomerization in an asym-

metric double well potential that is irreversible on the time scale of physical interest. 

(Without the pre-exponential factor, it also gives the reaction probability for tunnel

ing in bimolecular reactions, either symm~tric or asymmetric.) The above description 

is not appropriate, however, to resonant tunneling in a symmetric double well poten

tial, for the quantity of interest there, the splitting of the two degenerate energy 
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levels, involves the tunneling amplitude. [4.1 0,4. 12] For the present one-dimensional 

case this tunneling splitting is given semiclassically by 

(4.7a) 

where m and a are the same quantities as above. Following the same analysis as in 

the preceding paragraph, however, one can express M in tenns of the net tunneling 

amplitude 

Sna(t) = D(t-t")S,,, 

" 

Fig. 4-1 

The net tunneling probability. P _ (I). as a function of the time t, 

for a one dimensional potential of the type shown in Fig. 4-1. The 

"tunneling times" '1. t lo.... i.e.. the times at which the trajectory 

experiences an outer turning point, are indicated. 

(4.7b) 

(4.7c) 
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as follows: 

(4.7d) 

where the bracket implies an average over the initial phase of vibrational motion. 

We note that the same relation, Eq. -(4.7d), also results from first order time depen

dent perturbation theory, whereby one has (to within a constant phase factor) 

S(t) = Rahtm, 

where Rah is the exchange matrix element between states localized in wells "a" and 

"b". 

b) Separable multidimensional case 

Now consider a separable N -dimensional potential 

N-l 
V(s ,Ql' ... ,QN-l) = Vo(s) + ~ Vj(QJ. (4.8) 

j=1 

where the potential for the s coordinate has a barrier, and the potentials Vi are sim

ple oscillators. Fig. 4-3 shows a contour plot of such a potential for N=2, and a 

classical trajectory for energy E below the top of the barrier is shown in Fig. 4-4. A 

separable potential is a special case of an integrable system, with the N constants of 

the motion Ej , i =1, ... ,N specified by energy conservation in each degree of freedom 

individually. All trajectories that correspond to the same constants of the motion are 

confined on an N -dimensional manifold embedded in 2N -dimensional phase space. If 

the motion is bounded, this manifold has the topology of a torus [cf. Fig. 4-5] and its 

projection onto configuration space is an N-dimensional parallelepiped (a "box"), 

with the sides (caustic surfaces) traced out by the trajectories as they go through turn

ing points in each degree of freedom. A typical trajectory gives rise to a Lissajous

type figure (see Fig. 4-4). For N =2, the trajectory manifold touches the boundary of 
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the energetically allowed region at four points, the "comers". 

Since the potential is separable, tunneling involves only the s degree of freedom 

and is described as in Section 2(a). Thus, the tunneling times {tn } occur whenever 

the s degree of freedom experiences an outer turning point, and the tunneling path is 

a straight line - the s axis - perpendicular to the trajectory at time tn. The passage 

through the barrier takes place in pure imaginary time, during which the N-l 

momenta PI' ... , PN - 1 remain constant. The decay rate is the same as that of the 

one-dimensional potential Yo, i.e.; given by Eq. (4.6). Note that the action integral is 

Fig. 4-3 

1 rn 1 e = - 1m JYsds = - 1m J p·d q, 
'Ii 'Ii tlUllleiing palh 

...................... _ .. _ ... _ ........................................ . 

s 

............ -... _ ............ _-

....... ...... 
...... .............. -.-. 

-_ ..... .. 

. ......................... . 

Conto1U' plot of a separable two-dimensienal potential. The poten

tial in the s coordinate is that of Fig. 1, while the Q coordinate is a 

simple harmonic oscillator. 

(4.9) 
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Finally we note that the trajectory reaches the products region with the same 

momentum p with which it began to tunnel and at the same real time (i.e., the tun

neling involves only a pure imaginary time increment). The semiclassical picture is 

thus that the tunneling process is instantaneous (in real time) and conserves the 

momentum p. 

0.4 

0.2 

0.0 

-0.2 

......... 
............. ". " . 

............ 

.~~~~ ... 

... . ... ............. 

..... 
....... 

-0.4 ~-----,-----r------, 
-0.8 -0.2 -0.6 -0.4 

o 
x,A 

Fig. 4-4 

A trajectory corresponding to the semiclassical ground state of a 

separable two-dimensional potential. The trajectory (or a set of tra

jectories that correspond to the same semiclassical Slate) defines a 

rectangular region bounded by the caustics. The dotted line shows 

the energy contour. 
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c) General (non-separable) case 

We consider a generic Cartesian Hamiltonian 

N p.2 
H(q,p) = l:f- + V(q), 

;=1 m 
(4.10) 

where the potential function V is in general non-separable. The above tunneling 

model is generalized by allowing the trajectory to tunnel along a straight line path in 

a specified direction flo every time the component of the momentum p along flo, p·fio, 

experiences a classical turning point (Le., goes through zero) in the outward direc

tion; equivalently, this corresponds to the times that the component of the coordinate 

vector q along the direction fio, q:fio, goes through a relative· maximum. 

Fig.4-S 

Schematic representation of a two-dimensional torus. corresponding 

to a separable two degree of freedom system. A trajectory which 

winds around the torus is also indicated 
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(We note parenthetically that a straight line tunneling path is one of the many 

models used by Trohlar and co-workers [4.6a,b1 for making tunneling corrections to 

transition state theory. The termini of the straight line are sometimes chosen to lie at 

vibrationally adiabatic turning points and in other cases to lie on reference paths in 

the reactant and product regiono[~·6b1 The former version of their model is closest in 

spirit to the present work, though we note that the present model is defined in terms 

of the numerically exact classical trajectories of the system and is applicable to more 

general dynamical processes.) 

The choice of the tunneling direction 60 will be discussed more fully in part (d) 

of this Section. Requiring the tunneling path to be a straight line (in the full dimen

sional coordinate space) is, of course, an approximation in the general non-separable 

case, but a reasonable one. Calculations based on the more rigorous classical S

matrix [4.131 and "instanton" [4.14] theories show that the optimum tunneling path is 

relatively straight in the tunneling region. 

To describe the tunneling model more specifically, it is useful to make a change 

of coordinates (a point transformation) {qi} ~ {x,y I' ... 'YN-I}' where x is the 

component of CI along the tunneling path, 

(4.11) 

and {Yl, ... ,yN-d define N-I orthogonal directions perpendicular to 60, The Hamil-

tonian is then expressed in the new coordinate system: 

2 2 _ P% N-I PY1 _ 
H(x.y,p}C.Py) = 2m + ~ 2m + V(x.y). 

,=1 
(4.12) 

where Y=(Yl, ... 'YN-l) and Py is the vector of conjugate momenta. Since by our 

choice of tunneling path all components of y and Py remain constant during the 

st:nright line tunneling process, the tunneling integral is given by 

(4.13) 
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Funhennore, due to energy conservation along the tunneling path, we have 

Px (t)2 Py(t )2 y_ ( () (»._ Px (t 0)2 Py(t 0)2 y- ( ) (4.14) 
2m + 2m + X t ,Y t - 2m + 2m + x o,yo ' 

where (xo,Yo) are the coordinates of the trajectory at the tunneling time to, and t-to 

is pure imaginary. But Px(to)=O, py(t)=Py(to), and yet) = Yo, so we obtain 

The tunneling integral is thus given by 

(4.16) 

and the probability for tunneling at time to is 

P -290 o=e (4.17) 

where ~max is the value of ~ at which the integrand of Eq. (4.16) equals zero, i.e., the 

value for which the tunneling trajectory reaches another classically allowed region of 

space. 

It is useful to emphasize that the above algorithm is easily implemented in the 

original coordinates and momenta (q, p) of Eq. (4.10) without actually having to 

make the canonical transfonnation used above to describe it. Thus one monitors the 

quantity x(t) of Eq. (4.11) while the trajectory (q(t), pet»~ is being computed; to is a 

time at which x(t) experiences a local maximum, and qo=q(to), Po=p(to). The tun

neling integral is then given by Eq. (4.16), where ~max is the value of the integration 

variable at which the integrand vanishes, and the tunneling probability is given by 

Eq. (4.17). [If the integrand of Eq. (4.16) never vanishes for ~>O, then one has 

9o-H-oo and thus Po-*>; i.e., the tunneling path never finds another classically 

allowed region.] If one wishes to follow the trajectory in the new classically allowed 

region - e.g., in order to determine the product state distribution - then the initial con

ditions for it are 
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(4.18a) 

Pnew (t 0) = PO' (4.18b) 

d) Choice of the tunneling path-

To complete the description of the model, we must specify the "tunneling direc

tion" fio introduced in the preceding Section. We have actually investigated a variety 
'.\' 

of choices and"d~scribe here the one which has proved most satisfactory in general 

and which seems most justifiable on theoretical grounds. 

Consider first the initial conditions for a trajectory in the reactant potential well. 

For the semiclassical picture to be meaningful, we assume that the motion in the 

reactant potential well does not explore all energetically accessible regions of phase 

space, but is constrained to lie on an N-dimensional KAM torus,[4.l5] as in the separ

able case, for the energy that corresponds to the desired initial conditions. This is a 

reasonable assumption, especially if one is interested in tunneling from low lying ini-

tial states (e.g., from the ground state). More specifically, we will be considering tra

jectories that start out with initial conditions (~,J) in action-angle variables,[4.15a] 

where the actions 

(4.19) 

are defined along the N topologically distinct paths (basis contours) rj on the torus 

and are quantized, and J.1i is the corresponding Maslov index.[4.16] Averaging over 

initial conditions then corresponds to averaging over the angles {<pj}, i =1 , ... ,N . 

These are the polyatomic version of the standard quasiclassical initial conditions 

(EBK quantization).[4.l7] 

Since the, motion is assumed to sweep out a torus, its projection onto 

configuration space still gives rise to "box"-like shapes (see Fig. 4-6). Unlike the 

separable case, the edges of such a "box" need no longer be straight lines, though 
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one can show that they still cross at right angles near a corner;[4.18] i.e., the motion is 

locally separable about a corner. 

We now employ the concept of the semiclassical wavefunctions that correspond 

to these box-like trajectories and a simple argument from quantum mechanics to 

motivate our choice of the tunneling path. Quantum mechanically, the amplitude' for 

a transition from the initial state I'¥ i > to the final state I'¥ f > is given by 

0.2 

0.0 

-0.2 

-0.4 

................ 
............ 

' . ............ 
.' .. ' 

". 
". 

-0.6 -+-------,.----~-----, 
-0.8 -0.2 -0.6 -0.4 

o 

x,A 
Fig. 4-6 

A trajectory corresponding to the semkl8ssical ground state of a non-separable two

dimensional potential. The classical motion is regular, i.e., the trajectory lies on a 

KAM ImUS and will, Oyez time, trace out a two-dimensional region which is a subset 

of the energy shell. This region (the "trajectory manifold") is the projection of the 

KAM torus onto configmation space; it touches the energy contour at four points, 

the "caners", and is bounded by caustics. The dotted line shows the energy contour. 

(4.20) 



(a) 

(b) 

•... ~ ......... . (a··o ·:: 
... :.'.:.: ......... . 

(c) 

Fig. 4-7 

(a)-(b): Schematic representation of Ihe semiclassical wave functions that correspond 

to two tori. whose projections onto configuration space do not overlap. The 

wavefunctions have been analytically continued into the classically forbidden region. 

(c) The product of the two wavefunclions; it is seen that the overlap of the two 

wavefunctions is maximized along the direction that connects the nearest comers of 

the ttajectory manifolds. 
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where t is the appropriate transition operator, 10 our case the Hamiltonian. The 

semiclassical wavefunction in the region near the caustic surfaces but outside the tra

jectory manifold can be defined (by generalizing the well known one-dimensional 

WKB results) as the analytic continuation of the WKB wavefunction on the mani

fold.[4.19] The wavefunction will be proportional to the exponential of a properly -

defined action integral, and is largest near the edges of the manifold. The tunneling 

amplitude accumulates its magnitude from the regions of space where the initial and 

final state wavefunctions overlap the most. The overlap of these wave functions is 

clearly maximized along the shortest straight line that joins these manifolds (see Fig. 

4-7); We thus choose the tunneling direction 60 as the straight line that connects the 

manifolds that correspond to the initial and final state in the shortest possible way. 

Fig. 4-8 shows three typical cases, and the tunneling path for each case. 

We note that the above choice for the tunneling direction is the same in spirit as 

that of Heller and Brown [4.9] in their treatment of semiclassical matrix. elements for 

radiation less transitions. The primary difference is that our model does not restrict 

tunneling only to the "comer to corner" (or corner to edge) path, but allows for tun

neling in the "corner to corner" direction every time the component of the motion 

along this direction experiences a classical turning point. We also note that this 

"corner to corner" tunneling direction is also very similar to that yielded in some 

applications of "rigorous" semiclassical theories, i.e., classical S-matrix theory [4.13] 

and the'instanton model.[4.14] 

3. Application: tunneling rates in model potentials 

We envision the present model to be most useful for describing tunneling 

processes in complex molecular systems involving unimolecular decomposition and 

isomerization. In this Section we illustrate its success by7 presenting test applications 

on simple two-dimensional Hamiltonians of the form 
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ps2 P& 
H = '2m + 2m + V(s,Q). 

We performed calculations of the tunneling splitting in symmetric double wells and 

of unimolecular decay rates from quasi-bound initial states. 

(a) 

(b) 

(c) 

Fig. 4-8 

The boundary of the trajectory manifolds and the "tunneling path" according 

to the definition of Section 2d in three typical cases. 

'. 
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a) Choice of initial conditions 

To describe tunneling from a given "regular" quantum state semiclassically, we 

must choose classical trajectories that lie on a quantizing torus (J I,J 2) and average 

over all initial angles (cpI,cp2). (By "regular" we mean a state that corresponds to a 

KAM torus, i.e., a torus on which classical motion is regular.) We used the adiabatic 

switching technique [4.20,4.21] to quantize the actions. According to this method, initial 

conditions are chosen from the appropriate quantizing torus of a zeroth order Hamil

tonian H 0' with the initial angles uniformly distributed in the interval [O,21t). Then 

the perturbation H -H 0 is slowly switched on; i.e., the trajectories evolve according 

to the time dependent Hamiltonian 

H (t) = H 0 + A.(t)(H -H 0), (4.21) 

where A.(t) starts out with zero value and reaches unity at some time T. Because of 

the principle' of adiabatic invariance,[4.1Sa] the actions remaiIi approximately constant 

during the switching process, while the energy changes as the Hamiltonian is 

changed. At the end of this process the trajectories uniformly cover a torus that 

corresponds to the desired semiclassical local eigenstate of the full Hamiltonian H. 

There is no unique way of choosing the zeroth order Hamiltonian H 0 or the 

switching function A.(t). The particular form of H 0 that" we used contains the kinetic 

energy terms and the harmonic approximation to V (s ,Q) about the potential 

minimum (s o,Q 0). Such a Hamiltonian is separable in the normal mode type coord i-

nates, 

(4.22a) 

where lls =s -s 0 and ~Q =Q -Q o. Here U is the orthogonal matrix that diagonalizes 

the second derivative matrix K, 

K·U=U·A, (4.22b) 
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A being the diagonal matrix of eigenvalues, 

i=I,2. (4.22c) 

The transformation to action-angle variables for the harmonic zeroth order potentials 

is given by 

~
-2/. 

X· = --'- sinq,· 
I moo. ' , (4.23a) 

P· = ...J2m oo·J· cos"'· , ",+" (4.23b) 

with i=1,2. The anharmonicities constitute the perturbation term, which is then 

switched on according to the function [4.21] 

t 1. 21tt 
,,-(t) = - - -sm-

T 21t T' 
(4.24) 

where T is the "switching time", and is taken to be large compared to the two vibra

tional periods. 

At the end (t=T) of this process the time t is set equal to zero, and the equa

tions of motion are integrated with the full potential. As explained in Section 2, a 

tunneling time tn occurs whenever the component of the velocity vector along the 

tunneling direction 60 goes through zero (in the outward direction), i.e., whenever the 

trajectory experiences a classical turning point in that direction; stated perhaps more 

simply, this is when the component of the coordinate vector (s,Q) along 60 experi-

ences a local maximum. 

b) Symmetric double well linearly coupled to a harmonic oscillator 

We now apply the model of Section 2 to calculate the tunneling splitting of the 

ground state in a symmetric double well. The specific form of the model potential 

that we used for this application is the same as that in Chapters II and III (see also 

Ref. 4.22) 
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(4.25a) 

Here s is the reaction coordinate, V o(s) is a symmetric double well, 

(4.25b) 

f (s) is the coupling function, and Q is the orthogonal hannonic degree of freedom, 

which is linearly coupled to the reaction coordinate. Notice that the term 

rJ (s )]2/2m 0)2 in Eq. (4.25a) renormalizes the height of the barrier so that it is 
, 

independent of the strength of the coupling, and the dependence of the tunneling 

splitting on the coupling is merely due to the distortion of the potential surface away 

from the separable case. The constants were chosen su<:h that the barrier h~ight' is 

7.8 kcaVmol and the two potential minima are located at s ±=±O.53X; The mass was 

chosen to be that of a hydrogen atom, and the frequency of the hannonic oscillator 

was 298 cm -1. These parameters are the same as those in Chapter IT (and Ref. 22a) 

and are typical of H-atom transfer processes. 

We considered two different forms of the coupling function f (s), which give 

rise to different symmetries in the full (coupled) potential: (i) linear coupling, 

f (s)=cs, for which V possesses inversion symmetry, and (ii) quadratic coupling, 

f (s )=CS 2, in which case V has reflection symmetry with respect to the Q axis. Con

tour plots of the potential in these two different cases for typical values of the cou

pling constant c are shown in Figures 2-2(b) and 2-2(c) (Chapter IT). 

In the case of linear coupling, the two wells move apart in the Q direction as 

the coupling increases. For small values of c, our rule for choosing the tunneling 

path gives fto=§, Le., the trajectories tunnel purely in the s direction (cf. Fig. 4-8a). 

As the coupling constant gets larger, however, the shortest line that connects the 

"boxes" becomes the line that connects the nearest comers passing through the transi-

tion state (cf. Fig. 4-8b). In the case of quadratic coupling, the tunneling path is 

always the line that connects the nearest comers, which is in this case the s direction 
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(cf. Fig. 4-8c). 

Since the double well is symmetric, we use the amplitude version of the model, 

as described at the end of Section 2. Fig. 4-9 shows a typical graph of the net tunnel

ing amplitude Snet(t) defined by Eq. (4.7a), with Sn=e~·. averaged over 1000 tra-

jectories. The linear character o! this function is obvious, and the slope gives the 

tunneling splittIDg according to Eq. (4.7c). Figures 4-10 and 4-11 show the tunneling 

splitting ~ as given by this semiclassical model, normalized by the exact (quantum) 

value ~ 0 of the tunneling splitting at zero coupling, as a function of the square of 

the coupling constant c, for the cases of linear and quadratic coupling. Also shown . 

are the exact quantum mechanical values of AE IAE (}t obtained by numerical diag~ 

nalization of the Hamiltonian in a basis set. The agreement between the semiclassi

cal results and the exact ones is remarkable, even when the coupling is very strong. 

II) 
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t. fs 

Fig. 4-9 

The net tunneling amplitude [cf. Eq. (4.7a)). averaged over 1000 trajec

tories. for a trajectory in the potential of Fig. 2-2b. 
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1.0 2.0 3.0 
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4.0 
*10-5 

The tunneling splitting llE, nonnalized by the exact quantwn value llE 0 of 

the splitting in the one-dimensional double well, as a function of the square 

of the coupling constant c, for the case of linear coupling, f (s )=cs. Solid 

line: exact quanwm results, obtained by a basis set calculation. Circles: 

results obtained by using the semi(:lassical model presented in this Chapter. 
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Fig. 4-11 

1be tunneling splitting llE ~ normalized by the exact quantwn value !lE 0 of 

the splitting in the one-dimensional double well, as a function of the square 

of the coupling constant c, f« the case of quadratic coupling, / (SFcS2. 

Solid line: exact quantwn results, obtained by a basis set calculation. Cir

cles: results obtained by using the semiclassical model presented in this 

Chapter. 
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c) Two-dimensional potentials for H atom transfer in malonaldehyde 

and in the formic acid dimer 

79 

We now present calculations for the tunneling splittings in two H-atom reac

tions, approximated by two-dimensional potentials, using the semiclassical tunneling 

model of Section 2. 

The first reaction is the symmetric isomerization of malonaldehyde, reaction 

(4.2). The reaction coordinate s corresponds to the displacement of the hydrogen 

atom, and the orthogonal degree of freedom Q in our two-dimensional model is the 

symmetric 0-0 stretch, which is strongly coupled to the H motion. The Hamiltonian 

is written in the reaction path form:[4.23] 

.. o 

.< c 
d 

ci 

ex) 

?~~~~~~~~~~ 
-0.4 -02 0.0 02 0.4 

o 
s,A 

Fig.4-U 

Contour plot of the two-dimensional potential that incorporates the most importailt 

features of the H-atom ttansfer in malonaldehyde [cf. Eq. (4.2)]. 
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(4.26) 

with m=5367.8 in atomic units. A contour plot of the potential of Eq. (4.26) is 

shown in Fig. 4-12. 

Because of the symmetry of the potential, the tunneling direction is the saxis. 

The value of the tunneling splitting predicted for this potential by the semiclassical 

model is equal to 2.8 em-I. To compare with exact results, we diagonalized the 

Hamiltonian in a two-dimensional basis set composed out of particle in a box basis 

functions. The numerically exact splitting obtained this way is 11.9 cm -1 and com

pares well with the result of the semiclassical calculation, given the fact that the tun

neling splitting that corresponds to the one-dimensional potential V 0 is 0.042 cm -1 , 

i.e., the coupling is so strong that it increases the value of the splitting by a factor of 

280. 

The second tunneling reaction involves the simultaneous transfer of two H atoms 

in the formic acid dimer: 

OH •• - 0 

"" " H-C C-H 
'0 ••• HO"" 

o ... HO 
;:= H-C~ C-H 

'OH •.• O~ (4.27) 

The two-dimensional Hamiltonian that we used to model this reaction has the form 

p? p2 ' 
H = T + ~ + V (s ,Q). (4.28) 

Here s and Q are mass-weighted cartesian coordinates and V (s ,Q) is a polynomial 

4th order in s and 15th order in Q.l4.24] Fig. 4-13 shows a contour plot of this poten

tial. The tunneling direction is the line connecting nearest comers and because of the 

inversion symmetry of the potential, the tunneling path passes through the transition 

state. 
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The tunneling splitting predicted by our semiclassical model is 0.9 cm -1 while 

numerical diagonalization [4.24] of the Hamiltonian yields a value of 1.8 cm -1. Thus 

the result of the semiclassical tunneling model agrees with the exact splitting to 

within a factor of 2. 

d) Unimolecular decay rates 

Finally, we apply the tunneling model (the probability version of it) to calculate 

the decay rate from the ground quasi-bound state (Le., lowest energy resonance) of a 

two-dimensional potential which has the form 

.< 
o 

ci 

~~--~--~~--~ 
-15 -10 -5 0 5 

o 10 15 
S, A 

Fig. 4-13 

ContoW' plot of the two-dimensional potential that incorporates the most important 

features of the H-atom transfer in the fonnic acid dimer [cf. Eq. (4.27)]. 
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(4.29a) 

where 

(4.29b) 

The one-dimensional potential V 0 is shown in Fig. 4-14; the local maximum occurs 

at s=O.71 )\ and the barrier height is 7.4 kcallmol. The mass was chosen to be that 

of a hydrogen atom, and the frequency of the harmonic oscillator was 298 em-I. 

Fig. 4-15 shows a contour plot of the two-dimensional potential for a typical value of 

the coupling parameter c. The semiclassical decay rate was calculated according to 

Eq. (4.6). 

In order to generate accurate quantum mechanical results for comparison, we 

computed the width of the resonance using the· method of complex scaling. [4.25] The 

s coordinate was rotated as s ~ se i a. while the Q coordinate remained real. The 

complex scaled Hamiltonian was then diagonalized in a basis set of (real) particle in 

a box basis functions and the complex eigenvalues 

9 

'0 6 

~ 
~ 3 

... 
"00' 
~ 0 

-3 
-0.5 0 0.5 

s,A 
Fig. 4--14 

The pocential V 0 which was used in the calculation of the unimolecular decay rate of 

Section 3d [cf. Eq. (4.29b)]. 



83 

(4.30a) 

which were stable under change of the scaling angle a. were identified as resonances, 

whose width is 

The decay rate k is obtained in tenns of the resonance width according to 

o 

Fig. 4-15 

r 
k =n' 

025 0.50 
s,A 

0.75 1 

Contour plot of the two-dimensional potential used in the calculations of Section 3d 

[cf. Eq. (4.29)], for c=O.OO4 har1reeIbohr 2• The potential in the s coordinate is 

shown in Fig. 4-14, while the Q coordinate is a harmonic oscillator of frequency 

298 em-I. 

(4.30b) 

(4.3Oc) 

" 

" 
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Fig. ~16 

25.00 
*10-6 

TIle decay rate k. normalized by the exact quantum value Ie 0 of the rate in 

the one-dimensional potential V 00 as a function of the square of the cou

pling constant c. Solid line: exact quantum results, obtained by the method 

of complex scaling. Circles: results obtained by using the semiclassical 

model descn'bed in this Chapter. 
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Fig. 4-16 compares the results of the semiclassical model for the decay rate with 

the quantum mechanical ones, Le., those of the complex scaling calculation. Plotted 

is the decay rate k (normalized by the exact quantum value of the rate for the uncou

pled potential) as a function of the square of the coupling constant c. The agreement 

is of the same quality as in the previous applications - within a factor of 2 in the 

worst case, while the coupling is so strong that it has increased the value of k by two 

orders of magnitude. 

4. Discussion and concluding remarks 

The examples treated in the p~vious Section show that the semiclassical model 

presented in Section 2 provides an excellent description of tunneling in multidimen

sional systems typical of polyatomic molecules. Although these applications were for 

two-dimensional systems - so that the exact quantum results could be easily gen

erated for comparison - the important feature of the semiclassical model is that it can 

be readily applied to truly multidimensional systems. Applicability was, in fact, the 

essential criterion we have kept in mind in constructing the model; there do exist 

more rigorous semiclassical descriptions of multidimensional tunneling, [4.3-45] but 

they are not easily implemented within a standard classical trajectory simulation. 

The necessary condition for the validity of the semiclassical model is that the 

classiCal phase space that corresponds to the given quantum state be regular. Sto

chastic regions generally occupy a small fraction of phase space at low energies, 

much smaller than Planck's quantum, and thus semiclassical eigenstates are well 

defined there. Semiclassical theory is unable to deal with highly excited states, for 

which phase space is dominated by chaotic regions [see Figures 4-17 and 4-18]. 

Finally. in order to keep. the description simple, we assumed that the projection 

of the trajectory manifold onto configuration space has a simple box-like structure, as 

is typical of motion away from low order resonances. Classically, resonances occur 
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Poincare smfaces of section (4.15.] for the double well system of Section 3 with 

linear coupling, at energy corresponding to the top of the potential barrier, for three 

different values of the coupling constanl. Plotted is the momentum P. as a function 

of the coordinate s every time the ttajectory intezsects the Q =0 plane with Pa >0. 

(a) Uncoupled case, c=O. (b) c=O.02. (c) c=O.04. It is seen that the area oc:cu

pied by stochastic motion increases as the coupling increases. 
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Poincare surfaces of section (4.15_) for the double well system of Section 3 with 

linear coupling, at energy above the lOp of the potential barrier, for three different 

values of the coupling constanL Ploued is the momentum p. as a function of the 

coordinate s every time the trajectory intersects the Q=O plane with pa>O. (a) 

Uncoupled case, c=O. (b) c=O.02. (c) c=O.04. It is seen that the area occupied 

by stochastic motion is in each case larger than that shown in Fig. 4-17 t and 

increases as the coupling increases. 
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when the frequencies of the N degrees of freedom are rationally dependent, i.e., 

when there exist N integer coefficients which make a linear combination of the fre-

quencies equal to zero. Thus, for two degrees of freedom, resonances appear when 

the ratio of the two frequencies (the winding number) is a rational number. The pres

ence of resonances, especially of low order (Le., such that the winding number is a 

fraction whose numerator and denominator are small integers) complicate the struc-

ture of phase space. A resonant trajectory for the double well system of Section 3b 

and the Poincare surfaces of section [USa] which correspond to the same energy are 

shown in Figures 4-19 and 4-20. Tunneling from resonant tori can pr6bably be 

treated in a similar way. although we have not dealt with such complications in the 

present work. (For- example, the picture would simplify drastically if one could per

form a canonical transformation that would "unfold" the resonant trajectory. 

0.25 

0.00 

-0.25 

-0.50 -;----------.-------.---'-------, 
-1.5 -1 -0.5 o 

s 

Fig. 4-19 

A resonant trajectory for the double well ~stem of Section 3 with linear coupling 

for higher frequency and at higher energy than the examples treated in Section 3. 

1be doued line shows the boundary of die energetically accessible region. 
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1be Poincare surfaces of section (4.15. ) at the energy of the trajectory shown in Fig. 

4.19. <a) Plotted is the momentum P. as a function of the coordinate s every time 

the trajectory intel'SeCts the Q=O plane with pg>O. (b) Plotted is the momentum Pa 

as a function of the coordinale Q every time the trajectory intersects the s =0 plane 

withp.>O. 
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In conclusion, the results of the applications in Section 3 are quite impressive. 

If the two degrees of freedom are uncoupled, then the semiclassical model is for all 

practical purposes exact (Le., correct to about 10% typically), but the accuracy of the 

results (tunneling splittings or decay rates) decreases to only a factor of 2 or so error 

even when the coupling between the degrees of freedom is so strong as to change the_ 

result by 2 orders of magnitude from its uncoupled value. This is as good as (or 

even better than) some of the best approximate quantum methods,e.g., the multi

configuration time dependent Hartree-Fock approximation,[4.22b) that are much more 

difficult to apply. 
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Vc Monte Carlo Path Integration in Real Time 

10 Introduction 

Feynman path integration [5.1] provides an alternate fonnulation of quantum 

mechanics. Over the past several years, the path integral representation of the propa

gator, exp(-iHt 11i), has found extensive use as a starting point for deriving semiclas

sical approximations to quantum dynamical phenomena and has proved to be a 

powerful technique for evaluating equilibrium statistical mechanical properties. Its 

power lies in the fact that, unlike basis set methods, it can be used effectively to' deal 

with systems of many degrees of freedom. Another attractive feature is that har

monic "bath" type degrees of freedom (which occur in many areas of chemical phy

sics) can be integrated out exactly using the influence functional theory [5.2] of the 

path integral fonnalism, thus reducing the problem to one of low dimensionality. 

In order to evaluate the coordinate matrix element of the propagator 

<XI lexp(-iHt 11i)IXo> according to the path integral idea, one utilizes the fact that 

accurate approximations for the former are available for short (real or imaginary) 

time. The total time t is thus split into N "short" time increments ~t=t IN, and the 

propagator is written as the product of N short time propagators. Insertion of N-l 

complete sets of position eigenstates allows then the propagator to be expressed in 

the fonn 

N 
<XI lexp(-iHtl1i)IXo> = fdxN-l ... fdxl n <Xk lexp(-iH rul1i) IXk_l>, (5.1) 

1=1 

where XN5X./' Each set of coordinate points (Xl) in Eq. (5.1) defines a discrete path 

that connects Xo and XI (see Fig. 5-1). Integrating over all points (xl) is (in the 

limit N ~oo) equivalent to summing over all paths that connect the given initial and 

final points in time t. 

All such paths contribute with the same weight, but different phases in the sum. 
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The phase factor for a given path a is proportional to the classical action S [xa(t)] 

along the path,[5.1] and the propagator is given by 

lS[Xu(t)] 
<XI lexp(-iHt fIi) Ix&> oc L e 11 , (5.2) 

a 

where 

S [Xa(t)] = f L (Xa(t' );Xa.«( );( )d( = f [ ~ m Xa.«( )2_V (Xa«( »]d(. (5.3) 
o 0 

The oscillatory character of the integrand in Eq. (5.2) results in enormous cancella

tion; the main contribution to the result comes from paths for which the action is 

slowly varying. In the limit 11-+0, only paths for' which the action is stationary con

tribute. But such paths are those determined from the classical equations of motion, 

and thus classical mechanics is obtained from the quantum mechanical path integral .,-

formalism in the small 11 limit h 

Xo 

I 

I I 

Fig. 5-1 

I 
1 
1 
I 
I 
I I 

I 

A discretized path that connects points xl> and %/ in time I. 

time 
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Numerical evaluation of the propagator according to the path integral prescrip

tion, Eq. (5.1), requires multidimensional integration, even for a one degree of free

dom problem. Importance sampling techniques [53] are ideally suited for this task 

when the integr-and is positive definite. While the computational effort that is 

required for the numerical evaluation of a path integral is much- greater than the 

effort required to obtain the complete quantum mechanical solution of a one dimen

sional problem by other techniques (e.g., by basis set calculations), the situation 

changes entirely as the dimensionality of the problem increases. This is so because 

the difficulty in carrying out a path integral grows slowly (unlike other methods) with 

the number of degrees of freedom. 

Until recently, Feynman path integration has found most utility in 

chemicaVmolecular dynamics as an elegant tool for deriving semiclassical approxima

tions to quantum dynamical processes.[5.4,5.5] Only in the last few years has there 

begun to be interest in using it as a numerical method for carrying out completely 

quantum mechanical simulations for the dynamics of complex (Le., non-analytically 

solvable) systems.[5.6-5.l1] The reason for this slow development is that the path 

integral expression for the propagator is a multidimensional integral whose integrand 

is a complex exponential function, and thus oscillatory. This appears to obviate the 

use of the Monte Carlo integration method, which is the only general approach one 

has for dealing with highly multidimensional integrals. (In contrast, the integrand of 

the corresponding path integral representation of the Boltzmann operator, e-~H" is a 

real exponential and thus directly amenable to Monte Carlo integration methods. A 

number of impressive calculations for the quantum statistical mechanics of quite 

complex systems have been carried out this way.[5.12-5.16]) 

In this Chapter we- present a new approach to Monte Carlo evaluation of 

integrals with oscillatory integrands,[5.17] of the type occuring in the path integral 

representation of the time evolution operator. The method is quite general and has 
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the highly desirable feature that it incorporates the stationary phase approximation -

i.e., the semiclassical limit of the path integral - as its worst limit. Section 2 

develops the new idea and Section 3 illustrates the method with a simple but non

trivial example. Specifics of applying the method to real time path integrals are 

detailed in Section 4, and the results of test calculations are presented and discussed 

in Section 5. 

2. The method 

a) The basic idea 

In this Section we consider the generic multidimensional integral 

-
We begin, following Filinov,[S.18] by inserting unity in the form 

1 
- - -(x-xo)·B·(x-Xo) 

1 = f dXo"det(B/2x) e 2 -

(5.4) 

(5.5) 

(where B is a positive matrix) into the integrand of Eq. (5.4). By interchanging the 

order of integration, the integral becomes 

- . - is (x) - .l(x-Xo)·B·(x-xo) 
K = f dXo"det(B/2x) f dx e 2 . (5.6) - -

Since the Gaussian factor insures that values of x near Xo dominate the integral over 

x, we expand S (x) in a Taylor series about Xo through quadratic terms: 

(5.7) 

where SI (x) = as lax and S2(x) = a2s laxax. This allows the x-integration to be per

formed analytically, yielding 
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K = K(B) 

-
At this point we depart from Filinov's procedure and note that Eq. (5.5) is true if B 

is complex, and is approximately true even if B is a function of x 0; we make the 

specific choice 

(5.9) 

so that Eq. (5.8) becomes 

. (5.10) 

-
The matrix c is a constant positive matrix; for example, one may take c = c 1, where 

c>o. 

Eq. (5.10) is the basic result of this Section and appeared first in Ref. 5.17. 

This multidimensional integral is evaluated by Monte Carlo with the function 

(5.11a) 

as the (un-normalized) probability distribution from which points are sampled, i.e., 

the Monte Carlo approximation to the integral is 

- 1 M is ( ) r-::--"="=""...,....-=-~':":' 
K(c) = J dx p(x) - L e Xi ...jdet[1+ic·S2(Xj)], 

_ M j=l 
(5.11b) 

where the M values Xj are chosen at random from the distribution p (x). The 

Metropolis algorithm [5.3], the stochastic dynamics algorithm [5.19], etc., are standard 

ways for doing this. The error in Eq. (5.l1b) decreases with increasing M as M-1h. 

The method is similar to the original idea of "stationary phase Monte Carlo" first 

suggested by Doll. [5.20] This is so because the distribution p most strongly weights 

the regions about the stationary phase points [values of Xo for which Sl(xO)=O]' 
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Choosing a large value for the constant e • causes very narrow sampling about the sta

tionary phase points, and the Monte Carlo statistics are thus excellent. There is the 

question, though, of how well K (c) approximates the original integral K when e is 

large; in the limit e -+00, in fact, one can show that K (c) becomes the stationary 

phase approximation to K[S.21]: 

limK(c) = LeiS(XsP) Vdet(21tiIS2). (5. 12a) 
C~ 

In the opposite limit, that e is small, it is easy to see that the exact integral is 

recovered: 

limK (c)-+K , (5.12b) 
c-M) • 

but the Monte Carlo statistics become poor because the distribution p becomes very 

broad. In practice, therefore, one evaluates K (c) for several values of e, taking it as 

small as acceptable Monte Carlo error allows, knowing that in the "worst" limit, 

e -+00, K (c) becomes the stationary phase approximation to K. This feature renders 

our method superior to Doll's original stationary phase Monte Carlo idea. In Section 

2b we show how one can actually calculate the error introduced by finite e, i.e., a 

Monte Carlo estimate of the difference between K(c) and K. Finally, Eq. (5.10) has 

the useful property that K (c)=K identically for all values of e if S (x) is a quadratic 

function of the integration variables. 

Since the stationary phase approximation to a path integral gives semiclassical 

dynamics,[s.4.5.5] one interesting way to view the application of the modified Filinov 

procedure to path integrals is as a systematic way to correct semiclassical approxima

tions (e.g., the classical S -matrix [s.S] in scattering, etc.). This is a major step for

ward for, although semiclassical approximations are often quite accurate,[S.4.5.5] there 

has heretofore been no systematic way to improve on semiclassical results when they 

were not sufficiently accurate. The modified Filinov algorithm for e <00 may thus be 

viewed as a way of "turning on" full quantum mechanics, progressively so as e is 
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decreased, and letting the Monte 'Carlo calculation correct the semiclassical (c::oo) 

result. 

Finally, it is also useful to note the analogy of the present Monte Carlo calcula

tion to those in classical equilibrium statistical mechanics, for which the (unnorrnal

ized) probability distribution function is p (x) = e-~U(x). Comparing to Eq. (2.8), the 

analogy is ~c, and the effective "potential" that determines the sampling is 

U (x) == ~ lSI (x) 12. Stationary phase points thus correspond to local minima of the 

"potential", with the value U min=O. There may be other local minima in this "poten-

tial" that are not zero, i.e., where the phase is not stationary but only more slowly 

varying than in neighboring regions; these' are often related to the existence of 

nearby complex stationary phase regions that characterize tunneling-like contribu

tions to the integral. [5.22] 

b) The error estimate 

It is not difficult to obtain an estimate of the absolute error that is introduced by 

using a non-zero matrix c in Eq. (5.10) to approximate the integral of interest, K. 

The validity of the first approximation that was used in deriving K (c) depends on 

how well Eq. (5.7) describes S(x) in the region of space that is selected by the 

exponential 

1 
- -(x-Xo)·B·(x-Xo) 

e 2 

in Eq. (5.6). If B is large, for example, then the integration with respect to x is res

tricted to points very close to Xo, in which case the expansion of S through quadratic 

terms about Xo will be accurate. even though S (x) itself may be a non-quadratic func

tion when viewed in the entire domain of x between - and 00. This can be checked 

by comparing the integrand of Eq. (5.8), 
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which incorporates the approximation of Eq. (5.7), to the true integrand before any 

approximation was made, that of Eq. (5.6): 

- is (x) - .!.(x-Xo)·Bo(x-Xo) 
vdet(B/21t) J dx e, 2 . (5.14) 

-
The second approximation was introduced by Eq. (5.9). The accuracy of this 

approximation, however, is closely related to that of the approximation described in 

the previous paragraph; the integrand of Eq. (5.5) is only large for values of Xo near 

x, within a range determined by the magnitude of B. If S is well described QY a 

quadratic function in this region, i.e., S2(XQ) is nearly constant there, then B(xo) will 

also be nearly constant, and Eq. (5.5) will be accurate. Therefore, if one compares 

(5.15) 

to 

-
which are obtained by substituting Eq. (5.9) in Equations (5.13) and (5.14) respec

tively, one will be testing both. approximations. The integral in Eq. (5.16) can be 

performed using 

(5.17) 

as the weighting function. If this comparison is carried out at several different values 

of Xo and the above quantities [Equations (5.15) and (5.16)] are in good agreement 

with one another, then Eq. (5.10) will be a good approximation to the exact integral, 

Eq. (5.4). This test is easy to perfonn. The rule will be to take c to be as small as 

the Monte Carlo statistics pennit; in general, this means c<1. Then c-1 will be 
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large, and Eq. (5.17) will be a sharp weighting function, so that the integral of Eq. 

(5.16) can be evaluated using a small number of Monte Carlo points. Another attrac

tive feature of this method is that the sampling function that is used is a normalized 

distribution, and thus no normalization integral (see Section 4) need be computed 

numerically. 

This method was originally reported by Makri and Miller at the American 

Conference on Theoretical Chemistry (July 1987), and essentially the same idea has 

recently been suggested by Doll, Freeman and Gillan. [5.23] Tests of this approach 

have been JIlade on the Airy integral of Section 3 (originally used in Ref. 5.17), as 

well as in all the applications considered in Section 5, verifying that this procedure 

does indeed provide an accurate estimate of the difference between K (c) and K. As 

stated above, it is easier to implement if c is assigned small values, in which case the 

Monte Carlo integral of Eq. (5.16) has very good statistics. Estimating the error is 

thus an excellent way to determine (without too much additional effort) whether the 

results of Eq. (5.10) for a specific value of c should be trusted. Unlike Doll et aI's 

results,[5.23] however, our work indicates that the actual calculation of the correction 

to Eq. (5.10) by means of integrating the difference between equations (5.15) and 

(5.16) requires (in multidimensional problems, in particular) a large amount of addi

tional computational effort. Since our method gives very accurate results with small 

values of c, the correction would be needed only if one wanted to evaluate Eq. 

(5.10) with relatively large c, a choice that would render the Monte Carlo error bars 

small. Unfortunately, this is not easily feasible, because the statistics of the correc

tion integral are then poor. Furthermore, as will be expl~ned in detail in Section 5, 

the computational evaluation of Eq. (5.10) with large c presents certain challenges, 

which necessitate the use of special Monte Carlo techniques. [Problems of this 

nature do not, however, occur in the evaluation of the integral involved in estimating 

the error according to Eq. (5.16).] We therefore conclude that one is more likely to 
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gain in computational effort and simplicity by using a small value for c, in which 

case calculating the correction to Eq. (S.10) in the way described in this paragraph 

will not be necessary. 

3. Simple example: the Airy function 

Since the method of Section 2 is exact for quadratic functions S (x). a non-trivial 

test requires a more complicated phase function. The integral representation of the 

Airy function [5.24] 

. 1 - i (XZ_1.%3) 
Ai (-z) = - I dx e 3 21t _ 

is of the form of Eq. (S.4) with 

x 3 
S(x) =xz--

3 

(S.18) 

and this integral has the generic behavior of coalescing stationary phase points in the 

limit z~O . 

For z::' 1 the stationary phase (Le., semiclassical, WKB) approximation to 

Ai (-z) 

sin( ~l z 312) 
Ai (-z) ___ 4_*_!_,, __ 

1t z 
(S.19) 

is extremely accurate [5.24], so that here the method of Section 2 will be accurate and 

efficient for a wide range of values of the constant c. To provide a challenge to the 

method, therefore, we consider small values of z . 

Figures S-2 through S-S show the percentage error, 

100 x (approximate) - (exact) 
(exact) 

(S.20) 
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Fig. Sal 

The percentage error [cf. Eq. (5.20)] given by Eqs. (5.10)-(5.11) for the Airy 

integral, Eq. (S.18), for %=1, as a fwlction of the constant c. The width of the 

shaded curve shows the Monte Carlo statistical error for N =5000. The stationary 

phase limit. c -+-, is off by 4.6% for this case. 
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Fig.Sa3 

Same as Fig. 5-2 except for %=0.5. The staiionary phase limit, c~, is off by 20%. 
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z = O. 
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s... 
~ 

~ 
-5.0 

-10.0 

-15.0 
0.0 0.5 1.0 1.5 2.0 

C 

Fig. 5-4 

Same as Fig. 5-2 except for z=O. Here the stationary phase limit is divergent 

z = -0.5 
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Fig. 5-5 

Same as Fig. 5-2 except for %=-0.5. There are no (real) stationary phase points in 

this case. 
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given by Eq. (5.11b) for the Airy integral. Eq. (5.18), for z = 1, 0.5, O. and -0.5, 

respectively. as a function of the parameter c. In each case the shaded region of the 

curve denotes the Monte Carlo statistical error for M =5000; the reader can obtain 

results for different values of M simply by scaling the width of the curves by 

(5000/M)~; e.g., the results corresponding to M =1000 are obtained by expanding the 

width of the shaded curves by V5 = 2.2 . 

For z=l (Fig. 5-2) the stationary phase approximation is still quite good (error 

smaller than 5%), so there is a wide range of c for which the Monte Carlo result, Eq. 

(5.11b), is accurate and efficient (i.e. gives small statistical error). Smaller z is more 

of a challenge, but even for z=O - where the stationary phase result, Eq. (5.19), 

diverges - there is a significant range of c for which Eq. (5.11b) is both accurate and 

efficient. 

Z=1. 
10.0 
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s.. 
E 0.0 
s.. 

tzJ 
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l/B 

Fig. 5-6 Same as Fig. 5-2 (also %=1), except for the original Filinov method, Eq. 

(5-8), using the real pan of the exponent to define the sampling function P (x) rather 

than Eq. (5.11a). 



z Xo 

1 1 

0.5 0.5 

O. 0.5 

-0.5 0.2 

• R Eg. (5.15) 
Eq. (5.16) 

c 

0.01 
0.1 
0.2 

0.3 
0.4 
0.5 
0.8 

1.0 

0.01 
0.1 
0.2 
0.3 
0.4 
0.5 

0.8 
1.0 

0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.8 
1.0 

0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.8 
1.0 

Table 5-1 
Error Estimate 

R· z 

1.00000 1 
1.00079 
1.00647 
1.01916 
1.04289 
1.07150 
1.18121 

1.26132 

0.99997 0.5 
0.99838 
0.99628 
0.99838 
1.00629 
1.02022 
1.08845 
1.13309 

1.00002 O. 
1.00337 
1.01595 
1.03996 
1.07499 
1.11166 
1.26258 
1.35997 

1.00005 -0.5 
1.00581 
1.02591 
1.06218 
1.10203 
1.15480 
1.31544 ' 

1.39692 
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Xo c R· 

0.5 0.01 0.99985 
0.1 0.99361 
0.2 0.97720 

0.5 0.91611 

0.8 0.87324 

1.0 0.84016 

0.2 0.01 0.99996 
0.1 0.99607 

0.2 0.98845 

0.5 0.97801 

0.8 1.00253 
1.0 1.01473 

0.2 0.01 1.00000 
. 0.1 1.00120 

0.2 1.00865 

0.5 1.08006 

0.8 1.19181 
1.0 1.27804 

O. 0.01 1.00006 
0.1 1.00627 
0.2 1.02539 

0.5 1.15146 
0.8 1.30718 
1.0 1.39659 
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For z<O there are no (real) points of stationary phase, yet Eq. (5.llb) still pro

vides usefully accurate results (less than 10% error) when c is large enough to have 

acceptable statistical error. If one distorted the integration path from the real x axis 

- a trick that has already been shown to be very useful in Monte Carlo path integra

tion [5.10.5.25] - then much more accurate results could be obtained for z <0. 

Finally, Fig. 5-6 shows similar results for z=l using Filinov's original expres

sion, Eq. (5.8), as a function of the constant B-1• (Here one divides the complex 

exponent - ~S' (xo)2/[B -is'' (xo)] into real and imaginary parts and uses the real part 

to define the Monte Carlo sampling function.) The results are essentially the same as 

Fig. 5-6 for all values of z tested and behave not nearly so well as those discussed 

above. One can show analytically that the stationary phase approximation is not 

obtained in the limit B-1-+oo (or any other limit); in fact, K(B )~O as B-1-+oo, i.e., 

-100% error. The modified Filinov expression, Eq. (5.10), is thus clearly superior. 

Before concluding this Section, we present a test of the error estimate method of 

Section 2b to the calculation of the Airy function. Table 5-1 shows the ratio of Eq. 

(5.15) to Eq. (5.16), evaluated at selected points xo. as a function of the parameter c 

for the values of z shown in figures 5-1 through 5-4. The integration of Eq. (5.16) 

was performed by Monte Carlo with 10000 points. It is clearly seen that the magni

tude of the deviation of this ratio from unity does indeed reflect the error in the result 

that corresponds to the specific value of c. 

4e Application: time evolution via path integration 

In this Section, we describe the path integral evaluation of the time evolution 

operator in the coordinate representation and of the survival probability in three one

dimensional potentials: a harmonic potential, a symmetric double well potential, and 

a Morse potential. 
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aJ The path integral expressions 

The path integral expression for the coordinate representation of the propagator 

for a one-dimensional potential V (x) is 

1 
where Wk = 1 for k=I, ... ,N-l, Wo = wN = 2' and N-l is the number of time 

discretizations. This expression becomes exact in the limit where N ~oo. To evalu

ate Eq. (5.21) using the Monte Carlo algorithm, it is useful first to make a transfor

mation of the integration variables to diagonalize the kinetic energy part; this leads 

to Coalson's quasi-Fourier representation,[S.26]. 

N-I • N 
_ _ inl:al- -1L l:W1 V(X1) 

x J da ... J da e 1al N1I1~ 
1 N-l (5.22) - -

where 

k ~ 1C1il 1 N-l sin(rtkk'IN) 
Xl =Xo + (XN-XO)- + -- I:aK. , . 

N m N K =1 sm(7tk 12N) 
(5.23) 

Eq. (5.22) is an integral of the type discussed in Section 2, with S of Eq. (5.21) 

given by 

The survival probability, P (I), for the time evolution of a state initially 

described by the wave function Cl>(x), is given by 
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P (t) = k<l>le-iHll1J l<l»12 

= II-dxoI-dxN<<l>lxN><XN le-iHtntIxO><Xol<l»12 

- -
m 00 00 00 00 

= -II dxoI dxN I da I ... I daN-I<l>* (XN) <l>(xo) 21t1il _ _ _ _ 

(5.25) 

In applications below the initial state is taken to be a Gaussian centered at Xin: 

(5.26) 

b) The normalization integral 

After making the transfonnation described in Section 2a. one must evaluate a 

multidimensional integral of the type of Eq. (5.4). The most common way of doing 

this is via the Metropolis algorlthm,[S.3) which gives a nonnalized average over the 

chosen relative distribution function. Eq. (5.4) must thus be multiplied and divided 

by the nonnalization integral, 

I 
- - -Sl(X)·C·Sl(X) -

I == I dx e 2 = I dx p (x), - -
so that the Metropolis expression for K (c) of Eq. (5.4) is 

K (c) = ~ f e
iS

(Xj)"det[1+i C·S2(Xj )], 
j=l 

(5.27) 

(5.28) 

where {x j} are the M points selected from the distribution p (x) by the Metropolis 

procedure. 

The nonnalization integral, Eq. (5.27), is similar to integrals that occur in statist

ical mechanics, where one wants to compute partition functions. We have used the 

"charging" algorithm [5.27] to evaluate it. The exponent of the weighting function is 
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thus split into two parts, 

p (x) = e - [gO<x) + gl(X)], (5.29) 

such that e - go(x) is analytically integrable. [In the case of the Monte Carlo evalua

tion of path integra1s, there is always a quadratic (and thus analytically integrable) 

part in the exponent of the weighting' function, and therefore this algorithm is directly 

applicable.] Defining 

(5.30) -
one has 

(5.31) 

-
and therefore 

-i d"A,<gl>! 

I = /),;:1 = I).;::() e . (5.32) 

One must thus compute the normalized average of g 1 with respect to the distribution 

(5.33) 

at selected values of A between 0 and 1 and numerically integrate over A to obtain 

the normalization integral I. The Metropolis procedure is used to compute <g t>"A,. 

In most of the cases presented in this Chapter, the integrand of Eq. (5.32), 

<g t>"A" is a very non-smooth function of A; however, by properly selecting the values 

of A (typically, 10-20 points are sufficient) at which <g t>"A, is evaluated, this function 

can be accurately and efficiently integrated. 
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c) Computation of the survival probability 

The exponent of the integrand in Eq. (5.25) for the survival probability, with 

<l>(x) given by Eq. (5.26), has a real as well as an imaginary part. Our first inclina

tion was to deal with this by applying the modified Filinov transformation, Eq. 

(5.10), only to the {al} variables since there is already a real exponential factor that 

can serve as the weighting function 'for integrating over the variables Xo and xN' 

This turns out not to be a good idea, however, because the resulting Metropolis sam

pling function does not sample the regions of x 0 and xN about the stationary phase 

points of these variables. This causes the phase factor eiS to oscillate wildly with Xo 

and xN, and thus gives poor Monte Carlo statistics. 

We have found that it is much better simply to generalize Eqs. (5.4)-(5.10) to 

the case that the phase S (x) is complex. [5.28] With the replacement 

Sex) ~ Sex) + iW(x), (5.34) 

all of the manipulations leading to Eq. (5.10) are the same (at least if W is a qua

dratic function of x), so that one obtains 

GO 

K (c) = f dx eiS(x)e-W(x) vdet[l+i c·S2(X)-c·W2(x)] 

--
(5.35) 

where 

WI (x) = aW (X)/dx, 

Choosing the Metropolis sampling function as 

-[~ S\(x)'C°S\(x) + W(x) - ~W\(X)OCOW\(X)] 
p(x) = e , (5.36) 

Eq .. (5.35) becomes 

K (c) = f- dx p (x) ei[S(x)-w\(x)oCOs\(x» Vdet[1+ic·S2(X)~·W2(X)]. (5.37) 

-
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Equations (5.36) and (5.37) are thus the generalization of Eqs. (5.10) and (5.11). For 

the present application, the integration variables are x 0' xN and {ak}' S is the real 

part of the phase given by Eq. (5.24), and W the imaginary part, given by 

(5.38) 

Our choice for the matrix c is an N + I-dimensional diagonal matrix whose N-1 

elements (the ones corresponding to the ak variables) are equal to a constant c and 

the two elements that correspond to the integration of the endpoints x 0 and xN are 

equal to another constant c'. Eq. (5.36) thus gives the Metropolis sampling function 

as 

(5.39) 

and the expression for the survival amplitude is 

(5.40) 

Since the term (XN-Xo)2 [which arises from Eq. (3.4)] in Eq. (5.37) becomes 

dominant at shon times, one must be careful to "move" both Xo and xN at each step 

in the Monte Carlo random walk, so that Ix O-xN I remains small. (Failure to do so 

will result in the rejection of most of the steps or- if the step size is small enough 

so that only half of the steps are rejected - the integration space will be sampled 
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very poorly.) To guarantee this. we carried out the Metropolis sampling using the 

variables 

(S.41) 

with the step sizes adjusted to give 50% rejection rate. 

s. Results and discussion 

The methodology described in Sections 2 and 4 was first tested for a hannonic 

potential, V(x) = ~mro2x2. In this case the integrand of the path integral, Eq. (S.21) 

or (S.22); is the exponential of a quadratic function of the integration variables, and 

as discussed in Section 2, the modified Filinov transfonnation gives the integral 

exactly. for all values of the parameter c. This was verified directly by using the 

Monte Carlo procedure described in Section 4, and the results are presented below. 

We first give the expression for the diagonal element of the propagator, 

<olexp(-iHtfli)IO>, that is obtained using Eq. (S.22) with N time slices. Notingthat 

N-l 1t1u N-l aJ 
Lxl = 2mN L 7Ck' '. 

1=1 ~ =1 sin2-
2N 

(S.42) 

the integrations in Eq. (5.22) can be easily perfonned. yielding the result [5.29] 

<ole -iHlt1Ilo> = ~ IT [1 _ (rot )2 ]-JIZ. (5.43) 
2mnt 1=1 (2N sin 1tk )2 

2N 

As N~, Eq. (S.43) approaches the exact result for the hannonic potential [5.1] 

<Ole -iHlt1Ilo> = - I m co 'J 21ti 1isinrot . 
(S.44) 

For the case of the hannonic potential there is only one stationary phase point 

for each integration variable in Eq. (5.24). One can easily get the exact results with 
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small Monte Carlo error by using large values for the parameter c. To illustrate this, 

we performed the Metropolis calculation of <olexp(-iHtl1i)IO> according to Eq. 

(5.10) for the potential 

(5.45) 

with the mass equal to that of a hydrogen atom and the force constant m ro2=O.04 

atomic units, which corresponds to ro = 1020 cm -1. 

t 

Fig. 5-7 

TIle absolute value of the real part of the 0-0 mattix element of the propa

gatOr. <.Ole-iH'IAIO>. as a function of time. for a harmonic potential. Eq. 

(5.45). Solid line: exact result. Eq. (5.44). Dotted lines: analytic result 

for the path integral evaluation with N, time slices [cf. Eq. (5.43)] where 

N=2.5 and 11. respectively. Circles and squares: Monte Carlo path 

integral evaluation according to Eq. (5.10) with N=2 8I)d 5. respectively. 

TIle statistical enor bars are smaller than the size of the points. 

·.f. 
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Fig. 5-7 shows the agreement of various finite-N results, Eq. (5.43), with the 

exact results, Eq. (5.44), as a function of the time t. Also shown are the results of 

the Monte Carlo path integral calculation of <Olexp(-iHtl1i) 10> using our method, for 

N=4, with c = C 1, c=50, and 5000 Monte Carlo points per dimension. The Monte 

Carlo error bars are very small, and the agreement with the analytically obtained 

results for the same value of N is (as expected) excellent. 

A non-trivial application, however, and one that is related to some of the chemi

cal applications that we have in mind for future work, is a symmetric double well 

potential. [5.28] 

(5.46) 

with ao = 0.02 and Co = 0.04 atomic units. For a particle with the mass of a hydro

gen atom, the harmonic frequency in each well is 1020 cm -1. The barrier that 

separates the two wells is small and the local potential about each minimum very 

anharmonic. For this potential, Eq. (5.10) is not exact, except for c=O. Furthermore, 

this is a case for which semiclassical approximations are not expected to work very 

well. 

Consider first the diagonal element of the propagator, <olexp(-iHtl1i)IO>. This 

quantity is closely related to the reactive flux correlation function [5.6] (see also 

Chapter VII) for the transition state (x =0) on this one-dimensional potential energy 

surface. It is useful first to examine the case with only one time discretization 

because it provides some useful insight into important aspects of the calculation. Eq. 

(5.24) then reads 

(5.47a) 

with 

(5.47b) 
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-
and one can readily show that the integral over a 1 in Eq. (3.2) has three points of 

stationary phase, 

(5.48) 

For shon times, i.e., t ~O, these are all well separated, and the stationary phase 

approximation to the integral, 

is accurate. As t increases, however, the three stationary phase points approach each 

other (coalescing as t~), and Eq. (5.49) becomes incorrect (Of course one would 

not attempt to do the calculation for long times with only one time discretization; our 

purpose here is merely to examine the behavior of the specific integral.) 

Now consider Monte Carlo evaluation of the integral over a 1 with the modified 

Filinov transformation, Eq. (5.10). It is useful to refer to the analogy with classical 

statistical mechanics noted at the end of Section 2a. Thus the Monte Carlo distribu-

tion function 

(5.50a) 

here with S of Eq. (5.43), is identified with 

(5.50b) 

so that 

(5.5Oc) 

(5.5Od) 
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The three stationary phase points of Eq. (5.48) are thus local nUnima of the "poten

tial" U (a 1)' U (afP)=O, and when applying the Metropolis algorithm in such cases 

one must be careful to sample the various local minima appropriately. When c (=~) 

is small enough (high "temperature"), this is easily accomplished, because the 

optimum step size for the random walk is large enough to provide multiple jumps 

from one minimum to the other.[S.28] For larger c (=~, i.e., low "temperature"), how-

ever, the Metropolis calculation often gets trapped in one minimum, without "seeing" 

the others within realistic time scales. This problem is often encountered in statistical 

mechanics, and sophisticated Monte Carlo procedures have been developed for suc

cessfully populating the various local minima. The most commonly used procedure, 

the simulated annealing algorithm,[S.30] starts the random walk with very small c 

(high temperature), so that all the local minima can be popUlated, and successively 

increases c(Le., lowers the temperature) to the ~esired value. 

The annealing procedure works well for the above case that the three local 

minima in U (a 1) all have the same value, U min=O. It is less efficient, though, for 

computing the nonnalization integral, Eq. (5.30), because for 0<A.<1 the relative 

minima in U )..{a 1) IP A. of Eq. (5.33) =exp( -u 0] do not all have the same value [See 

Figures 5-8 and 5-9]. In this case, we used a technique similar to the staging algo

rithm;[S.31] we first carried out a preliminary Metropolis random walk with a large 

step size in order to provide the correct relative population of all important regions of 

space, and then used these configurations to initiate Metropolis sampling with the 

optimum step size. 

We demonstrate the success of this latter method by presenting the Metropolis 

computation of the real part of <0 lexp( -iHt fh) 10> for the double well potential with 

N =2. The reason for restricting the calculation to just one time discretization is to be 

able to compare with exact results, which can then be computed by simple numerical 

integration. Basis set calculations (which would nonnally provide the exact answer) 
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Fig_ 5-8 

The exponent g a+"lg 1 of the integrand [Eq. (5.33)] required to evaluate the 

nonnalization integral, Eq. (5.30), as a function of the integration variable 

(J 1 [cf. Eq. (5.47)] for the double well example discussed in Section 5, at 

three different values of A. (a)~, (b) ~.9S, (c) A.=1. 

(b) 

(c) 
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(a) 

(b) 

(c) 

The integrand e -<a~l) required to evaluate the nonnalization integral, Eq. 

(S.30), as a function of the integration variable Ql [cf. Eq. (S.47)] for the 

double well example discussed in Section S, at three different values of A. 

(a) A=<>, (b) A=<>.9S. (c) A.=1. 
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converge extremely slowly in the case of the purely real time propagator. Fig. 5-10 

shows the results of this calculation for three different values of c, and compares to 

the exact results. The results for c =0.05 were obtained using straightforward 

Metropolis sampling with 500000 points. The c =0.5 and c =1 results were obtained 

by carrying out the Metropolis calculation with large step size to create 5000 

configurations in the important regions of space, and then sampling about each of 

these configurations using 100 Monte Carlo points with the optimum step size. All 

three calculations were performed with the same total number of Monte Carlo points 

(5000xl00=500000); although the quality of the results is the same, the small c cal

culation is obviously preferable as being the simplest. computationally. 

8 9 10 11 12 13 

t, fs 

Fig. 5-10 

Calculation of Eq. (5.21) with XN=Xo=:C and N=2 for the double well poten

tial. The solid line shows exact results, generated by means of numerical 

integration. The points show the Monte Carlo evaluation of the same quan

tity using three different values for the parameter c: circles, c=O.05; 

squares, c=O.5; and ttiangles, c=1. The c=O.05 results were obtained by 

straightforward Metropolis sampling, while the c=O.5 and c=1 results were 

obtained by sampling about SOOO configurations that were aeated using a 

larger step size for the random walk (see the discussion in Section 5). 
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Next, we present the calculation of the survival probability. P (t), for the double 
, 

well potential. The initial state was taken to be a Gaussian centered at one 

minimum. We used two different values for ex, one with which the initial state is an 

eigenstate of the harmonic approximation to the potential about this minimum 

(cx.=8.57), and a smaller value (a.=2). which corresponds to a broader initial state. In 

the first case (see Figures 5-11 and 5-12) the decay of P (t) is primarily from tunnel

ing of the initial state through the barrier to the other potential well, while in the 

latter case (see Figures 5-13 and 5-14) it is via relaxation of the initial state in its 

own potential well. 

Fig. SOU 

Time evolution of a Gaussian which starts out as an eigenstate of 

the local barmonk approximation to the double well potential, Eq. 

(5.46), about one minimum. Plotted is die probability density, 

I~ ;t ) 12, as a function of the c:oordinaIe }C and the time t. The 

time evolution was computed by basis set expansion. 
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Fig. 5-12 

The survival probability, P (I), for a Gaussian which starts out as 

. an eigenstate of the local hannonic approximation to the double 

well potential, Eq. (5.46), about one minimum. The points show the 

results of evaluating Eq. (5.10) by Monte Carlo, with the parameter 

c ranging between 0.02 and 0.1; 100000 - 1000000 Monte Carlo 

points were used per dimension of the integral. The solid line 

shows exact results, generated by basis set methods. 
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The error estimate of Section 2b has also been applied. In each calculation, the 

average absolute difference between Equations (5.15) and (5.16) was of the same 

order of magnitude or smaller than the Monte Carlo error bars for the values of c 

that were used. 

It is worth pointing out that the computation could also be performed with larger 

values of the parameter c. as was pointed out when discussing the case of the diago

nal element of the propagator. However. small values of c have yet another advan

tage: in order to calculate the square root of the determinant that appears in Eq. 
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(5.10), one must in general diagonalize the matrix l+i c·S2 (-c·W2), in order to be 

able to determine the correct phase factors of the product by taking the complex 

square root of each of the eigenvalues separately. If c is small though, the deter

minant has a positive real part; therefore the correct phase of the square root can be 

found without diagonalizing the ':llatrix, and thus the calculation can be considerably 

accelerated. 

Fig. 5-13 

Time evolution of a Gaussian with a.=2 [cf. Eq. 5.26] in the double 

well potential, Eq. (5.46). Plotted is the probability density, 

1cJ>(.%;t)12, as a function of the coordinate % and the time t. The 

time evolution was computed by basis set expansion. 
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Fig. 5-14 

Same as Fig. 5-12, except that the initial state was broader (a=2). The 

Metropolis computation was performed with c ranging between 0.1 and 0.2, 

with 100000 - 200000 Monte Carlo points per dimension. 

Finally, we present a similar calculation for a Morse· potential, 
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. , 

(5.47) 

We chose the parameters to correspond roughly to those for the vibrational motion of 

H 2' i.e., the well depth De = 4.476 eV and the harmonic frequency at the bottom of 

the well roe = 4395 cm -1. The initial state was a Gaussian with the width of the 

ground state wave function and centered at xin = -{l.21 X(see Fig. 5-15); the energy 

of this state corresponds approximately to that of the fourth eigenstate, where the 

potential is very anharmonic. Fig. 5-16 shows the evolution of the square of the 

wave function, 1Cl>(x;t) 12, with time. The shape of the wavepacket is distorted as it 

moves to the right, especially as it approaches the outer turning point of the Morse 

potential; although the wave function is very broad there, it is too far away from its 

I' 
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Fig. 5-15 

The Morse potential with parameters that correspond roughly to the vibrational 

motion of H2 (D. = 4.476 eV. co. = 4395 em-I). Also shown is the initial Gaussian 

wavepacket. which has the width of the ground vibrational state and is displaced by 

-0.21 A from the equilibrium position; the energy of this state corresponds approxi

mately to the fourth eigenstate of the potential. 
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original location to have any significant overlap with the initial state, and the survival 

probability (see Fig. 5-18) approaches zero. The wave function partially regains its 

initial localization as it starts moving back toward the left, while the survival proba

bility rises from zero and develops a maximum. However, the localization of the 

wavepacket is totally destroyed as it bounces off the hard wall of the Morse 
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potential. The wave function breaks apart as it starts moving to the right after the 

reflection, while the survival probability decays to zero again. Other local maxima 

appear in the survival probability at subsequent times, when the original Gaussian 

overlaps with smaller peaks of the reflected wave. [5.28] 

Fig. 5-16 

Time evolution of the wave function shown in Fig. 5-15 in the 

Morse potential shown in Eq. (5.47). Plotted is the probability 

density, l«x;t)12, as a function of the coordina1e x and the time t. 

1be time evolution was computed by basis set expansion. 
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To illustrate the magnitude and the importance of the anharmonicity of the 

Morse potential at this energy, we show in Fig. 5-17 the time evolution of the same 

initial wavepacket in a harmonic potential which was chosen to fit the Morse poten

tial at the minimum. In this case the wavepacket remains localized at all times, 

while its center bounces back and forth between the classical turning points following 

the classical equations of motion. 

Fig. 5-17 

Time evolution of the wave function shown in Fig. 5-15 in a har

monic potential with frequency equal to the equilibrium frequency 

of the Morse potential. Plotted is the probability density. 1«X;t)12. 

93 a function of the coordinale % and the time t. 
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Fig. 5-18 shows the survival probability for time evolution in the Morse poten

tial, as calculated by Monte Carlo path integration, and compares with exact results, 

generated by basis set methods. The agreement is very good at all times; the path 

integral results have been obtained using as many as 20 time discretizations for the 

points of the second peak. More accurate approximations to the short time propaga

tor (see Chapter VII) would allow the time evolution to be followed for longer times 

with the same number of time discretizations. We therefore conclude that the 

modified Filinov method is accurate and efficient for describing the dynamics, even 

when the processes that are taking place are sufficiently complicated. 

1 

0.75 

S 0.50 
0.. 

025 

0 
0 4 8 12 
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Fig. 5-18 

The survival probability. P(t) (see Eq. S.25). for the wavepacket in the 

Morse potential of Fig. S-IS. The calculation was performed with 100000 

points, with c =0.2 and c' =0.03; the Monte Carlo error bars are smaller than 

the size of the points, even when the dimensionality of the integral is ;;ao. 
The solid line shows exact results. 

':, 
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6. Concluding remarks 

The purpose of this Chapter has been to show that real time propagator path 

integrals can indeed be evaluated by Monte Carlo methods via the modified Filinov 

algorithm. The fact that Monte Carlo methods are used means that the integrand of 

the path integral can be augmented by a non-local influence functional that arises, for 

example, by integrating out other degrees of freedom to which the remaining one is 

coupled. Such possibilities show the potential power of this approach. 

The applications discussed in Section 5 also show some of the challenges 

presented to this approach. Namely, when there is more than one stationary phase 

region in the integrand, the Metropolis procedure must be "smart" enough to insure 

. that it samples them all and in the correct relative amounts. (This is identical to the 

problem in classical statistical mechanics of evaluating a partition function for a 

potential with several local minima.) Semiclassical theory, which is the stationary 

phase approximation !o the path integral, explicitly searches out these stationary 

phase points (i.e., the classical paths) and then adds their contributions appropriately. 

Presently, though, we do not wish to make the stationary phase approximation but 

rather let the Monte Carlo procedure sample these regions (in principle, exactly). 

There exist a variety of sophisticated Monte Carlo techniques for dealing with these 

multiple minima situations, and they will undoubtedly be useful for application to 

these modified Filinov-type calculations. For the applications in this Chapter, how

ever, we have taken the simpler alternative of choosing the constant matrix c small 

enough that the Monte Carlo weighting function [Eq. (5.10)] samples broadly enough 

to encompass all the various stationary phase regions. More experience with further 

applications will be necessary to see which combinations of these various Monte 

Carlo techniques will be most generally useful for these path integral calculations. 
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VI. Effective Non-oscillatory Real Time Propagator 

1. Introduction 

In recent years, Feynman pam integration [6.1J has found extensive use in the 

study of equilibrium statistical mechanical properties. Discretization of the integration 

variables on a grid converts the path integral into matrix multiplication, [6.2] an itera

tive scheme which is very efficient for systems of only a few degrees of freedom. 

Many body problems cannot be dealt with the above technique, though, as the size of 

the coordinate grid grows exponentially with the number of degrees of freedom. 

Monte Carlo methods, [63] which are specifically designed to handle multidimen

sional integrals, provide an efficient tool in that case and have been successfully used 

in statistical mechanical calculations. 

However, the above methodology is much less straightforward to apply for 

studying dynamical properties, as was made clear in the previous Chapter. Although 

the path integral formalism for the real time propagator, exp(-iHt /1i), is identical to 

that for the Boltzmann operator, exp(-~H), the standard coordinate .representation of 

the former is highly oscillatory. Matrix multiplication is then inappropriate as a pro

pagation scheme. There exist numerical techniques that propagate a wavefunction on 

a grid using the fast Fourier transform (FFf) method,[6.4,6.5] and which are very 

efficient for problems of only a few degrees of freedom. For multidimensional sys

tems, though, Monte Carlo path integration provides the only known alternative. 

Unfortunately, ordinary importance sampling methods cannot be used to evaluate the 

rapidly oscillatory integrals encountered in dynamical calculations. Approximate 

techniques for performing integration of oscillatory integrands by using the existing 

Monte Carlo methodology have recently been developed and were described in 

Chapter V (see also references 6.6 and 6.7). These methods introduce a weighting 

function which is constructed to sample primarily about the stationary phase points of 
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the integrand, and show promise for studying the real time dynamics of chemical sys-

terns. 

The purpose of this Chapter is to describe a new approach to real time path 

integration. It is shown that the highly oscillatory behavior of the short time propa

gator in its standard (coordinate) representation can be eliminated if the properties of 

the wavefunction are properly exploited. An effective system-specific real time propa

gator is obtained, which is localized and devoid of rapid oscillations. This effective 

propagator is thus well suited for time propagation by matrix multiplication and -

more importantly - for straightforward Monte Carlo path integration. The method is 

strictly quantum mechanical and yet very easy to implement. Another attractive 

feature of this approach is that its convergence characteristics are determined from 

the Fourier spectrum of the wavefunction in a simple and straightforward way. 

Section 2 describes the idea and constructs the new effective propagator. Some 

numerical examples which illustrate the properties of this propagator are presented in 

Section 3, and conclusions regarding the possible applications of the method appear 

in Section 4 . 

. 20 The effective propagator 

Suppose we wish to propagate an initial state 1'1'(0» for a short time t by per

forming a single step path integral. The procedure is expressed formally by inserting 

a complete set of position eigenstates between the time evolution operator and the 

initial state ket: 

-<x 1'I'(t» = I dX <x le-iHtl1l lx'><x' 1'1'(0». (6.1) -
This is the traditional idea which when used repeatedly leads to the notion of an 

"integral over all paths". Unfortunately. the coordinate matrix element of the propa

gator in the previous equation is a rapidly oscillatory function of x' - behaving as 

exp[! ~ (x_x')2] through leading order - and thus numerical integration of Eq. (6.1) 

I .. 
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is a demanding task, particularly so if t is small. Since all known approximations to 

the coordinate representation of the propagator are only valid for short time, the 

problems associated with the numerical evaluation of a path integral become 

apparent. 

Another formally exact way of arriving at an expression similar to Eq. (6.1), i.e., 

of expressing the time evolved wavefunction as an integral of a time dependent ker

nel times the initial state wavefunction, is to use the completeness property of 

momentum eigenstates; this leads to the relation 

(6.2) -
The x-p matrix element of the propagator which appears in Eq. (6.2), i.e., the mixed 

representation kernel, can be interpreted as the coordinate representation of a pro-

. pagated plane wave, which at t=O had the form 

1 .... 
<oX Ip> = -- eIfJ

X
"'. 

~27t1f 
(6.3) 

It is important to emphasize that the t ~ limit of the x -p propagator is a well 

defined function, in coritrast to the x-x kernel of Eq. (2.1), which behaves as 

S(x -x) and is thus very singular in that limit. 

One can obtain a quite good approximation for the short time evolution of a 

wavefunction by expressing. it as the exponential of a power series in time, and 

requiring that the wavefunction satisfy the time dependent Schrooinger equation 

through various orders in t. This procedure (which is similar to the exponential 

power series expansion for the propagator described in Chapter VII and in Ref. 6.14) 

determines the expansion coefficients in a simple recursive scheme and is outlined in 

the Appendix. Assuming a one-dimensional cartesian Hamiltonian of the form 

2 
H = ~ + V(X), 

the result for the propagation of a plane wave through order t is 
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. 1 

-iH Itt 1 i (px - [i;;+v (x )]1 ) 
<x Ie t Ip> = _ ~ e 

'I27tn 
(6.4) 

Higher order terms are easy to obtain, and the multidimensional generalization is 

straightforward. 

Eq. (6.2), with the propagator given by Eq. (6.4), should be easy to integrate 

numerically . for small values of t, since the x-p propagator is well behaved. How

ever, one can readily see that the stationary phase point for the p -integration occurs 

at p =mx It, i.e., at higher values of'momentum as t becomes smaller. Thus the 

rapidly oscillatory behavior of the integrand shows up in Eq. (6.2) as well, and it 

appeaI'$ that we have gained nothing by introducing the mixed representation. 

However, such high values of p are of no significance to the actual time evolu

tion of a given initial state, even though they are important for the propagator itself . 

. This is so because the integrand of Eq. (6.2) includes the momentum representation 

of the wavefunction, which will typically decay exponentially with p. That is, the 

presence of the momentum space wavefunction. in the integrand of Eq. (6.2) 

effectively prevents the latter from being rapidly oscillatory, and thus allows numeri

cal evaluation of the integral. 

The physically relevant range of momentum values for a particular problem can 

be identified by examining the Fourier transform of the initial wavefunction. This 

gives a cut-off value p max' which can be chosen according to the desired accuracy. 

Wavefunctions usually spread in position space under propagation, which makes their 

Fourier transform a narrower function as the time progresses. Convergence is easily 

tested by increasing the cut-off value p max. 

Once the momentum range that is relevant to the time evolution of the state of 

interest has been estimated, one can bring the problem in the traditional form, namely 

. the position representation of Eq. (6.1). Noting that the completeness relation in the 

momentUm" representation becomes for the' present purpose 
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1 = {DWllp><p I, 

-P..-. 

an effective coordinate propagator can be defined as 

<x le-iHtl11lx'>eff = {-dp<x le-iHtl21llp><p le-iHtI2ll1x'>. 
-P-
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(6.5) 

(6.6) 

The second factor in Eq. (6.6) is easily obtained from Eq. (6.4) by invoking time 

reversal symmetry arguments, i.e., by replacing t by -t and complex conjugating. In 

light of the arguments presented above, this effective propagator is expected to exhi

bit smooth behavior for finite values of p max' 

It is useful to obtain an explicit formula for the effective propagator, and for this 

purpose we integrate Eq. (6.6) analytically. The integration is possible because the 

exponent of the propagator [cf. Eq. (6.4)] is quadratic in p. (This is actually true up 

to order t 3.) The result is 

~ 
i m l t . m -( -(z-x') --[V(z)+V(.%')]} 

<x le-iHtl11 lx'> = e" 2t 2 
etf 27ti1ft 

(6.7a) 

with f smooth given by 

1 it im ~- ~-f smooth(X-X;Pmax;t) = "'2[erf ( 2m1iPmax+ 21ft (x-x» 

(6.7b) 

where erf (z) is the error function of complex argument, [6.8] 

2 r l erf (z) = _r= e-z dx. 
~1t 0 

The first factor in Eq. (6.7) is recognized as the standard expression for the 

coordinate representation of the propagator, which is obtained by using the Trotter 
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product rule. The part involving the error functions (the smoothing factor), though, 

is the new result of this Section. It is this part of the effective propagator that 

smooths out the oscillations present in the kinetic energy part of the Trotter propaga

tor. It is easy to check that Eq. (6.7) reduces to the standard Trotter form of the 

short time propagator if p max--+OO: 

(6.8) 

To establish the properties of this effective propagator, it is useful to distinguish 

between two cases: 

(a) For points x' sufficiently far from x, such that 

lE-1x -x' I>p t max and - I m Ix-x' I~oo 'J1it ' (6.9a) 

(the classically inaccessible region), one can use the asymptotic properties of the 

error function [6.8J to show that the smoothing factor of Eq. (6.7) is proportional to 

i m 2 1 ---(z-x') 
f smooth (x -x' ;p max;t) - --, e 11 2t sinfp max(x -x' )/1i]. x-x . 

(6.9b) 

The second term in the exponential of the above equation cancels the fast oscillations 

that arise from the kinetic energy part of Eq. (6.7). The only oscillations that remain 

are of constant wavelength, and the effective propagator is damped as (x-x'r1 with 

increasing separation of the coordinate points. These features are very useful for the 

purpose of numerical integration, and are illustrated in Fig. 6-1. 

(b) For x' near x , i.e., if 

E!.1x-x' kpmax. 
t 

(6. lOa) 

(the classically accessible region), one can only use the asymptotic behavior of the 

error function if 

(6. lOb) 
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(a) 

(b) 

Comparison of the effective propagator, Eq. (6.7), .10 the standard propagator, Eq. 

(6.8), for two different values of cut-off momentum Pmn.. Plotted is the real part of 

the propagator with x =0 as a function of %, for the double well potential of Eq. 

(6.12). The time step is equal 10 1/40 of the period that corresponds to the harmonic 

potential at the minimum. Solid line: effective propagator, Eq. (6.7), with cut-off 

momentum value Pmn.. Dotted line: standard propagaUX', Eq. (6.8). (a) pmu=12 

atomic wlits; this is the value which was used in the first application of Section 3. 

(b) Pmn.=48 atomic wlits. 
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• 
This'is the case with large time increment t, large momentum cut-off P max' or small 

11. Then the smoothing factor approaches unity and the effective propagator behaves 

like the standard short time propagator. If one were to integrate Eq. (6.7) over x' in 

order to propagate a wavefunction, stationary phase points would occur whenever 

~(x -x') = -1.. V' (x') 
t 2' 

(6.IOc) 

i.e., on the classical path. [points x' that satisfy Eq. (6.1Oc) but do not lie within the 

range dictated by Eq. (6.10a) are to be ignored. Phrased in different words, this fact 

states that classical paths of momentum higher that P max are not allowed in the 

present situation.] 

Fig. 6-1 shows the real part of the effective propagator, Eq. (6.7), with x' =0, for 

the case of a double well potential (see Section 3) for two different cut-off values 

Pmax' For Fig. 6-1a, Pmax was chosen based on the momentum distribution of the 

initial state used in the first numerical example of Section 3. In Fig. 6-1 b, a mIlch 

larger value of P max was used. The behavior described above is clearly seen. The 

standard Trotter propagator, Eq. (6.8), is also shown in the same figures for com

parison. It is interesting to point out that the asymptotic property, Eq. (6:9a), is 

satisfied faster for shorter t. This means that the above behavior is approached for 

relatively small separations x-x' if the time increment is small. 

Consider now using the effective propagator, Eq. (6.7), to evaluate a path 

integral by Monte Carlo methods. Since the damping of the integrand at large 

separation is built in the propagator, one can multiply and divide the integrand by a 

function 

(6.11) 

which is to be used as the sampling function. The parameter A. is chosen such that 

Eq. (6.11) resembles the true (x-x')-l behavior of the integrand as closely as 
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possible over a fixed interval which is detennined to be important in the integration. 

Since the weighting function, Eq. (6.11), is normalized one need not calculate nor

malization integrals numerically. [6.6b] 

Comparison of the method propos~ here with stationary phase based Monte 

Carlo schemes [6.6.6.7] is due at this point. When the standard highly oscillatory 

expression, Eq. (6.8), is used as the short time propagator in a path integral, all con

ceivable paths that connect the given initial and final points contribute with the same 

. absolute weight (probability) but different phases. The numerical value of the 

-integral is then the result of enormous cancellation, with the dominant contributions 

coming from the stationary phase regions of the integrand, which correspond to clas

sical paths. If, on the other hand, the effective short time propagator of Eq. (6.7) is 

used instead, then phase cancellation is a relatively unimportant issue in detenninihg 

the numerical value of the result. The reason for this is that different paths are 

weighted differently and give rise to slowly varying phases in the present case. Thus, 

short paths tend-to dominate, as they enter the path integral with relatively large pro

bability, while paths mvolving steps in the "classically inaccessible region" contribute 

with much smaller absolute weight. Classical paths of the latter type (i.e., of high 

kinetic energy) have essentially zero contribution, and short classical paths are not 

treated more favorably than other short paths. Stated more explicitly, in the present 

method one sums over all paths that are allowed by the momentum range of the 

wavefunction. This is now doable and efficient, provided that the effective propaga

tor is not rapidly oscillatory in the region where it has significant amplitude. The 

fact that it is not necessary to exclude non-classical-like paths from the summation 

means that quantum effects are fully accounted for when the effective propagator of 

Eq. (6.7) is used. 

It is also of interest to point out a remote connection of the present approach 

with the partial averaging technique of Ref. 6.9. According to the partial averaging 

~ 
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method, one tries to include paths of high frequency Fourier components in order to 

obtain a more accurate short time propagator. In the approach taken here, though, 

one eliminates all large momentum components from the effective propagator, know

ing that their contribution is exponentially~mall when the propagator is multiplied by 

a wavefunction with a bound Fourier spectrum. 

The efficiency of the scheme suggested above depends heavily on how smoothly 

the effective propagator behaves in the "classically accessible region". It is not hard 

to show that the generic behavior of the effective propagator is that indicated in Fig. 

6-1a, i.e., the "asymptotic region" where the propagator is damped has been reached 

'by the time only one or so phase oscillation has been completed, as long as the prob

lem belongs to the quantum regime (small quantum numbers). To illustrate this we 

examine the 11-+0 limit of the effective propagator when the quantum number of the 

state is held fixed, noting that in that limit the cut-off momentum P max also vanishes. 

[This is so because the phase space volume Ax IIp occupied by a quantum state is 

(for one degree oT freedom) proportional to Planck's constant. (Here Ax and IIp can 

be defined as the distance between classical turning points in position and in momen

tum space, respectively.) Typically (e.g., for a harmonic potential) Ax-...ffi and 

IIp-Vit. which implies that Pmax-~] It then follows that for time increment smaller 

than the period corresponding to the shortest time scale of the problem, the change in 

the action through the entire "classically accessible region" of Eq. (6.lOa) (beyond 

which the effective propagator is damped) is only of order 1i. 

We thus anticipate the effective propagator of Eq. (6.7) to be most useful in 

situations where quantum effects are large. Such cases are intimately connected with 

the existence of coalescing or complex stationary phase points of the integrand and 

tend to render stationary phase based approximations inaccurate. In the opposite 

limit, where classical mechanics plays the principal role in detennining the dynamics 

(e.g., with highly excited states of with very harmonic-like potentials), semiclassical 
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. approximations are already quite accurate; in such cases calculation of quantum 

corrections using stationary phase Monte Carlo methods should be an easier task than 

attempting to obtain the full quantum solution directly according to the method 

described in this Section, which is not biased toward sampling near classical paths. 

Finally. we point out that the analytic integration of Eq. (6.6) can be performed 

as easily with the propagator of Eq. (6.4) including terms up to order t 3• This results 

in more accurate expressions, and also brings derivatives of the potential in the argu

ments of Eq. (6.8). The smooth part of the resulting propagator can then be used for 

evaluation of a path integral using Metropolis sampling techniques. 

3. Numerical applications 

In this Section we present several numerical calculations that illustrate the 

features of the effective propagator discussed in Section 2 and its usefulness for 

evaluating path integrals by Monte Carlo methods. 

The most important propeity of the effective propagator is that it is localized 

and relatively smooth. To demonstrate this we first use it to propagate a wavefunc

tion according to the matrix multiplication scheme.[6.2] Specifically, a vector contain

ing the values of the wavefunction at selected grid points is generated at each time 

step; this vector is then multiplied by the propagator matrix, to yield the wavefunc

tion vector at the next time increment. This is equivalent to doing a path integral but 

has the advantage of being free of statistical error, thus permitting unambiguous 

assessment of the accuracy of the method. 

For the first application, a Gaussian wavepacket is propagated in a one dimen

sional symmetric double well potential of the form 

(6.12) 

with the parameters chosen such that the mass is that of a hydrogen atom and the 

barrier height is approximately 4 kcallmol. The initial Gaussian wavepacket is 
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centered at one minimum of the double well and has a width equal to that of the 

ground state of the local hannonic approximation to the potential. The duration of 

the tunneling process corresponds to many vibrational periods. The wavefunction 

was propagated for a full tunneling period using the effective propagator of Section 2 

with the· time step equal to about 1/40 of the hannonic vibrational period and the 

results were compared to those of numerically exact calculations performed by stan

dard basis set methods. (Such short time step was necessary in order to obtain results 

of the accuracy mentioned below for time as long as a full tunneling period.) A grid 

of only 25 points was used to span the x coordinate. Had we used the standard coor

dinate propagator instead of the· effective propagator of Section 2, hundreds of· points 

would have been necessary to construct an adequate propagation matrix. The coordi

nate matrix element of the propagator that was used in the calculation with x' =0 is 

shown in Fig. 6-1a. Figure 6-2 shows the survival probability (the time autocorrela

tion function squared) as a function of time. The agreement of the results obtained 

by using the effective propagator scheme with the exact ones is seen to be excellent 

at all times. In fact, the results converged to 3 decimal figures, and arbitrary preci

sion can be achieved by adjusting the cut-off value of the momentum range used in 

the calculation. 

The second example involves a two dimensional model that describes the 

dynamics of energy transfer between the CH stretch and the CCH in-plane wag in 

benzene. For quantum numbers v=4-8, where broad spectra are observed experimen

tally, the process takes place via a Fermi resonance type interaction [6.10] and the 

local mode picture is appropriate. OUf model potential has the form 

v (s .Q) = D (l-e -as)2 + ~ 11lQ Cll6e -cs Q 2. (6.13) 

Here s represents the CH stretch coordinate and Q the CCH in-plane wag, with the 

parameters chosen to fit those of Ref. 6.10. A contour plot of the potential is shown 

in Fig. 6-3. 
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The survival probability, P(t)=I<,¥(0)le-iH'~I'I'(O»12, for a Gaussian which 

starts out as an eigenstate of the local harmonic approximation to the double 

well potential [Eq. (6.12)] about one minimum. The points show results 

obtained by propagating the wavefunction according to the matrix multipli

cation scheme, with time step equal to that used in Fig. 6-1. Exact results, 

obtained by a basis set calculation, are indicated by the solid line for com

parison. 
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In order to test the ability of the present method to accurately describe the 

dynamics of energy flow, we propagate an initial state which is an eigenstate of the 

uncoupled (c=O) Hamiltonian with 4 quanta in the CH oscillator. Fig. 6-4 shows the 

survival probability as a function of time and compares with exact results obtained by 

a basis set calculation. 

Finally, we present a path integral calculation of the survival probability for a 

Gaussian wavepacket in a one dimensional Morse potential, 
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Fig. 6-3 

Contour plot of the two dimensional potential that describes the dynamics 

of energy Bow between the CH stretch and the eCH in-plane wag in ben

zene [cf. Eq. (6.13)]. The numbers labeling the curves indicate the height 

of the potential surface in kcaJ/mol. 
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(6.14) 

with D=O.l64 and a=O.9374 in atomic units (see also Ref. 6.5c), using the Monte 

Carlo integration scheme. The parameters are chosen to correspond roughly to the 

vibrational motion of H 2' i.e., the well depth is 4.46 e V and the harmonic frequency 

at the minimum is 3910 cm -I, The initial wavepacket is displaced by -0.1 X from 

the equilibrium position and has width which corresponds to the frequency at the bot

tom of the potential well. The calculation was performed with a time step equal to 

about 1/20 of the vibrational period, with 100000 Monte Carlo points per integration 
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variable. The computational details are as described in Ref. 6.6b, except that in the 

present case a sampling function of the type given by Eq. (6.11) was used and thus 

the normalization integral [6.611] was obtained analytically. Fig. 6-5 shows the sur

vival probability as given by the Monte Carlo calculation with the effective propaga

tor of Section 2 and compares with the exact results. It is seen that accurate results 

with reasonably small statistical error can be obtained, while an extremely simple 

Monte Carlo algorithm was used. 
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Fig. 6-4 

The survival probability for a wavefunction in the potential of Fig. 6-3 [Eq. 

(6.13)]. The initial state is an eigenstate of the uncoupled (c=O) Hamil

tonian, with 4 energy quanta in the CH coordinale. The points show results 

obtained by propagating the wavefunction according 10 the maUix multipli

cation scheme. Exact results, obtained by a basis set calculation, are indi

cated by the solid line fer comparison. 
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The survival probability for a wavefunction in a Morse potential. The ini

tial state is a Gaussian wavepacket which is displaced by -o.lA from the 

equilibrium ~sition and has width equal to that of the eigenstate of the har

monic appro~on at the potential minim!Jl1l. The points show results 

obtained by a Monte Carlo calculation using a time step equal to about 1120 

of the vibrational period with 100000 Monte Carlo points per integration 

variable. The solid line shows exact result. obtained by a basis set calcula

tion. 

4.. Discussion and concluding remarks 
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The analysis of Section 2. along with the numerical calculations of Section 3, 

shows that the effective propagator defined in Section 2 possesses the important pro

perties of localization and smooth behavior which are essential to numerical evalua

tion of a path integral. The most important feature is that the calculation can be 

made as accurate as desired by adjusting the cut-off value of momentum explored by 

the wavefunction of interest. Furthermore. the fact that the sampling function for the 

Monte Carlo calculation has an extremely simple form results in considerable sav

ings. as it is . analytically normalizable (a fact important in real time dynamics), and 
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also eliminates the need for search of stationary phase points of the integrand, which 

is usually a demanding task. We therefore believe that the effective propagator will 

prove usefui for studying the dynamics of multidimensional systems by path integral 

methods. 

Furthermore, we suggest that the effective propagator should also find utility in 

the calculation of correlation functions, 

(6.15) 

where A and B are quantum mechanical operators, and tc =t-i1if3/2, with f3=lIkT. 

[By setting both A and B equal to the flux operator, 

(6.16) 

one obtains the flux correlation function,[6.11] whose time integral yields the rate of a 

reactive process. In Eq. (6.16) S is the reaction coordinate and So its value at the 

dividing surface, Le., the surface through which the flux is measured.] 

To evaluate Eq. (6.15) in a path integral fashion, one must be able to compute 

the complex time propagator. Expressing the latter as 

(6.17) 

allows one to think of the problem in a way similar to Eq. (6.1). Specifically, the 

coordinate matrix element of the Boltzmann operator that appears in Eq. (6.17) 

effectively plays the role of a wavefunction [6.12] and thus defines a momentum cut

off value. Small temperature (large (3) should be easier to deal with, as only low 

energy states are occupied in that case. The calculation should be rather similar to 

the time propagation of wavefunctions treated in this Chapter, but numerical tests are 

necessary i~ order to assess the actual feasibility and usefulness of the method for 

studying non-equilibrium properties of complex systems. 

Finally we wish to emphasize that the method suggested in this Chapter should 

, ., 
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be more difficult to implement for studying long time dynamics, as is true of all path 

integral methods. [By "long time" we mean time much longer than the shortest time 

scale that appears in the problem, Le., time for which many (e.g., hundreds of) time 

slices will be required to yield convergent results.] Apart from reasons pertaining to 

the dimensionality of the integral itself, which increases with the time, additional 

problems often arise. These are usually associated with the existence of multiple 

classical paths that connect the given endpoints. Stationary phase based methods 

must explicitly search for these classical paths, and this is a non-trivial task. Use of 

the effective non-oscillatory propagator sche~e excludes paths of large momentum 

steps but samples all paths of momentum smaller than the cut-off value. While the , 

method does so in a very efficient way, i.e., by circumventing the problem of highly 

oscillatory behavior that would arise if the standard propagator were used, it is still 

expected that the statistical error will grow with time, since larger fluctuations from 

the straight line path will then be included. The staging algorithm [6.13] is ideally 

suited for dealing with such problems, and we believe that it. will help to extend the 

range of applicability of the effective propagator technique described in this Chapter 

to problems requiring much longer time propagation. 
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Appendix 

Here we describe a simple recursive procedure for obtaining analytically the 

short time evolution of a wavefunction in a Hamiltonian of the form 

2 
H = ~ + V(x). 

The procedure is similar to the exponential power series expansion of the propagator 

presented in Ref. 6.14. We assume that the propagated wavefunction can be written 

as a single exponential, i.e., 

'¥(X,t) == e,W(x,t)nl 

and expand the exponent in a power series in time: 

W (X,t) = 1: W II (x)t" . 
11=0 

(6.18a) 

(6.18b) 

[The above assumption is not always valid, e.g., Eq. (6.18) cannot describe the ~volu

tion of a wavepacket near a turning point, where the resulting wavefunction is com

posed of an indident plus a reflected wave.] Substituting Eq. (6.18) into the time 

dependent SchrOdinger equation and equating like powers of t yields the following 

recursion relations which determine the expansion coefficients WII (x): 

(6. 19a) 

1 in 2 1 II 
Wn+l = --1 [2m V WII - 2m 1: VWk ·VWn- k ], n~1 

n+ k=O 
(6.19b) 

where W 0 IS given by the logarithm of the initial wavefunction: 

W 0 = -i 1Iln'¥(0). (6.19c) 

Application to the time evolution of a plane wave (see Section 2) is straightforward. 
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VII. Improved Short Time Propagators 

1. Introduction 

A very important application of the path integral fonnulation of quantum 

mechanics [7.1] is that it enables the actual computation of equilibrium or dynamical 

properties of many body quantum systems. In the path integral fonnalism the prob-

lem of calculating quantum mechanical observables is transfonned into an exercise in 

multidimensional . integration. For this reason, an enonnous amount of effort has 

recently been devoted to the development and application of Monte Carlo path 

integration techniques. However,the utility of Monte Carlo path integration 

approaches relies on the convergence characteristics of the approximations involved. 

Numerical evaluation of a path integral requires that a discretized representation 

be used. One "slices" the total time t into N segments, each with time increment 

At = tIN: 

-illtlta J J N -ill !:tJ Ita <.xN Ie Ixo> = dxN - 1 •.. dx 1 IT <.xk Ie IXk_l>' (7.1) 
1=1 

and uses some short time approximation for each factor in the integrand of the above 

equation. The most popular approximation to the short time propagator for a Carte

sian Hamiltonian of the form 

~2 

fI = ~ + V(x) == f + V, (7.2) 

which results from use of the Trotter product fonnula,[7.2-7.4] is 

(7.3) 

Eq. (7.3), substituted in Eq. (7.1), has been extensively used for numerical evaluation 
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of path integrals. Another choice that has been used [7.1] corresponds to replacing the 

average potential by the potential at the average position, 

(7.4) 

in Eq. (7.3). There are a number of other, more sophisticated (and thus more 

difficult to apply) short time approximations that have also been suggested.l7.5-7.9] 

In this Chapter we point out that even though Eq. (7.3), (7.4) and other previ

ously suggested short time propagators all give the correct N ~ limit in Eq. (7.1), 

none of them are actually correct through first order in Ilt for finite N. We consider 

the exponent in the short time propagator as a power series in llt, and derive the 

correct coefficients of these various orders. Neither Eq. (7.3), (7.4), nor any of the 

other more sophisticated approximations (that we are aware of) have even the first 

order term cot:rect. The pre-exponential factor is also modified in our result. [The 

reason that Eq. (7.3), (7.4) and others give the correct N ~ limit is because the first 

term in the exponent, the kinetic energy term, effectively restrict~ (Xk-Xk-I) in the 

integration in Eq. (7.1) to be of order lltll.!. In our treatment, though, we consider Xk 

and xk-I to be independent variables.] 

Apart from this formal improvement, though, the practically significant feature is 

that our short time approximation converges to the correct result more rapidly with 

increasing N in Eq. (7.1), while it is still simple and thus directly amenable to Monte 

Carlo integration methodology. Section 2 uses the semiclassical expression to derive 

a short time propagator up to order &4. The result of this method is actually the 

correct quantum mechanical result through order &2. In Section 3 we generate a 

power series expansion for the exponent of the propagator and obtain fully quantum 

expressions for the various terms. Corrections to the semiclassical result which are 

of quantum mechanical nature appear in the cubic. and in higher order terms. Succes

sive terms in the series can be calculated recursively to any order. This way, short to 
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intermediate (real or imaginary) time dynamics can be obtained analytically for any 

number of degrees of freedom. Analytic and numerical applications are given in 

Section 4, and Hamiltonians with vector potentials are treated in Section 5. The 

derivations in this Chapter will be presented for the real time propagator, e-iHtl1l• All 

results are readily generalizable to complex time (for example, the corresponding 
., 

expression for the Boltzmann operator is obtained by setting it /1i=(3). 

2. Semiclassical first and third order short time propagators 

We will consider first a system of one degree of freedom, with. a Cartesian 

Hamiltonian o~ the form shown in Eq. (7.2). The coordinate matrix element of the 

propagator (time dependent Green's function), <x le-iHtl1l lxo>, can be viewed as a 

wavefunction G (x;t) which satisfies the time dependent SchrOdinger equation and the -: 

initial condition G (x ;O)ocB(x-xo). The semiclassical expression for the propagator is 

then obtained by time evolving the initial wavefunction B(x -x 0) according to time 

dependent WKB theory. Thus the initial state is considered as an ensemble of classi

cal particles which are all located at Xo at t=O but whose momenta have - according 

to the uncertainty principle - all values from - to 00. These particles are propagated 

for time t according to the laws of classical dynamics. If S (x ,x o;t) is the action 

along the classical trajectory x «() of such a particle from Xo to x in time t , i.e., 

S(x,x~ t) = f L(x«(), i«(); () d( = f [~ mi«()2_V(x(t'»] dt', (7.5) 
o 0 . 

then the semiclassical expression for the propagator is [7.2) 

(7.6) 

The quantity i)2S (oxciJx. which appears in the pre-exponential factor, is called the 

Van Vleck determinant.[7.l1] The final momentum distribution of the particles is given 

by the x -derivative of the action:[7.l0] 
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(7.7a) 

The VanVleck detenninant can then be interpreted as· the derivative of the final 

momentum with respect to the initial coordinate point: 

(7.7b) 

The action S (x ,x o;t) and the corresponding momentum distribution p (x ,x o;t) 

may actually be multivalued functions of x. In that case the semiclassical expression 

for the propagator is modified by summing over, all branches b of the momentum 

field p (x,x o;t): [7.23] 

In the above formula J.l.b is the Maslov index;[7.12] this is an integer which increments 

by 1 at caustics, Le., at points where the Van Vleck determinant (J2S (i)xo(Jx=oo. The 

momentum distribution p (x ,xo;t) is shown in Fig. 7-1 for two different cases: a har-

monic potential, V(x)=.lmro2x 2, and a quartic potential, V(x)ocx4. In the former 
2 . 

case, p (x ,xo;t) can be shown to remain a linear function of x at all times, and there

fore has only one branch for all times t*lt/ro, while at times tn=n 1C/ro (caustics), the 

momentum distribution becomes ,a vertical line. This is a consequence of the fact 

that the frequency of the classical motion is in the case of a harmonic potential 

independent of the energy. In the case of the quartic potential this is no longer true. 

Fig. 7-2 shows some classical trajectories for these two potentials. The period of the 

classical motion decreases with the energy in the case of a quartic potential. As a 

result. a classical particle can get from x 0 to x in time t in an infinite number of 

ways - by performing 0,1,2, ... ,- reflections at the potential walls - for any (however 

small) t[7.2]. The corresponding action has an infinity of branches, as can be seen in 

Fig. 7-1. This behavior is typical of potentials steeper than x 2• 
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Time evolution of the momentum distribution p ex "xo: I), plotted as a function of x. 

in two one dimensional potentials. Initially (1=0) all particles are localized at X=Xo 

with any possible value of momentum. Dashed line: momentum distribution at t=O. 

Solid line: momentum distribution after a short time I. (a) Harmonic potential, 

V= ~ morx2• 1be momentum distribution remains linear at all times. (b) Quartic 

potential, Vocx". The momentum distribution develops an infinity of branches for 

any 1 >0: only pan of this complicated evolution is shown, while in reality the curve 

continues 10 wrap around itself f<r evel'. 
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Fortunately, we only need to consider one tenn in Eq. (7.8) - that of smallest 

action - to obtain the short time propagator. This is so because the action behaves as 

t-l for the lowest energy trajectory (the "direct" trajectory, i.e., the one with the 

smallest number of bounces) and as t-n , n>l, for all other trajectories; tenns of the 

fonn exp(it-n /1i) oscillate very fast (or are exponentially small if the time is ima

ginary) for n>1 (compared to the n=1 tenn) and do not contribute in the limit t~O. 

Our plan is to express the classical action S (x ,x 0; t) as a power series in t and 

then use Eq. (7.6) to obtain the short time propagator. Because of time reversal sym-

metry, i.e., 

the action (which is a real quantity) contains no even powers in t. (This is also true 

for the matrix elements of the Boltzmann operator, as follows by analytic continua

. tion of the real time expressions.) 

To find the action through first order in t, we begin by expanding x «() and 

V(x«(» in a Taylor series in (: 

00 (n 
x«() = 1: x/,n J_, ' 

,,=0 n. 
(7.9) 

V(x«(» = 1: [d"V(X«(»] ~ 
,,=0 d(n (=0 n! 

(7.10) 

where 

(7.11) 

. x-xo 
and x(t)=x. For the lowest energy trajectory, the leading tenn in io=xJ1J IS -- • 

t 

v' 
Using this and the equation of motion xo.= -~, we see that 

m 

(7.12) 
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where 

VJ"J = [dIlV(X')] . 
dx'" Z=XO 

(7.13) 

Solving Eq. (7.9) with (=t for i 0 gives 

i - _x-_x_o + _, ~ V fl+11_(x_-_x_o)_" 
0- t m 11-:0 0 (n+2)!' 

(7.14) 

The integral of Eq. (7.5) is straightforward to evaluate through order t. It is 

important to emphasize that all terms of the form 

in d"V(x«(»/d(1I contribute to tV(X«(»d( through first order. It is then easy to 
o 

show that 

f - (XX)" 
V(x«(»d( =t l:VJ"J - 0 + o (t3). 

o ,,=0 (n+l)! 

Recognizing the sum in Eq. (7.24b) as _1_( V(x')dx', we get the result 
x-xo %0 . 

f V (x «( »dt = _t -r V (x')dx' + 0 (t 3). 
o x-xo %0 

This can also be written in the form 

f V(x«(»d( = f V(Xo+Lx)d(, 
o 0 t 

(7.15) 

(7.16) 

(7.17) 

i.e., as the integral 'of the potential along a constant velocity (straight line) trajectory. 

To find the integral of the kinetic energy through order t, we first point out that 

(7.18) 

Using Eq. (7.14), we obtain 
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(7.19) 

Thus, our final result for the action is 

(7.20) 

It is instructive and useful to carry out the derivation in a different way. The 

derivation that follows has the extra advantage that it is easy to generalize to higher 

order terms in t. We thus proceed to calculate the action through third order in ti!Ile. 

The action can be expressed (for the one-dimensional case) as [7.10] 

S(x .xo; t) = ~(E) - Et, 

~(E) = r .J2m[E-V(x')]dx' 
.%0 

where the energy E is determined implicitly by the equation 

~'(E) = t. 

(7.21a) 

(7.21b) ""' 

(7.22) 

Expanding ~ in a Taylor series in V (x') gives the following equations which 

correspond to Eqs. (7.21) and (7.22): 

1 

~(E) = .J2m i( ~h)(-l)nE 2 n r V(x,)ndx', (7.23) 
n=O %0 

1 

S (x .x 0; t) = .J2m i ( ,:n)( ~ +-n )(_l)n E "2-
n r V (x,)n dx' , 

n=O ~ 

(7.24a) 

{E = .J2m 1: ( ,:n)( '!'-n )(-I)n E-n r V (x' )n dx'. 
t n=O 2 %0 

(7.24b) 

Combining Equations (7.24a) and (7.24b) gives 

x r V (x,)n dx' r V (x')n' dx'. (7.25) 
%0 %0 
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Solving Eq. (7.24b) through 0(t2) by successive iteration and substituting into Eq. 

(7.25) gives the following result for the action through third order in t[7.13] 

(7.26a) 

where 

ax = x-xo (7.26b) 

and 

(7.26c) 

We note that the averages of the potential (and its square) in Eq. (7.26c) can also be 

written as 

(7.27a) 

which emphasizes that they are time averages over the straight line, constant velocity 

trajectory from x 0 to x; in dimensionless fonn this becomes 

1 
<Vn> = I V«l~)xo-!{x)nd~. 

o 
(7.27b) 

Consider now the first order propagator. i.e., Eq. (7.6) with S given by Eq. 

(7.20) or by the first two tenns of Eq. (7.26a), 

S(x,xo; t) = .!!!..ax2 - t<V>. 
2t 

It is not hard to show that the Van Vleck detenninant is given by 

integration by parts (twice) allows the second tenn also to be written as 

(7.28) 

(7.29a) 

(7.29b) 
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It is also easy to see how this first order propagator is related to other simple approx

imations for the short time propagator. Eq. (7.3), for example, corresponds to the 

two-point approximation (the trapezoid rule) for the potential energy integral, 

1 
<v> ~ 2[V(xo)+V(x)], 

and Eq. (7.4) to the one-point approximation to the integral, 

X+Xo 
<V>~ V(--). 

2 

(7.30a) 

(7.30b) 

Not surprisingly, therefore, Eq. (7.30a) has been seen in practice [7.14.7.9] to' work 

much better than Eq. (7.30b). As will be seen, though, Eq. (7.28), itself is even 

better. This comparison also makes it clear that both of these approximations 

approach the correct first order ·propagator as Ax-+O. 

Finally, we note that the multidimensional version of Eq. (7.28}-(7.29) is of the 

same form. I.e., the action is the time integral over a straight line trajectory, 

m 1 
S(x,Xo; t) = -2 1~12 - t f V«l-{)xo-H;x)d~. 

t 0 
(7.31a) 

where 

and the VanVleck determinant is 

(7.31b) 

The first order propagator for an F-dimensional Cartesian Hamiltonian is then 

(7.31c) 

with S given by Eq. (7.31a). 
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3. Exponential power series for the quantum propagator 

In this Section we expand the exponent of the short time propagator in a power 

series in time and obtain recursion relations for successive terms. The treatment we 

follow is strictly quantum mechanical, i.e., we make no assumption about the magni-

tude of 11 relative to the other parameters of the problem. 

Throughout this Section we consider simple (but multidimensional) Canesian 

Hamiltonian operators of the form 

2 
H = !n + V(i), ~7.32) 

where i, j) = {Xi ~i ' Iii == ~ a a } for i = 1 , ..• ,F. The generalization of· this p~~edure 
, !Xi . . 

to Hamiltonians with vector potentials (e.g., electromagnetic fields) is given in Sec

tion 5. 

We wish to detennine an analytic approximation for the coordinate matrix ele

ment of the single step propagator 

(7.33) 

The approximation must be correct in the limit t -+0, but for the sake of efficiency in 

a path integral one would like it to be accurate for as long a time as possible. 

In the limit t ~O one knows the limiting form of the propagator to be 

lim <xle-iH''''IXo> = [ ~ ]
F12

exp[ im IX-XoI2], 
' .... 0 2m1it 21it 

(7.34) 

so the ansatz we choose is 

(7.35a) 

where W (x,t) is expanded as a power series in t as [7.15] 

(7.35b) 

• 
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(W also depends on the initial condition Xo, but to keep the notation simple we do 

not indicate this explicitly.) In light of Eq. (7.34), we anticipate the fonn for the first 

two tenns in the expansion (7 .35b) to be 

(7.36a) 

(7.36b) 

so that Eqs. (7.35) and (7.36) may also be combined to read 

where the first factor on the right hand side is the free particle propagator, Eq. (7.34) 

(Le., H 0 = p2/2m). 

To detennine the variou~ tenns (WII(x)} in the expansion (7.35b) we use the 

fact that the propagator satisfies the time-dependent SchrOdinger equation 

(7.38) 

F a2 
where V2 = 1:--

2
. Substituting Eq. (7.35) into (7.38) and equating like powers of 

;=1 ax; 

t leads in a straightforward way to the following equations for the functions 

(7.39) 

for n=O,1,2, ... (W -1=0). For n=O and 1 these equations are, respectively, 

1 
W o(x) = 2m IVW o(x) 12 (7.40a)' 

. F 1 in 2 . 
0= In- + -VW o(x)·VW l(x) - -v W o(x), 

2 m 2m 
(7.40b) 
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and one can easily verify that the previously anticipated solutions for W o(x) and 

W l(x), namely Eq. (7.36), do indeed satisfy Eq. (7.40) (noting the fact that 

V21x-Xo12 = 2F). Using these solutions [Eq. (7.36)] for Wo(x) and W l(x), Eq. (7.39) 

then gives the following equations for W 2(x) and for all higher order tenns: 

(x-xo)·VW 2(X) + W 2(x) = -v (x) (7.41a) 

1 n-2 
(x-xo)·VWn(x) + (n-l)Wn(x) = - - L VWn, (x)·VWn-n' (x) 

. 2m n'=2 

(7.41b) 

for n=3,4, .... 

Note that Equations (7.41) are all linear inhomogeneous first order differential 

equations of the form 

(x-"o)· Vy (x) + (n -1)y (x) = a (x), (7.42) 

where the right hand side a (x) is a known inhomogeneity. One can verify by direct 

substitution that the solution to Eq. (7.42) is 

1 
y (x) = I d ~ ~n-2a (Xo+(X-Xo)~). 

o 

To show this. note first that 

so that 

But 

(7.43) 

(7.44) 
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so that Eq. (7.45) becomes 

Integration by parts on the right· hand side of (7.47) gives 

~n-la(Xo+(x-xo)~)IJ - t d~ (n-1)~n-2a(Xo+(x-xo)~) 
o 

1 
= a (x) - (n -1) J d ~ ~n-2a (Xo+(x-xo)~) 

o 

= a (x) - (n-1)y(x), 
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(7.46) 

(7.47) 

whereby Eq. (7.47) becomes Eq. (7.42), thus verifying that Eq. (7.43) is indeed the 

solution . 

. Applying the results of the previous paragraph to Eq. (7.41a) gives the solution 

for W2(x) as 

W 2(x) = - t d ~ V (Xo+(x-xo)~), 
o 

(7.48) 

and application to Eq. (7 .41b) gives an expression for W n (x) in terms of lower order 

terms, 

(7.49) 

for n =3,4,.... All higher order terms W 3, W 4,,,, can thus be determined recursively 

from Eq. (7.49).[7.15.7.24] 

For example, the explicit solution for W 3(x) is 

(7.50) 
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with w 2(X) given by (7.48). Since 

Eq. (7.50) becomes 

Changing integration variables appropriately allows one of these integrations to be 

performed, giving finally 

in II 2 W 3(X) = - 2m d ~ ~(1~) v v (x,) 1x'=Xo+(X-Xo)l;· 
o 

(7.51) 

The next term, W 4(x), is then given from Eq. (7.49) as 

Using the previously obtained solutions for W 2 and W 3 and proceeding in a manner 

similar to the above paragraph, one obtains the following result for W 4: 

(7.53) 

with x'=Xo+(x-xo)~ and x"=xo+(x-xo)~', and where 

It is clear that one can continue using Eq. (7.49) to construct higher order terms, 

though the algebra becomes tedious. If the potential is sufficiently simple (e.g .• a 

polynomial) that the various integrals are doable analytically, then computer algebra 

• 



• 
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manipulators (e.g., MACSYMA or Mathematica) can be used to do this very 

efficiently. This is what has been done, in fact, for some of the examples discussed 

in Section 4 to obtain terms up to WI o. 

It is also possible, of course, to attempt to extend the region of usefulness of the 

power series expansion for W (x,t) by converting it into a Pade [13] approximant, i.e., 

L+M L M 
~ t n Wn (X) ~ ~tnPn(x)/[1+ ~tnqn(X)]. (7.54) 

n=O n=O n=l 

There is· a well established procedure for determining the L+M+1 coefficients 

{Pn(X)}, {qn(x)} from the L+M+1 coefficients {Wn(x)}, which is also amenable to 

computer algebraic manipulation. The results discussed in Section 4 do indeed show 

that the Pade procedure extends the accuracy of the above propagator to longer times. 

Before concluding this Section we note that for the case of one dimension (F=1) 

the above integrals can be simplified by integration by parts. Thus Eqs. (7.48), (7.51) 

and (7.53) can be written in this case as 

W2(x) = - ~( dx'V(x'), 
Xo 

(7.55a) 

ih 2· 
W3(x) = . 2 [V (xo)+V(x)--( dx'V(x')], 

2m Ax Ax Xo 

(7.55b) 

and 

3til [ 2 ( Ax ~ - 2 4 V (xo)+V (x) - Ax V (x')dx' - 7[V (x )-V (xo)] , 
2m Ax Xo 

(7.55c) 

where Ax =x -x 0- We note that Eq. (7.55a) for W 2(x) is the same exponent obtained 

in Section 2 using semiclassical arguments and also that expansion of the exponential 
-

factor involving W 3(x) of Eq. (7.55b) through lowest order in t gives the correspond-

ing Van Vleck determinant. Funhennore, the first term of Eq. (7.55c) is the same 
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third order tenn obtained before semicIassically. In the present fully quantum treat

ment, though, we obtain a "quantum correction" to this tennp·15] the second tenn of 

Eq. (7.55c) (which is proportional to til). 

Finally, it is illuminating to see the limiting fonn taken by the various tenns in 

Eq. (7.55) as x ~x o. It is not hard to show that 

lim W 2(x) = -V (x 0) (7.56a) 
x~xo 

lim W3(x) = -~V"'(xo) 
x~xo . 12m 

(7.56b) 

V"(x )2 .2 
lim W 4(X) = 0 -+- rr V"", (x ). 
x~xo 24m 240m2 0 

(7.56c) 

Thus for the case t=-i1i~, the equilibrium density is given by this single step propa-

gator as 

[ ]

¥.z til 2 
<x le-PH Ix> = ~ exp[- .~V(x) - ~V"'(x)] 

21t ~ 12m 

+ til~3 (\I" (x )2_L V"", (x» + 0 (~4)]. . 
24m 10m . 

(7.57) 

If one expands the exponential and keeps only the tenns through order til, then 

one obtains the well-known Wigner-Kirkwood [7.16] correction factor to the classical 

density, 

<x Ie-PH Ix> = [ m ]Ih e-PV(x) [1 _ til~2 V" (x) + til~3 V' (x)2]. (7.58) 
21tn2~ 12m 24m 

4. Applications 

To illustrate the ideas discussed in Sections 2 and 3 we present here some ana

lytic and numerical examples. 

• 
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a) Harmonic potential 

With V(x)= ~ mro2x2, Equations (7.6), (7.28) and (7.29) give the following 

result for the first order propagator: 

~ [2 2] * Un 1 iAl 1 1 1 _. m 0) Ilt -tu --6 moo (x Cf-x;ta+xo) 
<x Ie iHAll1llxo> = 1+ e ZMl 

270Mt 6 
(7.59) 

In contrast, the "trapezoid rule" form of the Trotter product formula (Eq. 7.3) gives 

(7.60) 

One can readily check that Eq. (7.59) is the correct expansion through order Ilt of 

the exact propagator for the harmonic oscillator,[7.1] 

(7.61) 

while Eq. (7.60) is not.[7.17] 

We now use the various short time approximations for the propagator in the 

discretized path integral, Eq. (7.1), to obtain the coordinate matrix element of the 
r 

propagator for time t=N Ilt . By straightforward algebra, it is possible to show that 

use of the Trotter product formula, Eq. (7.60), gives for xo=xN=O: 

_ I N-I[ 2 2 ]-* <ole-iHll1l lo> = 'J ~ n 1 ro t . 
21t11it "-I 4N2 . 2 k 1t ... - SlD-

2N 

(7.62) 

On the other hand, the first order propagator of Eq. (7.59) gives [7.13] 

<Ole-iHll1l lo> = ~ 1+~ ~ [

2 2]NI2 

2701it 6N2 

~7.63) 

and inclusion of the third term in the action, i.e., the semiclassical third order 
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propagator, gives [7.13] 

<Ole-iHtI1l10> = - I m [1+ oilt
2 

I 700
4
t
4 

]N12 
'J 27Ci1it 6N2 360N4 

(7.64) 

Table 7-1 

.<ole4YI lo> for hannonic potential (m=I000, 00=0.(01) 

~ Exact a) 1st order b) 3rd order c) Trotter d) 

1.0 0.36801 0.36791 0.36804 0.36932 

1.5 0.27340 0.27305 0.27353 0.27577 

2.0 0.20948 0.20870 0.20978 0.21299 

2.5 0.16219 0.16083 0.16272 0.16680 

3.0 0.12604 0.12402 0.12684 0.13162 

3.5 0.09809 0.09539 0.09917 0.10445 

4.0 0.07637 0.07304 0.07775 0.08331 

4.5 0.05947 0.05560 0.06114 0.06677 

5.0 0.04631 0.04201 0.04825 0.05379 

5.5 0.03607 0.03146 0.03827 0.04356 

6.0 0.02809 0.02330 0.03053 0.03545 

a) Eq. (7.61) b) Eq. (7.63). N=5 c) Eq. (7.64). N=5 d) Eq. (7.62). N=5 

Table 7-1 compares the results of Equations (7.62), (7.63) and (7.64) to the 

exact result, Eq. (7.61), as a function of the imaginary time t=-i1iJ3 for N=5. A 

similar comparison is given in Table 7-2, where the different approximations are 

presented as a function of the imaginary time 1koJ3 with fixed time step 1icoJ3IN =1. 

Finally, Fig. 7-3 compares the relative error given by Equations (7.62). (7.63), and, 

(7.64) for the case of imaginary time t=-inJ3, as a function of N, the number ofrlme 

"slices". The dimensionless imaginary time is 1kof3=1t. One sees that the results 

• 

•• 
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given by the first order propagator converge to the correct value considerably faster 

than those of the conventional Trotter product, requiring only about half as large a 

value of N to reduce the error to a few percent. The third order propagator gives 

still faster convergence, requiring only about half the value of N as the first order 

result. 

Table 7-2 

<ole-IW 10> for hannonic potential (m=I000, eo=O.OOI) 

1Ico~ N Exact IJ) 1st order b) 3rd order c) Trotter d) 

1.0 1 0.36801 0.36418 0.36841 0.39894 

2.0 2 0.20948 0.20358 0.21144 0.23033 

3.0 3 0.12604 0.11981 0.12853 0.14105 

4.0 4 0.07637 0.07092 0.07871 0.08706 

5.0 5 0.04631 0.04201 0.04825 0.05379 

6.0 6 0.02809 0.02489 0.02959 0.03325 

IJ) Eq. (7.61) b) Eq. (7.63) c) Eq. (7.64) d) Eq. (7.62) 

Finally, it is easy to show that the quantum correction to the third order term of 

the semiclassical expression [the til term of Eq. (7.55c)] vanishes. This is in agree

ment with the well known fact that the WKB approximation is exact in the case of 

the hannonic oscillator. 

b) Double well potential 

We illustrate the use of the power series expansion of Section 3, Eq. (7.35) with 

W,. determined from (7.49), by calculating the off-diagonal coordinate matrix element 

of the Boltzmann operator, 

(7.65) 

for the case of an electron in a one-dimensional symmetric double well potential, 
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Fig. 7·3 

The relative error, (approximale-exact)/exact, made by the three 
propagators discussed in Section 2 for the. 0-0 coordinate matrix 

element of the Boltzmann opezaior with a haimonic potential for 

the value of ~-n. as a function of N [cf. Eqs. (7.62). (7.63), and 

(7.64)]. Open circles: Trotter product formula, Eq. (7.62). Solid 

circles: first order propagaUX', Eq. (7.63). Squares: third order 

propagator, Eq. (7.64). 
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(7.66) 

This quantity is closely related to the tunneling splitting between the two lowest 

eigenstates of the double well.[7.l8] The coefficients are chosen so that the barrier 

height is 4.2 eV and the two minima are located at x± = ±2.66)t [7.15] 

• 

.. 
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Percentage error, l00x(approximate-exact)/exact. in the bmneling matrix element 

[Eq. (7.65)] for an electron in a double well potential [Eq. (7.66)], for the single step 

propagator in pure imaginary time (t=-i~). The barrier height is 4.2 eV and the 

two minima are located at ±2.66 A. The dotted line is the result of the standard 

short time propagator [Eq. (7.3)], and the solid lines the results of the exponential 

power series [Eq. (7.35)] for nmu = 6, 8, and 10. The dashed line is the result of 

the Pa~ approximant. Eq. (7.54), with 1.=5, M=3. In the abscissa, Q)iM is the ima

ginary frequency at the top of the barrier. 
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Fig. 7-4 shows the relative error made by trunca~ng Eq. (7.35) at nmax=6, 8 and 

10 , for a single (imaginary) time step, as a function of the dimensionless quantity 

1Jmim p, where Cl)im is the imaginary frequency at the top of the barrier. Each succes

sive higher order is seen to reduce the error over a larger range of p. Eventually 

[i.e., beyond some Pmax=pmax(n )], of course, the error begins to grow very rapidly; 
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one would then need to include many more terms in the power series to obtain con

vergent results, or the series may not converge at all, if ~ exceeds its radius of con

vergence. A successful way of overcoming this problem is to use rational expansions 

such as Pade approximants.[7.l9] As seen in Fig. 7-4, the [5/3] Pade approximant 

(computed from the n=O, ... ,8 terms of the Taylor series) converges significantly 

better over a much broader range of ~ than the corresponding Taylor expansion. It is 

thus seen that the recursive evaluation of the· propagator according to Eq. (7.49) 

shows promise for calculating short or intermediate (complex) time dynamics analyti

cal/y. It should then be useful in studying the dynamical (or equilibrium statistical 

mechanical) properties of multidimensional systems in a simple and economical way. 

Finally, Fig. 7-4 also shows the error made by using the standard Trotter formula, 

Eq. (7.3). As anticipated, the error increases linearly with ~ in, this case, and very 

soon grows out of the scale of the figure. 

In order to illustrate graphically the scaling with time of the various approxima

tions discussed above, we plot in Fig. 7.5 the absolute error in the same quantity 

made by these approximations as a function of nmim ~ (for small ~) on a logarithmic 

scale. The slope of the line that corresponds to the Trotter propagator is equal to 1, 

while that corresponding to the first order propagator is equal to 3, clearly in agree

ment with the statements made in Sections 2 and 3. 

Next, we apply the various approximations discussed above for the short time 

propagator to the path integra] evaluation of the same quantity according to Eq. (7.1). 

With the standard Trotter product formula, the path integral representation for the 

imaginary time propagator becomes 

(7.67) 

• 

.. 
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The absolute ell'Of in the tunneling matrix element [Eq. (7.65)] for 

an eleclron in a double well potential [Eq. (7.66)], for the single 

step propagator in pure imaginary time (t=-illP). The parameters 

are the same as in Fig. 7-4. Open circles: Trotter formula, Eq. 

(7.3). Solid circles: semiclassical first order propagator, Eq. (7.6), 

with S given by Eq. (7.28). The error is seen to grow linearly with 

P in the first case, whereas it grows as t 3 in the second case. 
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As explained in Chapter V, exactly equivalent to this is Coalson's [7.14] quasi-Fourier 

representation, 

(7.68) 

" where 

k ~ /7t1it 1 N-l sin(7tkk' IN) 
Xj; = Xo + (XN-XO) N + 'J- N 1: at' • ( "12N); 

m t'=1 sm 7C 
(7.69) 
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i.e., Eq. (7.68) is obtained from (7.67) simply by changing integration variables from 

{Xk} to {ak} according to Eq. (7.69). It is useful to carry out the Monte Carlo 

integration in the {ak} variables because the kinetic energy part of the action is diag

onal in them. 

The path integral expression corresponding to Eq. (7.68) that results from using 

the first (or third) order semiclassical or quantum short time propagator of Sections 2 

and 3 is obtained simply by replacing the average potential ~ [V (xk )+V (xk-I)] in Eq. 

(7.68) by the corresponding corrected expressions derived in these Sections and also 

modifying the integrand by the appropriate pre-exponential factor. For the first order 

semiclassical short time propagator, for example, the replacement in Eq. (7.68) is 

(7.70a) 

and the extra factor arising from the Van Vleck determinants is 

Since the Monte Carlo integration over the variables {ak} in Eq. (7.68) - either as it 

stands or with the modifications given by Eq. (7.70) - is an un-normalized Monte 

Carlo average,[7.20J one must use the charging algorithm [7.21J as in Chapter V to cal

culate the integral. 

The calculation is perfonned with fixed 1iroim~/N=1t/4. Shown in Fig. 7-6 are 

results obtained using the expansion of Eq. (7.35) truncated after the n=3 and n=5 

term. Also shown are results obtained from the corresponding (i.e., of the same ," 

order) semiclassical expressions. Although no net quantum term appears in the n=2 

,or 3 terms in the present treatment, the effect of retaining the exponential form 

(rather than expanding it to lowest order to produce the VanVleck determinant of the 

semiclassical expression) is the reduction of the error by roughly a factor of 2. The 
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semiclassical third order propagator is seen to further reduce the error, and the 

corresponding quantum version yields results which are essentially indistinguishable 

from the exact ones within the resolution of the figure. The error made by the 

Trotter formula, Eq. (7.3), is again large compared to that of the power series . 

Fig. '''' 
Percentage error in the path integral evaluation of the off-diagonal coordinate matrix 

element of the Boltzmann operator, Eq. (7.65), for an electron in a double well 

potential. with the short time propagator given by the various approximations dis

cussed in Sections 2 and 3. The parameters are the same as in Fig. 1-4. Triangles: 

Trotter famula. Open circles: semiclassical first order propagator. Open squares: 

semiclassical third order propagator. Solid circles: quantum version of the first order 

propagala" (terms up to W 3 included in the power series). Solid squares: quantum 

version of the third order propagator (power series with terms up to W 5)' 
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c) Reactive flux correlation functions 

One potentially powerful use of path integral methodology is to evaluate reactive 

flux correlation functions, the integral of which gives the thermal [J3=(kTr1] rate 

constant for a chemical reaction, 

k(~) = Qi"l Joo dt C/(t), (7.71) 
o 

where QR is the partition function for reactants. The version of the correlation func

tion given by Miller, Schwanz, and Tromp [7.22] involves the propagator for complex 

time te =1 -i n{3/2. 

(7.72) 

where F is the flux operator, 

(7.73) 

s is the (Cartesian) reaction coordinate, fis its conjugate momentum operator, and 

S =s 0 is the dividing surface that defines reactants and products. Evaluating the trace 

in a coordinate representation gives the following expression for the correlation func

tion: 

(7.74) 

where Re denotes "real pan of', where s =s' =s 0 after differentiation, and where Q 

are the (Canesian) coordinates for the degrees of freedom in addition to the reaction 

coordinate. 

Since it is often the case in applications that one needs only the short time 

behavior of the flux correlation function, we consider in this Section the possibility of 

using the single step propagator developed in Section 3 to evaluate it. Specializing 

I'; 
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to the case of one dimension [and thus no coordinate Q in Eq. (7.74)] and writing the 

coordinate matrix element of the propagator in the form of Section 3, i.e., 

<s'l -iHtcntl > == _1_ ,W(s,s;tc )!1t e s 11. e , 
t "/2 
C 

it is not hard to show that Eq. (7.74) becomes 

(7.75) 

_ 1 -; ImW(o.O;tc )[_ a2W(s,s';tc ) [ aW(s,O;tc )l1 
Ct(t) - 2 e 1i 1m a a ' 2 Re as ,(7.76) 

2m Itc Iss 

with s =s' =0 after differentiation (where the dividing surface So has been chosen as 

so=O). Now expanding the exponent W(s ,s';tc ) in a power series as in Eq. (7.35b) 

gives the final expression 

(7.77a) 

with s=s'=O, and where C}O)(t) is the free particle correlation function [7.22] 

(7.77b) 

If the standard shott time approximation, Eq. (7.3), is used for the propagator, 

then it is easy to show that Eq. (7.77) gives the free particle correlation function mul

tiplied simply by a classical Boltzmann factor, 

(7.78) 

Having the propagator expressed as a power series in time, as it is in the present 

methodology, is especially convenient for Boltzmann correlation functions because 

complex time is as easily dealt with as real (or pure imaginary) time. 
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We demonstrate the analytic calculation of the reactive flux correlation function 

using the single step, complex time propagator of Eq. (7.35) for an Eckart bar

rier,[7.15] 

8 

Vo 
V(x)=-~-

cosh2(ax) 

O~----~---'-----r----~----~--~ 
-1.5 -1 -0.5 0 0.5 1 1.5 

x,A 
Fig. 7·7 

The Eckart potential, Eq. (7.79). 

(7.79) 

The mass is taken to be that of a hydrogen atom, the temperature is T:::630 K 

(~500 hanree-1), and Vo=7.5 kcallmol, a=3.15 X-I are typical of a hydrogen atom 

transfer reaction. A plot of the potential is shown in Fig. 7-7. The Eckart potential 

is simple enough that the necessary integrations involved in Eq. (7.49) can be per

formed analytically. However, it is useful to point out that one actually need not 

carry out all the algebra with the full potential for the flux correlation function. 

Since the right hand side of Eq. (7.77a) is evaluated at s=s'~, one can readily see 

that only a finite number of tenns in the Taylor expansion of the potential contribute 

., 
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to a certain order in te' The calculation is thus greatly simplified by expanding the 

potential as a polynomial. without loss of accuracy for a given order in the complex 

time. Symbolic algebra programs are particularly efficient in dealing with polynomi

als. and complex time is no more difficult to manipulate than purely imaginary (or 

real) time. so that the analytic calculation of the flux, correlation function as described 

above is straightforward and free of numerical errors. The results of this procedure 

are shown and compared to thoSt: obtained by an accurate basis set calculation in Fig. 

7-8. For comparison. the result obtained using the standard short time propagator, 

i.e., Eq. (7.78), is also shown. 
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Fig. 7-8 
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The 8ux correlation function, Eq. [1.72), fm an Eckan barrier [cf. Eq. (7.79)]. The 

mass is that of a hydrogen atom. and the temperature is 630" K. The barrier height 

is 70S kcal/mol and the imaginary frequency of the barrier is 1022 em -1. Solid line: 

exact results. Circles: analytic. single step c81culation by power series expansion [cf. 

Eq. (7.77)], with n~=4. Doaed line: single step evaluation of the flux correlation 

function using the Troucr formula [d. Eq. [1.78)]. 
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5. Hamiltonian with vector potential 

For completeness we show here how the results of Sections 2 and 3 are 

modified if the Hamiltonian includes a vector potential that arises from an elec

tromagnetic fieldP·la,7.2] 

(7.80) 

The same ansatz as Eq. (7.35) is chosen, and the analogous procedure leads here to 

the following equations for the functions {Wn (x)}: 

, e 2 1 12 Hie e + a 2[V(x) + -- A(x) + -V'A] - -A'VW -I' (7.81) 
n, 2me 2 2me me n 

n=O,1,2 •... (W _1=0). If the vector potential is set to zero, then Eq. (7.81) reverts to 

Eq. (7.39). 

For n=O and I. Eq. (7.81) gives 

(7.82a) 

. F I V V in 2 e 0= In- + - WO° WI - -V Wo - -~·VWo. 
2 m 2m me 

(7.82b) 

The solution of (7.82a) for Wo(x) is the same as before, Eq~ (7.36a). and Eq. (7.82b) 

then becomes 

e 
(X-Xo)'VW I = -(x-Xo)·A(x). 

e 
(7.83) 

Utilizing Equations (7.42) and (7.43). the solution to Eq. (7.83) is found to be [7.15] 

= wfO) + !..(dx"A(X') 
e Xo 

(7.84) 
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where the constant W fO) is the field free result of Eq. (7 .36b). 

Utilizing the above results for W 0 and WI' it is not hard to show that for 

n=2,3,4, ... , Eq. (7.81) gives equations identical to the field free case, Eq. (7.41); i.e., 

all tenns involving the vector potential cancel out. The solution of Eq. (7.41a) for 

W 2(x) is thus the same as the field free case, i.e., Eq. (7.48), but the solution for 

W 3(x) given by Eq. (7.49) for n=3, 

(7.85) 

is different from the field free case because here VW I(x)~. From Eq. (7.84), in 

fact, one has 

so that Eq. (7.85) becomes 

e VW I(x) = -A(x), 
c 

(7.86) 

(7.87) 

where W ~O) (x) is the field-free result given by Eq. (7.51). Using the solution for 

W 2(x), one obtains the following explicit result for W 3: 

(7.88) 

with x'=xo+(x-xo)~ and x" = Xo + (x-Xo)~'. 

In summary, therefore, the terms Wo(x) and W 2(x) are the same as the field free 

results of Section 3, but W I(x) and W 3(x), given by Equations (7.84) and (7.88), 

have a contribution involving the vector potential. Eq. (7.84) is particularly interest

ing in clarifying the ambiguity associated with the discretized path integral represen

tation of the propagator in the presence of a vector potential.[7.la.7.2] Namely, it is 

well known that evaluating the vector potential at the midpoint, 

(7.89a) 
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or taking the average of the vector potential, 

(x-xoHA(Xo)+A(x)]/2 (7.89b) 

in the short time propagator gives the correct time evolution of a wavefunction 

through first order in the time, while evaluating A at either one of the two endpoints, 

(x-Xo)'A(x) or (x-xo)·A(xo), (7.90) 

does not satisfy the SchrOdinger equation. It is now clear from Eq. (7.84) why this is 

the case. The midpoint rule or the average potential rule correspond to a correct 

evaluation of the line integral of Eq. (7.84) through first order in ~, while the end

point formula does not. 

6. Concluding remarks 

The short time propagators developed in Sections 2 and 3 are thus seen to con

stitute a significant improvement over the conventional one. The first order propaga

tor requires calculation of the average of the potential over the time increment, while 

the third order propagator requires in addition the variance of the potential. If the 

potential is not too complicated, these quantities can be analytically calculated; use 

of these better propagators should not increase the complexity of a path integral cal

culation in that case, while it will result in much faster convergence, thus permitting 

one to use much larger time increments llt in the path integral. If on the other hand 

the potential is not available'in analytic form, the necessary integrals can still com

puted by quadrature, or the potential_ can be expanded in a Taylor series (see the dis

cussion following the Eckart barrier calculation). Which of these schemes is advanta

geous to adopt will in general depend on the characteristics of the particular problem. 

The primary purpose we envision for this single step propagator is thus as an 

improved short time propagator for use in a path integral, Eq. (7.1). If time evolu

tion is needed for only relatively short times, however - as is often the case for the 

)-
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reactive flux correlation function of Section 4c - then it may be possible to use it for 

. the entire time increment. The example treated in Section 4c is very encouraging in 

this regard. Having the propagator as a power series in time is especially convenient 

for Boltzmann correlation functions because one is able to deal with complex time 

(t-i1i~/2) in a very simple way. 

By reducing the number of "time slices" that are required to evaluate a path 

integral, Eq. (7.1), we believe that the single step propagator described in this 

Chapter will significantly increase the feasibility of path integral calculations. 
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