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PHASE FORMATION IN THE PtjInP THIN FILM 
SYSTEM 

D. A. Olson, K. M. Yu, J. Washburn, Materials and Chemical Sciences Division, 
Lawrence Berkeley Laboratory, Berkeley, California 94720 

T. Sands, Bellcore, 331 Newman Springs Rd., Red Bank, New Jersey 07701. 

ABSTRACT 

InP substrates with 40nm metal films of Pt were encapsulated in Si02, and iso­
chronally annealed up to 600 0 C in flowing forming gas. The composition and morphol­
ogy of the phases that formed were studied using x-ray diffraction, Rutherford Back­
scattering, and transmission electron microscopy. 

Rysults show that the Pt/lnP system begins interacting at 300 0 C. TEM analysis 
of the 350 0 C anneal shows unreacted Pt and and additional polycrystalline phases, with 
no observed orientation relationship with the substrate. The Pt layer has been com­
pletely consumed by 400 0 C, with a uniform reacted layer indicated by RBS. At high 
temperatures (between.---500 0 C and 600 0 C), the reaction products are Ptln2 and PtP 2' 
The two phases show a tendency for phase separation, with a higher concentration of 
PtP2 at the InP /reacted layer interface. The phosphide phase also shows a preferred 
orientation relationship with the substrate. 

INTRODUCTION 

The metal/semiconductor interface provides electrical contact with the device. 
These contacts must maintain appropriate electrical characteristics (Ohmic or Schottky) 
throughout the lifetime of the device. The characteristics are generally dependent on 
the phases and the morphology of the metal/semiconductor interface [1-6]. If the metal 
reacts with the substrate, the electrical characteristics of the device may be degraded. 
Reaction with the metal layer can lead to the formation of electrically active defects in 
the substrate, or to the formation of new interfacial phases with undesirable electrical 
properties [1, 2, 3]. If extensive chemical reaction occurs, the definition of the contact 
dimensions will be difficult to maintain, which is critical for integrated semiconductor 
devices. A rough interface results in uneven penetration into the substrate, and an 
unpredictable contact depth [7]. 

In order to obtain the desired electrical properties of a metal/semiconductor con­
tact, an understanding of the metallurgical behavior of the system is essential. If the 
metallurgical behavior of the system is known, then the electrical properties of the sys­
tem can be better controlled. For example, direct deposition of metal-III compounds 
that are stable in contact with the III-V substrate may inhibit undesirable reactions 
with the semiconductor [8, 9]. For other systems, annealing may initiate reactions 
which lead to desirable microstructures [5]. The ideal metal/semiconductor system will 
be stable at both the fabrication and operation temperatures, or will react to give the 
most desirable end products and microstructure [9]. 
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Currently, GaAs is the most widely used binary III-V' compound, and its interac­

tions with various metal contacts have been extensively investigated [6]. InP is not 
common as a binary material, although indium and phosphorous are important com­
ponents of more complex systems. Their interactions with metal contacts have only 
begun to be studied [10]. 

The Pt-InP system is the subject of this investigation. Binary phase diagrams (e.g. 
Pt-In and Pt-P) do not fully describe the nature of possible reaction products in these ~ 

systems. This study will provide information on the interactions of these 111-V elements 
with Pt overlayers. Using this information, extrapolation to ternary and quaternary III- t 
V materials (e.g. GaInP, GaInAs, and GaInAsP) may be possible. 

EXPERIM:ENT 

(100) InP substrates were degreased, etched in H2S04:H202:H20 (5:1:1), rinsed in 
deionized H20, and blown dry in N2. The Pt overlayers were produced by electron­
beam evaporating 40nm of Pt onto the InP substrates. They were encapsulated with 
Si02 prior to annealing to inhibit outgassing of phosphorus. The specimens were heat 
treated in an (95:5) Ar:H2 atmosphere using various annealing schedules, ranging from 
200 0 C to 600 0 C, and from 30 to 60 minutes. 600 0 C was chosen as the upper bound for 
annealing, as decomposition of the compound semiconductor substrate is difficult to con­
trol at higher temperatures. The Si02 caps were removed with a (10:1) distilled 
H20:buffered HF solution. 

The specimens were examined by a combination of X-Ray Diffraction (XRD) using 
a Siemens Kristalloflex Diffractometer (Cu Ka), Rutherford Backscattering Spectrometry 
(RBS) using a 1.95MeV 4He+ beam, and Transmission Electron Microscopy (TEM) using 
Philips 301 and 400 microscopes operating at 100kV. 

RESULTS 

Pt/GaAs 
For comparative purposes, this section summarizes the work of previous investiga­

tions on the Pt/GaAs system. Pt begins reacting with the GaAs substrate at ,-....,250 0 C 
[11], with an intermediate phase distribution of Pt, Pt3Ga, PtAs2, and GaAs [12]. Mter 
annealing at higher temperatures (>400 0 C, 10-20 minutes), the phase distribution is 
PtGa, PtAs2, and GaAs [11-13]. This phase distribution is also reached for lower tem­
perature, long term anneals (350 0 C, 20 hours) [13]. The PtAs2 phase exhibits a pre­
ferred orientation relationship with the substrate [13]. Both PtAs2 and GaAs are cubic 
structures, with a lattice mismatch of 1.8%; these values are within an acceptable range 
for a textured or epitaxial relationship [13]. Further annealing leads to a coarsening of 
the preferred grains, and a roughening of the PtAs2/GaAs interface [14]. 

Pt/InP 
X-ray diffraction indicates that by 500 0 C, the reaction is essentially complete, with 

little change evident for 550 0 C and 600 0 C anneals. The XRD spectra for these tem­
peratures match the standard powder diffraction spectrum for PtIn2; the extra peaks 
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can be accounted for by PtP2 (figure 1). 
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Figure 1. X-ray diffraction spectra for Pt /InP, as-deposited and 600 0 C 60 minute 
anneal. 

Rutherford backscattering spectra from these samples indicated that there was 
some reaction between the Pt and InP for the 300 0 C anneal, and that substantial reac­
tion occurred by 350 0 C, with approximately 26nm of InP consumed. By 400 0 C, the Pt 
layer had been completely consumed, as indicated by a homogeneous distribution of Pt, 
In, and P in the reacted layer (figure 2). At temperatures above 500 0 C, the ratio of the 
Pt reacted to InP approaches 1:1, as would be expected for a combination of Ptln2 and 

PtP2· 
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Figure 2. RBS spectra of Pt /InP, as-deposited and 400 0 C 30 minute anneal. 

TEM studies after the 350 0 C anneal showed a polycrystalline microstructure with 
an average grain-size of 10nm, as compared to 20nm for the as-deposited Pt layer (figure 
3). Electron diffraction indicated the presence of unreacted Pt and additional 
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polycrystalline phases. In the 400 0 C specimen, TEM showed a polycrystalline micros­
tructure, with some large lath-like grains (20nm by 200nm) in a textured polycrystalline 
matrix. Identification of the phases present is in progress. 

Figure 3: TEM micrographs of plan-view Pt/InP specimens. a) as deposited, b) 350 0 C, 
c) 400 0 C:30 minutes. 

The XRD results for the 550 0 C, 30 minute anneal were corroborated by TEM stu­
dies. Microdiffraction patterns confirm the presence of PtP 2 grains. The reacted layer 
has a coarse-grained, polycrystalline microstructure, with a grain size on the order of 

. 50nm to 70nm (figure 4). The interface with the InP substrate is rough. Selected area 
diffraction of the 550 0 C specimen showed that the PtP 2 phase exhibits a preferred 
orientation relationship with the substrate. TEM studies of these samples are continu-
ing to determine the morphology of the PtIn2 phase. ' 

figure 4: TEM micrograph of cross-sectional Pt/lnP specimen, 550 0 C:30 minute anneal. 

DISCUSSION 

Both the RBS and XRD results for the Pt/lnP system indicate that the reactions 
for this system can be divided into three stages: initial reaction- 300 0 C to 350

0 

C; 
intermediate stage- 375 0 C to 400 0 C; and, final stage- 500 0 C to GOO 0 C. At low tem­
perature, InP and Pt react to form polycrystalline phases with no observed preferred 
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orientation. During the intermediate stage, all three components of the system become 
intermingled, forming a polycrystalline phase with a preferred orientation with the sub­
strate, and a coarse-grained second phase. 

One of the goals in studying the annealing behavior of the Pt/InP system was to 
determine the stable compounds and their morphology for high-temperature anneals. 
The stable phases in this system, for the annealing conditions between 500 0 C and 
600 0 C, are PtP2 and PtIn2 (figure 5). For this temperature range, the reacted layer has 

. a coarse grained, polycrystalline microstructure, with a grain size between one third to 
one half the reacted layer thickness. The phosphide layer exhibits a preferred orientation 
relationship with the InP substrate. Both PtP2 and InP are cubic structures, with a lat­
tice mismatch of 3%. 

Pt ,. 
I , , , 

I , 
I , 

I , , , 
I , 

I , 
I , 

I , 
I , , , 

Ptln 2 / \ PtP2 

Inf:~~~~~~~ P 
lnP 

Figure 5. Stable tie-triangle indicated by the results for anneals between 500 0 C and 
600 0 C. 

In summary, the Pt/InP and Pt/GaAs systems show similar features after anneal­
ing. Both ultimately form layered microstructures, with a Pt-III compound concen­
trated at the surface, and an intervening Pt-V compound near the substrate. In both 
cases, the Pt-V compound has a preferred orientation relationship with the substrate. 
Pt/GaAs begins interacting at· a lower temperature (250 0 C vs. 300 0 C) than does 
Pt /InP, and attains the final, stable phases earlier (400 0 C vs. 500 0 C) for similar 
annealing times and film thicknesses. Additionally, the Pt-Ga and Pt-As phases show a 
tendency for phase segregation even for the initial reactions, while at intermediate tem-
peratures, the Pt, In and P are completely intermingled. ~ 

The phase segregation behavior of these systems indicates which of the elements is 
the dominant diffusing species. In the case of Pt/GaAs, both Pt and Ga are mobile 
from low temperature: Ga diffuses into the Pt to form Pt-rich compounds, while Pt 
diffuses into the substrate to form PtAs2. The behavior of the Pt/InP system, however, 
indicates two different stages of atomic mobility: at low to intermediate temperatures, 
only Pt can diffuse readily, while at higher temperatures, both Pt and In are diffusing. 
In the first stage, the Pt diffuses into the substrate to form an intermixed layer, while at 
the higher temperatures, the In diffuses out into the Pt, resulting in phase segregation 
similar to Pt/GaAs. 
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