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SOME NEW THEORETICAL METHODS FOR TREATING REACTION DYNAMICS IN 
POLYATOMIC MOLECULAR SYSTEMS 

WILLIAM H. MILLER, YAN-TYNG CHANG, and NANCY MAKRI 
Department of Chemistry, University of California, and 
Materials and Chemical Sciences Division, Lawrence Berkeley 
Laboratory, Berkeley, California 94720 

ABSTRACT. Many useful descriptions of dynamical processes in 
polyatomic molecular systems are based on a reaction path approach. 
1. e., the potential energy surface is approximated as a 
multidimensional harmonic valley about a (curved) line in the 3N-6 
dimensional space of the N atom system along which the motion is 
thought to be most localized. These lectures briefly review this 
reaction path methodology, but then focus mainly on some more recent 
approaches that go beyond the reaction path point of view. In 
particular, it is shown how empirical potential functions can be 
combined with selected ab initio calculations within an empirical 
valence bond model in order to construct a global potential energy 
surface for polyatomic reactIons. Two other topIcs that are 
discussed are a new way of handlIng zero point energy ina classical 
trajectory sImulatIon ?f polyatomic dynamics and a new model for 
including tunnelIng effects in a trajectory Simulation. 

1 • INTRODUCTION 

One of the fundamental goals of theoretical chemIstry is the 
quantItatIve descrIption of chemical reactions from first principles 
("ab initio"). One usually envisions accomplishing this in two 
steps, (1) determination of the (Born-Oppenheimer) potential energy 
surface by state-of-the-art ab initio quantum chemistry calculations, 
and (2) solution of the dynamical equations for nuclear motion on 
this potential surface. For the simplest chemical reactions A+BC ~ 

AB+C, where A, B, and C are all single atoms, this is rapidly 
becoming a reality: quantum chemistry calculations1 continue to 
improve in accuracy, and there have recently been quite dramatic 
advances2- 4 in quantum mechanical reactive scattering theory that 
provides the rigorous solution to the nuclear dynamics. The goal of 
the work described in this paper,·however, is to extend these 
capabilitIes to polyatomic molecular systems. 

The first part of the task, i.e., determination of the potential 
energy surface, at first seems almost insurmountable for a polyatomic 



molecular system because of the high dimensionality of the problem: 
for an N atom system the potential (i.e., the Born-Oppenheimer 
electronic energy) depends on 3N-6 independent coordinates. If one 
were to try to map out the potential function !g a straight-forward 
way on a grid of coordinate values, then -103N pOints - i.e., this 
many quantum chemistry calculations of the electronic energy - would 
be required. clearly an impossible task for N greater than 3 or 4. 

One of the ways of dealing with this situation is to introduce 
the idea of a reaction path. 5- 7 The most common choice of reaction 
path is the minimum energy path (MEP). i.e •• the steepest descent 
path (in mass-weighted cartesian coordinates) that descends from the 
saddle point (i.e •• the transition state) of the potential energy 
surface forward to products and backward to reactants. It seems 
intuitively clear "that this path. also called the "intrinsic" 
reaction path. passes through the most important part of the 
potential energy surface for the reaction through this transition 
state. A full-dimensional potential energy surface is obtained by 
computing the force constant matrix along the MEP. so that the model 
is that of a (multidimensional) harmonic valley about the reaction 
path in the many directions orthogonal to it. 

Although the minimum energy path is often the most appropriate 
choice for the reaction path. there are cases for which this is not 
so. A most important example of this is an H-atom transfer 
reaction. For such reactions the minimum energy path has many sharp 
kinks as it passes from the transition state to the reactants and 
products minima; it is thus not a useful path on which to base the 
reaction path model. In these cases it gas been shown that a 
straight line, or diabatic reaction path is more useful. 

For either (or any) type of reaction path it is possible to 
construct a reaction-pith Hamiltonian5a from which the dynamical 
motion can be determined. The system corresponds to a reaction 
coordinate, i.e •• the distance along the reaction path. plus harmonic 
oscillator motion (for the many degrees of freedom) about it. 

A wide variety of dynamical treatments can be carried out using 
the reaction path Hamiltonian (RPH).5 Statistical theories. e.g., 
transition state theory and its generalizations, are very easily 
implemented using the RPH. Inelastic energy transfer among various 
degrees of freedom induced by motion along the reaction path and also 
tunneling through reaction barriers are conveniently treated via the 
RPH. It is even possible to carry out quite rigorous quantum 
mechanical calculations using the RPH. Many applications using these 
approaches have been carried out in recent years. 9•10 .. 

This reaction path methodology has all been extensively reviewed 
in the paper 11 written from lectures presented at a recent NATO 
Advanced Study Institute on "New Theoretical Concepts for 
Understanding Organic Reactions". The reader is thus referred to 
this paper for this part of the present lectures. 

The present paper supplements the previous one11 by describing 
some non-reaction path approaches to treating reaction dynamics in 
polyatomic systems. A reaction path model is good if the dynamics of 
interest is related to motion that deviates not too-rar from the 
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reaction path. Though this may often be true, it is certainly not 
always the case. In some cases, therefore, it will be necessary to 
have a global potential energy surface. 

Section 2 therefore describes a recent approach we have been 
pursuing for doing this, namely an empirical valence bond (EVB) 
model. Warshel,12 in particular, has utilized this idea to construct 
potential energy surfaces for truly complex molecules, e.g., 
proteins. Our interest is in smaller polyatomic systems, but we wish 
a more quantitative potential surface than biological simulations 
typically are concerned with. Section 2 describes how we utilize the 
EVB approach in a more quantitative framework. 

Section 3 then describes some new advances in classical 
trajectory methodology for use in simulations of polyatomic 
dynamics. In particular, a recently developed approach is described 
for handling the zero point energy in a classical trajectory 
simulation of polyatomic dynamics, and a new model for including 
tunneling effects in trajectory simulations is presented. 

2. Global Potential Energy Surface 

To be specific, we consider an isomerization process, e.g., 

+ 
(2.1) 

~O ••• H- 0 ......... 
H-C, ~C-H, 

o -H 0 
(2.2) 

for which the potential surface consists of two local mInIma 
separated by a saddle point (in many dimensional space). The idea of 
the empirical valence bond (EVB) mode1 12 is to express the potential 
surface V(g) as the lowest root of a 2x2 secular equation, i.e., 

V(g) • ~[V,,(g) + V22 (g)] - ~ {[V,,(g) - V22 (g)]2 + 4V'2(g)2}~ • 

(2.3) 

In (2.3), V,,(g) is a potential energy function that accurately 
describes the potential in the vicinity of local minimum 1; it has a 
single local minimum at this geometry. The simplest approximation 
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for V,,(g) would be a harmonic approximation about the 91 (the 
geometry of local minimum 1), or perhaps more accurately, one might 
use an empirical potential function, such as the MM2 mOdel,13 that 
yields an approximate potential energy surface in the vicinity of 
91. V22 (g) is a similar function that describes the potential in the 
region about 92' the geometry of the second stable isomer. 

One thinks of V'1(g) and V22 (g) as each describing the potential 
energy surface for one bonding arrangement (i.e., the left and right 
hand side of Eqs. (2.1) and (2.2», or one valence bond 
configuration; they are sometimes referred to as "diabatic" potential 
functions. V12 (g) is a function which describes the coupling between 
the two configurations. At any geometry for which 

(2.4) 

Eq. (2.3) gives 

(2.5) 

which will be V,,(g) or V2z(9) for 9 near 91 or g2' respectively. 
As noted above, one has several ways of constructing reaso~able 

approximations to the potential functions V" and V22 ' each of which 
corresponds to a single bonding arrangement and thus have only one 
local minimum. The question is how does one choose the coupling 
potential V'2(g) in a simple, yet accurate fashion. Our answer to 
this is to choose it so that Eq. (2.3) exactly reproduces an ab 
initio harmonic approximation about the ab initio transition state 
geometry. The logiC of this prescription is as follows. Empirical 
approaches (e.g., MM2, etc.) do a reasonably good job of estimating 
potential functions for stable molecules (and therefore for V" and 
V22 ), but they are essentially useless for reactive processes. For 
medium sized polyatomic systems accurate ab initio calculations are 
possible for a few selected geometries, even though not at every 
point in the many dimensional space. The idea is thus to use ab 
initio input in precisely the region where empirical potentiallmodels 
are unreliable, i.e., the transition state region. 

To carry out this idea, note that Eq. (2.3) can be re-written to 
express V'2(g) in terms of V1,(g). V22 (g), and V(9): 

(2.6) 

It is only necessary to know V12 (g) accurately near the transition 
state (because in other regions Eqs. (2.4) and (2.5) pertain so that 
V(g) is essentially independent of V12 ), and about the transition 
state geometry 90 one makes the following Taylor's series expansions, 
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(2.7) 

for n=l, 2, ••• , where 

v = Vnn (go) n (2.9a) 

aVnn(g) 
0 = ( ag ) 9 -n 90 

(2.9b) 

a2Vnn (9) 
K = (aga9 ) 9 .. n = q -0 

(2. 9c) 

The potential and force constant matrix at the transition state, Vo 
and ~O' are given by the ab initio calculation, as is the transition 
state geometry So' The values of Vnn(g), and its gradient and force 
constant matrix at the transition state geometry, are evaluated from 
the empirical functions used for it. Substituting Eqs. (2.7)-(2.9) 
into (2.6) yields a quadratic approximation for V12 (g) •. We find it 
useful, furthermore, to exponentiate this expansion, and the result 
one obtains is 

(2. lOa) 

where ~9 = 9-90' and 

(2.10b) 

B = 
Q1 Q2 

(V,-Vo) 
+ (V2-VO) , (2.'Oc) 

-0 0 - -0 0 - ~0-~1 ~0-~2 
C -

-2-2 -1-1 
+ + 

(V,-Vo) 
+ (V2-VO) . • 2 2 (V2-VO) (V 1-VO) 

(2.1 Od) 

Eq. (2.10) thus gives the coupling potential as a 
multidimensional Gaussian function. With Eq. (2.10) for V'2' V(g) of 
Eq. (2.3) has a saddle point at 9=90' with value V(90)=Vo' and 
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with ~O as its force constant matrix; i.e., it reproduces the ab 
initio potential in the vicinity of the ab initio transition state 
geometry. 

It is also clear how one can generalize this procedure to cases 
where V(g) has more than two local minima: One expresses V(g) as the 
lowest root of the NxN secular equation (N = number of 
configurations, i.e., local minima); the diagonal (i.e., diabatic) 
potential functions Vnn(g) are empirical potentials (e.g., MM2) for 
the various local minima (i.e., bonding arrangements) n=1, •.• , N, 
and the off-diagonal elements Vnn,(g) are given by Eq. (2.10) in 
terms of the ab initio transition state parameters (geometry, barrier 
height, force-Constant matrix) for the transition state that connects 
minimum n to minimum n'. 

Figure 1. Contour plot of a 
two dimensional potential 
surface for formic acid 
dimer. The energy spacing is 
0.005 a.u. The transition 
state is located at (0,0) with 
energy set to be 0.0 a.u. The 
energy of the two minima 
(locations of the equilibrium 
state of the two isomers) is 
about -0.036 a.u. The X axis 
is the mass-weighted reaction 
path coordinate which mainly 
involves the motion of the two 
tunneling H atoms. The Y axis 
describes the most strongly 
coupled normal mode with 
character of O=C-O motion. 

Fig. 1 shows a two-dimensional cut of the EVB potential surface 
for reaction (2.2), the double H-atom transfer process in formic acid 
dimer. The normal mode motions for these two degrees of freedom at 
the transition state are depicted in Figure 2: Figure 2a is mostly 
motion of the two H atoms that tunnel (the x-coordinate in Fig. 1), 
and Figure 2b is mostly O=C-O asymmetric stretch and rock (the y
coordinate in Fig 1). This latter mode is the one most strongly 
coupled to the H atom transfer motion. The diabatic potentials 
V11 (g) and V22 (g) in this case are taken simply to be a harmonic 
normal mode approximation about each local minimum, and V12 (g) is 
given by Eq. (2.10) •. This EVB potential reproduces the ab initio 
potential essentially quantitatively over all the relevant region of 
this two-dimensional configuration space. 
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( 0) ( b) 

Figure 2. Normal mode representations of the motion of formic acid 
dimer at the transition state configuration. (a) Motion of the two 
tunneling H atoms. (b) O=C-O motion: filled circles, open circles 
and squares stand for C atomc, 0 atoms, and H atoms, respectively. 

3. INCLUDING QUANTUM EFFECTS IN CLASSICAL TRAJECTORY SIMULATIONS 

With a global potential surface such as described above, one of the 
most powerful approaches available

4
to treat dynamics is that of 

classical trajectory simulations. 1 This is now a widely used 
technique in many areas of. chemistry and biochemistry. There are, 
however, several serious errors made by these classical methods. In 
this Section we describe two especially important shortcomings of 
classical mechanics for polyatomic dynamics and also some recent new 
work for including the appropriate quantum effects in an approximate 
framework. The first problem has to do with the zero point 
vibrational energy and the second with tunneling. 

3.1 Simple Model for Handling Zero Point Energy in a Classical 
Trajectory Simulation 

One of the most frustrating shortcomings in using classical mechanics 
to simulate dynamical processes in polyatomic molecules has to do 
wi th a probte~ 1nvol ving the zero point energy of vi brational degrees 
of freedom. 5 1 To describe the problem, recall first the simpler 
situation of an atom-diatom (gas phase) bimolecular reaction, 

<3.1) 

where it is indicated that the reactant diatom BC is initially in its 
ground vibrational stane. It is well-known that a classical 
trajectory simulation1 of this process works best if initial 
conditions for the trajectory are chosen to have the correct zero 
point vibrational energy ,in the diatom, with the initial phase of the 
vibrational motion selected at random (i.e., averaged over), so
called "quasiclassical" initial conditions. Agreement with (the 
correct) quantum reaction probabilities, or cross sections, would be 
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much worse if the trajectory were begun with no vibrational energy. 
A problem can arise even for this simple process if the reaction is 
endoergic and most of the product is produced in vf=O. It is 
possible classically to obtain reactive trajectories with less than 
the zero point vibrational energy in the product molecule AB, clearly 
an unphysical result since this permits reaction below the quantum 
threshold for the reaction! This problem is usually dealt Withl~ by 
performing the classical simulation always in the exoergic direction 
and then using microscopic reversibility to obtain probabilities or 
cross sections in the reverse direction. 

One thus believes that a classical simulation of a polyatomic 
molecular system will mimic nature (i.e., quantum mechanics) more 
closely if trajectories are begun with (at least) zero point 
vibrational energy in all vibrational degrees of freedom, with the 
phases of the vibrational motion selected at random (i.e., averaged 
over). To Simulate vibrational relaxation of CH loca~ mode overtones 
in benzene,'9,20 for example. it would seem most reasonable to begin 
trajectories with the appropriate vibrational energy in the CH 
stretch and zero point vibrational energy in all the other normal 
modes. 

Since the potential energy function for the polyatomic system is 
in general anharmonic, energy can flow between various degrees of 
freedom; often. in fact, it is this intramolecular vibrational energy 
redistribution (IVR) that one is wishing to simulate. The "zero 
point energy problem,,19,20 mentioned in the first paragraph is that 
the energy in some vibrational modes may fall below the (quantum) 
zero point energy (Y~wk' where wk is the harmonic frequency for mode 
k). This may not at first seem like a serious problem, but even in a 
medium size polyatomic molecule (e.g., benzene) the zero point energy 
is a sizeable amount of energy (52.2 kcal/mole in benzene). It is a 
particularly serious problem if the zero point energy flows out of 
several modes and "pools" into a specific weak bond. For large 
molecules it may even happen that the classical mechanics is chaotic 
at its zero point energy. These are all clearly unphysical effects 
that arise because classical mechanics cannot prevent the energy i:1 
each vibrational mode from dipping below its zero point value. 

In a recent paper 21 ,22 a model has been developed for modifying 
the classical equations of motion in order to remedy thus situation, 
i.e., to prevent the vibrational energy in each mode from at any time 
dipping below its zero point value. The algorithm affects the 
classical trajectory only when the vibrational energy of a mode 
attempts to decrease below its zero point value; otherwise the 
trajectory is the ordinary classical one. It conserves the total 
energy of the polyatomic system, and since it prevents the energy in 
each mode from decreasing below its zero point value, there can be no 
unphysical "energy pooling" of the zero point energy from many modes 
into one bond. The algorithm is actually quite simple: if the energy 
in any mode k, say, decreases below its zero point value at time t, 
then at this time the momentum Pk has its sign changed, and the 
trajectory continues; this is essentially a time reversal for mode k 
(only!). One can think of the model as supplying impulsive "quantum 
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kicks" to a mode whose energy is trying to fall below its zero point 
value, i.e., a kind of "Planck demon" analogous to a Brownian-like 
random force. 

No attempt will be made to present the derivation of this 
approach here, but it is perhaps useful to state it more precisely, 
at least in its simplest version. Thus let ~={xk} and e={Pk}' k=1, 
••• , 3N-6 be the normal coordinates and conjugate momenta of the 
polyatomic system. The Hamiltonian (for zero total angular momentum) 
is thus of the simple Cartesian form 

(3.2) 

and the potential energy function consists of a harmonic part plus an 
anharmonic coupling, 

where 

k 

The algorithm may be summarized as follows: 

1) Start the trajectory in the appro~4iate manner (e.g., 
quasiclassical initial conditions ). 

2) At the end of each time step in thetraj ectory, insert the 
Fortran statement 

( 2 22) 
Pk = Pk * Sign ~ Pk + Y~k xk - ~ MWk ' (3.4) 

for all k. 

3) Keep on computing! 

Eq. (3.4) has no effe~t on the classical trajectory if the energy in 
mode k (Y~k2 + Y~k2xk ) stays above its quantum zero point value 
(Y~wk). If at some time it attempts to dip below this value, though, 
the sign of Pk is changed, and this has the effect of causing the 
energy in mode k to increase and thus remain above the zero pOint 
value. Since the Hamiltonian involves Pk as Pk 2 , this sign change 
does not change the value of H, i.e., total energy. 

The Simple version of the model described above pertains to the 
normal mode vibrational energies. If the dynamics of interest 
involves motion about a relatively well-defined equilibrium geometry, 
then this treatment should be adequate. In the more extreme case of 
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a fragmentation process, e.g., unimolecular decomposition. however, 
it will not be a reasonable description because the physically 
relevant modes of the system change radically (the frequencies of 
.some vibrations even going to zero as they evolve into rotations). A 
more general version2T of the model corresponds to applying 
essentially the same procedure as above to the vibrational energies 
of the instantaneous normal modes. 

To conclude this description of the model, we note that 
imposition of the zero point energy constraint within a harmonic 
approximation should not be a serious limitation. This is because 
the algorithm affects the classical mechanics of a vibrational mode 
only when it is near its zero point level, and most such degrees of 
freedom are reasonably well-described harmonically at this low level 
of excitation. 

Initial apPlications21 ,22 of this approach show that it does 
indeed prevent the vibrational energy of each degree of freedom from 
falling below its zero pOint value. This thus prevents the total 
zero point energy from "pooling" into anyone degree of freedom. 
Indications are that the model does indeed give a better description 
of the dynamics than an unconstrained classical simulation. 

3.2 A Semiclassical Tunneling Model for Use in Classical Trajectory 
Simulation 

Another serious limitation of classical mechanics, which hinders its 
application to many interesting chemical problems, is its inability 
to describe tunneling effects. However, the quantum mechanical 
phenomenon of tunneling is often quite prominent in chemical 
reactions that involve significant motion of light atoms. Typical 
examples include unimolecular dissociation, e.g., 

H2CO ~ H2 + CO , 

and isomerizations such as Eq. (2.1) and (2.2), as well as 
bimolecular reactions that involve H atom transfer, e.g., 

H2 + H + H + H2 ' 

H2 + F ~ H + HF • 

(3.6a) 

(3.6b) 

There do exist "rigorous" semiclassical theories that describe how 
classical trajectories tunnel, e.g., classical S-matrix theOry2~ and 
the "instanton" (periodic orbit in pure imaginary time) mOdel,2 ,25 
but they are difficult to apply routinely to sizeable (e.g., more 
than three atom) molecular systems. There also exist a host of 
simple tunneling corrections to transition state theory26 expressions 
for thermal rate constants; these often work well for this purpose, 
but they are not applicable to more general dynamical phenomena. 

What we seek is a semiclassical model, as generally applicable 
as possible, for including tunneling in a classical trajectory 
simulation of the full molecular dynamics; such a model has recently 
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been pre~ented.27 The model is similar in spirit to the Tully
Preston2~ surface hopping model for electronically non-adiabatic 
processes. In the Tully-Preston model a classical trajectory moving 
on one potential energy surface (i.e., Born-Oppenheimer electronic 
state) has a probability of making "hops", i.e., instantaneous 
transitions, to another potential energy surface at certain times. 
In the present tunneling model 27 the classical trajectory evolving in 
one classically allowed region of space has, at specific times, a 
probability for making an instantaneous (in real time) transition to 
another classically allowed region of space. The model may also be 
viewed as the classic~l version of the semiclassical branching model 
of Waite and Miller,29 but generalized to allow for a more general 
tunneling path. This more general tunne~ong path is very closely 
related to that used by Heller. and Brown in their semiclassical 
treatment of radiationless transitions. 

Again, the reader is referred to the original paper27 for the 
detailed development of the model and its ~pplication to a variety of 
examples, including reactions (2.1) and (2.2), and also to 
unimolecular decomposition. The examples show that the model 
provides an excellent description of tunneling in multidimensional 
systems typical of polyatomic molecules. It is also important to 
emphasize that the model is implementable for truly multidimensional 
systems. Applicability was, in fact, the essential criterion kept in 
mind in constructing the model; there do exist more rigorQ~s 
semiclassical descriptions of multidimensional tunneling,2j-25 but 
they are not easily implemented within a standard classical 
trajectory simulation. 

4. CONCLUDING REMARKS 

This paper has described a variety of approaches for treating 
dynamical processes in polyatomic molecules that go beyond the 
reaction path picture. The first step is devising a tractable 
procedure for obtaining a global potential energy surface, and the 
empirical valenc~ bond model described in Section 2 shows how this 
can be done while still incorporating some ab initio input. Section 
3 then noted two recent advances in classical trajectory simulation 
methodology, namely a new procedure for dealing more realistically 
with the quantum zero point energy of vibrational degrees of freedom, 
and a new quite general semiclassical procedure for including 
tunneling in a trajectory simulation. Both of these developments 
should help extend trajectory methods to a wider class of phenomena 
in the dynamics of polyatomic molecules. 
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