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necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
Califomia. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
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ABSTRACT 

A semi-analytic solution is given for steady-state flow around a wellbore or a drift with a com­
plex skin, in which the hydraulic conductivity may continuously vary as a function of the radial dis­

tance from the well (or drift), and even be radially anisotropic. Such configurations can be found 
around damaged or acidized well bores or around a drift near which the stress redistribution induces 
radial anisotropy. Purely radial flow, regional flow around an open or cemented hole without pumping 

or injecting, and combined regional and radial flow are considered. Variations of hydraulic potential 
and Darcy velocity in various radial directions are studied for several cases. It is shown that the con­

vergence of the streamlines toward the hole, the hydraulic potential, and the Darcy velocity fields are 

strongly affected by a complex skin. This should be taken into account in applications involving the 
point dilution method of measuring regional flow velocity and in some applications involving single­
well capture zone analysis. Also, a number of recent field experiments have been carried out in under­
ground drifts in fractured rocks. These often involve pressure and tracer tests in boreholes drilled radi­
ally from the drift. Analysis of these tests should include the effects of regional head and velocity dis­
tribution around the drift, such as those calculated by our model. 

1. INTRODUCTION 

Determining the groundwater flow in an aquifer around a wellbore (or a cylindrical drift) with a 
radially varying hydraulic conductivity (damaged or developed skin) is an important problem in many 
applications, such as reservoir engineering, where the hydraulic conductivity around the well is often 
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artificially increased by acidization or hydraulic fracturing in order to improve productivity and toxic 

waste disposal, where the flow field near the well strongly influences wellbore data analysis methods. 

Usually, the radial permeability change around a well is taken into account by introducing a skin 

factor that reflects, in a dimensionless form, the additional potential drop that is obtained between an 

infinite-distance boundary and the producing well, compared with the potential drop that would be 
observed in the case of a homogeneous medium. The skin factor is expressed as: 

(1) 

where Rw and Rd are, respectively, the radii of the wellbore and the damaged zone, Kd and K .. the 

hydraulic conductivities of the damaged zone and the surrounding medium. 

However, it seems that the skin factor, which combines the two variables Rd and Kd in one 

parameter, may not be suitable in all cases. For example, let us consider the regional groundwater flow 

around a well. The deformation of the streamlines toward the well is due to an infinitely conducting 

anomaly (the well), and to the presence of a skin, and this deformation causes the apparent Darcy velo­

city at the well to differ from the real value of. the regional Darcy velocity by a multiplicative 

coefficient 8, usually called the convergence factor. This factor is essential when one intends to meas­

ure the regional flow velocity by the borehole dilution technique (Drost et al., 1968; Aubertin et al., 

1987; McLinn and Palmer, 1989). But unfortunately, 8 depends separately on KJKd and RdlRw, and 

not only on the skin factor (Bidaux and Tsang, 1989). Moreover, the model of a skin that consists of 

an annular region with a constant hydraulic conductivity Kd , differing from the conductivity K .. in the 

unperturbated medium, is not realistic. Mud invasion, acidization processes, and stress redistribution in 

the vicinity of an excavated drift (e. g., see Jaeger and Cook, 1969) suggest that the resulting perturba­

tion of the hydraulic conductivity is, in general, radially anisotropic and reaches a maximum close to 

the wellbore, decreasing gradually to zero at a large distance from the wellbore. 

For these reasons, we performed a general study of the groundwater flow in an aquifer around a 

well (or drift) with a radially varying hydraulic conductivity. The cases of regional flow without pump­

ing, purely radial flow (pumping or injecting), and combined regional and radial flow are all studied. 

Given a skin configuration in terms of two functions K, (r) and K s(r) that describes the radial varia­

tions of the radial and tangential values of the hydraulic conductivity, the flow is determined semi­

analytically by assuming radial symmetry in the configuration and performing a I-D numerical integra­

tion with respect to the radial coordinate r. The following quantities are calculated: 

- The convergence factor 8 and the effective value of the conventional skin factor s; 
- The equipotentials and streamlines; 

- Radial variations of the hydraulic potential in any azimuthal direction; 

- Radial variations of the absolute value of the Darcy velocity in any azimuthal direction; 

- Travel times and breakthrough curves. 

A computer code has been written and validated by comparing its results with the analytic solu­

tion calculated for simple expressions of K (r). Examples are given and several applications are pro­

posed, including regional flow velocity measurement and the tracer dilution problem, single-well cap­

ture zone analysis, and fluid flow and tracer transport around an underground drift. 

... 



'", 

- 3 -

2. THEORY 

2.1 Description of the Configuration 

We consider an isotropic aquifer of constant thickness e with a "hole" of radius Rw. The general 

word "hole", as used in this work may mean a wellbore, a large-diameter well, or an underground drift 

or tunnel. For the simple case of a developed or damaged well, we may assume that Kr=K a, and is 

given by a function of radius, K (r). The flow field around the well in such a system may be solved 

numerically, as described below. For the particular class of K(r) function given by 

(2) 

where u and 'Y are parameters, analytic solutions may be obtained. The expressions for the skin factor 

and the convergence factor will be given below. For illustration, K (r) for four different sets of u and y 

values are shown in Figure lA, and the resulting skin and convergence factors are summarized in Table 

IA. 

For a large-diameter hole, such as an underground drift, generally Kr:FK a. The system is radially 

anisotropic, and the radial variations of Kr and Ka are of the type shown in Figure IB (solid curves). 

Let us consider the stress redistribution due to a circular hole in a homogeneous elastic medium with a 

scalar stress Po (overburden) applied on boundaries at large distances from the hole. Then the stress 

field (Jaeger and Cook, 1969) is given by 

R2 
CJr = Po (1- ~) (3.1) 

r2 

R2 
CJa = Po (I + ~) (3.2) 

r 

'tra = 0 (3.3) 

These expressions indicate a radial tension and tangential compression near the hole, leading probably 

to a simultaneous increase of the tangential permeability and decrease of the radial permeability. 

Models relating stress to permeability in porous or fractured media, such as those by Gangi (1978) or 

Tsang and Witherspoon (1981), may be used to quantify the permeability change at any point around 

the hole if one assumes that the principal axes of the hydraulic conductivity tensor are oriented radially 

and tangentially. Then changes in CJr affect K a, and changes in CJa affect Kr • Unfortunately, these 

models are mainly empirical, relying on hypotheses concerning the nature of the medium, or are valid 

only for a narrow range of stress values. The stress-permeability relationships based on these models, 

however, may be used as guidelines. Laboratory experiments, such as those carried out by Holt (1989), 

may also provide useful data, although they involve small samples and are limited to one type of rock. 

As a general rule, when CJ increases, K decreases asymptotically from K 0 (permeability without stress) 

to a minimum value K/; increasing CJ over a value CJ/ has no further significant effect on permeability. 

Thus, the stress release in the radial direction always enhances the tangential permeability, but the 

tangential compression may not affect the radial permeability if the overburden stress Po is close to or 



- 4 -

greater than a/. 

The stress-induced permeability reduction can be quantified by fitting an empirical exponential 

negative function to the experimental values K =/ (a). Such job has been performed on data for Red 

Wildmoor sandstone (Holt, 1989). Although a sharper decrease in permeability is observed at high 

stress values, the fitting has a broad range of validity, up to 70 MPa (Figure 2). Like for the present 

example at low stress values, the permeability of the radially anisotropic configurations that we chose to 

study is assumed to vary exponentially as a function of stress, which is a simple but reasonable choice. 

For any stress value a, the hydraulic conductivity K is given by 

K(a) (4) 

where Ko, K"", and K/ are the hydraulic conductivity values for a=O, a=po, and a=oo, respectively. The 

variations of K, and K a as a function of r are obtained by combining (3) and (4): 

(4.1) 

(4.2) 

Note that in the case K/=O, wherein the rock becomes impermeable under very high stress values, these 

expressions are of the same type as (2), with y=2, u =±In(K elK _) and .,.JK,K a=K _=constant. On a loga­

rithmic scale, the curves K,(r) and K a(r) would be symmetric relative to the axis K =K _. However, 

the broken parts of curves for K, and K 9 in Figure IE, describing the stress effect, are not exactly sym­

metric, because we assume a small but finite residual permeability at high stress values (K/:tO), which is 

more consistent with the experimental data. 

The stress effect, which varies as R!lr2, is significant within a distance of several times the radius 

Rw of the hole. Besides the stress effect discussed here, a sharp increase of both radial and tangential 

permeability is believed to occur within a few inches of the well due to a permanent inelastic deforma­

tion caused by excavation. This increase may be modeled by multiplying both K, and K a by an 

exponential term of the type (2), with u>O and 'Y large enough (e. g., about 20) to have a reasonable 

value of penetration length. That exponential term is based neither on theoretical considerations nor on 

experimental measurements. However, it is qualitatively consistent with the permeability increase due 

to inelastic deformation effects. The curve for K,=K a in Figure IE shows these effects, and the solid 

curves show the resulting variations of K, and K a due to combined stress and inelastic deformation 

effects. This last case is probably the most realistic, and leads to the expressions finally assumed in the 

examples given throughout the paper: 

(4.3) 

Ka(r) (4.4) 
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The computed values of the skin factor and the convergence factor in all the cases considered (with or 

without stress effect, and with or without inelastic deformation effect) are given in Table lB. 

2.2 Flow Equations and Studied Flow Types 

The flow in all cases studied is assumed to be steady state, two dimensional, incompressible, and 
to obey Darcy's law. Thus the flow equations are Darcy's law and the incompressibility condition: 

v = KV<I> 

VV = 0 

(5) 

(6) 

where <I> is the hydraulic potential and V, the Darcy velocity. <I> obeys the diffusivity equation which is 

obtained by eliminating V between equations (5) and (6). In the present study, we use a method 
inspired from the complex potential theory rather than the diffusivity equation. As pointed out by Hub­

bert (1940), no velocity potential (i. e., a function <l>v verifying V = V<I>v) exists when the medium is 

heterogeneous. Therefore, it is not possible to use the complex potential theory in a strict sense. How­
ever, the problem can still be solved using a stream function 'If whose formulation implies that the 
incompressibility condition is satisfied. In cylindrical coordinates, (5) can be written as 

Vr = -K~ r ar 

Va = _ Ka a<l> 
r ae 

and (6) is satisfied if 'If verifies the following equations: 

Vr = - 1... ~ 
r ae 

Va = ~ ar 

(5.1) 

(5.2) 

(6.1) 

(6.2) 

in which case the equation of a streamline is 'If = constant. For any set of boundary conditions, the 
flow can be calculated using the equations (5.1), (5.2), (6.1), and (6.2). 

The flow types considered in the present paper correspond to different boundary conditions at the 

hole or at large distances from the hole. We may have a production Q at the hole (Q>O for pumping, 
Q <0 for injecting), a regional flow (Darcy velocity V _, apparent velocity at the hole V w = SV _), or the 

superposition of both production and regional flow. The production may correspond to intentional 
pumping/injecting in a wellbore, or to the flow into a non-cemented underground drift, which is kept 
dry by pumping/draining. The boundary conditions at the hole are equipotential in the general case, or 
impermeable for the case of regional flow around a cemented tunnel. The various combinations are 

summarized in Figure 3, in which they are referred to as flow types 1 through 4. A detailed study of 
each is provided below. 
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2.3 Purely Radial Flow (Pumping IInjection), Flow Type 1 

As we have radial symmetry for all the variables, the Darcy velocity V is purely radial, and its 
algebraic value V (positive axis oriented outward from the hole) is simply given by flux conservation, 

independent of the variations of K: 

=-~ 
2ner 

(7) 

The hydraulic potential field <l> satisfies Darcy's law: 

-K E1 = rdr =-~ 
2ner 

which yields 

r 

<l>(r) = (8) 

with the convention <l>=O at the hole where r=Rw. In order to estimate the skin factor in that 
configuration, (8) has to be compared with the expression of the hydraulic potential for a homogeneous 

medium of constant conductivity K 00: 

r 

<l>o(r) = Q In-r- = 
2rrK ooe Rw 

Hence the additional potential drop due to the radial heterogeneity of hydraulic conductivity can be 

expressed as 

r 

o(r) <l>(r) - <l>o(r) = 

The skin factor is the limit value of that expression when r tends to infinity, in a dimensionless form 

(Q =21t,e = I,Koo= 1): 

(9) 

which is the generalized form of the classical expression (1) for the case of any radial distribution of 
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the hydraulic conductivity. 

For any radial distribution of the hydraulic conductivity, numerical integration of equation (8) is 

performed to give the variations of the hydraulic potential $ as a function of r (Figure 4). A Simpson's 
method with geometrically increasing radial step sizes is used in order. to obtain better accuracy near 

the hole, where K varies more sharply. The skin factors obtained for cases a to d plotted in Figure 1A 
are about s=-2 and s=4, which seem to be reasonable values usually found in the field. As expected, 

the hydraulic potential near the hole is strongly smoothed in the case of a negative skin factor (case a) 

compared with the potential profile in a homogeneous medium. Conversely, the gradient near the hole 
increases more sharply in the case of a positive skin factor (cases b to d). For different cases with the 

same value of s, the potential profiles are the same outside of the skin. Only observation wells located 
inside the damaged zone, close to the main hole, could distinguish between them. 

2.4 Regional Flow Without Pumping, Flow Types 2-3 

The radial symmetry of the configuration makes it possible to reduce the problem to one dimen­
sion by separating the variables rand 9. Let us try to write the functions $ and 'V in the following 

form: 

$(r 9) = [a (r)rO(r) + b(r)] cos 9 , ro(r) 

'V(r 9) = K(r) [a (r)rO(r) - b(r)] sin 9 , rO~) 

where the following quantities have been defined: 

a(r) = "Ke(r)IKr(r) 

K(r) = "Ke(r) Kr(r) 

(10.1) 

(10.2) 

(11.1) 

(11.2) 

By calculating the partial derivatives of $ and 'If in (10.1) and (10.2), and by identifying the subsequent 

values of Vr and Ve given, respectively, by (5.1) and (5.2) for $, and by (6.1) and (6.2) for 'V, it 
appears that the flow equations are verified if and only if a and b obey the following differential sys­
tem: 

2a' (r) = [b~) _ a(r)] ~'(r) _ 2a(r) a'(r) In r 
r r K(r) 

2b' (r) = [r 2a(r)a(r) - b(r)] ~'(r) + 2b(r) a'(r) In r 
K(r) 

(12) 

where the symbol ' is used for the derivative of a single-variable function. Hence, instead of directly 

calculating $ and 'V, it is possible to determine, in a first step, the auxiliary functions a and b which 
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are more convenient This is done by solving (12), which is a first-order coupled linear differential sys­

tem. It has an unique solution if the boundary conditions a (Rw) and b (Rw) are known. These two lim­
iting values are given by the type of boundary conditions at the hole: 

For an equipotential hole (weIIbore of infinite conductivity), 

a(Rw) 
Vw 

= 
2Rwa(R..,)-lK (Rw) 

(13.1) 

R a(Rw}+-IV 

b(Rw) 
w w 

= 
2K(Rw) 

(13.2) 

For an impermeable hole (cemented tunnel), 

2R a(Rw)-l 
w 

(14.1) 

R 
a(Rw}+-l. 

w lw 

2 
(14.2) 

To solve equations (12) with a set of boundary conditions (13) or (14), the apparent velocity Vw or the 
apparent hydraulic gradient iw at the hole can be taken arbitrarily as a parameter and then adjusted so 
that the solution at an infinite distance from the hole corresponds to the uniform flow in the homogene­

ous aquifer (a_ = i_ = V..IK_). 

Once the integration of a and b has been performed, the flow problem is completely solved. <I> 

and 'I' are respectively given by (10.1) and (10.2), and V by either «5.1),(5.2» or «6.1),(6.2», which 
can also be written in the foIIowing equivalent form: 

Vr (r,9) = -K(r) [a(r) ra(r)-l - ~~~l] cos 9 
r 

(15.1) 

V e(r,9) = a(r) K(r) [a (r)ra(r)-l + r~~21] sin 9 (15.2) 

Equations (10.1) and (15) provide an explicit form for the potential field and the Darcy velocity field, 

which can be easily calculated for any point of the aquifer. The plotting of equipotentials and stream­
lines requires the solution of polar equations <I>(r ,9)=<1>0 or 'I'(r ,9)='1'0, which is simply done by calcu­
lating 9 as a function of r. The convergence factor is then given by the expression 

Vw Vw 
- = = V _ K_a_ 

(16) 

As expected, for a homogeneous medium (Kr(r)=Ke(r)=K_=constant), system (12) gives a'(r)=O and 
b' (r )=0, so that a and b keep their boundary value everywhere. For an equipotential hole, we get 5=2. 
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Our calculation generalizes the classical result of the thermal problem of a cylinder of conductivity K 1 

in a matrix of conductivity K 2 (Carslaw and Jaeger, 1959). 

The differential system (12) can also be solved for any given coupled functions (Kr,K 0), which 

may be derived from the stress redistribution around the hole. First, Kr and K 0 are replaced by their 

dual functions K and a.. Then, starting at the hole (r=Rw ), the medium is discretized in n points, with 

the same geometrically increasing radial step size as in the purely radial flow, and the arrays for r, K, 
and a. are created: 

rj+l = rjp (P>I) 

Kj = K("rjrj+l) 

o.j = o.("rjrj+l) 

Based on the following approximations for the derivatives: 

o.'(r) In r tlr = rU(rMr)-a(r) - 1 + o(tlr) 

I'(r) tlr = f(r+tlr) - f(r) + o(tlr) 

where f designates any of the functions a , b or K, and after dropping the terms of a higher order than 

!:J.r, the differential system (12) is discretized using the following scheme: 

U.--a. I [ Kj] bj [ Kj] 2a· 1 = a·r· 1 1+ 1+-- + 1---,+ , , A ct. +<X. A 

K j +1 r. 1 1+1 K j +1 
I 

(17) 

which generalize the recurring expressions given by J. Goguel in an unpublished note written in 1984 

(courtesy of G. de Marsily) for a medium consisting of a succession of constant-conductivity concentric 

annuli of radii Rj , i=l,n and isotropic hydraulic conductivities Kj , i=l,n. The values al and b 1 are 
given by the appropriate set of boundary conditions: 

For an equipotential hole, 

U -1 ~ 
2Rwl Kl 

UI+l
V Rw w 

2Kl 
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For an impermeable hole, 

iw 
al = 

2R a
C

1 
w 

R a1+l. 

b1 
w lw 

= 
2 

A computer code was written that performs the numerical integration of the functions a and b, calcu­

lates the convergence factor 3=Vw /(K_an ) for the equipotential hole case, plots the flow pattern 
(streamlines, equipotentials), and calculates the radial variations of the hydraulic potential q, and the 

Darcy velocity V in any azimuthal direction. As an example, Figure 5 gives the flow pattern for a 

developed well, a damaged well, and an open or cemented tunnel with radially anisotropic stress effect. 

For the first two cases, equipotentials and streamlines are rectangular (isotropic skin) but do not form 

curvilinear squares as in a homogeneous medium. The two cases of flow around the tunnel show 

clearly that equipotentials and streamlines are no longer rectangular (anisotropic effect). These two 

functions do not have symmetric roles and cannot be interchanged by altering the boundary conditions, 

as in the case of a homogeneous isotropic medium. This is related to the fact that q, and 'II are not con­

jugate harmonic functions. Figure 6 gives the hydraulic potential profile in the direction 9=0. For a 
well bore , a high-permeability skin (part A, plot a) flattens the starting of the profile, and a low­

permeability skin (part A, plot b) sharpens it. For a drift without stress effect (part B , dashed line), the 

profile near the drift changes significantly whether the drift is open or cemented. With stress effect 

(part B, solid line), the potential profile is much less affected by the boundary conditions at the drift 

wall. This is because the flow tends to go around the hole independently of the boundary conditions, in 

response to an enhanced tangential permeability near the drift. Thus the drift is nearly equipotential, 

even if it is cemented. The Darcy velocity profiles in three azimuthal directions, for an open drift (Fig­

ure 7A), shows that the stress effect modifies Darcy velocity even though the hydraulic potential is not 

affected (see Figure 6B). For a cemented drift (Figure 7B), the flow is highly concentrated in the 

high-permeability ring close to the drift. The stress effect, which increases tangential permeability near 

the drift with the result that the flow there is approximately tangent, enhances that flow concentration 
and reduces the size of the zone in which the flow is perturbed. 

2.5 Regional Flow with Pumping, Flow Type 4 

This is simply the superposition of cases 1 and 2. The linearity of the flow equations gives the 

expressions for the hydraulic potential and the stream function: 

r 

q,(r ,8) = [a(r) ra(r) + b(r)] COS8+.JLJ dp 
ra(r) 21te pKr(p) .. 

(18.1) 

",(r ,8) = K(r) [a(r) ra(r) - b(r)] sin e + .JLe ra(r) 21te (18.2) 

where a and b are the functions determined in the preceding section, with the boundary conditions 
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corresponding to an equipotential hole. The Darcy velocity is given by the following expressions: 

Vr(r ,e) = 

Ve(r ,e) 

- K(r) [a(r)r O(r)-1 - ~] cos e - -.JL 
ra(r)+l 21ter 

= a(r) K(r) [a(r)r O(r)-1 + b(r) ] sin e 
ra(r)+l 

(19.1) 

(19.2) 

Equation (19.2) is identical to (15.2), as the production does not change the tangential component of 

flow velocity. 

Thus, as in the case of regional flow without pumping, the equipotentials and streamlines and the 

hydraulic potential and Darcy velocity azimuthal profiles can be easily plotted once the integration of 

the functions a and b has been performed. Moreover, a and b, which depend only on the functions 

K" K e, can be calculated and stored for the study of the regional flow alone and for productions at 

various flow rates. 

The shapes of the streamlines deserves particular attention. The equation of a streamline is 

K(r) [a(r) ro(r) - b(r)] sin e + ~e = constant 
ra(r) 21te 

For a given value of r, e is given by solving a transcendental equation of the type 

sine + AS = ~ 

With the condition Q;;e~1t, for appropriate values of ~, the equation has two roots if lAid and only one 

root if IAbl; and for IAI=I, e=o and e=1t may be the double root. The streamline ("'="'0) reaches the 

hole (r=Rw) with an angular coordinate e satisfying the equation 

(20) 

Thus the flow pattern at the hole is different depending on whether we have Iq kl or Iq 1>1, 
where q is the dimensionless pumping or injection rate defined by 

We call Qc the critical value of flow rate. At a supercritical flow rate (Iq 1>1), equation (20) has at 

most one root: all the water arriving at the borehole is produced, or for injection case, all the water 

entering the formation is injected water. At a subcritical flow rate (Iq kl), equation (20) has two roots 

for appropriate values of "'0, which means that a given streamline may represent flow into and out of 

the hole. For the case of injection, the flow leaving the hole and entering the formation is a 
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combination of injected fluid and fluid from the formation upstream. For the case of pumping, only 
part of the flow from the formation upstream is produced; the rest re-enters the formation downstream. 
A similar result has been obtained in the case of classical skin configurations (Bidaux and Tsang, 1989; 

J. Goguel, unpublished manuscript, 1984). 

At a supercritical flow rate, there is a value rs such that 

Thus, 9=1t is a double root of the equation 

The point (r=rs , 9=tt) is a stagnation point, and the singular streamline ('V=Q 12) distinguishes the cap­
ture zone (Javandel and Tsang, 1986) from the rest of the aquifer. Qualitatively, this is the classical 
configuration obtained for a line-source well in a homogeneous isotropic aquifer. 

Our formula for the critical flow rate Qc is expressed in terms of the apparent Darcy velocity at 
the hole, and not the regional flow velocity. If we re-introduce the regional flow velocity and the con­
vergence factor, we can write the complete expression of the critical value for the flow rate: 

(21) 

Since Qc depends on the convergence factor 3, for given values of the regional flow velocity and the 
production flow rate, we may have either subcritical or supercritical flow, depending on whether the 
hole has a skin that is more or less conductive than the original aquifer. 

Assuming an isotropic complex skin (equation (2)), the streamlines and equipotentials for the 
cases of subcritical, critical, and supercritical flows are plotted in Figure 8. It appears that for a given 
value of regional flow V .. , hydraulic conductivity K .. , thickness e, hole radius Rw, and pumping rate 

Q, the flow may be either sub- or supercritical, whether the skin is more or less conductive. For exam­
ple, in Figure 8, the subcritical flow in the developed configuration a (top, left) and the supercritical 
flow in the damaged configuration b (right, bottom) correspond to about the same value of pumping 
rate. The less the convergence factor, the more likely a supercritical flow will be obtained. 

Figure 9 gives hydraulic potential profiles in which five types of curves can be distinguished: 
linear increase of <1> (curve 1), logarithmic increase (curve 2) for the flow line perpendicular to the 
regional flow direction, increase and then decrease (curve 3), and monotonous decrease with or without 
vanishing derivative at the entry of the hole (curves 4 and 5). As in the cases of radial flow alone or 
regional flow alone, the gradient near the hole is smaller for a negative skin factor and larger for a posi­

tive one. 
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Type curves for Darcy velocity profiles are not so easy to define. To get the expression of V at a 
large distance from the hole, one should first find asymptotic expressions for a and b, which are not 
simply related to Kr and K a. This development does not seem worth pursuing in practical cases, 

because the velocity field far from the hole is probably more affected by other external perturbations 

than by the complex skin. At the hole (r=Rw), the following expressions for Vr and Va may be useful: 

Q r-R 
Vr ::: (- Vw cos e - ) (1- __ w ) 

. 2neRw Rw 

[ 
Vw .] r-Rw 

Va::: a(Rw) - sm e -R--
Rw w 

Hence the following patterns can be distinguished at r=Rw: 

General case: V:to and av lar < O. 

Case V =0 and av lar > 0 (singular point for a subcritical flow). 

Case V =0 and av lar = 0 (singular point for a critical flow). 

In the general case, V may monotonously decrease to V 00 or decrease to a minimum value and then 
increase to reach V 00' For e=1t in a supercritical flow condition, the minimum value of V is 0 (stagna­
tion point). But in the case of a low-conductivity skin, two or even three extrema may be observed. 
The reason for this is that, even though the less conductive skin has no influence on the radial flow 
velocity, it strongly reduces the regional flow velocity in the vicinity of the well. In some cases, the 

first minimum may be so close to the hole that it does not appear visually, resulting in an apparent 
velocity increase at r=Rw, which has been shown to be impossible theoretically. Hence a large variety 
of curve types can be found for the velocity profiles, considering the behavior at the well and the possi­

bility of having a stagnation point and a number of extrema. Several examples are given in Figure 10. 

3. APPLICATIONS 

3.1 Regional Flow Velocity Measurement and Tracer Dilution Problem 

This section addresses the effect of a complex skin on the convergence factor 8 and discusses the 

possible values of 8 that may correspond to a given skin factor s. 

The convergence factor is essential for the borehole dilution technique, a classical method of 
measuring regional flow velocity in an aquifer (Drost et aI., 1968) and one that is still subject to recent 
improvements (McLinn and Palmer, 1989). The apparent velocity Vw at the borehole is estimated by 
observing the dilution rate of a tracer, and the regional Darcy velocity is then given by V 00=VwI8. The 
value 8=2, corresponding to the result for a homogeneous medium, is generally used, although a higher 

value should be better for the case of an acidized well (Aubertin at aI., 1987). Bidaux and Tsang 
(1989) carried out a more extensive study of the influence of a conventional skin (outer radius Rd , con­

stant hydraulic conductivity Kd ) on the convergence factor. The case of a complex skin is examined 

below. 
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The hydraulic conductivity K is considered to be isotropic at any point and given by function (2). 

The exponential decrease of the permeability perturbation may describe the damage caused by mud 

invasion or the well development performed by acidization. As no data concerning the permeability 

change around a well are available, this function cannot be justified rigorously. It is chosen for its 

mathematical convenience to give a fully analytic solution, which can then be used to validate the 

numerical model for any other specified skin model. Function (2) reflects a permeability perturbation 

that is maximum close to the well and becomes smaller more or less rapidly with distance from the 

well. A positive value of u means a permeability decrease near the well (damage), and a negative 

value indicates that the well is developed. As the hydraulic conductivity at the well is K (Rw )=exp( -u), 

the absolute value of u gives the magnitude, on a logarithmic scale, of the permeability change close to 

the well. The parameter y can be interpreted in terms of thickness of the damaged or developed zone 

or skin: the lower the value of y, the thicker the skin. Let us define a penetration radius Rp of the skin 

by 

We then get 

= 
1 
e 

1 
Rp = exp(-) 

y 

Using equation (4), the skin factor is given by the expression 

u 

1. f(e'" -1) dx 
y~ x 

(22) 

and a fully analytic solution for the system of differential equations (9) and (10) can be provided for 

most fractional values of y. An explicit form of the convergence factor may then be obtained: 

2 
~ = 

where the coefficients lly.n can be calculated by the recurrence formulae 

111.0 = lly,n = 

1 
-+n-l 
y 

2 
n(-+n) 

y 

lly.n-l 

(23) 
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For some values of s, the variations of S as a function of the dimensionless penetration radius of 

the skin Rp1Rw-1 have been plotted (Figure lIA) and the results compared with those obtained using 
the conventional model of skin (Figure lIB). Qualitatively, we observe in both cases that for a given 

value of s, the convergence factor tends to its limiting value 2=2 with increasing skin thickness. For 
damaged wells, the limiting value of::: for an infinitely thin damaged zone of infinitely low permeabil­

ity is 1/(I+s) in both cases. The main difference is observed for developed wells. With the classical 

model, the maximum convergence factor is 4 for any negative value of s. But the present model can 
yield, for reasonable values of s, convergence factors exceeding 10. This is because the refraction of 

the streamlines is due to permeability gradients and not to high permeability values. In the classical 
model, only two refractions are obtained (entering the developed zone and entering the well), giving a 
maximum value of 4 for the convergence factor. With a continuously varying hydraulic conductivity, 
the streamlines are refracted all along their path from a large distance to the well. On the other hand, 

one notes that for negative skin factors corresponding to large developed zones with a low permeability 
contrast, both conventional and complex skins still give comparable results. In Figure 11, the two 

graphs, except for the portions corresponding to abnormally high convergence factors for complex skins, 

can be superimposed with a shift of 2 along the thickness axis. Thus a complex skin, described by the 
present model, with a penetration radius Rp and corresponding to a skin factor s, behaves in most cases 
like a conventional skin of thickness 

But abnormally high values of convergence factor can also be obtained for complex skins in the nega­
tive s cases, where there is a large permeability contrast and a rather shallow penetration radius. 

Thus, when using the borehole dilution technique, very high values of the convergence factor 
should be assumed in the case of a negative skin factor. Investigations should be made to obtain an 
idea of the radial distribution of hydraulic conductivity; otherwise, the uncertainty of the derived value 
for the regional flow may be as much as one order of magnitude. 

Another problem addressed in Bidaux and Tsang (1989) is the tracer dilution in water injected 

into the formation. If a tracer is injected in a wellbore at a subcritical flow rate, the flow leaving the 

well and entering the formation is a mixture of injected fluid and water from the formation upstream. 
The effective concentration entering the formation can be calculated as a function of the injection flow 
rate (Figure 12), and depends only on the critical value Qc of flow rate. Thus the same expression is 
still valid for a complex skin if Qc is given by (18). But much higher values of Qc may be obtained 
compared with the case of a conventional skin, since ::: may be very large in some cases. These con­
siderations may be of importance in the analysis of tracer tests where tracer is injected at a low flow 
rate to avoid changing the original flow field. 

3.2 Single -Well Capture Zone Analysis 

Aquifer cleanup operations often require determination of the capture zone of a well. lavandel 
and Tsang (1986) proposed an analysis based on the assumption that the well is a line-sink, and that the 

aquifer is a homogeneous medium (no skin effects). We investigate the influence of a wellbore skin on 
the capture zone by studying the effect of the skin on the distance rs between the pumping well and the 
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stagnation point caused by the interaction of radial flow and regional flow. 

The first part of our study was done using the conventional skin model for reasonable values of 
pumping rate, say, Q /(eRw V _) = 103 or 104

• Without a skin, the distance between the stagnation point 

and the well is 

r:::'r =_Q_-
S So 2neV_ 

where the finite wellbore effect is neglected, since Rw<.rso. With a skin, the influence on the capture 

zone appears to be significant only if Rd is at least about the same order of magnitude as rso (Figure 

13A -B). The capture zone is smaller (ra<rs) for s<O and larger for s>O. 

In practical cases, it is extremely rare to have large wellbore skins, although ratios up to 

Rd/Rw=200 have been assumed in acidized geothermal wells with highly negative skin factors (De Mar­

sily, 1984, personal communication). Thus, except in such situations, the capture zone remains 

unchanged when there is a wellbore skin. 

Another point should be mentioned about large well bore "skins." If a borehole is located in a 

zone of higher or lower conductivity than that of the whole aquifer, that zone may behave like a huge 
"natural skin" and the capture zone may be modified. For example, with Q /(eRw V _) = 104 and 

Rw = 0.1 m, the stagnation point, which would be located at a distance rao = 159 m from the well 

without heterogeneity, might be displaced about 45 m toward the well (Figure 13B) in some cases. 

This is a much smaller capture zone than expected, which should be taken into account when designing 

an aquifer cleanup operation. 

In the case of a complex skin, in which the radial permeability distribution is given by (2), the 
results (Figure l3e -D) are qualitatively comparable with those for a conventional skin. For given 

values of pumping rate and positive skin factor, the stagnation point moves away and then comes back 

to its original location as the penetration radius Rp increases. For a negative skin factor, it moves first 
toward the well and then back to its original location. However, the curves describing variations of the 

stagnation point displacement as a function of the skin penetration radius are smoother than the 
corresponding curves for a conventional skin, since no permeability discontinuity exists between the 
skin and the rest of the aquifer. Moreover, the maximum values of stagnation point displacement are 

much smaller than for a conventional skin. Thus, if the purpose of the analysis is just to estimate the 
minimum extension of the capture zone, a study based on the conventional model would provide the 
most pessimistic case and should be sufficient. On the other hand, contrary to the case of a conven­
tional skin, non-negligible stagnation point displacements can be observed even if the penetration radius 
Rp is much smaller than the theoretical distance ra o between the well and the original stagnation point. 

This is because, for a complex skin, the permeability is in fact perturbed much beyond the distance Rp. 
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3.3 Study of the Flow Around an Underground Drift 

The calculations discussed in the previous section are also useful to the understanding and 

analysis of the flow and hydraulic potential distribution around an underground drift by means of obser­
vation boreholes drilled radially from the drift. Such measurements were made by Wilson et al. (1981) 

and Neretnieks (1987) at Stripa, and by Cacas et al. (1987a-b) at Fanay-Augeres. Figure 14A shows 

the arrangement in the Fanay-Augeres drift 

The radial flow into an isolated drift is caused by the head difference between the water table and 

the drift, which is maintained at atmospheric pressure. The drift is kept dry by pumping away water 
that flows into the drift. If the drift of radius Rw is located at depth h below the water table, with 
h »Rw , the flow to the drift is approximately radial and the flow rate has the following value: 

Q = 
2rcKooeh 

2h 
InR+s 

w 

A regional flow gradient i 00 may be superposed upon the radial flow to the drift. In section 2.4 on the 
case of combined radial and regional flow, a critical value of flow rate Qc is defined that discriminates 
three types of flow. Using expression (21) for Qc, we get 

Thus it appears that for ordinary values of hydraulic gradient (ioo on the order of 10-3), QIQc is 

very large (on the order of 103
), and the regional flow can be neglected compared with the radial flow 

to the drift However, in heterogeneous media or in the presence of hydraulic boundaries or neighbor­

ing drifts, it is possible to have a local increase of the hydraulic gradient at the drift under study. Such 

local high values of "pseudo-regional" flow around a studied drift are observed at Fanay-Augeres (Fig­
ure 14B), and the cause is suspected to be the presence of a neighboring drift. If a second drift of 
radius Rw' is located at depth h' below the drift under study, a rough estimate of the flow perturbation 

induced at the studied drift can be simply made. Neglecting the perturbation caused by the studied 
drift, the flow rate to the second drift, due to gravity, is 

Q' = 
2rcKooeh' 

2h' , 
In--, + s 

Rw 

and if h -h' is large compared to Rw , the gravity flow to the second drift induces roughly parallel 
hydraulic potential contours in a small region around the studied drift. The Darcy velocity of that 
pseudo-uniform flow is 

v 00' = 
Q' Kooh' 

2rce (h' -h) 
= 

(h-h') (In 2h: + s') 
Rw 
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For that pseudo-regional flow, the critical flow rate for the studied drift is 

Qc' 
2rtEK ... eRw h' 

= 2h' 
(h-h') (1n-, + s') 

Rw 

and we have 

2h' 

~ h (h' -h) 
InR' + s' 

w 
= Qc' 'ERw h' 2h 

In-+s 
Rw 

The enhanced apparent value of the regional hydraulic gradient around the studied drift is 

. , 
Zoo = 

h' 

2h' 
(h-h') (In-, + s') 

Rw 

which can approach 1 for reasonable configurations (i ... ' = 0.47 for h = 200 m, h' = 300 m, Rw' = 1 m, 

s' = 0). The combined radial and pseudo-regional flow, although supercritical, may be sufficiently 
asymmetrical (Q /Qc ':::10) to have the stagnation point rather close to the drift (about 10 m). Thus the 
radial variations of hydraulic potential, measured between packers in observation wells, should not be 

expected to be given by the simple case of radial flow (Figure 4), but may be similar to those plotted in 
Figure 9 (flow type 4, supercritical case). It is important to know these hydraulic potential variations so 
that we do not misinterpret field data that show a deviation from the simple radial hydraulic variation. 

The values of flow rates and hydraulic gradients given above are only very rough estimates, 

because the problem of the interference between two drifts would require a more rigorous calculation 
which can only be done numerically. Even the flow to an isolated drift in a homogeneous medium does 
not have a simple analytic solution when the approximation Rw«h is not valid, because the drift can­

not be considered as equipotential. But such studies are beyond the scope of the present paper; the 
results given here should be considered only as suggestions that such flow patterns around underground 
drifts are possible, and therefore great care should be taken in data analysis to avoid attributing such 
patterns to other unrelated effects. 

3.4 Tracer Emergence into an Underground Drift 

Another application of the present study is the calculation of travel time and the simulation of 
tracer test from the radial boreholes into the drift. If a tracer is released at a point M 0 of polar coordi­

nates (ro,90), the stream function "'0 at M 0 can be calculated using (18.2), and the value obtained indi­
cates the streamline on which M 0 is located. If dispersion is neglected, the tracer would follow exactly 
the path of the streamline. For a supercritical flow, two cases can be distinguished: (1) if the release 

point is outside the capture zone (",~Q /2e), the tracer never reaches the drift, and (2) if the release 



- 19 -

point is inside, the purely convective travel time to the drift can be calculated by an integration along 

the streamline path: 

ro(r )dl 
V(r ,9(r» 

where 9(r) is given by the equation of the streamline, 

'I'(r ,9(r» = '1'0 

dl is the elementary length along the streamline, 

(24) 

ro(r) describes the radial variations of the kinematic porosity, which can be taken as either constant or 

radially varying, and V is the Darcy velocity, which is obtained from equations (19.1) and (19.2). 

The convective travel times are calculated for various distances from the release point to the drift 
wall and for different values of orientation relative to the direction of the regional flow. The travel 
time tends to be infinitely long when the release point approaches the critical streamline delineating the 

capture zone, and, as expected, for a given distance within the capture zone, the travel time is longer if 

the tracer is injected downstream relative to the drift for the regional flow. It is interesting to consider 
the ratio of the travel times from two points located symmetrically on opposite sides of the drift as a 

function of distance for various orientations. That ratio is higher when the segment joining the two 

points makes a smaller angle with the regional flow direction and, for any orientation, incr~ses sharply 
when one of the points approaches the critical capture zone streamline. 

As we are able to compute the travel time from any point to the drift, more complex transport 

problems can also be studied, such as the inclusion of longitudinal dispersion along each streamline: 

where ClL is the longitudinal dispersivity (constant throughout the medium) and <Vp> = lite is the mean 
pore velocity along the stream tube (I is the total length of the path). A simple computer program has 

been prepared to perform this calculation. 

The tracer breakthrough curve along each stream tube is given by an approximate theoretical 
expression for a Dirac delta injection of a conservative tracer of mass m in a tube of length I, where 
the pore velocity <Vp> is constant 

C(t) = (25) 
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Practically, the tracer is injected in a region of finite spatial extent. This results in additional 

kinematic dispersion, since the tracer particles follow their own distinct streamlines, and have different 

convective travel times to the drift. For n tracer particles released over the injection interval, each par­

ticle gives a response according to equation (25) and the total breakthrough curve is obtained by a 

superposition of these responses weighted by the corresponding fluxes: 

n 

L <Vp>j Cj(t) 

C(t) = j=1 
(26) 

where each Cj (t) is given by (25) with elementary mass injection, 

where Co is the injected tracer concentration in the release domain and dQj the elementary volume of 

the discretized release domain. 

Let us consider a case of practical interest, in which the tracer is injected between two packers 

located at distances R 1 and R 2 from the drift axis (R I<R ~ in a borehole drilled radially from the drift. 

Similar field experiments have been carried out, for example at Fanay-Augeres (Cacas et aI., 1987a, b). 

The borehole makes an angle e with the direction of the regional flow. Two cases can be distinguished 

on the basis of the location of the release segment relative to the capture zone. 

(1) If it is located completely inside the capture zone, the convective travel times are all between 

the values t 1 (for R I) and t 2 (for R~. The tracer breakthrough is concentrated mainly between t 1 and 

t 2, but longitudinal dispersion smoothes the curve and introduces both earlier and later arrivals (Figure 

15A). Tracer'recovery is 100%. 

(2) If the release segment extends beyond the capture zone, some tracer particles never reach the 

drift (partial recovery) and others, located inside the capture zone but close to the singular streamline, 

have extremely long travel times. Thus the purely convective travel time starts at t 1 but has no upper 

limit, and the tracer breakthrough curve has a very long tail. Longitudinal dispersion smoothes the 

early arrival part of the curve (Figure 15B) but does not have much effect on the later part, for which 

kinematic dispersion is caused mainly by convective travel time differences from one streamline to 

another. 

The simulated tracer breakthrough curves in Figure 15 concern a homogeneous and isotropic 

aquifer with no skin around the drift. Similar calculations can be performed with any type of skin. 

Qualitatively, it is expected that a configuration with radially isotropic or anisotropic permeability 

change around the drift would give a similar result because the flow is mainly radial in the vicinity of 

the drift, as the Darcy velocity near the drift is controlled by the flow rate to the drift rather than by 

permeability. Note that the effect of porosity change near the drift has not been studied but could 

modify the recovery curves. The patterns obtained in Figure 15 should be borne in mind in the analysis 

of tracer breakthrough at the drift from radial boreholes, so that such behaviors are not attributed to 

other unrelated effects. 



. " 

- 21 -

4. CONCLUSION AND PERSPECTIVES 

The present study has discussed the classical notion of skin and extended it to the more general 

case of a heterogeneous and radially anisotropic region around a wellbore or a drift. Purely radial flow, 

regional flow without pumping, and combined radial and regional flow have been considered. Taking 

advantage of the cylindrical symmetry that is assumed in the configuration, the steady-state flow prob­

lem can be analytically reduced to one dimension and solved for any radial distribution of anisotropic 

hydraulic conductivity by numerically integrating a linear system of two coupled first-order differential 

equations. A computer code has been written to calculate the hydraulic potential and Darcy velocity 
fields, plot the streamlines and equipotentials, and perform travel time calculations and tracer test simu­

lations. This is a flexible tool that can be used for a number of applications. 

In order to optimize the accuracy of measuring regional flow velocity by the borehole dilution 
technique, the effect of a complex isotropic skin around a well bore on the convergence factor has been 

examined and compared with previous results. The conventional model of a skin (finite radius and con­

stant permeability change) may be a correct approximation in the case of a positive skin (permeability 

decrease near the well). But for negative skin very high convergence factors (up to or even over 10) 

can be obtained if the complex developed skin region varies continuously in permeability. This does 

not occur in the case of a conventional skin, for which the upper limit is 4. 

The impact of a conventional and a complex skin on a single-well capture zone has been investi­

gated. In both cases, the effect of the skin is generally not significant enough to invalidate the classical 

result. However, if the well is located in a natural zone of dimension 100--1000 m that is more perme­

able than the rest of the aquifer, the capture zone may be much smaller than that predicted by assuming 

a homogeneous aquifer. 

The more important application is probably in the analysis of piezometric data and tracer tran­

sport data around large-diameter wells or underground drifts. In these cases, the flow around the well 

or drift may be significantly distorted by the combination of radial and regional flow, as well as by the 

possible permeability change due to the stress redistribution around the hole. Many plots given in this 
paper are examples of what may be observed in the field, and they will be helpful in the analysis of 

such field data. In a real field study, the problem would be to fit some parameters (radial and regional 

flow, hydromechanical and dispersive properties of the medium around the hole) to the flow model pro­

vided in the present paper in order to match the field data as closely as possible. That inverse problem 

would not be straightforward or unique, and has to be done numerically by trial and error. 

The semi-analytic results provided in this paper will provide an appropriate background for field 
data analysis, and also provide useful guidelines for detailed numerical modeling . 

NOTATION 

a (r), b (r) auxiliary functions defined in (10) 

e aquifer thickness 

h depth of a drift under water table 

iw apparent hydraulic gradient at a cemented drift 
i... hydraulic gradient for the unperturbed regional flow 
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length of the convective path from a point to the drift 

mass of injected tracer 

overburden stress 

dimensionless pumping rate 

radial coordinate (from well or drift axis) 

radius at which the stagnation point is located 

value of rs for a homogeneous aquifer 

skin factor 

convective travel time to the drift 

complex skin parameter (see (2» 

tracer concentration 

longitudinal dispersion 

hydraulic conductivity (isotropic skin) 

hydraulic conductivity at no stress 

hydraulic conductivity of the unperturbed aquifer 

hydraulic conductivity of a conventional skin 

limit value of K at high stress 

radial hydraulic conductivity (anisotropic skin) 

tangential hydraulic conductivity (anisotropic skin) 

= ."jKe(r)Kr(r) 

hydraulic conductivity (tensor) 

pumping rate 

critical value of pumping rate (defined by (21» 

outer radius of a conventional skin 

penetration radius of a complex skin 

radius of the well or drift 

local Darcy velocity (absolute value) 

local pore velocity 

mean pore velocity along a path 

radial component of Darcy velocity 

tangential component of Darcy velocity 

apparent Darcy velocity at the well (drift) 

Darcy velocity of the unperturbed regional flow 

= ."jKe(r)/Kr(r) 

longitudinal dispersivity 

complex skin parameter (see (2» 

azimuthal coordinate 

hydraulic potential 

stream function 

stress components 

kinematic porosity 
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TABLE lA 

plot label u 'Y skin factor s convergence factor ::: 

a -4.15 1. -2. 5.44 
b 2.10 1. 4. 0.87 
c 2.96 2. 4. 0.68 
d 5.07 10. 4. 0.47 

Value of parameters and calculated skin and convergence factors for complex isotropic wellbore skins 
described by equation (2). 

TABLEIB 

stress non-elastic deformation skin factor s convergence factor ::: 

no no 0 2 
yes no 1.68 0.31 
no yes -D.66 2.13 
yes yes 1.37 0.41 

Value of skin and convergence factors around an underground drift, with Kr and Ka given by (4.3) and 
(4.4). Stress-induced skin parameters are Ko = IOK_ = 100K/. Parameters induced by inelastic defor­
mation are u = -2 and 'Y = 20. 
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Fig. 1. (A) Examples of radial variation of hydraulic conductivity in a complex isotropic skin around a 

wellbore. using equation (2). Parameters corresponding to curves a. b. c. and d are given in 
Table lA. (B) Schematic radial variations of the principal values Kr and K 9 of hydraulic conductivity 

in the complex radially anisotropic region around an underground drift. showing result from stress redis­
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Fig. 2. Exponential fitting to the experimental variations of rock hydraulic conductivity K as a function 
of stress cr for Wildmoor sandstone (data from Holt, 1989). 
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.-, 

- 29-

~ 
:e-' 
~ 

8 
~ 
-; 0.8 
.::1 
c: 
£ 
0 
Po. 
u 
~ 
~ 

0.6 

» 
.c: 

{I) 
{I) 
Q) 

"2 ,0.4 
0 .... 
{I) 

c: 
Q) 

e .... 
0 

0.2 

o 
o 5 10 15 20 25 

Dimensionless distance r tRw from hole axis 
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plex skin. Plots a to d refer to the configurations so labeled in Figure lA. Note that the 

configurations b to d, corresponding to the same skin factor s=4, behave differently close to the well 
but give the same potential values at distances more than about 20 times its radius. 
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skin. (A) developed wellbore (case a of Figure IA). (B) Damaged wellbore (case b of Figure IA). 

(C) Open drift. (D) Cemented drift with stress and inelastic defonnation effects (solid lines in Figure 

IB). 
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Fig. 6. Radial variation of the hydraulic potential in the direction e=O (upstream, parallel to the flow) 

for regional flow without pumping/injecting. (A) Wellbore with a complex isotropic skin ( a-b refer 

to the configurations labeled a -b in Figure lA). (B) Open or cemented drift with or without stress 

effect (configurations of Figure IB, flow types 2 and 3). 
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Fig. 7. Radial variation of local Darcy velocity, in three azimutal directions, for regional flow without 

source term around a drift with or without stress effect: (A) open drift, (B) cemented drift. 
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Fig. 8. Equipotentials and streamlines for regional flow around a producing well with a complex isotro­

pic skin, showing the cases of subcritical, critical, and supercritical pumping rates for configurations a 
and b of Figure lA. Note that for a given value of pumping rate, the flow may be either sub- or super­

critical, according to the skin: the pumping rates for subcritical flow in the developed well (top, left) 

and for sllpercritical flow in the damaged well (bottom, right) are about the same. 
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Fig. 14. Acquisition of hydraulic potential data in observation wells to study the flow around an under­
ground drift: Fanay-Augeres, France (from Cacas et aI., 1987): (A) position of drift and boreholes, (B): 

observed piezometric heads (in m). 
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Fig. 15. Simulated tracer breakthrough curves for the injection of a tracer in a borehole between two 
packers located at distances rl and r2 from the drift wall. The borehole makes an angle e = 90° with 

the direction of the regional flow, and the configuration parameters are: drift radius Rw = 1 m, no skin, 
kinematic porosity ro = 10-2, Darcy velocity of regional flow V 00 = 1~ m S-I, flow rate to the drift 

Q = 2xlO-4 m3 S-I for 1 m length, injected mass of tracer rno = 5 kg'. The stagnation point is located at 

a distance rs = 31.8 m from the drift axis. (A) Total recovery (injection interval between 10 and 15 m, 
entirely inside the capture zone). (B) Partial recovery (injection interval between 44 and 49 m, extend­

ing beyond the capture zone). 
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