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Effects of Nonuniform Potential and Current 
Distributions in Electrochemical Systems 

Alan C. West 

Abstract 

We examine the effects that nonuniform current and potential 

distributions have on electrochemical systems. Chapter I provides 

definitions used by researchers studying these phenomena. In chapter 

2, we discuss boundary integral techniques, which are powerful numer-

ical methods used in such studies. In chapters 3 and 4, an asymp-

totic solution is developed that shows explicitly how the extreme 

characteristics of a primary current distribution are approached when 

the ohmic resistance of the cell becomes large compared to the resis-

tance of the faradaic reaction. It is shown how these results can be 

used to complement and verify more common numerical analyses. 

Chapters 5 and 6 show how to determine exchange current densities and 

transfer coefficients when the reaction rate al?ng the electrode is 

nonuniform. The results can be used to design experiments that pro-

vide for a more straightforward interpretation of data. The ohmic 

resistance and current distribution for a recessed disk electrode are 

given in chapter 7. Chapter 8 discusses briefly experimental work 

intended to elucidate whether the dissolution kinetics of ferrous-

sulfate, films must be included in mathematical descriptions of the 

complicated dynamic behavior of iron dissolution in sulfuric acid. 
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CHAPTER 1 
Introduction 

This chapter defines terms that are used by researchers studying 

how reaction rates, electrochemical potentials, and surface concen-

trations are distributed along an electrode. 

The best known parameter used in characterizing current distri-

but ions is the Wagner number. Its importance was established by Hoar 

and Agar [1] and was clarified by Wagner in 1951 [2]. In general, 

the Wagner number does not characterize completely the current and 

potential distributions in the solution. In 1966, Newman [3] showed 

for the rotating disk electrode which parameters are important for 

the various limiting cases and for the general problem. With his 

1966 paper, the study of the distribution of current density on 

planar electrodes becomes a well-defined science. The study of 

current distributions in porous electrodes is also understood [4]. 

Wagner Number 

The Wagner number represents the ratio of the kinetic to ohmic 

resistances to the flow of current. As the Wagner number approaches 

zero, the current approaches a "primary current distribution." When 

the kinetic resistance dominates, the distribution of current density 

is uniform. Since the Wagner number is defined by different vari-

ab1es for different reaction regimes, Newman does not explicitly use 

it. 
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Mass-Transfer Controlled Current Distributions 

An important limiting case is the mass-transfer controlled (lim

iting) current distribution. In the absence of migration, the limit

ing" current density is determined by procedures that are common in 

the heat and mass-transfer literature [5,6,7]. Newman showed [8] 

that, for boundary-layer flows, migration at the limiting current 

does not affect the distribution of current but does change its mag

nitude. 

Primary Current Distributions 

In the absence of concentration variations, Laplace's equation 

determines the current distribution. When the kinetic resistance of 

the interfacial reaction' is zero compared to the ohmic resistance,' 

the current distribution is known as primary. This case is important 

because it may be desirable to compare different cell designs to 

minimize the ohmic resistance. The ohmic potential drop increases 

with the size of an electrochemical system; therefore the primary 

current distribution is approached as a system is scaled-up. The 

primary current distribution is also approximately valid, for exam

ple, for'short times after a step change in the electrode potential. 

Secondary Current Distributions 

In practical situations, the kinetics of a reaction are impor

tant. When an interfacial resistance is included but mass-transfer 

effects are neglected, the current distribution is known as secon

dary. To study the effects of finite kinetics, it is instructive to 
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study the two limiting cases of the Butler-Volmer equation, known as 

linear and Tafel kinetics. The behavior of a system, for a given 

Wagner number, depends on which reaction regime is applicable. A 

dimensionless exchange current density is the important parameter for 

linear kinetics, and a dimensionless average current density is 

important in characterizing the distribution for Tafel kinetics. 

For linear kinetics, analogous boundary conditions are found in 

heat-transfer problems, and experience obtained from these studies 

can provide insight into the behavior of current distributions. For 

Tafel kinetics, analogous boundary conditions do not exist, and it is 

necessary to develop intuition specifically for this important limit

ing case. For example, Smyrl and Newman [9] show that, under certain 

well-defined conditions, the current density at the edge of an elec

trode is proportional to the square of the average current density. 

Tertiary Current Distributions 

Below the limiting current, when both ohmic potential drop and 

convective diffusion are important, the problem is complicated. New

man discussed this class of problems [10]. Complete characterization 

of a tertiary current distribution can require many parameters. 

Porous Electrodes 

Newman and Tiedemann [4] reviewed the solution procedure for the 

determination of current distributions in porous electrodes. The 

same limiting cases discussed above are important. Intuition 

developed from studying planar electrodes aids in unde-rstandirtg the 
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current distribution in porous electrodes. 

Summary 

Significant progress in studying current distributions requires 

useful numerical procedures. Chapter 2 discusses a numerical method 

that we have used for studying primary and secondary current distri

butions. Chapters 3 through 7 present results that are obtained with 

this method. It is hoped that these results are directly useful to 

the reader. If not, they elucidate behavior that is helpful in 

understanding phenomena observed in other current distribution stu

dies. 

Chapter 8 discusses experimental observations of the Fe/H2S0
4 

system. The complicated behavior that is observed for this system 

is, in part, a result of nonuniform potential and current distribu

tions. This is a passivating system,. which makes it quite sensitive 

to the potential distribution along the electrode. 

To allow for leisurely reading, the chapters have been largely 

written so that they can be read independently. Particularly, the 

details of the numerical method &iven in chapter 2 are unnecessary 

for the rest of the thesis. 
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CHAPTER 2 
An Iterative, Boundary Integral Technique 

Laplace's equation often arises in mathematical descriptions of 

electrochemical systems. This chapter discusses the use of boundary 

integral methods for solving it. For a more general discussion of 

numerical methods used in current distribution problems, see refer-

ences [1], [2], [3], and [4]. Greenberg [5] and Ramkrishna and 

Amundson [6] gave details pertaining to the application of boundary 

integral techniques'to other linear operators. 

Boundary-elements have become increasingly popular since the 

mid-1970's [7]. [8]. [9]. Also becoming popular are the finite-

element methods. Comparisons of these methods are found in papers by 

Hume et al. [10) and by Dukovic and Tobias [11]. Most of the advan-

tages and disadvantages of boundary integral techniques apply regard-

less of how the equations are formulated or solved. 

Boundary-element methods require fewer nodes, at which the 

finite-difference approximations to the equations are solved, than 

finite-element methods. However, the resulting equations form a 

dense matrix (as opposed to a banded matrix). Therefore, computation 

time is not greatly reduced, even though the number of unknowns can 

be considerably less. 

Contrary to many techniques [7), [8), [9), the solution pro-

cedure that we discuss does not pose the problem as one to be solved 

by the method of weighted residuals. The method permits any type of 
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basis function t and allows for the form of the basis function to vary 

with position. This is particularly important for primary current 

distributions. 

Although the formalism of certain boundary-element methods is 

relatively new, boundary integral methods have existed for a long 

time [12]. Wagner [13] used integral equations for the analytic 

solution of current distribution problems. Newman [3] and Cahan et 

a1. [14] discussed the use of boundary integral equations to ca1cu-

late current distributions numerically. 

The technique of Cahan et a1. discretizes the boundary condi-

tions and solv~s for the potential near, but not on, the boundary. 

In this manner, the method a~oids evaluating the singularities that 

arise in equations (5), (12), and (14)." We prefer handling direc t1y 

these singularities because errors that ariSe from their procedure 

are avoided. This becomes particularly important in the calculation 

of primary current distributions. 

Green's Theorem 

Boundary integral methods are based on the second form of 

Green's theorem (see [15], for example), 

(1) 

t Basis functions is a term borrowed from traditional finite and 
boundary-element methods. It describes the manner in which a 
function is interpolated between nodes. 
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If ~ satisfies Laplace's equation, equation (1) becomes 

(2) 

A clever choice of g greatly facilitates the determination of 

the potential. Specifically, g is chosen to satisfy 

V2g _ 6(x-x y-y z-z) 
q' q' q' 

where 6 is the three-dimensional Dirac delta function, 

are the Cartesian coordinates, and x ,y ,z specifies a q q q 
1 

Green's function g that satisfies equation (3) is g - e ' 
3 

(3) 

x, y, and z 

point. One 

where 

e
3 

- «x-x )2 + (y_y )2 + (z-z )2)~. (4) 
q. q q 

Physically, g can be thought of as the potential at x ,y ,z due to a . q q q 

point source of current at x,y,z. 

Substituting g into equation (2) gives 

-a3~(x ,y ,z ) -q q q (5) 

where Q 3 is 4~ for a point, x ,y ,z , in the domain of the problem, q q q 

2~ for a point on a smooth boundary, and zero for a point outside the 

domain. In general, 

Q -3 
lim 

R -0 
o 

A 
s 
2 ' 

R 
o 

(6) 

where A is the surface area of the portion of a sphere around s 

x ,y ,z which falls within the domain of the problem [7]. Figure 1 q q q 

shows the two-dimensional analog to Q3' Equation (5) shows that the 

solution for ~ is reduced to a problem on the boundary of the domain. 



J.R~ o 

Three Dimensions Two Dimensions 

Figure 1. Schematic showing the coefficient given in equation (6) for two
dimensional geometries. As is the surface area of the portion of the sphere 
that falls within the domain of the problem, and Cs is the arc length of the 
portion of a circle that falls within the domain. 

9 



10 

Once the potential and current density are known everywhere on the 

boundary, the potential can be found anywhere in the domain. 

Since equation (3) is linear, solutions for g can be superposed. 

Specifically, if gh satisfies Laplace's equation, ~l + gh satisfies 
3 

1 equation (3). Choosing gh so that n.V(e- + gh) - 0 everywhere along 
3 

the boundary of the domain can reduce greatly the numerical computa-

tion necessary for a solution since equation (5) becomes 

-a3~(x ,y ,z ) - I n· [(} + gh)V~ldA. 
q q q av ~3 

(7) 

This approach is taken, for example, by Alkire and Mirarefi [16] and 

has been used extensively by mathematical physicists [17]. A good· 

discussion of these methods is given by Greenberg [5]. 

Many electrochemical cells are approximated as two dimensional 

or axisymmetric. The next two sections give boundary integral equa-

tions that are more conveniently used for these cases. 

Two-Dimensional Geometries 

If the geometry of interest contains no z dependence, equation 

(2) can be written as 

-[! ~Q2gdXd+," - [fAn. [gQ~ ~Qg)d.e]"Z' (8) 

where d.2 is a differential line element. If g is now chosen to 

satisfy 
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Dr a2 
+ ~ - S(x-x y-y) 

2 2 q' q' ax ay 
(9) 

then equation (8) reduces to 

I ( £.g a 4» 
Q24>(x ,y ) - 4> a - g a- di, 

q q aA n n (10) 

where a/an implies the component of the gradient that is normal to 

the boundary. Q
2 

is 211" for a point inside the domain, zero for a 

point outside the domain, and 11" for a point on a smooth boundary. 

Figure 1 shows Q
2 

for a point where the slope of the line drawn 

tangent to the boundary is discontinuous. 

The two-dimensional Green's function g is g =" 1n~2' where 

e
2 

- (X_Xq)2 + (y_yq)2)~. (11) 

g is the potential at x ,y due to a line source of current that is 
q q 

perpendicular to the xy plane and passes through the point x,y. Sub-

stituting g into equation (10) gives 

(12) 

Axisymmetric Geometries 

For axisymmetric geometries, equation (5) can be written as 

-a 4> (r ,Z ) - In· [ J:.. V4> - 4> vJ:..] rd8 di , 
3 q q av ~ 3 ~ 3 

(13) 

where r,6,z are the cylindrical coordinates, r ,Z specifies a loca
q q 

tion, and rd8di is the differential surface area. 
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Since by assumption the problem is axisymmetric, the 0 depen-

dence of equation (13) can be eliminated to give 

-'" ~(r z) - f (g a~ - ~ fig)rdi "'3'*! , an an ' q q 8A 
(14) 

where we now set 

(r+rq)2 + (Z_Zq)2)~ 
g -

4K(m) 
(15) 

g can be thought of as the potential at r,z due to a ring of point q q 

sources of current at r,z. K(m) is the complete elliptic integral of 

the first kind, 

1f/2 
K(iit) - f 

o 
dO 

2 ~. 
(1 - m sin 0) 

and the <modulus m is given by 

4rr 
q 

m - -------2--~------2 . 
(r+r) + (z-z ) 

q q 

(16) 

(17) 

Approximate forms of K(m) are given in Abramowitz and Stegun [18]. 

After integration over 0, di signifies the length element for the 

path enclosing the region in the r,z half plane and n signifies a 

direction normal to this path. Where the path coincides with the z-

axis, the integrand of equation (14) is zero. 

Wrobel and Brebbia gave [19] 

fig 
an (18) 
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4E(m)(z-z ) 
q 

(r+rq)2 + (Z+Zq)2)~ (r_rq)2 + (Z_Zq)2) 

e 
Z 

13 

where e and e are the unit vectors in the rand Z directions,t and 
r Z 

E(m) is the complete elliptic integral of the second kind, 

~/2 2 ~ 
E(m) - I (1 - m sin e) de. 

o 
(19) 

Approximations of E(m) are also given in Abramowitz and Stegun [18]. 

Interpolation Methods 

-The numerical solution of differential (or integral) equations 

requires finite-difference approximations. It, therefore, is impor-

tant to interpolate accurately between nodes. In .,modern texts con-

cerned with boundary-element or finite-element methods some discus-

sion of interpolation methods is found under the discussion of basis 

functions [20]. Popular (local) basis functions are known as qua-

dratic or linear. These terms indicate the order of the interpolat-

ing polynomial. For example, a linear basis function varies linearly 

between two successive nodes. Quadratic basis functions, then, fit a 

quadratic equation between three successive nodes. 

and 

t Useful relations for deriving these and similar equations are: 

dK(m) 
dm 

K(m) E(m) 
2m + 2m(1-m) 
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Many textbooks give few details on interpolating functions that 

vary in a strongly nonlinear manner. For example, one might try to 

interpolate the primary current density near the edge of a disk e1ec-

trode, where [21] 

ti£2. 
i 
avg 

0.5 
(20) 

It is proper to interpolate the primary current density on a disk by 

assuming that it varies linearly with respect to (1 - r2 /r2) -~ .Of 
o 

course, for problems to be solved numerically, the exact functional 

relation is not known a priori. Asymptotic solutions, though, 

predict the manner in which the current density varies, and can be 

used to avoid numerical errors (such as an artificial wiggle in the 

current distribution near the edge of an electrode) that commonly 

occur in the solution of primary current distributions. The interpo-

lation procedures that we use assume a linear variation in the 

appropriately stretched coordinates between two succesive nodes. 

Away from insulator/electrode interfaces, variations in current 

density and potential are sufficiently mild that special interpola-

tion procedures are unnecessary, although they may still improve 

accuracy and computational efficiency. Near an electrode edge, vari-

ations may be large. For primary current distributions, the current 

density is infinite· at the edge of the electrode if the interior 

angle of intersection between the insulator and electrode is obtuse 

[22] . 
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In reality, kinetic resistances become important, and the 

current density at the edge remains finite. If the kinetic resis

tances are included, it, therefore, is less important to know a 

priori how the current density varies. Nevertheless, asymptotic 

equations are useful for understanding and verifying results. 

Smyrl and Newman [23] described current distributions for large, 

finite ohmic resistances for a coplanar electrode and insulator. 

Previously, Ni~anciog1u and Newman [24] showed the behavior for large 

ohmic resistances for linear kinetics or. a disk electrode. Chapter 3 

generalizes these results. 

Integration Procedures 

For two-dimensional geometries, when the potential or current 

density is interpolated linearly with respect to Cartesian coordi

nates, the integrals (between two successive nodes) resulting from 

equation (12) can be evaluated analytically. 

The integrals appearing in the axisymmetric equations must be 

solved numerically. Standard integration methods are used for we11-

behaved functions. Functions containing singularities are handled by 

the subtraction and addition of a similarly behaved singularity or by 

changing the variable of integration. Edwards [25] discussed these 

procedures. For primary distributions, accurate solutions require 

knowledge of the asymptotic behavior of the current distribution. 

In addition to the numerical difficulties that arise because of 

singularities in the, current distribution, the axisymmetric Green's 



function is singular as r,z ~ r,z since [18] 
q q 

lim K(m) - ~ In(l :6 m) 
m--+l 

16 

(21) 

This logarithmic singularity is integrated numerically by the addi-

tion and subtraction of a similarly behaved singularity. 

When knowledge of the correct asymptotic behavior is used, 

interpolation and integration methods can yield highly accurate solu-

tions. For the calculation of the primary current distribution on a 

disk electrode, the integration techniques can give solutions accu

rate to within a relative error of 10-8 . 

As a concrete example of these methods, it is instructive to 

look at the integral equations written for the disk geometry. The 

potential distribution on the disk electrode arid insulating plane is 

given by [3] 

r i (r)K(m)r 
2 

0 

~(r ) - f n dr (22) 
q 7r1t 

0 r + r q 

where r is the radius of the disk electrode. For a primary current 
0 

distribution, the potential ~ is specified on the electrode, and the 
o 

current density, if it were unknown, can be described by 

~ (~(r) - ~ )E(m)r 
. () 21t f 0 d 
~r --- 2 r. 
n q 7r r (r-r) (r+r ) 

o q q 

(23) 

For secondary current distributions, equation (23) is unnecessary 

since a kinetic rate equation relates ~ (r ) and i (r ). 
o q n q 

Equation (22) contains examples of integrable singularities. 

For primary distributions, equation (5) of chapter 3 suggests that 



17 

i ~ (r -r)-~, which suggests changing the variable of integration to 
n 0 

x - (r -r)~. After substituting for the exact form of i , as given 
o n 

by equation (20), equation (22) becomes 

~(r ) -
q 

2r i o avg 
Jr-o 

f 
o 

. 2 
K(m)(r -x )dx o 

2 ~ 2' (2r -x ) (r +r -x ) 
o q 0 

which eliminates the singularity caused by the current density. 

(24) 

K(m), though, still presents a problem because it contains a 

logarithmic singularity when r ~ r . To handle this singularity, if 
q 

r - r the integral could be written as q 0' 

~(r ) -o 

2r i 
o avg 
?fit 

J2r i 
o avg 
?fit 

Jr-o 

f 
o 

Jr- ) . 
o 

(25) 

Logarithmic singularities can also be handled by a special Gaussian 

quadrature procedure [26]. 

To handle some of the singularities that arise in these prob-

lems, Brebbia [27] suggests a device in which the evaluation of the 

integrals near some of the singular points is avoided. His trick 

recognizes that a system with constant potential everywhere has no 

current flowing. Therefore, equation (14), for example, becomes 

Q 3 - f £Ka rdi. . 
aA n 

(26) 

In his method, this integral is split into the regions between node 
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points, and the region containing the singularity is evaluated by 

difference so that the above equation is satisfied. This does not 

seem like a good idea because all of the numerical errors arising 

through the evaluation of the other elements of the integral are 

incorporated into the term that is the largest contributor. His 

idea, though, is useful because equation (26) provides a test on the 

accuracy of the integration procedures. Another approach that can 

test the accuracy of a solution is to evaluate equation (5), (12), or 

(14) at points outside the domain, where Q
3 

- o. 

Solution Method 

As was stated earlier, equation (12) or equation (14), when 

written for each node on the boundary, results in a "dense" matrix. 

This matrix equation is often solved by Gaussian elimination, but can 

also be solved by the method of successive substitutions. Edwards 

(25) discussed these two approaches. She concluded that the method 

of successive substitutions works well if a good initial guess is 

provided and a reasonable damping factor is used. The savings in 

computation time can be substantial for a large matrix. The disad

vantage is that it is often more difficult to make the method of suc

cessive substitutions converge. 

Despite her reported problems, we used this method. We also 

found that convergence depends on the value of the damping factor. 

With a proper choice and a good initial guess, the method of succes

sive substitutions requires fewer calculations than a Gaussian-

elimination procedure. For example, substantial savings can be 
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obtained if the results from a run with fewer node points is used as 

the initial guess. 

To make the method of successive substitutions an attractive 

alternative to a Gaussian-e1imination/Newton-Raphson procedure, an 

efficient algorithm to determine the optimum damping factor must be 

developed. This was not pursued since computer costs continue to 

decrease, and thus, for many applications, speed can be sacrificed 

for robustness. 

Summary 

A rigid method is not presented in this chapter. In fact, we 

purposely ,avoid the formalism of other methods in favor of tailoring 

the procedure to the particular problem. By using asymptotic solu

tions to guide the development of a method, greater accuracy, lower 

computation costs, and greater physical insight are possible. Using 

asymptotic results with more formal methods is possible, although 

this may require sacrificing generality, which is a major advantage 

to such procedures. 

A 

A 
s 

c 
s 

E(m) 

List of Symbols 

indicates integration over the boundary, 

2 surface area shown in figure 1, cm 

arc shown in figure 1, cm 

2 cm 

complete elliptic integral of the second kind 



e ,e 
r z 

g 

i 
n 

K(m) 

r 

r 
o 

R 
o 

v 

X,Y,z 

8 

avg 

edge 

q 

unit normal vectors 

-1 
Green's function, cm 

normal component of the current density, A/cm
2 

variable of integration in two dimensions, cm 

complete elliptic integral of the first kind 

radial position coordinate, cm 

radius of the disk, cm 

radius shown in figure 1, cm 

indicates integration over the entire domain, 
3 cm 

Cartesian coordinates, cm 

coefficients shown in figure 1 

interior angle of intersection between electrode 
and insulator, radians 

Dirac delta function 

variable of integration in cylindrical 
coordinates, cm 

cylindrical coordinate, radians 

solution conductivity, S/cm 

distance for two-dimensional geometries, cm 

distance for three-dimensional geometries, cm 

3.141592654 

potential of the solution, V 

Subscripts 

average 

electrode/insulator interface 

coordinate at which the potential is being solved 

20 

... 

", 
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CHAPTER 3 
Current Distribution near an Electrode Edge 

as a Primary Distribution is Approached 
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It is well known [1] that the primary current density is infin-

ite at an edge of an electrode if the angle of intersection between 

the electrode and insulator is obtuse. Also, the primary current 

density at the edge is zero for an acute angle. In all practical 

cases, the kinetics of the interfacial reaction enters, and these 

extreme values do not occur. 

This chapter demonstrates how the potential and current approach 

a primary distribution as the kinetic resistance becomes negligible 

(compared to the ohmic resistance). The analysis is valid in the 

edge region of an electrode and insulator, is a function of the 

angle, f3, shown in figure 1, and is independent of the geometric 

details of the rest of the electrochemical cell. Results from this 

abstract geometry can be use to verify numerical investigations of 

actual geometries. Additionally, an a priori estimate of the 

behavior in an edge region can aid in the development of more effi-

cient and more accurate numerical procedures. 

Ni~ancioglu and Newman [2] solved this problem for linear kinet-

ics in the edge region of a disk electrode. Smyrl and Newman [3] 

extended the results for the linear kinetics case and gave results 

for Tafel kinetics. Their results are valid when f3 - ~. 

In both of these papers, it was recognized that, for high ohmic 

resistances, the current distribution could be described adequately 
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insulator 

~--------------9 = 0 r =0 electrode 

Figure 1. Primary current distribution in the edge region of an electrode and insulator. 
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by the primary distribution away from the edge region but showed 

large deviations from this distribution near the edge. Stated 

another way, the resistance of the faradaic reaction is important 

only in the edge region. They realized that this suggests that the 

problem is treated properly by a singular-perturbation analysis. 

Primary Current Distribution 

The primary current distribution in the edge region shown in 

figure 1 can be determined by Laplace's equation in cylindrical coor-

dinates, which reduces to 

1: .l.. (r .a4» + ...1..[a
2
4>]_ O. 

r arar r2 ae 2 

The boundary conditions are 

and 

a4> _ 0 
ae at 

4> - 0 at e - o. 

The solution (for small r) to equations (1) through (3) is 

~ __ ~ p r~/2~ sin(~e) 
~K 0 2~ , 

(1) 

(2) 

(3) 

(4) 

where P relates to the magnitude of the primary current distribuo 

tion: 

K a~ _ P (~/2~-1) 
r ae 0 r 

(5) 

It is necessary to introduce P because equations (1) through 
o 

(3) do not completely specify the solution, and the magnitude of the 
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current can be changed by changing the cell potential. The placement 

of the counterelectrode and the geometric details of the working 

electrode in the region away from the corner region are not given. 

To do so would eliminate the possibility of a general analysis. In a 

region sufficiently close to the corner, the distribution of current 

density behaves in a manner independent of these details. In gen-

eral, the details of the geometry away from the edge region are 

incorporated into P , which is determined through comparisons of 
o 

equation (4) with the primary current distrib,ution valid for the 

entire geometry. Smyrl and Newman [3] showed that P - i Jr /8 for o avg 0 

the rotating disk electrode. They also gave P for the flow-channel 
o 

geometry. 

Linear Kinetics 

For linear kinetics, the boundary condition along the working 

electrode becomes 

It a~ 

r ae 
(0 +0 )Fi 

a C 0 (V _ ~ ) 
RT 0 ' 

(6) 

where V is the potential of the electrode and ~ is the potential of 
o 

the solution adj acent to the electrode. For large values of the 

exchange current density, the current is given adequately by equation 

(5) for large (but not too large) values of r. Near the corner, 

though, kinetics is important, and the current deviates from the pri-

mary distribution. To emphasize .this corner region, a stretched 

radial distance should be defined by 



r - rSL - r 

and a stretched potential by 

(a +a )Fi 
a C 0 

RTIt 

4J - (~ - V) 
S1r/2{3 

It L 
p 

o 

The problem, in terms of these variables, is given by 

with the boundary conditions, 

and 

~ - 0 a8 at 8 - {3 

1 ~ - 4J at 8 - o. a8 0 
r 

29 

(7) 

(8) 

(9) 

(10) 

(11) 

Finally, for large r (but small r) 4J must satisfy the condition that 

¢ ~ _ ~ ;1r/2{3 sin(1r8) 
1r 2{3 

as r ~ ~ (12) 

(r ~ ~ because SL becomes large.) 

It should be noted that V has effectively been set equal to zero 

in the matching condition given by equation (12). This is justified 

for obtuse angles because the primary current density (see equation 

(5») decreases for large r. Acute angles require the treatment out-

lined in the appendix. 

Details of the numerical solution for 4J are given below. It 

should be recognized that the equations are free of parameters and 

that 4J is therefore independent of the stretching parameter SL' 
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An important result of this section is that, for high exchange 

current densities, the current density in the corner region is given 

by 

. [(a +a )Fi ](1-~/2P) 1i!l _ _ a c 0 ~ 
P KIlt 0 . 

o 

(13) 

That the current density at the edge of the electrode approaches 

infinity as a power of a parameter involving the exchange current 

density should not be too surprising since previous experience [4] 

suggests that such a parameter dictates the distribution of current. 

for linear kinetics. 

Tafel Kinetics 

For anodic Tafel kinetics, the boundary condition along the 

electrode is 

- i o [

a' F 
exp ~ (V (14) 

The exchange current density is no longer a key variable in determin-

ing the distribution of current. Previous experience suggests that a 

dimensionless average current density is the important parameter. 

Since a characteristic length is missing from this problem, no such 

parameter can be defined. P , though, is analogous in that it speci
o 

fies the magnitude of the current, and it may be expected to be 

important for Tafel kinetics. 

If P is large-so that the ohmic resistance is large and the 
o 

analysis is valid-the current distribution far from the edge is 

.. 
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given adequately by the primary distribution. To investigate the 

region where the primary distribution does not apply, the potential 

should be stretched as 

a F a 
RT (~- V) - In(5T) 

and the radial distance by 

[
a Fi ] 

+ ln ~ICO , 

r _ r5
T 

_ r [a~:o)2P/' 

(15) 

(16) 

In terms of these variables, equations (9) and (10) apply, and the 

boundary condition along the electrode becomes 

l£l 
ae 

r 
exp(-~) at e - o. 

o 
(17) 

For large r, ~ must approach the asymptotic solution suggested by 

Smyrl and Newman [3]:t 

':i: 2,q -w/2/3 .' (1C8) ~ ~ - ~ r Sln -- + 
1f 2/3 

as r~CXl 
(18) 

The numerical procedure used to solve for '~ is discussed in the 

next section. For large values of P , the current in the edge region 
, 0 

is given by 

. [a FP ] (2/3/1f-l) 
li!l a 0 exp(-~ ) 

P - RTIC 0 
o 

(19) 

Again, the parameter that is important for specifying the current 

t A complication which could arise in the analysis is that Tafel 
kinetics may no longer apply at distances at which the primary 
distribution is approached. The possibility of entering a linear 
kinetics regime before the primary distribution is approached was not 
investigated. 
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density in the edge region is consistent with previous experience. 

Numerical Analysis 

Since, in two dimensions, currents can not flow to infinity 

wi thout an infini te potential drop, it is necessary to calculate 

deviations from the primary potential distribution. A new potential, 

~, is defined as 

(20) 

where ~p is given by equation (12). To facilitate the solution for 

~, the geometry of figure 1 can be mapped conformally so that the 

insulator and electrode are coplanar. The coordinates of this new 

geometry are related to the original coordinates through 

and e _ 81f 
{3 

(21) 

In terms of these new variables, the problem can be stated as 

1 a ( £1.) ;C ax x ax 

with the boundary conditions: 

and 

For 

£1. _ 0 at e - 'If ae 

1 £1. _ ~(f(~ ) x({3/'If-l) + x-l / 2) at e - 0 . 
x ae 'If 0 

linear kinetics, f(~o) - ~o' and for Tafel 

f(~o) - - exp(- ~o)' 

(22) 

(23) 

(24) 

kinetics, 
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The boundary integral equation describing the potential of the 

solution adjacent to the electrode is 

j In(x-x )2 (f(~ ) x(P/~-l) + x-l / 2 JdX. 
o . q 0 

(25) 

For linear kinetics and P ~ ~/2, the integrand does not approach zero 

quickly enough for the integral to converge. The appendix demon-

strates the modification to the solution procedure necessary to 

obtain convergence. 

A finite-difference approximation to equation (25) was solved 

with an iterative procedure. An upper limit of integration, x , . max 

was chosen to set a finite domain of integration. The contribution 

of the integral for x > x was assumed to be negligible, which is max 

consistent with requiring that the primary current distribution be 

a,pproached at x max 

The accuracy of this procedure was verified by increasing x 
max 

until the value of the current at the corner changed by some small 

amount. A procedure of node-point doubling was also used. The 

resul ts for the case of P - ~ were compared with the resul ts from 

references (2) and (3). Finally, an integral constraint can be used 

to check the accuracy of the answer. This arises from the asymptotic 

behavior expressed in equations (12) and (18) and takes the form, for 

linear kinetics (obtuse angles), 

(26) 

and, for Tafel kinetics, 
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(27) 

The reported values are estimated to be accurate within 0.5 percent. 

Results and Discussion 

Results for linear kinetics are shown in figures 2 and 3. These 

figures, along with equation (13), give a good estimate of the 

current density in the corner region only for large values of 

(a +a )Fi /RTK.. 
a c 0 

Figure 4 shows results for Tafel kinetics. It can 

be used with equation (19) to predict current distributions near 

corner regions for high values of a FP /RTK.. 
a 0 

Our e~perience has shown (and this analysis suggests) that 

numerical difficulties can arise when ohmic resistances begin to dom-

inate. In other words, the results of this chapter become applicable 

when other numerical analyses begin to become suspect. A practical 

use, then, of these results could be as a tool for the verification 

of other results. One test which could be made for linear kinetics 

is to determine whether 

i [(a +a )Fi. ] (l-1f/2/J) 
edge _ A (Q) a c 0 
P . L fJ RTK. 

o 

(28) 

as the right side of the equation goes to infinity. The test for 

Tafel kinetics is whether --------

(29) 

as the right side of the equation goes to infinity. Smyrl and Newman 

[3] have demonstrated. such t'ests for the case of f3 - 1f. The 
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Figure 2. Current distribution for linear kinetics (obtuse angles). 
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Figure 3. Current distribution for linear kinetics (acute angles). 
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Figure 4. Current distribution for Tafel kinetics. 
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coefficients, AL(P) and AT(P) , are shown in figure 5. The appendix 

shows that the value of AL is 6.0 for an angle of P = ff/8. 

By solving the primary current distribution for an actual cell, 

it is possible to relate P to measureable electrochemical and 
o 

geometric variables. It might, though, not be desired to take the 

time to determine the exact relation between P and these other vario 

ables. As a quick check, one might recall that P is proportional to 
o 

i and determine whether the proper relationship, suggested by 
avg 

equation (28) or (29), is followed. 

The analysis can also be used to establish the proper mesh-

spacing fo.r an accurate and efficient finite-difference procedure. 

For linear kinetics, the region where the primary distribution does 

not apply is of the order [

(a +a )Fi ]-1 a C 0 

RTIe 
For Tafel kinetics, the 

region where the kinetic resistance is important is of the order 

Conclusions 

A singular-perturbation analysis has shown explicitly the manner 

in which the current density near an electrode edge approaches 

extreme values as the primary current distribution is approached. 

The results are consistent with previous analyses of a coplanar elec-

trode and insulator and also with the special case of P - ff/2. 
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Figure 5. Dimensionless coefficient which specifies the value of the stretched 
current density at the edge. See equations (28) and (29). 
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Appendix 

For linear kinetics, the solution to equations (9) through (12) 

might be approximated by 

L 
i-O 

n. ( ) - 1. 
A. r cos n. (fJ - 8) • 

1. 1. 
(A.l) 

where n. and A. are determined through the boundary conditions and 
1. 1. 

the matching condition. This series diverges except for certain 

angles. fJ, where it terminates. Three angles which terminate are 

fJ - 1r/2, /3 - 1r/4, and /3 - 1r/8: For these angles, the potential of 

the solution adjacent to the electrode edge is given by 

¢o - -1 (/3 - 1r/2) , (A.2) 

¢ - -1 - r (/3 - 1r/4) , o 
(A.3) 

and 

-6 - 14.48S2r 7.2464r 2 3 
(/3 - 1r/8). (A.4) - r 

As r ~~, the difference between the actual stretched current 

and the stretched primary current (in terms of x) is of the order 

given by 

-1/2 -(1/2+/3/1r) +x a.x . (A.S) 

For angles /3 less than 1r/2, the integral equation (2S) is unbounded 

since the first neglected term is of order greater than x-1 

Stated another way, for linear kinetics and acute angles, the 

first neglected term in the matching condition is sufficiently large 
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along the electrode surface that the integral does not converge. For 

~/4 < p s ~/2, equations (30) and (34) suggest that an equation which 

calculates the deviations of the current density from the first two 

terms of the series will converge. A potential defined in this 

manner is 

(A.6) 

- A1;(~/2P-1)cos(2~ - l)(P - 8)). 
A1 is determined by applying the matching and boundary conditions: 

-1 
A - ----'''---

. 1 sin (P)' 
(A.7) 

The integral equation which gives t/J'. is 

t/J ' - ~2 j 1n(x-x )2(t/J 'x(P/~-l) - A'X(-1/2-P/~?)dX' 
o 2~ 0 q 0 

(A.8) 

where 

(A.9) 

The matching condition used numerically for t/J ' is given by the next 
o 

term of the series: 

(A.10) 

For example, for P - 3~/8, the potential at the electrode sur-

face is 

- 1/3 - -2/3 
~o - -r - 0.13807r + .... (A.ll) 

For P S ~/4, additional terms need. to be subtracted from t/J'. The 
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number of additional terms is given by equation (30), the solution 

for ,p as r --+ co. 

To obtain results for p s ~/2, this appendix is necessary. It 

can also be used with obtuse angles because it shows how asymptotic 

corrections can be used to relax the assumption that the integrand in 

equation (25) is zero for x > x max This reduces the value of x max 

needed to obtain accurate results. 

Appendix B of, Smyrl and Newman [3] can be used to show that, for 

Tafel kinetics, the difference between the current density and the 

primary current density is sufficiently small that the integral equa-

tion (25) converges for acute, as well as obtuse, angles. 

i 

i 
avg 

i edge 

i 
o 

p 
o 

R 

r 

r 

List of Symbols 

dimensionless coefficients given in figure 5 

Faraday's constant, 96487 C/equiv 

2 current density, A/cm 

2 average current density, A/cm 

current density at the electrode/insulator edge, 
2 

A/cm 

exchange. current density, A/cm2 

A/cm(1+~/2P) parameter defined in equation (5), 

universal gas constant, 8.3143 J/mol-K 

radial distance variable, cm 

stretched, dimensionless radial distance 
variable, defined by equation (7) or (16) 



x,x 
q 

v 

8 

e 

11' 

,p' 

-1 stretching variable for linear kinetics, cm 

stretching variable for Tafel kinetics, cm-l 

absolute temperature, K 

dimensionless position in transformed coordinate 
system 

electrode potential, V 

transfer coefficients 

angle defined in figure 1, radians 

angular coordinate in cylindrical coordinates 

angular coordinate of transformed geometry 

3.141592654 

-1 -1 specific conductivity, ohm cm 

potential, V 

primary potential, V 

stretched, dimensionless potential 

dimensionless potential defined by equation (20) 

dimensionless potential defined by equation (35) 
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CHAPTER 4 
A Criterion to Verify Current Distribution Calculations 

This chapter provides a practical demonstration and partial 

verification of the abstract results of chapter 3. Specifically, it 

shows how the resul ts provide a criterion by which the validity of 

current distribution calculations can be tested. The geometry used 

to demonstrate the procedure is a slotted-electrode cell for which 

the primary current distribution was given by Orazem and Newman (1]. 

Previously, Smyrl and Newman [2] applied similar results to the 

rotating disk and flow channel cells. 

A summary of the results of chapter 3 is given below: To gen-

eralize the treatment, a parameter P is used. It sets the magnitude 
o 

of the current density for small distances from the edge: 

(1r/2f3 - 1) 
r . (1 ). 

The angle f3 and the radial coordinate r are shown in figure 1 of 

chapter 3. P is determined by the cell potential and the details of 
o 

the entire geometry. It is obtained by comparing the primary current 

distribution of the cell with equation (1), the asymptotic form valid 

near the edge. 

For large polarization parameters, chapter 3 shows: 

1. that the current density deviates appreciably from the primary 

current density where 



[
(0: +a: )Fi ]-1 a c 0 

r== 
RIK. 

for linear kinetics, and 

r == 

for Tafel kinetics. 
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(2) 

(3) 

2. that the current density near an electrode edge behaves as 

i [(0: +a: )Fi ](1 - ~/2~) 
~ a c 0 

• ex 
~ RIK. 
avg 

for linear kinetics, and 

i 
edge 

i avg 

for Tafel kinetics. 

(4) 

(5) 

3. detailed distributions in the edge region for various angles, ~. 

Numerical Analysis 

The primary current distribution of the slotted-electrode cell 

shown in figure 1 was determined by a technique that utilizes two 

numerical, Schwarz-Christoffel transformations. Conformal mapping 

techniques such as this one are often used for the determination of 

primary current distributions. When coupled with other numerical 

procedures, problems with more complicated boundary conditions can be 

analyzed. 

Orazem and Newman [2] gave the transformation relating the coor-

dinates of figure la and figure lc. Since this is a conformal 
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Figure 1. Schematic diagram of the sloned-electrode cell. Figure 1 a shows the cell in 
the original coordinate system. To facilitate solution of Laplace's equation it is mapped 
confonnallyto the coordinate system of figure Ic, with the coordinate system shown in 
figure 1 b as an intennediate coordinate system. See reference [I] for details. 
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mapping, Laplace's equation maintains the same form. Insulator boun-

dary conditions also remain the same. Along the counterelectrode, 

the kinetics are assumed to be infinitely fast, and the constant 

potential boundary condition is unchanged. At the working electrode, 

the boundary condition becomes 

where 

f(~ ) 
o 

for linear kinetics, and 

for anodic, Tafel kinetics. 

(a +a )Fi 
a c 0 

RT/C 
(V - ~ ) 

o 

(6) 

(7) 

(8) 

~(X) relates the normal derivatives along the working electrode 

in the two coordinate systems and is given by 

( ) j;::;' j;::;' j~ 
~ Xr - --- --- ---

jC+b jc-c jd-c 
(9) 

where c is related to X through 

c I jdc x - (10) 
a Jc-a jC-b jc+d jc+c 

and the original coordinate z is related to c through 

c I jc-a jc+a dc 
z - (11) 

o JC-b Jc+b jc-c jc+c jt-d jt+d 

This problem was solved with a boundary-integral technique. 
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In this chapter, the geometric ratios used are Llh - 0.5, 

rig - 0.1, and hlG - 6.0, where L, h, r, and g are shown in figure 1. 

The polarization parameter for linear kinetics is 

and for Tafel kinetics is 

J-
(a +a )FLi 

a C 0 

RIIC 

a FLli I 6 _ a avg 
RIIC 

The length L used in defining J and 6 is chosen arbitrarily. 

Applicability of the Perturbation Analysis 

(12) 

(13) 

Singular perturbation analyses can be quite involved. Neverthe-

less, their results can be simple to use. In this chapter, a tool 

that check's the validity of numerical calculations is established. To 

use it effectively, one must be aware of the limited range of appli-

cability of the perturbation analysis. Also, a physically signifi-

cant length should be used in the definitions of the polarization 

parameters. Otherwise, the coefficients in the series may be very 

different from unity. 

The first neglected term in a perturbation series determines the 

range of applicability .. Because the term arises from the details of 

the entire cell (and not one specific detail like ~). a general con-

elusion is difficult to make. To estimate its magnitude, it is use-

ful to study in detail one particular geometry: the disk electrode. 

For this cell, the characteristic length L in equations (12) and (13) 

should be replaced with r , 
o 

the disk radius. 
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Linear Kinetics--For large J, the current density at the elec-

trode edge is given by [3] 

i edge 
i avg 

0.62 jJ + e(2) InJ, 
jJ 

(14) 

where e(2) is determined by solving for the second order correction 

to the primary potential distribution. 

The condition for when the first term adequately predicts the 

current density is 

e(2) InJ 

jJ » O. 62 jJ' (15) 

Although a determination of e (2) may not be worth the effort, its 

value should be near unity, and one can make a reasonable estimate of 

the range of applicability. 

Figure 2 compares calculated values of the current density at 

the. edge of the electrode with the first term of the asymptotic pred-

iction. The predicted behavior is approached by values of J con-

sistent with the above inequality. Equation (14) also suggests an 

alternate, more sensitive way of plotting results. For example, a 

plot of 
i edge 

jJ' 
vs. l~ could be used. For such plots, the ordinate 

lavg 

intercept is predicted. 

To comment generally about the magnitude of the next term, the 

relation of Ni$ancioglu and Newman [4] is useful: 

1 
I(l - ~ /V)rdr - O(lnJ) (for high J). 

.0 0 J 
(16) 
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Figure 2. The current density at the edge of a disk electrode for linear kinetics. The 
points are calculated values, and the dashed line is the asymptotic prediction. 
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An analogous term should give the order of the next term for other 

geometries, and it is expected to be of the same magnitude. If so, 

for large J and p > ~/2, 

i 
edge (1)J(1-~/2P) (2) InJ 

i - e + e J~/2P 
avg 

(17) 

This implies that the analysis of chapter 3 applies when 

(2) 
e 

J» W InJ. 
e 

(18) 

Tafel Kineeics--For Tafel kinetics on a disk eleqtrode, Appendix 

A shows that the order of the next term in the perturbation expansion 

is unity with respect to 0, thus implying that 

i 
.edge _ 0.196 0 + 
~ , 

(2) 
e . (19) 

avg 

Figure 3 compares the first term with calculated results. In harmony 

with equation (19), the calculated values lie on a line parallel to 

the asymptotic prediction. The figure shows that the last data point 

(near 5 - 90) is inaccurate. For larger 0 (not shown), errors are 

more noticeable. A more sensitive test of numerical calculations 

i 
would be to plot o~dge vs. I/o, with a predicted ordinate intercept 

avg 

of 0.196. 

Appendix A suggests that the next term of a perturbation series 

will be of order unity for other cell geometries. Previous calcula-

tions [4] verify this for the channel geometry (again, p .. ~). In 

general, for p > ~/2, the expected relationship is 
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Figure 3. The current density at the edge of a disk electrode for Tafel kinetics. The 
points are calculated values, and the dashed line is the asymptotic prediction. 
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i 
edge _ e(l) S(2P/ff-1) + e(2) . (20) 

i avg 

The third term in this series will be of order less than unity. For 

s(2P/~-1) > 10 we can expect the numerical calculations to attain the 

correct slope but to be offset from a line through the origin by an 

amount e(2). 

Results and Discussion 

For the slotted-electrode cell, the primary current distribution 

near the electrode edge is 

i as 
-2/3 

- P r o ' 
(21) 

where r is the distance along the electrode measured from point A. 

P is determined by comparing this asymptotic form with the current 
o 

distribution as calculated by the method of Orazem and Newman (see 

figure 4): 

P _ 0.569 L2/3 i o avg (22) 

For linear kinetics in the slotted-electrode cell, equation (28) 

of chapter 3 gives 

i 
~ _ 1.5 J2/3 
i 

(23) 
avg 

as J ~~. In figure 5 this relationship is compared to calculated 

values of i d /i . Good agreement exists for J2/3 ~ 4. 
e ge avg 

For Tafel kinetics, equation (29) of chapter 3 gives 

i 
~ _ 0.426 s2 
i avg 

(24) 
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Figure 4. The primary current distribution of a slotted-electrode cell. The dashed 
line is the asymptotic approximation of the current distribution, given by equations 
(21) and (22). 
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Figure 5. The current density at point A of the slotted-electrode cell (figure 1) 
as it varies with the polarization parameter for linear kinetics. The points are cal
culated values, and the dashed line is the asymptotic behavior predicted by 
equation (23). 

56 



57 

as 0 - co Figure 6 compares this relationship with calculated 

results. An empirical curve, with the predicted slope of 0.426, is 

fit through the calculated results. Its intercept is determined from 

the slope of the curve shown in figure 7. 

Figure 7 provides a sensitive test of numerical calculations. 

If the next term in the series is of order unity with respect to 5, 

the curve should be linear at high 0 and have the ordinate intercept 

predicted by equation (24). This figure shows that the numerical 

2 calculations begin to fail near 0 - 30. For larger 0 (not shown), 

the numerical calculations are clearly in error. The deviation from 

the semi-empirical curve of figure 6 also suggests that the calcula

tions begin to fail nea~ 52 - 30. Our experience suggests that it 

becomes difficult to obtain highly accurate solutions with tradi-

tional numerical procedures when i Ii is much greater than 10. 
edge avg 

Figures such as 5, 6, and 7 are recommended as checks on numeri-

cal results, where, for large polarization parameters, numerical dif-

ficulties arise. To check data quickly, the proportionalities given 

by equations (3) and (5) can be tested. Deviations from a linear 

relationship indicate that results are inaccurate. 

Few numerical difficulties are expected for small polarization 

parameters; therefore, a perturbation analysis describing the devia-

tions from a uniform current distribution might not be as interest-

ing. Nevertheless, Appendix B demonstrates by example how the devia-

tions could be predicted. For other geometries, the same functional 

dependence on the polarization parameter is expec.ted, but general 
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predictions of the coefficients in the series is not possible. 

Conclusions 

Applications of the results of chapter 3 are demonstrated. The 

results, valid for asymptotically large polarization parameters, pro-

vide a test of numerical results. The predictions do not hold for 

small polarization parameters, partly because i d Ii = 1 for a e ge avg 

zero polarization parameter. For Tafel kinetics and obtuse angles of 

intersection between the electrode and insulator, the next term in a 

perturbation series is expected to be of order unity. Calculated 

values of i d Ii are expected, therefore, to fallon a line that e ge avg 

is parallel to the predictions of chapter 3. 

The importance of asymptotic analyses should not be underes-

timated. In addition to giving insight, they can provide checks on 

calculations. With the emergence of high-speed computers and sophis-

ticated, packaged_software, complicated numerical calculations are 

more prevalent, and simple tests of these results are necessary. 

Appendix A 
Tafel Kinetics on a Disk Electrode 

The order of the next term in a perturbation series describing 

i Ii for Tafel kinetics on a rotating disk electrode is shown edge avg 

to be unity. It is also suggested that a term of order unity can be 

expected for other geometries. O(e) means of order e, and o(e) me~ns 

of order lower than e. 
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Following Smyrl and Newman [2], a potential ~ is defined as 

(A. 1) 

where ~ is the primary potential difference, for the same total 
o 

current, between the disk electrode and a reference electrode placed 

at infinity. The stretched variables for the outer region (away from 

the edge of the electrode) are ~ - ~, '7 - '7, and ~ - e, where e and '7 

are the rotational elliptic coordinates. In the inner region, the 

appropriately stretched variables are 

~ - o~ - lno, (A.2) 

e - oe, (A.3) 

and 

(A.4) 

The stretched potentials, ~ and ~, can be expa~ded in terms of 0: 

~ _ ~(O) + r (o)~(l) + 
1 

~ _ ~(l) + f (0)~(2) + 
2 

... , (A. 5) 

(A.6) 

(0) 1 -1 
Smyrl and Newman showed that ~ - 2' tan e, and they determined 

numerically ~(l) . 

In the inner region, terms of order -2 o are neglected in 

Laplace's equation. Terms can also arise from the matching and boun-

dary conditions. The insulator boundary condition does not introduce 

additional terms. Along the disk electrode. the boundary condition 

is 
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g e~O _ 1[~] , 
2 - --

'7 a~ ~-o 

(A.7) 

where 

E - i2iO exp[~(v - ~)l. 
avg 

(A.S) 

It is shown [2] that 

... , (A.9) 

where lnE(l) is the second term in a perturbation expansion of lnE. 

The boundary condition, therefore, can be rewritten as 

(A.IO) 

_ ~ [a(ll + i 2(0) 
a~(2) 

+ 
O(

f
2 w l '7 a~ 

~-O 
a~ 

~-O 

which is expanded further to yield 

(A. 11) 

~-o 

Equating terms of the 
- 1 

same order in 0 suggests that i 2 ~ o' To 

decide conclusively necessitates inspecting the matching conditions, 

where higher order terms due to the outer solution can arise. 
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In the outer region, the exact form of Laplace's equation (in 

rotational elliptic coordinates) was solved, and thus no terms arise 

from the governing equation. Also, no terms arise from the boundary 

condi tion at infini ty, on the insulator, or on the axis. The boun-

dary condition along the electrode in the outer region can be 

expressed by 

1 5~o _ 1 21.1 
2 Ee ~ ae e-o . 

Since ~(O) _ 0, this boundary condition is rewritten as 
o 

~{ 
This suggests that 

a!(O) 
+ 1'1(5) 

a!(l) 

ae e-O ae e-O 
1 l' - - and that 1 5 

~(l) _ -1 - In(~), 
o 

+ .. } . 

(A.12) 

(A.13 ) 

(A.14) 

which is expected from a straightforward attempt to correct the 

potential (from the primary potential) for finite electrode kinetics. 

Smyrl and Newman [2], with a different approach, implied the same 

results. 

'2"(1) 
<p is described by Laplace's equation in rotational elliptic 

coordinates: 

a!(l) 
2~ a~ - O. (A. IS) 

The insulator boundary condition at ~ - 0 is unchanged, the boundary 

condition at the, disk electtode- is given by equation (A.14) and 



64 

(1) 2 2 
~ - 0 as € +" - co. Furthermore, no current should flow to 

infinity since 0 specifies the total current, and this is supplied by 

the primary current term, ~(O). 

From separation of variables, the solution is 

co 

~(l)(",€) _ L B P2 (,,)H
2 

(€), 
n-l n n n 

(A.16) 

where P 2n are the even Legendre polynomials, and H2n are Legendre 

functions of imaginary argument [5]. The B are determined through n 

the orthogonality condition (see, for example, reference [6]): 

1 
B - -(4n + 1) IP

2 
(,,')In(f7)d,, 

nOn 
(A.17) 

The asymptotic behavior (for small €,,,) of ~(l) must be 

developed to provide the matching condition for the inner solution. 

If r - (€2+,,2)~ and 9 - tan-l("/€), Laplace's equation becomes 

o - (A.1S) 

+ r [ 1 as? (1) 
2sin8cos8 r a9 

2 a~(l) ~ 
+ 2r(1 - 2sin 9) ar - 4sin9cos8 a9 

Using a coordinate expansion technique and separation of variables, 

and applying the appropriate boundary conditions, 

(A.l9) 

.. 
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which can be written in terms of e and ~ as 

(A.20) 

tion with the complete solution. 

Finally, the matching condition is applied. This condition is 

expressed formally as 

InS 1 - -2 -2 
-S- + "6 </I (~ +e -.:0) - q; ( ",-0 , e -0) . (A.21) 

Agreement must be observed for all orders in S and also all orders in 

(e 2+",2) ~. Equation (B-8) of- Smyrl and Newman can be rewritten in 

terms of e and '" as 

A(l)e 
- -2 -2 S 2 2 ~ 1 1 
</1(", +e -.:0) - 2" e - In(ES ('" +e ) ) + "6 -2-=-·-2 

e + '" 

(A.22) 

where Ail) is the same as Smyrl and Newman's Al and is estimated to 

be -3.1. Substituting for E with equation (A.9) gives 

( 2 2~) 1 + In(~ +e ) (A.23) 
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[
¢(2) _ lnE(l) + _A-=i:....-l_) ~-l 

~2 2 
'> +" 

2 + 0(1/6 ). 

-(2) 
To specify completely the matching condition for q, ,it is 

necessary to investigate the outer region expansion: 

~ ~3 5 1 ( 2 2 ~ 
~(,,-O,~-O) - 2' - 6- + O(~ ) + "5 -1 - In(~ +" ) (A.24) 

-Ail)~ _ ~2 + 0«~2+,,2)3/2») + 0(1/6 2) 

The leading term of ¢(2) must match the highest unmatched term in ~. 

Although it might not be worth the effort of solving it, for com-

pleteness, the problem statement is given.-

The governing equation remains 

a2¢(2) a2¢(2) 
+ - - o. (A.2S) 

a~2 ae2 

The insulator boundary condition is 

ai(2) 
- 0 at " - O. -

(A.26) 

a" 
Along the working electrode, the boundary condition is 

-(1) [ 1 e q,o (1) -(2) 1 ai(2) 
2 e 1nE + q, 0 - = _ 

'1 ae 
(A.27) 

&. 

where equation (A-18) of Smyr1 and Newman gives 

(A.28) 
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Results of finite-difference calculations can be correlated by 

E 
2 

4.3 + 5 
4.3 + 0.73585' 

which is expanded to suggest that lnE(l) = -1.544. 

matching condition is 

and, in principle, ~(2) can be obtained. 

The next term for i Ii would be 
edge avg 

i 
~ 
i 
avg 

~(1)(~_0) 
e 0 
2 e 

(A.29) 

Finally, the 

CA.30) 

(A.31) 

Without further numerical work, the important result is that the next 

term in a perturbation series is of order unity. 

A thorough treatment of the rotating disk geometry is presented. 

The E parameter of Smyrl and Newman [3] is the key to obtaining the 

next term in a perturbation series. For other cell geometries, an 

analogous term arises, and it might be expected to behave similarly. 

For a coplanar electrode and insulator, a term of order unity seems 

likely. For other angles of intersection, the correct expansion for 

the primary current distribution near the edge may cause unforeseen 

terms to arise. This makes it difficult to draw a more general con-

elusion. 
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Appendix B 
Current Distributions for Small Polarization Parameters 

A perturbation analysis describing the deviations from a uniform 

current distribution is regular. Such an analysis is given here for 

linear and Tafel kinetics on a disk electrode. 

Before proceeding, one should recall the integral equation 

relating the potential and current distributions on the disk [7]: 

ro i K(m)r 
~ (r ) - ..1. I n dr ° q ?rIC 0 r + r q 

(B.l) 

K(m) is the complete elliptic integral of the first kind [8], and 

m - r + r 
q 

(B.2) 

Linear Kinetics-For linear kinetics, the boundary condition 

along the disk electrode can be expressed as 

i n 

(a +a )Fi 
a C o(V _ ~ ). 

RT ° 
(B.3) 

We solve this problem as one with a set electrode potential. It is 

equally valid to specify the total current, as we prefer for Tafel 

kinetics. 

For J - 0, the current distribution is uniform, and ~ - 0; that 

is, the ohmic potential drop in the solution is negligible. This 

fact, along with equation (B. 3), suggests that the potential is 

appropriately expanded as 

.... (B.4) 

.. 
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Substitution of equations (B.3) and (B.4) into equation (B.l) gives a 

formal solution for the potential, where terms of the same order in J 

are equated: 

and, for n > 1, 

1 
~(l)(r ) _ ~ f K(m)r dr , 

o q ~ 0 r + rq 

~(n)(r ) _ 
o q 

2 1 ~~n-l)K(m)r 
-;f r+r o q 

dr . 

Nanis and Kesselman [9] show that 

(B.S) 

(B.6) 

(B.7) 

where E(m)t is the complete elliptic integral of the second kind. 

These results give 

i n 
i avg 

-(n) where the ~ arise as corrections to the average current density, 
o 

1 
~(n) _ 2 f ~(n)rdr 

o 0 0 

Nanis and Kesselman [9] showed that ~(l) 
o 

(B.9) 

tNote that our argument for the elliptic integral is the square 
of Nanis and Kesselman's argument. We use a definition of the 
elliptic integral chosen to be consistent with Abramowitz and Stegun 
[ 8] . 
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Tafel Kinetics--For Tafel kinetics, 

i - i exp[aaF(v - ~ )]. (B.lO) 
n 0 RT 0 

For relatively uniform current distributions, Wagner [10] suggested 

that the Tafel kinetics boundary condition can be linearized: 

(B.ll) 

This suggests that the first correction to a uniform current distri-

bution for Tafel kinetics will be identical to the first correction 

for linear kinetics (with a properly modified definition of J). Only 

for higher order corrections will differences appear. 

We solve this problem by setting S, the dimensionless average 

current density. As S ~ 0, the current distribution is uniform, and 

~ is zero (as a zeroth approximation). This fact, along with equa-

tion (B.lO), suggests that the potential of the solution can be writ-

ten as 

a F~ 
a 
RT 

The electrode potential must also be expanded: 

a FV [a Fr i 1 a 1 a 0 0 
RT + n RT/C - InS + L snv(n). 

n-l 

(B.12) 

(B.13) 

The InS term on the right side of equation (B.13) can be thought of 

as the zeroth order term, which is determined by requiring that the 

dimensionless current distribution be uniform with a magnitude speci-

fied by S. Since this term satisfies the specified average current 

density, all of the higher order corrections to the potential 
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distribution (~(2), etc.) must have a zero average current density. 

Th · 'd h d" t d . V(n) 1S prov1 es t e con 1t10n 0 eterm1ne . 

Following the same procedure used for linear kinetics gives 

~(2) 
o 

and 

~ (3) 
o 

where 

and 

These results give 

i 
n 

i avg 

_ 1 + 0 (v(l) _ ~(l» + 
o 

(B.14) 

(B.1S) 

(B.16) 

(B .17) 

(B.18) 

(B.19) 

Summary--These analyses demonstrate the correct procedure to 

calculate small deviations from a uniform current distribution. The 

terms in each series can be obtained by a numerical integration of 
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the previously determined, lower order current distribution. Since 

E(l) - 1, the current density at the edge of the the electrode for 

linear kinetics is 

i 
edge _ 1 + JL J (small J), 

i 3", 
(B.20) 

avg 

and for Tafel kinetics is 

i 
edge _ 1 + JL r ( 11 r) i 3", a sma a. (B.21) 
avg 

As expected [10J, the first correction to a uniform distribution is 

the same for linear and Tafel kinetics. Figure 8 compares numerical 

results obtained from finite-difference calculations with these 

asymptotic predictions-. The current density at the center of the disk 

is also compared with its asymptotic va1u~. Since E(O) - ",/2, 

i center 8 
i -1+(3",-1)J(orS). (B.22) 
avg 

These analyses show how the current densities for linear and 

Tafel kinetics deviate from one another for larger values of the 

polarization parameter. For other cell geometries, the same linear 

dependence on J or S is expected. 

a,b,c,d 

List of Symbols 

coefficients arlslng in matching conditions (see 
equations (A.19-23» 

parameters used in the conformal mapping procedures, 
shown in figure 2, cm 

.. 
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2.0 

at the center and edge of a disk electrode for small polarization parameters. For 
linear kinetics, the current density depends on J, and, for Tafel kinetics, it depends 
on o. 



B n 

f 
n 

F 

E 

E(m) 

i 

i 
o 

j 

J 

K(m) 

L,r,h,G 

r 

r 
o 

r 
q 

R 

s 

T 

t,x,Z 

v 

coefficients defined by equation (A.l7) 

stretching functions for the solution potential 

Faraday's constant, 96487 C/equiv 

parameter defined by equation (A.8) 

complete elliptic integral of the second kind 

2 current density, A/cm 

2 exchange current density, A/cm 

dimensionless exchange current density 

complete elliptic integral of the first kind 

lengths characterizing the slotted electrode, cm 

even Legendre functions of imaginary arguments 

parameter defined by equation (1), A/cm(l+~/2~) 

even Legendre polynomials 

radial distance away from the electrode/insulator 
edge, cm 

radius of the disk electrode, cm 

radial position where the potential is being 
determined, cm 

universal gas constant, 8.3143 J/mol-K 

h · . bl -1 stretc Lng varLa e, cm . 

absolute temperature, K 

complex coordinates 

electrode potential, V 

transfer coefficients 
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interior angle between insulator and electrode, radians 

.. 



E 
(n) 

1f 

as 

avg 

center 

edge 

i ,r 

p 

relates normal derivatives in original and 
transformed coordinate systems 

dimensionless average current density 

th ff··· . b· . n coe ~c~ent ~n a pertur at~on ser~es 

rotational elliptic coordinates 

-1 -1 specific conductivity, 0 cm 

3.141592654 

dimensionless solution potential 

solution potential, V 

solution potential adjacent to the electrode, V 

Subscripts 

asymptotic 

average 

center of the disk electrode 

electrode/insulator interface 

imagiriarY,and real parts of a complex variable 

Superscripts 

primary 

inner region variable 

outer region variable 
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CHAPTER 5 
Corrections to Kinetic Measurements Taken on a Disk Electrode 

Newman [1], [2] has suggested that a nonuniform ohmic potential 

drop to an electrode can lead to errors in the determination of 

kinetic parameters. A subsequent paper' [3] showed that for linear 

kinetics the error in the measured exchange current density, i , can 
o 

be as great as 300 percent, depending on the reference electrode 

placement and the dimensionless exchange current density, J, defined 

by Newman [4]. 

The present analysis considers the errors in kinetic parameters 

determined on the disk for the Tafel region in the absence of concen-

tration variations. The apparent surface overpotential is taken to 

be that measured by a reference electrode of the same kind as the 

working electrode, with the ohmic-potential drop being determined by 

the interruption of the current. Since the reference electrode 

passes no current, it can be at equilibrium with the solution even 

though the working electrode is operating in the Tafel regime. 

In the Tafel region, the exchange current density or J is no 

longer an important parameter in determining the distribution of 

current density and potential in the solution. Instead, the relevant 

parameter is a dimensionless average current density, 5, defined by 

a Fr i 
5 -

a 0 avg 
RTK. 

(1) 

This analys is presents the error in. 'the measured exchange current 

density as a function of 5 and three reference electrode placements. 
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Concentration variations are neglected in the analysis. Thus 

the ratio of the average current density to the limiting current den-

sity should be small. Since the expression for the limiting current 

density does not involve r or /C, which appear in 0, and does involve 
o 

the rotation speed and the bulk concentration of the limiting reac-

tant, which do not appear in 0, it is possible to neglect concentra-

tion variations in certain situations while still achieving 

moderately large values of 0. Figure 132-2 of reference 4, repro-

duced from reference 1, illustrates how the uniformity of current 

distribution is governed by the average current density,the exchange 

current density, and the limiting current density, as given by 0, J, 

and a dimensionless mass-transfer rate, N. 

Analysis 

The potential in solution, outside the double layer, in the 

absence of concentration variations, is given by Laplace's equation, 

with boundary conditions, 

and 

a~ 

az o for r > rand z - 0 o 

2 
+ z - co 

i(r) - f(~ ) for r < rand z - O. 
S 0 

~S is the local surface overpotentia1 given by 

(2) 

(3) 



'7 -V-~(r,O), 
S 
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(4) 

where V is the potential of the electrode and ~(r,O) is the potential 

of the solution just outside the diffuse double layer measured with a 

reference electrode of the same kind as the working electrode. In 

the Tafel region, the boundary condition describing the electrode 

kinetics for anodic currents is 

(5) 

Without the sectioning of an electrode, local current densities 

and overpotentials cannot be measured. Common practice, then, is to 

relate the average current density to the apparent surface overpoten-

tial, given by [5] 

'7 - V - ~(r z) s,app , ~(r,O) + ~(r,z). (6) 

~(r,z) is the potential of the reference electrode, and 

~(r,z) - ~(r,O) represents the potential change observed upon interr-

uption of the current and corresponds to the ohmic drop associated 

with the primary distribution of the same average current density 

[5] . 

To interpret a polarization curve obtained with a disk elec-

trode, equation (5) may be more appropriately written as 

i - i avg o,app [

0 a, appF'1 s, app] 
exp RT . (7) 

Two defined parameters, i and 0 , are involved in this equa-o,app a,app 

tion, and there are at least two possibilities for determining them 

from the experimental data. One is to take 0 F jRT to be the a,app 
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slope of the line tangent to the Tafel plot of the data and i to o,app 

be an· intercept obtained when this tangent line is extrapolated to 

" - 0 s,app . Then i and a would be, in general, functions 
o,app a,app 

of 6, since the data will not yield exactly a straight line on a 

semi-logarithmic plot. Another approach is 

known and that its value is used for a a,app 

to assume that a is 
a 

A line of slope a F/RT 
a 

is extrapolated through the data to obtain i o,app Again, the value 

obtained depends on the position along the Tafel plot through which 

the line is extrapolated. 

Figure 1 shows a simulated Tafel plot of w vs. In(6) for three 

reference electrode placements. W is defined in the caption of fig-

ure 1 and is used in order to make the plot valid for any (low) value 

of the exchange current density. Thus, in the Tafel ,range a decreas'e 

in the value of i with no change in i would leave unchanged the ° avg 

current density and potential distributions. The only change would 

be to increase the electrode potential V, and hence" by an amount 
S 

reflected in the definition of W. 

For values of In(6) < -1, a ::: a 
a a,app Additionally, for 

In(5) > 3 and for a reference electrode placed at the center of the 

disk or at infinity, a ::: a 
a a,app For a reference electrode placed 

adj acent to the edge of the disk, a - a /2 as 5 - co a,app a For 

values of In( 5) > 4, " should be determined by the asymptotic s,app 

solution shown with the dashed line. The deviation of the solid and 

dashed lines shows the difficulty in calculating potentials at the 

edge of the disk for high values of 5 [6]. Only for intermediate 
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values of 0 will a ~ a ; therefore, it is reasonable to assume 
a a,app 

that one typically has a good estimate of a. The following analysis 
a 

will develop the equations for the more general case but will 

emphasize the results for the case of a - a a a,app 

To develop the relationships between the apparent parameters and 

the true parameters, it is convenient to introduce a new variable, 

A -

a Fr i 
a 0 0 

RT" 
(8) 

As is suggested in the appendix, A is a function only of o. The 

relationship defined by equation (8) can be used to determine the 

disk potential necessary for a given average current. Originally, A 

was calculated by a boundary integral method. The method, as writ-

ten, can not be used for high values of 0, since, as 0 becomes large, 

the problem of the secondary current distribution becomes singular. 

Smyrl and Newman [6] give a parameter, E, valid for all S, which can 

be related to A through 

E ('fro) A - 2' 0 exp 4" . (9) 

E is shown in figure 2 and can be used to obtain A for any O. 

It arises as a correction factor in an estimation of the potential of 

the disk electrode at high values of O. The electrode potential V 

would be estimated by the sum of the ohmic potential drop to the 

center of the disk (estimated with the primary resistance) and the 

surface overpotential (estimated with iii - 0.5 at the center for 
avg 

a primary distribution): 
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ac _ :6 + 1n[~::1 + 1nE . (10) 
At low 6 the correction factor takes on the value E - 2. At high 0, 

Smyrl and Newman [6] found by means of a singular perturbation 

analysis that E ~ e. 

The ratio of the actual exchange current density to the apparent 

exchange current density as a function of 0 can be found by combining 

equations (5), (7), and (8): 

[
-a FV] [a F" 1 . /. A a a, app s , app 

~ ~ - -6 exp RT exp RT . o o,app 
(11) 

The ohmic drop between a disk with a primary current distribu-

tion and a reference electrode at infinity is given by 

~(r,z) ~(r,O) 
1roRT 
4a F 

a 
(12) 

Therefore, for a reference electrode at infinity, equation (11) 

becomes 

[
a FV[a II [-1rsa 1 . /. _ ~ _a_ a,app -1 a,app 

~ ~ ~ exp RT exp 4 . o o,app 0 a a 
a a 

(13 ) 

With the reference electrode placed adjacent to the surface, 

. /. A [aaFV[aa,a pp 
1 ~ - - exp -- ---

o o,app S RT a 
a 

(14) 

The potential of the solution at the interface, ~(r, 0), is given by 

Smyrl and Newman [6) and is shown in figure 3 as a function of S for 

r - 0 and r - r . 
o 

When a - a equation (13) reduces to a a,app' 
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i Ii o o,app 

and equation (14) reduces to 

E 
2 ' 

i Ii - ~ exp[~6 - aa
F ~(r 0)] . 

o o,app 2 4 RT ' 
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(15) 

(16) 

Equations (15) and (16), the latter for r - 0 and r - r , are shown o 

in figure 4. The resu1 ts of Smyr1 and Newman [ 6 ] imp 1y that, as 

6 ~ ~, i Ii goes to 0.5 for a reference electrode at the center 
o o,app 

of the disk, to infinity for a reference electrode at the edge of the 

disk, and to e/2 for a reference electrode at infinity, where e is 

the base of the natural logarithm. 

Figure 1 shows that, for intermediate values of 6, a may not 
a 

equal a a,app 'In the rare case that experimental data exist only in 

this intermediate range, if, determined by differentiation of 

exact data, would be given by 

a la _ 1 d1nE dlng(S) 
a a,app + dlnS + dlnS ' (17) 

where g(S) is one for a reference electrode at infinity and 

exp(d/4 - a F~(r,O)/RT) for a reference electrode adjacent to the 
a 

surface. The second term on the right side of equation (17) is shown 

in figure 5. The last term is shown in figure 6 for a reference 

electrode at the center of a disk and at the edge of a disk. The 

true value of a can be determined from figure 7, where 
a 

S app 

a Fr i a,app 0 avg 
RTIC 

(18) 

For a reference electrode placed at infinity, the apparent transfer 

coefficient differs from the true value of the transfer coefficient 
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by less than four percent for any value of S. For a reference elec-

trode placed adjacent to the disk electrode, the maximum errors can 

be rather large. For any reference electrode placement other than at 

the edge of the disk, the errors become negligible for both low and 

high values of S. 

Once a is known, two approaches are possible to determine the 
a 

true value of the exchange current density. In the first approach, 

equation (13) or (14) could be used to obtain 

can be rewritten as 

i 
0, 

i o,app 

i . 
o 

1) 

These equations 

(19) 

The last term in equation (19) can be thought of as a correction to 

figure 4, where 

x - [
a FV sJ 

exp ~ -: 
i 
E~ g(6.) - -2 g(S). i 

o 
(20) 

Unfortunately, as is suggested by the last expression of equation 

(20), X can vary over many orders of magnitude. 

Since X can be very different from one, the value of i obtained 
o 

from equation (19) is very sensitive to the value of a deter-a,app 

mined from experimental data. Any uncertainty in this value can 

cause even greater uncertainties in i. The more accurate approach 
o 

would be to extrapolate a line of slope a F/RT that best fits the 
a 

data to obtain a new i ,where a was determined through figure 
o ,app a 

7. Then, equation (15) or (16) would be valid and figure 4 could be 

used to obtain i . 
o 
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The above analysis can also be applied to cathodic Tafel kinet-

ics. The appropriate kinetic boundary condition becomes 

If one now takes 

A -

a Fr i coo 
RTK. 

(21) 

(22) 

the results, equations (11), (13), and (14), will be identical if 

absolute values of S and ~(r,O) are used in the analysis. One would 

want to substitute cathodic transfer coefficients and apparent 

cathodic transfer coefficients everywhere. 

Discussion 

This analysis shows that i Ii and a la vary with the ° o,app a a,app 

average current density. Therefore, a traditional plot of ~ vs. s,app 

In(i ) should not be expected to fallon a straight line. Figure 1 
avg 

shows the range of S over which significant variations in the slope 

can occur. When possible, experiments should be designed to operate 

mainly outside these regions of S, since data are easier to analyze 

once a is known. 
a 

In practice, a Tafel plot of experimental data will not extend 

as a straight line through the abscissa since, as 5 -- 0, the 

cathodic term of the Butler-Volmer equation becomes important. As is 

shown in figure 8, the common practice is to extend the straight part 

of the curve through ~s,app - 0, which gives i o,app By determining 

the value of S at some point near whi"ch the slope of the curve 
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deviates from the Tafel slope, one can use figure 4 to calculate the 

true exchange current density. It is important to realize that, for 

a given average current density, the error becomes larger for low 

solution conductivities and large disk radii. 

Whenever possible, exchange current densities should be deter

mined from data taken in the linear kinetics region. Errors could 

then be determined from reference [3]. For high exchange current 

densities, sufficient data should be avaUable in this linear region. 

For more practical reasons, it is also desirable to use linear data, 

since, in the Tafel region, ohmic potential drops may dominate the 

measurements. 

Conclusions 

This analysis again confirms suggestions that the reference 

electrode should be placed far from the disk when possible. In addi

tion to the reduction in measurement errors, errors caused by the 

distortion of current lines near the working electrode can be 

avoided. Contamination of the working electrode due to the reference 

electrode can also be minimized. 

In the literature, reported exchange current densities for a 

given system can vary by well over one hundred percent. Therefore, 

depending on the application, the magnitude of the errors shown in 

the analysis may be considered minor. For more complicated kinetics, 

though, the errors may become much more significant. For example, in 

a study of passivation phenomena, the use of a disk electrode could 
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easily lead to much larger errors than those calculated unless the 

nonuniform current distribution is explicitly taken into account [7]. 

In the study of such complex kinetics or when high precision is 

desired, a geometry with a uniform current distribution should be 

chosen. Better geometries include rotating cylinder and rotating 

hemisphere electrodes. The disk electrode, though, is easier to 

manufacture and polish. Therefore, for many applications, the disk 

will very likely remain a popular choice. 

The rotating disk electrode can be a valuable tool when mass-

transfer and concentration effects can not be eliminated completely. 

Newman [l] outlined a method of studying electrode kinetics under 

such conditions. His analysis is valid for Butler-Volmer kinetics 

with a concentration dependent exchange current density. In the most 

general case, both 5 and J are important parameters. 

dimensionless mass-transfer rate, the order of the 

Additionally, a 

reaction, a la , 
a c 

and the transference number of the reactant are important. Newman's 

approach involves determining the current density at the center of 

the disk for the appropriate set of parameters. Additionally, the 

potential at the center of the disk can be determined through 

knowledge of i(r - O)/i , the disk radius, and the conductivity of 
avg 

the bulk electrolyte. True kinetic constants can then be determined. 

This approach may involve an iterative procedure. 

The qualitative conclusions of this analysis are valid for any 

geometry with a nonuniform current distribution. In designing 

kinetic experiments, one-should try to use a cell geometry that will 
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avoid these nonuniformities. Additionally, mass-transfer effects 

should be minimized by having uniformly accessible surfaces and 

operating under the proper hydrodynamic conditions. 

Appendix 

Axisymmetric boundary integral equations were used to calculate 

the current distribution (see chapter 2, equation (23». For anodic 

currents, the Tafel relationship, in dimensionless form, can be writ-

ten as 

* where z - z/r 0' 

* ~ 

. a F~ 
a 
RI ' 

and A is given by equation (8). 

A 

E 

g(8) 

i 

i 
o 

J 

K(m) 

r 

List of Symbols 

dimensionless parameter, defined by equation (9) 

dimensionless parameter, shown in figure 2 

function defined below equation (17) 

2 current density, A/cm 

exchange current density, A/cm2 

dimensionless exchange current density 

complete elliptic integral of the first kind 

radial position coordinate, cm 

(A2) 



r o 

r 
q 

R 

T 

v 

z 

"s 

11' 

x 

a 

app 

avg 

c 
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radius of the disk, cm 

radial position at which the potential is being solved, cm 

universal gas constant, 8.3143 J/mol-K 

absolute temperature, K 

electrode potential, V 

distance from electrode surface, cm 

transfer coefficients 

dimensionless average current 

surface overpotential, defined by equation (3), V 

solution conductivity, mho/cm 

3.141592654 

potential of the solution, V 

dimensionless parameter defined in equation (20)" 

potential defined in figure 1, V 

Subscripts 

anodic 

apparent 

average 

cathodic 
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CHAPTER 6 
Interpretation of Kinetic Data Taken in a Channel Flow Cell 

It has long been recognized that a nonuniform reaction distribu-

tion on an electrode can lead to difficulties in the interpretation 

of current-overpotential data [1]. Tiedemann et al. quantified this 

observation for linear kinetic measurements on a disk electrode [2]. 

Chapter 5 gives results for the more complicated case of Tafel kinet-

ics on a disk electrode. 

Measurements are sometimes taken in the channel geometry. This 

geometry is useful because it has well-characterized (but nonuniform) 

mass-transfer rates and can be useful because of ease of construc-

tion. It also approximates popular cell configurations used to study 

solid electrolytes. This analysis would be particularly applicable 

to these systems since, if the electrolyte contains only one charge 

carrier, concentration variations do not exist. It will also become 

evident that this analysis is especially relevant to solid electro-

lytes since their conductivities are often low (compared to aqueous 

solutions) . 

The channel geometry has already been studied extensively; see 

especially, papers by Wagner [3] and by Parrish and Newman [4]. The 

key assumption of the analysis in this paper is that concentration 

variations can be neglected:, which implies that -i--« i
l

. , where . avg ~m 

i l . is the average limiting current density. The validity of this 
~m 

assumption can be tested easily by calculating iI' through knowledge 
~m 

of the transport properties and the flow conditions. 
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The channel geometry is characterized by the two lengths shown 

in figure 1. The ratios hlL of 1.0, 0.5, and 0.0 are investigated. 

Small ratios are chosen because they tend to make current distribu

tions more uniform and tend to reduce the ohmic drop of the cell. 

The ratio hlL - 0 corresponds to a thin-gap cell, which is studied by 

Edwards and Newman [5], and physically means that L » h. 

The average surface overpotential is assumed to be determined by 

the interruption of current. Additionally, the working electrode is 

taken to be an anode, although the results can be applied to the 

investigation of cathodic reactions. The counterelectrode is assumed 

to have the same kinetics as the working electrode, and the restric

tiveness of this assumption is shown. 

The emphasis of the results is on the placement of the reference 

electrode adjacent to the edge of the working electrode or very far 

from the e lec trode . To determine what can be considered very far 

from the working electrode the primary potential distribution along 

the insulator is shown in figure 2. At a distance h from the edge of 

the working electrode the potential has fallen by roughly 95% of the 

total potential drop to infinity. Within the resolution of the 

graph, the distribution for all three ratios of hlL is identical. 

Analysis 

In the absence of concentration variations, the distribution of 

current density is governed by Laplace's equation. The working and 

counter electrodes are assumed to operate in the same reaction regime 
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Figure 1. Cell geometry, showing the two characteristic lengths, the coordinate 
system, and possible reference electrode placements. 
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and to have identical exchange current densities and transfer coeffi-

cients. The appendix gives details of the solution procedure. 

In addition to h/L, it is necessary to know the ratio of the 

ohmic to kinetic resistances to characterize how the data should be 

interpreted. Following Newman [6], the additional parameter for 

linear kinetics is 

J -

and for Tafel kinetics, 

(a +a )Fhi 
a c 0 

RTK. 

a Fhi 
a avg 

RTK. 

(1) 

(2) 

The characteristic length used in these definitions is chosen 

because it is the important length as h/L ~ o. 

A nonuniform potential distribution on the electrode complicates 

the interpretation of data taken with the aid of current interrup-

tion. The apparent surface overpotential determined by this method 

is [7] 

~s,app - V - ~(x,y) - ~(0,h/2) + ~(x,y), (3) 

where ~(x ,y) is the potential of the reference electrode ,t and 

~(O ,h/2) - ~(x ,y) is the change in potential after the interruption 

of current and corresponds to the potential drop for a primary dis-

tribution with the same average current density. 

t The reference electrode is assumed to be the same kind as the 
working electrode, but passes no current, and is in equilibrium with 
the solution. 
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Results for Linear Kinetics 

For linear kinetics, the current density is described by 

i 
i (a +a )F" o a c s 

RT 
(4) 

where" - V - ~(x,h/2). Assuming that a +a is known, an apparent 
sac 

exchange current density can be defined by 

io,app(aa+ac)F"s,app 
i - ~~~--~~--~~~ 
avg RT 

Combining equations (4) and (5) gives 

i 
o 

i o,app 

(5) 

(6) 

For a reference electrode adj acent to the edge of the electrode, 

equation (6) reduces to 

i 
° i o,app 

i edge 
i avg 

(7) 

Results obtained from equation (6) and the numerical procedure 
'" 

described in the appendix are shown in figures 3 and 4 for various 

reference electrode placements. J is introduced to facilitate the 
app 

use of these figures and is defined by 

J app 

(a +a )Fhi 
a c o,app 

RTIt 

Results for Tafel Kinetics 

(8) 

The important parameter for the characterization of Tafel kinet-

ics is a dimensionless average current density. Since the proper 

interpretation of the data changes with the polarization parameter, a 
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Tafel plot of data is not expected to fallon a straight line, even 

if the Tafel equation exactly describes the kinetics of the reaction. 

This complicates the analysis for Tafel kinetics. 

Reaction rates described by Tafel kinetics are given by 

i (9) 

Since local current densities and local surface overpotentials are 

not measurable, apparent kinetic parameters must be,. defined and 

should be related to measured quantities: 

[
0: F." 1 .. a,app s,app 

~ - ~ exp avg o,app RT 
(10) 

As chapter 5 discusses, a desired procedure for "analyzing data 

is to define more precisely i as the apparent exchange current o,app 

density obtained when a line of slope RT/o: F is fitted through the 
a 

ex~erimental data. It is, therefore. most interesting to report 

values of i / i for the case of 0: - 0: Wi th this assump-° o,app a a,app 

tion, equations (9) and (10) give 

i 
° i 

o,app 

i [0: F." 1 ___ 0_ a s,app 
i exp RT 
avg 

(11) 

For a reference electrode placed adjacent to the edge of the working 

alectrode, equation (11) reduces to equation (7). Results for vari-

o,us. reference·, electrode placements are shown in figures 5 and 6. 

Before i can be obtained from i it is necessary to know ° o,app' 

which can be determined from 0: 
a,app 
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Figure 5. Correction factor for the exchange current density for Tafel kinetics, two 
reference electrode placements, and two ratios of h/L. 

109 

30 



4 

3 

2 

1 

o 10 20 
o 

L» h 

a =a 
a a,app 

L/2 + 0.0675h 

1)2 + 0.3738h 

30 

Figure 6: Correction factor for the exchange current density for Tafel kinetics, L » h, 
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a a,app 
RT d1ni avg 
F d . 

"s,app 

Combining equations (11) and (12) gives 

a [d1 n (i / i ) 1 __ ~a __ _ 1 + ° o,app 
a dlno a -a 
s,app ~ a,app 
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(12) 

(13) 

where the right side' of equation (13) is evaluated assuming that 

a 
a 

a a,app Equation (13) is shown in figures 7 and 8, where 

o app 

a Fhi 
a,app avg 

RTIC 
(14) 

and is introduced to determine more easily a 
a 

These resul ts were 

obtained by differentiating fourth-degree polynomials that were fit-

ted to logarithmic plots of the results displayed in figures 5 and 6. 

Precisely obtaining i and a from Tafel data can be difficult. ° a 
The procedure that one might take is outlined as follows: 

1. Determine a 
a,app from the slope of the data (In i vs. avg 

2. Calculate 0 from the value of i at which the "apparent" spp svg 

Tafel slope was determined. 

3. Obtain a from figure 7 or 8. 
a 

4. Determine i from a line with the correct Tafel slope drawn o,app 

through the value of i used to calculate 0 
svg app 

5. Use figure 5 or 6 to calculate i 

° 
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Discussion 

Figure 3 shows i Ii for linear kinetics. 
o o,app 

As might be 

expected [2], the correction to i can be much lower for a refero,app 

ence electrode placed at infinity. Unfortunately, it is not always 

possible to place the reference electrode far from the working elec-

trode because the ohmic potential may dominate the measurements. 

For a reference electrode placed adjacent to the working elec-

trode, the errors are the greater (for a given J) the smaller the 

ratio, hiL. This result is surprising because a smaller ratio should 

decrease the necessary correction. This apparent inconsistency is 

explained by realizing that the choice of h in the definition of J is 

arbi trary, and perhaps L would be a more physically significant 

length in describing the ratio of the ohmic to kinetic resistances. 

This is indeed true as hlL ~ ~. 

Figure 4 shows i Ii for linear kinetics and L »h. For ° o,app 

this ratio, errors are always zero for a reference electrode placed 

at infinity. Three intermediate reference electrode placements are 

also given. These positions correspond to positions along the insu-

lator where the primary potential difference, ~(O,h/2) - ~(x,h/2), is 

twenty, forty, and eighty percent of ~(O,h/2) - ~(~,hI2). 

Figures 5 and 6 show i Ii for Tafel kinetics. As chapter 5 ° o,app 

discusses, a Tafel plot of data can not be extended through 0 - 0 

because the cathodic term of the Butler-Volmer equation becomes 

important. i then, is determined by extrapolating a line of o,app' 

slope RT la F through the Tafel portion of the data. A point near 
a 
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which the data deviate from this Tafel slope determines the value of 

o that gives the correction factor to i o,app 

Figures 7 and 8 show a /a . As 0 ~ 0, a - a for any a a,app a a,app 

reference electrode placement. For a reference electrode placed 

adj acent to the edge of the working electrode, a - 2a as a a,app 

5 ~~. This is the same result obtained for the rotating disk elec-

trode. Smyrl and Newman [8] show that this result holds for any 

reference electrode placed at the edge of a coplanar electrode and 

insulator. For any other reference electrode placement, 

as 0 ~ .~ 

a 
a 

a a,app 

For a reference electrode placed next to an electrode edge, 

a /a - 2j3/1r as 5 ~ ~, a a,app results from chapter 3 can show that, 

where j3 is the interior angle between the electrode and insulator . 

The results also show that, for linear kinetics, i 
o 

. 2j3/1r 
ex: ~ 

o,app as 

J ~~, for a reference electrode placed adjacent to the edge. For 

T f 1 k · . . . .2j3/1r-l ~ a e lnetlcs, ~ ex: ~ .~ as 0 ~ ~. 
o o,app avg 

The counter and working electrodes have been assumed to be in 

the same reaction regime and to have identical kinetic parameters. 

Figure 9 indicates how restrictive this assumption is. It shows 

i / i for a reference electrode placed adj acent to the working 
o o,app 

electrode for Tafel kinetics and for a counterelectrode with very 

fast kinetics, very slow kinetics, and with identical kinetics to the 

working electrode. To simulate slow kinetics, a constant current 

density is used as the counterelectrode boundary condition. Fast 

kinetics is simulated by prescribing a current distribution on the 
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counterelectrode identical to that obtained when the overpotential is 

zero on both electrodes (what might be called the primary current 

distribution for this two-electrode system). For other reference 

electrode placements, the differences are smaller. 

Conclusions 

Results are given for the interpretation of current-

overpotential measurements taken in the linear and Tafel kinetics 

regimes. They show that a reference electrode should be placed far 

from the working electrode, and it is shown what can be considered 

very far. We also show the effect that the current distribution on 

the counterelectrode has on the current distribution on the working 

electrode. To avoid large ohmic potential drops, it may be necessary 

to place the reference electrode close to the working electrode. If 

this procedure is necessary, the apparent kinetic parameters can be 

corrected. 

It is worth noting that uncertainty in the placement of the 

reference electrode causes greater uncertainties in the interpreta

tion of data for a reference electrode placed closer to the working 

electrode. This is explained completely by figure 2, which shows 

that the potential changes most rapidly near the working electrode. 

Appendix 

We used boundary integral methods, discussed in chapter 2. To 

facilitate the use of the numerical procedure, the channel geometry 

was mapped conformally into the geometries shown in figure 10. 
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Newman [9], [10] followed a similar procedure, except that he mapped 

the two electrodes so that they are coplanar (which is an intermedi-

ate Schwarz-Christoffel transformation used in the conformal mapping 

given here). 

To solve for the current and potential distributions in the 

transformed geometry, the boundary conditions along the electrodes 

are (for non-zero h/L) 

d~ 
---d - f(~ ) g (v.), v 0 v ~ 

(15) 
r 

where f(~ ) is given by the right side of equation (4) or (9), and 
o 

where 

and 

h 
g (v.) - -

v ~ '" 
( 2 2)~ cosh f - W , 

f -

v is related to w through 

w dw 
v - - I 2 ~ 2 2 ~. o (w -1) (w -cosh f) 

(16) 

(17) 

(18) 

(19) 

For h/L - 0, the boundary condition along the electrode is given 

by 

d~ 
---d - f(~ ) g (t ) t. 0 t r (20) 

~ 
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oroL z = x + jy 

v = vr + jVi 

oroL z' = x' + jy' 

Figure 10. Original and transfonned geometries. showing the working and counter
electrodes. 
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(21) 

t is related to z' through 

t _ sin -lexp (1f~') (22) 

z' is related to the original coordinate system by a shift in the 

origin. 

The- advantage of using conformal mapping prior to the boundary 

integral technique is that the mapping tends to provide automatically 

a mesh spacing appropriate for a given geometry. It can also reduce 

the time n~cessary for programming a new problem because many 

geometries can be mapped into one. 

F 

h 

i 

i 
o 

i l · l.m 

j 

J 

L 

R 

T 

List of Symbols 

Faraday's constant, 96487 C/equiv 

functions relating derivatives in the 
transformed and original coordinate systems 

interelectrode distance, cm 

2 current density, A/cm 

2 exchange current density, A/cm 

2 average limiting current density, A/cm 

dimensionless exchange current density 

electrode length, cm 

universal gas constant, 8.3143 J/mol-K 

absolute temperature, K 



t,v,W,Z,Z' 

v 

x,y 

x' ,y' 

"5 

app 

avg 

edge 

complex coordinates 

electrode potential, V 

cartesian coordinates, cm 

modified coordinate system for h/L - 0, cm 

transfer coefficients 

interior angle between insulator and electrode, 
radians 

dimensionless average current density 

ratio defined by equation (18) 

s~rface overpotential, V 

-1 -1 
specific conductivity, 0 cm 

3.141592654 

solution potential, V 

primary solution potential, V 

Subscripts 

apparent 

average 

electrode/insulator interface 
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CHAPTER 7 
The Ohmic Resistance of a Recessed Disk Electrode 

The primary current distribution and ohmic resistance are 

evaluated for a disk electrode recessed in an insulating plane (see 

figure 1). The analysis can also be used to determine the ohmic 

resistance to flow of current through a pore of a separator. Addi-

tionally, the errors that might occur by approximating an axisym-

metric geometry by its two-dimensional analog are elucidated. 

For steady-state diffusion relevant in biological systems, Kel-

man [1,2) investigated the mathematically identical problem. He used 

a separation of variables technique that utilizes Bessel functions in 

the "pore" and Legendre polynomials in the region outside the pore. 

The coefficients of the two series are determined by matching every-

where along the pore mouth the potential and the z derivative of the 

potential. He gave a formal solution that is complicated and diffi-

cult to use. Furthermore, he does not present his solution in a 

graphical manner, so it is difficult to evaluate the validity of his 

solution. We compare his solution for the ohmic resistance of this 

cell with our calculations, obtained from axisymmetric boundary 

integral equations. 

Analysis 

The primary current distribution is valid when concentration 

variations are negligible and when the resistance of the interfacial 

reaction is zero. For these conditions, the distribution of current 
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Figure 1. Schematic diagram ofa recessed disk electrode. 
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density and potential is given by Laplace's equation. The boundary 

conditions are 

~ - 0 
2 2 (1) as z + r --+ co, 

~ - V at z - 0 and r < r 
0' 

(2) 

a~ _ 0 
az at z - Land r > r 

0' 
(3) 

and 

a~ _ 0 d 0 < L at r - r an z < . ar 0 
(4) 

The outer radius of the insulating plane (at z - L) is assumed to be 

much larger than r . 
o 

Axisymmetric boundary integral equations were used to solve this 

problem for various values of the aspect ratio, L/r. A summary of 
o 

the solution procedure is given in Appendix A. The solution for 

L/r - 0 is given by Newman [3]. As L/r --+ co, the current distribu-
o 0 

tion on the electrode is uniform, and the ohmic resistance becomes 

infinite. 

The resistance of this geometry can be approximated by the 

resistance of a disk electrode (when L/r - 0) plus the resistance to 
o 

flow of current along the axis of a tube with insulating walls. The 

order of magnitude of the correction to this approximation is 

expected to be the same order of magnitude as the resistance of a 

disk electrode. 
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Results and Discussion 

The distribution of current density on the electrode is shown in 

figure 2 for various aspect ratios. Except for the undulations, the 

current distribution for L/r - 0.01 might appear to be approximately 
o 

correct, but an asymptotic analysis, given in Appendix C, indicates 

that the calculated current density near the edge is likely to be in 

error by nearly 100 percent. The difficulties in calculating the 

distribution for small aspect ratios are discussed in Appendix A. 

The ohmic resistance R for current flow from the recessed disk 

to a counterelectrode at infinity can be given by 

Rxr 
o 

1 + ~ + h(L/r ). 
4 ffr 0 

o 
(5) 

h(L/r ) is the explicit correction to the estimate of the resistance 
o 

given by the other two terms .. Maxwell [4] estimated an upper bound 

for h(L/r ) to be 0.02019, and Rayleigh [5] gave a refined maximum 
o 

estimate of 0.01235. 

Kelman [1,2] gave three asymptotic formulae, valid for different 

ranges of L/r , that can be used to estimate the resistance of the 
o 

cell. These formulae, when expanded, predict that h(L/r ) ~ 0.011 
o 

as L/r ~~, and h(L/r) ~ 0.067 L/r In(L/r) as L/r ~ O. A 
o 0 0 0 0 

preliminary analysis, discussed briefly in Appendix C, also suggests 

the same relation for small aspect ratios, but the coefficient has 

yet to be determined. The formulae are shown by the solid line of 

figure 3. 
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Figure 2. The primary current distribution on a recessed disk electrode for various values 
of the aspect ratio. 
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Figure 3. A correction to an estimation of the ohmic resistance of a recessed disk 
electrode as calculated by Kelman's fonnulae [1,2] and by the numerical procedure 
described in Appendix A. 
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Kelman estimated that these formulae for the resistance give a 

maximum relative error of 0.0341 in the total current for a set 

potential difference between the counter and working electrodes. 

Kelman's estimated error translates into an absolute error for 

h(L/r ) of at least 0.0085, larger than or nearly as large as h(L/r ) 
o 0 

itself. The points shown in figure 3 are our numerical results. We 

calculate that, for L/r - 10, h(L/r ) - 0.011. Because this problem 
o 0 

is relativeJy expensive to solve, we have not tested thoroughly the 

validity of our results. For the reasons outlined in Appendix B, one 

might also be suspicious of Kelman's results. Further work is neces-

sary if more definite conclusions are required. We estimate that the 

maximum relative error in the resistance, when predicted by the first 

two terms of equation (5), is 0.03 and occurs near L/r - 0.1. 
o 

Since two-dimensional geometries are often easier to solve (for 

example, because conformal mapping procedures might be possible), it 

may be tempting to approximate an axisymmetric geome try wi th its 

two-dimensional analog. Such approximations are often rationalized 

by noting that the current density has the same asymptotic behavior 

near the edge of an electrode because, in this region, curvature 

effects can justifiably be neglected. Quantitative agreement is 

unlikely since the average current density will usually be influenced 

by. curvature. 

To elaborate further, the results are compared with results for 

this geometry's two-dimensional analog, given by Diem et al. [6]. 

The geometry is shown in figure 4, where the. geometric ratios held 
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Figure 4. Two~imensional analog to figure 1. Adapted from reference [6]. 
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constant in their analysis are also given. The ratio min is analo-

go us to Llr . 
o 

Since, in two dimensions, currents can not flow to infinity 

without an infinite potential drop, the counterelectrode is placed at 

a finite distance from the working electrode. Placing the coun-

terelectrode too close to the working electrode distorts the current 

distribution on the supposedly "isolated working electrode." Here, 

the distortions are minimal, as is seen by comparing 

i Ii - 0.66 for min - 0 with i Ii - 2/7r for an iso-center' avg center' avg 

elated electrode. Comparisons between the two-dimensional and axisym-

metric geometries are summarized in table 1. The reported values of 

h(Llr) are based on our analysis. 
o 

The correction to the ohmic 

resistance of the two-dimensional cell is given by Diem's ~1 and is 

similar to h(Llr). 
. 0 

The current distribution for Llr - 0.04 
o 

displayed similar undulations to the distribution shown for' Llr . 
0' 

therefore, as Appendix C also indicates, the values given for 

Llr - 0.04 are suspicious. o 

A conclusion drawn from table 1 is that an axisymmetric geometry 

should generally not be approximated by a two-dimensional analog, if 

quantitative results are desired. If only qualitative results are 

required, numerical calculations may be unnecessary. 

Conclusions 

The primary current distribution and ohmic resistance for vari-

ous aspect ratios are given. The resul ts can be used to des ign a 
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Table 1. A comparison between results for two-dimensional and 
axisymmetric geometries. 

i ,./i i Ii h(Llr ) 
L cente_ avg edge avg 0 

-
r 

0 2-D axi 2-D axi 2-D axi 

0 .. 0 0.66 0.5 co co 0.0 0.0 

0.04 0.70 0.56 2.87 1. 89 0.013 0.0059 

0.2 0.79 0.71 1.47 1. 32 0.031 0.0092 

0.4 0.87 0.84 1.18 l.10 0.036 0.0099 

2.5 1.0 1.0 1.0 1.0 0.037 0.011 

co 1.0 1.0 1.0 1.0 0.037 0.011 

cell that would have an approximately uniform current distribution in 

the absence of concentration variations. With convection, the mass-

transfer limited current distribution can be nonuniform. 

Appendix A. The Solution Procedure 

Equations (14) through (19) of chapter 2 give an expression for 

the potential on the boundary. Finite-difference approximations of 

these equations were solved-with an iterative procedure. The problem 

was solved as one with a prescribed current distribution on the elec-

trode. Corresponding distributions of potential on the working elec-

trode were superimposed until the constant boundary condition was 

satisfied. 
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The current distributions that were superimposed are 

~: - P2n[Sin[2::]]' (A.I) 
where P2n are the even Legendre polynomials. It was found that the 

polynomials from 2n - a to 2n - 24 were sufficient. Additional poly-

nomials did not change appreciably the distribution. The argument 

for the polynomials is chosen so that the radial derivative of the 

current density is zero at the center and edge of the electrode. The 

recurrence formula used to evaluate the polynomials is given in Hil-

debrand [7] and Abramowitz and Stegun [8]. 

The undulations in the current distribution for L/r - 0.01 are 
o 

caused by inaccuracies in the numerical procedure. A more natural 

set of functions to describe the current density is suggested by Kel-

man [1,2]: 

a~ _ A + 
az 0 

N 
L A J (0 r/r ) , 

1 
non 0 

n-
(A.2) 

where J (x) is the Bessel function of the first kind of order zero, 
o 

and 0 
n 

th 
is the n root of J

l 
(x). By letting N - 12, we determined 

the current distribution for L/r - 0.01. Abramowitz and Stegun [9] 
o 

gave approximations for J (x). The resulting current distribution is 
o 

nearly identical (including the undulations) to the distribution 

shown in figure 2. This indicates that the inaccuracy is not caused 

by the choice of current functions. The reason that such inaccura-

cies exist is suggested by chapters 2 and 3. For such small aspect 

ratios, the edge regions are not completely isolated, and it is not 

,I •. ~,: 
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obvious where the asymptotic behavior dictated by one angle of inter-

section ends and the other begins. We did not pursue this problem in 

greater detail because it is relatively expensive to solve. Appendix 

C provides a starting point for a more involved investigation of the 

behavior of the current distribution for small aspect ratios. 

For this cell geometry, other techniques [10] for determining 

the current density on an electrode with a constant potential boun-

dary gondition might give accurate solutions. For cells with obtuse 

angles of intersection between the electrode and insulator, the 

infinite current densities that arise can not be calculated accu-

rately unless the correct form of the singularity is imbedded into 

the "problem. Miksis and Newman [11] and Pierini and Newman [12] fol-

lowed this procedure. 

One alternative to the solution procedure outlined above is to 

solve directly for the gradient of the potential. The gradient of 

equation (5) of chapter 2 is 

(A.3) 

where V emphasizes that we are taking the gradient with respect to q 

x ,Y ,z . q q q 

A specific form of equation (A.3) was used to determine the 

current distribution on the counterelectrode in the slotted-electrode 

cell of chapter 4. The solution procedure worked, but the calculated 

current density near the edge was very sensitive to the placement of 
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the nodes. 

For the recessed disk, after the 0 dependence of equation (A.3) 

is eliminated, the z derivative of the potential along the disk can 

be described by 

2 
GO 

~~V2E~m2rdr 8~ I 8z 11' 2 2 2 2 1/2 (A.4) 
q r «r-r ) +L )«r+r ) +L ) 

0 q q 

[ 2 2 2 
- K(m) Jdr 2 

GO ~~V2rL2 4E(m)(r +rg+L ) 
I 11' 2232 22 22 
r «r+r ) +L ) / «r-r ) +L) (r-r) +L 

0 q q q 

We did not have great success with equation (A. 4) . Away from 

r - the current distribution gave what appeared to be the correct 

behavior, but, near the edge, the current distribution was very sen-

sitive to the node placement. Because this equation is relatively 

expensive to solve and other solution procedures were available, we 

did not inves tigate thoroughly why equation (A. 4) caused difficul-

ties. For the case of L/r - 0, equation (A.4) reduces to equation 
o 

(23) of chapter 2, which, when integrated numerically, showed good 

agreement with the known, analytic solution. 

A situation may arise where the procedure described here is the 

best method. We have, therefore, documented our efforts in the hope 
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that they may be useful. 

Appendix B. A Discussion of Kelman's Analysis 

Near z - L, r - r (see figure 1), Laplace's equation can be 
o 

solved to show that 

2/3 
~(p,8) ~ p cos(28/3), (B.l) 

where p is the radial distance from the singular point and 8 is the 

angular coordinate with 8 - 0 corresponding to z - L, r > rand o 

~ 311' d· L u - ~ correspon 1ng to r - r o ' z < . This implies that along the 

mouth of the pore, 

1 . a~ -1/3 
1m az ~ p , 

r-+r 
(B.2) 

o 

which is singular at r - r. A corresponding behavior for the radial o 

derivative of potential prevails on the insulating plane near the 

opening. 

We can ask whether Kelman's two series can give this behavior. 

Inside the pore, his expression for the current density at z - L can 

be written as 

G) 

a~ _ A + L A J (a r/r ). az 0 1 non 0 n-
(B.3) 

Since the Bessel functions J (x) are well-behaved, it is difficult 
o 

for this' series to converge for all r .. r and still to give the 
o 

correct asymptotic behavior near r - r . 
o 

In the outer region, his expression for the current density can 

be written as 



a~ 

az 
co 

L B P2 ('1). 
'1 ° n n n-

1 
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(B.4) 

where '1 - (1 - r2/r~)~. Since the P
2n

('1) are well-behaved, equation 

(B.4) is also unlikely to converge for all r" r and to give the 
o 

correct asymptotic behavior near r - r. Note that, when L/r - 0, 
o 0 

the nature of the si:lgu1arity changes, and the solution is valid 

because the term multiplying the summation goes to infinity in the 

correct manner as r ~ r . 
o 

In summary, we indicate that the "solution" given by Kelman is 

not reasonab~e because the series represented by equations (B.3) and 

(B. 4) do not have the correct asymptotic behavior. This does not 

imply that Kelman's results should be completely disregarded because 

numerical solutions that are clearly in error near a singular point 

have been observed to be approximately correct over the remainder of 

the domain. 

Appendix C. Small Aspect Ratios 

Away from the electrode edge, for very small aspect ratios, the 

current distribution is indistinguishable from the current distribu-

tion for L/r - 0. Near the edge, the deviation from a zero aspect o 

ratio has a major influence on the distribution. In this region, the 

curvature of the axisymmetric geometry can be neglected, and the 

problem can be considered two dimensional. Hence, the treatment 

given here is applicable for both the recessed disk and the two-

dimensional analog, shown in figure 4. 



138 

To investigate the region near the edge, we used conformal map-

ping to obtain a solution to Laplace's equation. The current distri-

but ion on the electrode is described by 

8~ 
-It 

8y 

/trL12 P 

Jl - u 

o (C.l) 

where the coordinates are shown in figure 5, and wand z are related 

through 

- z 2 w/w-l 1 [/W-l - j~J z - - - - + - ln , 
L 11' j~ 11' jw-l + /~ 

P is the parameter introduced by Smyrl and Newman [13] 
o 

(C. 2) . 

and general-

ized in chapter 3. To apply equations (C .1) and (C. 2) to the two-

dimensional analog, L
O 

should be replaced with m. For the recessed 

disk, 

P 
o 

jr 18 i o avg 
(C.3) 

and, for the two-dimensional analog· in the case where L - m» n, 

P o i 
avg 

(C.4) 

Equations (C.l), (C.3), and (C.4) show that the current distri-

bution near the edge is inversely proportional to the square root of 

the aspect ratio. When evaluated at u - 0, equation (C.l), with P 
o 

given by equation (C.4), is in good agreement with the result for 

min - 0.04. Equations (C.l) and (C.3) cast serious doubt on the 

current distribution calculated for Llr - 0.01. Current distribu~ 
o 

tions, as given by equations (C.l) through (C.3), are shown in figure 

6 for various, small asp.ect ratios. 



0,1 

z=x +jy 

0,0 

w = u + jv 

0,0 

Figure 5. The original and transfonned coordinate systems used to elucidate the cur
rent distribution near the edge of a recessed disk for small aspect ratios. The mapping 
is achieved by requiring that 

139 



140 

UfO = 10-4 
-----------------

---------------------~---

Figure 6. The distribution of current density, valid for small aspect ratios, near the 
edge of a recessed disk. The dashed lines were obtained from equations (C. I ) 
(C.2), and (C.3), and the solid line is the primary current distribution for a disk 
electrode, as given by Newman [3]. 
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To design an accurate, boundary- integral procedure for a com-

plete study of the current distribution on a recessed disk, it is 

important to have an a priori estimate of the potential distribution 

along the insulating wall and plane near the pore mouth. This 

analysis gives 

IC(V - ~) 

r i 
o avg 

jU/1r, 

where, on the insulating wall, u and yare related through 

Along the insulating plane, x and u are related through 

x 2 (2 )~ 1 1 [/~ - j~J ---u-u +-n . 
L 1r 1r - ---ju + ju-l 

(C.S) 

(C.6) 

(C.7) 

These equations can be expanded to show that- the tangential gradients 

of potential satisfy the proportionality (B.2) near the singular 

point. 

We should also be able to dete~ine, in general, the order of 

magnitude of the correction to the resistance, but, to date, we have 

been unsuccessful. The evidence, though, strongly suggests 

lim h(L/r) ~ L/r In(L/r). 
L/r -0 0 0 0 

o 
(6) 

This result agrees with Kelman's analysis and is partly arrived at by 

determining the ohmic resistance of a recessed, planar electrode, 

similar to the cell in figure 4, with the counterelectrode replaced 

with a hemicylinder at a distance very far from the counterelectrode. 
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To determine the correction to the ohmic resistance for this 

cell, the mappings shown in figure 7 are useful. When the constants 

a and C are related to m and n, the ohmic resistance of the cell can 

be determined. For small min, these constants are given by 

and 

m- 11' aC 
2 

a 
n - C (1 - 2 1na ). 

With these relations it can be shown that 

lim h (m/n) - - 12 ;; 1n(m/n), 
m/n-O 11" 

(C.B) 

(C.9) 

(C.10) 

which is in good agreement with the results ·given by Diem et al. [6]. 

A ,B 
n n 

h(Llr ) 
o 

i 

J 
o 

L 

min 

r"z 

r o 

R 

v 

List of Symbols 

coefficients in a series 

correction to estimate of cell resistance 
, 2 

current density, A/cm 

Bessel function of the first kind of order zero 

wall length, cm 

ratio of lengths, given by figure 4 

even Legendre polynomials 

cylindrical coordinates 

radius of the disk electrode, cm 

cell resistance, ohm 

electrode potential, V 
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z-plane 

~ 
I m 

-n 0 n t 
w-plane 

I Wk&& .. //// ,.'/" .'" /." .,,/ ........ ./ /./" , ........ 
-l-a -1 o 1 l+a 

s.-plane 

///////////////////////////// 

-nl2 o nl2 

dz = C .Jw-l-a .Jw+l+a 
dw .J'W-f .Jw+ 1 

w=sin(s) 

Figure 7. A schematic of the mappings used to determine the ohmic resistance of a 
recessed, planar electrode, with a counterelectrode placed at a distance very far from 
the working electrode. Also shown are the coordinate transformations that provide the 
mappings. 



p,e 

avg 

144 

rotational elliptic coordinate used in equation (B.4) 

specific conductivity, ·O-lcm-1 

3.141592654 

cylindrical coordinates used near r - r , Z - L 
o 

solution potential, V 

Subscripts 

average 

center center 

edge edge 

q denotes a point at which the potential is solved 
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CHAPTER 8 
The Dissolution Kinetics of FeS04 Films 

Introduction 

The dissolution of iron in sulfuric acid has been extensively 

investigated. Russell [1], [2] and HaiH [3] recently reviewed these 

studies. The most significant development that has arisen since 

their reviews is the recognition of the importance of certain, 

universal phenomena observed in nonlinear systems. These lines of 

inquiry may provide the means to analyze data and to compare quanti-

tatively experiments with numerical simulations. Papers that are 

relevant to iron dissolution include [4], [5], and [6]. 

Sustained periodic and aperiodic dynamic behavior, which occurs 

in a potential range within the limiting current plateau which is 

presumably caused by a ferrous-sulfate film, is' one of the more 

interesting phenomena observed in this system. Russell and Newman 

[1], [2] attempted to explain this behavior. Their work is probably 

the most complete theoretical investigation of such problems. Cou-

pled transport equations within the ferrous-sulfate film and in the 

bulk electrolyte were used. One assumption in their model is that 

the concentration of ferrous ions at the solution/salt-film interface 

is equal tol the saturation value. The goal of the experiments dis-

cussed here is to test the validity of this assumption. If it is not 

valid, a kinetic rate constant that could be used to describe the 

rate of dissolution might be determined. If the results indicate 

that it i,s necessary, a rather. minor modification of Russell and 
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Newman's model could be made, and better agreement between experi-

ments and theory might be possible. Otherwise, more extensive modif-

ications to the model are necessary. 

We use a ring-disk electrode system, where ferrous ions produced 

by the dissolution of the iron disk electrode or by the dissolution 

of the FeS04 film are oxidized on a plat-inum ring. After the inter

-ruption of current on the disk, the ferrous-sulfate film dissolves 

2+ and is ~he only source of Fe . Through the collection efficiency, 

the rate of dissolution of the salt film might be estimated. Previ-

ously, Okinaka [7] used a similar procedure to estimate the dissolu-

tion kinetics of a cadmium-hydroxide film in concentrated, alkaline 

solution. For the conditions that he investigated, the films dis-

solved over a time of the magnitude of hundreds of seconds. Prater 

and Bard [8] modeled the transient response of the ring current after 

a step change in the disk current. They showed that, after the 

interruption of disk current, the ring current, if the only available 

reactant is produced at the disk, will decay to zero in a time of 

roughly 

t :::: 5.0 Sc1/ 3 -1 
w (1) 

where Sc is the Schmidt number and w is the rotation speed of the 

disk. Hence, if the rate of dissolution of the FeS0
4 

film is to be 

determined with this experiment, its time constant for dissolution 

should be greater than a second. 

When these experiments were carried out at room temperature, the 

current on the ring decayed to zero within a· time consistent with the 
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model of Prater and Bard. It is, therefore, not possible to deduce 

from these experiments any quantitative information about the disso-

lution kinetics of the ferrous-sulfate film. Since the rate of a 

reaction is expected to decrease significantly with temperature, we 

repeated the experiments at O°C, and we, again, obtained no quantita-

tive information about the dissolution kinetics. In the remainder of 

the chapter, we describe the experimental procedure and briefly dis-

cuss the implications that these results have on further modeling 

efforts. 

Experimental Procedure 

The rotating ring-disk electrode consisted of an iron disk with 

a 0.4 cm diameter and a platinum ring with an inner diameter of 0.75 

cm and an outer diameter of 0.85 cm. All experiments used I M sul-

furic acid solutions. The glass cell that was used was shown and 

described by Russell and Newman J 9] . The temperature was controlled 

with a constant~temperature bath at 2S.0±0.loC or 0.0±O.3°C. Before 

each experiment, N2 was bubbled through the electr,olyte for I to 2 

hours, and the ring-disk electrode system was polished with 9, 3, and 

I micron diamond paste. 

All experiments used a Hg/Hg2S04 reference electrode and a pla

tinum counterelectrode, both placed at distances very far from the 

working electrode. The ring-disk rotation speed was set at either 

-1 
83.8 or 41.9 sec . The potential of the disk was slowly swept until 

current oscillations were observed. The potential was then slowly 

de·creased until the oscillations stopped. The ring electrode was set 
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at a potential so that the oxidation of the ferrous ions was clearly 

at a limiting current. Once the disk and ring currents were steady, 

the potential of the disk was stepped to a potential near -1. a V. 

The ring and disk currents were recorded with a Nicolet digital 

oscilloscope. 

Results and Discussion 

The theoretical collection efficiency, when it is taken into 

consideration that the disk electrode reaction involves two electrons 

and the ring electrode reaction involves one, is 0.108 [10]. As was 

briefly discussed in the Introduction, the time constant for dissolu

tion of the film was found to be at least as small as the time con

stant described by Prater and Bard [8]. The experiments were there

fore repeated at O°C. Polarization curves obtained at two different 

sweep rates with the ring at 'open circuit are shown in figure 1. The 

behavior was qualitatively the same as that observed at room tempera-

ture. Complicated dynamic behavior appeared at the slower sweep 

rate, and, if the potential was held constant ih this range, sus

tained unsteady behavior was observed. 

Figure 2 shows a typical ring-disk experiment. The time lag 

observed on the ring electrode is consistent with the predictions of 

Prater and Bard [8]. Prater and Bard showed the effects of varying 

the ratios of the three characteristic radii of a ring-disk system. 

It can be seen that, even with a very small gap between the disk and 

ring, the time constant is probably too large to obtain information 

about the dissolution kinetics of FeS0
4

. 
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Figure 1. Polarization curves for iron dissolution at a rotation speed of 41.9 sec-l . 
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Figure 2. A typical ring-disk experiment at a rotation speed of 41.9 sec-I. 
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Any attempt to estimate a rate constant from these experiments 

would be meaningless. The rate of dissolution of a salt film can 

often be described by [11] 

N - k (c - c ) 2+ d sat o' 
Fe 

(2) 

where c is the concentration of ferrous ions at the film/solution 
o 

interface and c is the equilibrium concentration of Fe
2+ 

sat 

is very large, this reaction can be considered mass-transfer limited. 

More specifically, for the rotating-disk electrode, if S~ is very 
d 

small, the kinetics of dissolution can be neglected. D is the diffu

sion coefficent of Fe
2

+, and S provides an estimate of the size of 

the mass-transfer boundary layer and is given by [12] 

(3) 

Since even at O°C the rate of dissolution of the FeS0
4 

is fast enough 

that it could not be measured, it is unlikely that the simplified 

boundary condition used by Russell and Newman is a major source of 

discrepancy between theory and experiment. More complicated changes, 

therefore, are necessary to obtain agreement. For example, radial 

variations in the potential and surface concentration might need to 

be accounted for more accurately, or perhaps it may be necessary to 

account more explicitly for changing film porosity. 

As a further check on the rate of dissolution of the salt film, 

the concentration of the Fe
2+ at the film/solution interface could be 

estimated from the ring current and the theoretical collection effi-

ciency. The~ surface concentration using the theoretical 



collection efficiency, would be estimated by 

c 
o 

~ I. 
_tl_ r~ng 

2FDA 0.108' 
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(4) 

where A is the surface area of the disk and F is Faraday's constant. 

Using Russell and Newman/s [13] estimates of D and v, we estimate for 

the experiments at 25°C that c 
o 

that c - 3.4±0.1 M for w - 41.9 
o 

3.3±0.1 M for w - 83.8 sec-l and 

-1 sec These concentrations are 

greater than 1.88 M, the estimated saturation value. 

This discrepancy is explained by figure 5 of Russell and Newman. 

It shows that the pH increases significantly in the mass-transfer 

boundary layer and that the concentration of Fe 2+ is around an order 

of magnitude greater than the concentration of H+. Hence, a term 

accounting for migration must be included in equation (4). Using the 

physical property data given by Russell and Newman [13], the surface 

concentration of the ferrous species was determined with a modified 

version of program MIGR [14]. In the first case, it was assumed that 

the H
2

S04 dissociated into H+ ~nd SO~-, ~nd in the second case, the 

+ -supporting ionic species were assumed to be Hand HS04 . For the 

first case, the surface concentration was found to be 2.3 M, and, for 

the second case, the surface concentration was found to be 1.6 M. 

The actual concentration at the surface should be intermediate 

between these two values. 

Because of the complexity of the solution chemistry and limited 

physical property data, it is not possible to determine precisely the 

2+ surface concentration of Fe . Consequently, the most important con-
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elusion from these results is that the concentrations obtained from 

the two different rotation speeds are the same to within the experi-

mental uncertainty. This confirms that the rate of dissolution of 

FeS04 can be considered mass-transfer limited. 

Conclusions 

The kinetics of dissolution of ferrous - sulfate films in a sul-

furic acid medium is sufficiently fast that it can be considered 

mass-transfer limited. It is valid in most models to assume that the 

concentration of ferrous ions adjacent to the salt film is given by 

its saturation value. Thus, for Russell and Newman I s model to show < 

better agreement with experiments, it is most likely necessary to 

switch to a two-dimensional model. Simulations of dynamic behavior 

may, therefore, be quite expensive. 

A 

c 
o 

c 
sat 

D 

F 

I 

List of Symbols 

surface area of the disk electrode, 2 cm 

concentration of Fe 2+ at the film/solution 
interface, mol/cm3 

2+ 3 saturation concentration of Fe ,mol/cm 

diffusion coefficient, cm2/sec 

Faraday's constant, 96487 C/equiv 

current, A 

dissolution rate constant, cm/sec 

-1 -2 flux of ferrous ions, mol sec cm 



Sc 

t 

1/ 

w 

Schmidt number 

time, sec 

mass-transfer boundary layer thickness, cm 

2 
kinematic viscosity, cm /sec 

disk rotation speed, 
-1 

sec 
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APPENDIX 
Computer Programs 

The following are program listings used for work presented in 

this thesis. The code which generates information used as input for 

john.for is given by Orazem. t 

1. wedge. for (chapter 3) 

2. john. for* (chapter 4) 

3. alan. for (chapter 4) 

4. scchan.for (chapter 6) 

5. scinf.for (chapter 6) 

6. 1uggin.for (chapter 7) 

t Mark E. Orazem, Hathematical 
Liquid-Junction Photovoltaic Cells, 
California, Berkeley (June, 1983). 

*written by Johannes H. Sukamto 

Hodeling and Optimization of 
Ph. D. Thesis, University of 
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program wedge 
implicit double precision(a-h,o-z) 
dimension x(20l),s(20l),phi(2,20l),rl(2,2,20l,20l),phio(201), 

1r2(2,2,20l,20l),cdl(20l),as(2,20l) 
common x,phi,rl,r2,my,mx,cd1,xmax,as,pp,pi 

c ____________________ __ 

read*,angle 
printlOl,angle 

101 format('beta-pi*' ,G10.4) 
pi-3.l4l59265358979dO 
beta-angle*pi 
damp-O.ldO 
read*,ikinet 
call tread 
call fillmat(beta) 
call asymp(beta) 

333 iter-l 
if (ikinet.eq.l)then 

print*,'linear kinetics' 
else 

print*,'Tafel kinetics' 
end if 

c ____________________ _ 

c initial guess 
do 3 i-l,mx 

3 phi(l,i)--l.OdO 
100 call current(l,ikinet,beta) 

c ____ ~--~----~-----
c solve for phil 

do 15 i-l,mx 
phio(i)-as(l,i) 

do 16 j-l,mx-l 
al-fa(cdl(j),cdl(j+l) ,x(j),x(j+l» 
bl-fb (cdl (j) ,cdl (j+l) ,x(j) ,x(j+l» 

16 phio(i)-phio(i)+al*rl(l,l,i,j)+bl*rl(l,2,i,j) 
15 phio(i)-phio(i)/pi/2.0dO 

if (ikinet.eq.l)then 
const--xmax**(0.5dO-beta/pi)-phio(mx) 

else 
const--dlog(xmax**(0.5dO-beta/pi»-phio(mx) 

end if 
do 555 i-l,mx 

555 phio(i)-phio(i)+const 
c __ ~~~~ __________ __ 
c check for errors 

error-O.OdO 
do 30 i-2,mx 

30 error-dmaxl(error,dabs(phi(l,i)-phio(i») 
if (error.gt.l.d-5) then 

do 35 i-l,mx 
35 phi.(l, i)-phi(l., i)+damp*(phio(i) -phi(l, i» 



iter-iter+1 
if (iter.ge.800) then 

print*, 'greater than 300 iterations' ,'error-' ,error 
goto 999 

end if 
goto 100 

end if 
999 call tprint(iter,ikinet,beta) 

end 
c ________ ~------~~--_ 

subroutine fi11mat(beta) 
implicit double precision(a-h,o-z) 
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dimension x(201),s(201),phi(2,201),r1(2,2,201,201),phio(201), 
1r2(2,2,201,201),cd1(201),as(2,201) 

common x,phi,r1,r2,my,mx,cd1,xmax,as,pp,pi 
en-beta/pi-1.0dO 
enl-en+l.OdO 
mm':'lOO 
do '1 i-1,mx 
do 1 j -1 , mx - 1 

call integrate(x(j+l),x(j),x(i),en,mm) 
rl(l,l,i,j)-beta/pi*pp 
call integrate(x(j+l),x(j),x(i),enl,mm) 
r1(1,2,i,j)-beta/pi*pp 

1 continue 
return 
end 

c ____________________ ___ 

subroutine current(ielec,ikinet,beta) 
implicit double precision(a-h,o-z) 
dimension x(20l),s(20l),phi(2,20l),r1(2,2,20l,201.) ,phio(201), 

lr2(2,2,20l,20l),cdl(20l),as(2,20l) 
common x,phi,rl,r2,my,mx,cdl,xmax,as,pp,pi 
if (ikinet.eq.l)then 

do 1 i-l,mx 
1 cdl(i)-phi(l,i) 

else 
do 3 i-1,mx 

3 cdl(i)--dexp(-phi(l,i» 
end if 
return 
end 

c ____________________ ___ 

function fa(pl,p2,zl,z2) 
implicit double precision(a-h,o-z) 
fa-pl-(p2-pl)*zl/(z2-zl) 
return 
end 

c ______ ~------~ 
function fb(pl,p2,zl,z2) 
implicit. double precision(a~h,o-~) 



fb-(p2-pl)/(z2-zl) 
return 
end 

c ______ ~------__ 
subroutine tread 
implicit double precision(a-h,o-z) 
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dimension x(20l),s(20l),phi(2,20l),rl(2,2,20l,20l),phio(20l), 
lr2(2,2,20l,20l),cdl(20l),as(2,20l) 

common x,phi,rl,r2,my,mx,cdl,xmax,as,pp,pi 
read*,mx 
read*,xmax 

do 1 i-l,mx 
1 x(i)-xmax*(dfloat(i-l)/dfloat(mx-l»**2 

return 
end 

c ____________________ __ 

subroutine tprint(iter,ikinet,beta) 
implicit double precision(a-h,o-z) 
dimension x{20l),s(20l),phi(2,20l),rl(2,2,20l,20l),phio(20l), 

lr2(2,2,20l,20l),cdl(20l),as(2,20l) 
common x,phi,rl,r2,my,mx,cdl,xmax,as,pp,pi 
print*,'Along electrode:' 

do 21 i-l,mx 
21 print*,x(i)**(O.SdO),char(9),dabs(cdl(i» 

if (iter.ge.800)then 
print*,'The last run did not converge' 
stop 

end if 
return 
end 

c ____________________ _ 

subroutine asymp(beta) 
implicit double precision(a-h,o-z) 
dimension x(201),s(201),phi(2,201),rl(2,2,201,201),phio(201), 

lr2(2,2,20l,201),cdl(201),as(2,201) 
common x,phi,rl,r2,my,mx,cdl,xmax,as,pp,pi 
en--O.SdO 
mm-1000 
call integrate(xmax,O.OdO,O.OdO,en,mm) 
as(l,l)-beta/pi*pp 
do 3 i-2,mx-1 

call integrate(x(i),O.OdO,x(i),en,mm) 
temp-pp 
call integrate(xmax,x(i),x(i),en,mm) 
as(l,i)-(pp+temp)*beta/pi 

3 continue 
call integrate(xmax,O.OdO,xmax,en,mm) 
as(l,mx)-pp*beta/pi 
return 
end 

c ____ ~ __________ __ 



subroutine integrate(b,a,xq,en,mm) 
implicit double precision(a-h,o-z) 
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dimension x(20l),s(20l),phi(2,20l) ,rl(2,2,20l,20l) ,phio(20l), 
1 r2(2,2,20l,20l),cdl(201),as(2,201) 

common x,phi,rl,r2,my,mx,cdl,xmax,as,pp,pi 
if (dabs(xq).le.l.d-S)then 

if (a.ne.O.OdO)then 
pp-b**(en+l.OdO)/(en+l.OdO)*dlog(b**2)-2.0dO*b**(en+l.OdO)/ 

1 (en+l.OdO)**2-
1 (a**(en+l.OdO)/(en+l.OdO)*dlog(a**2)-2.0dO*a**(en+l.Od0)/ 
1 (en+l.OdO)**2) 

else 
pp-b**(en+l.OdO)/(en+l.OdO)*dlog(b**2)-2.0dO*b**(en+l.OdO)/ 

1 (en+l.OdO)**2 
end if 

else 
if (dabs(en).le.l.d-3)then 

pp-2.0dO*fln(b,a,xq) 
else if (en.gt.O.OdO)then 

eps-(b-a)/dfloat(mm-l) 
pp-xq**en*2.0dO*fln(b,a,xq) 
xl-a 
zl-fl (xl, xq, en) 
do 1 i-l,mm-l 

x2-xl+eps 
z2-fl (x2, xq, en) 
pp-pp+(z2+zl)*eps/2.0dO 
zl-z2 
xl-x2 

1 continue 
else if (en.lt.O.OdO)then 

pp-xq**en*2.0dO*fln(b,a,xq) 
bns-b**(en+l.OdO) 
ans-a**(en+l.OdO) 
eps-(bns-ans)/dfloat(mm-l) 
xl-ans 
zl-f2(xl,xq,en) 
do 2 i-l,mm-l 

x2-xl+eps 
z2-f2(x2,xq,en) 
pp-pp+(z2+zl)*eps/2.0dO 
zl-z2 
xl-x2 

2 continue 

c 

end if 
end if 
return 
end 

------~------~------function fln(b,a,xq) 
implicit double precision(a-h,o-z) 



if (a.eq.xq)then 
fa-O.OdO 

else 
fa-(a-xq)*(d1og(dabs(a-xq»-1.0dO) 

.end if 
if (b.eq.xq)then 

fb-O.OdO 
else 

fb-(b-xq)*(d1og(dabs(b-xq»-1.0dO) 
end if 
fln-fb-fa 
return 
end 

c ____________ ~----~----~~_ 
function f1(z,xq,en) 
implicit double precision(a-h,o-z) 
if (z.eq.xq)then 

fl-O.OdO. 
else 

fl-(z**en-xq**en)*d1og«z-xq)**2) 
end if 
return 
end 

c ____________ ~----~----~~_ 
function f2(z,xq,en) 
implicit double precision(a-h,o-z) 
x-z**(1.0dO/(en+1.0dO» 

. if (x.eq.xq)then 
f2-0.0dO 

else 
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f2-«1.0dO-xq**en*x**(-en»*d1og«x-xq)**2»/(en+1.0dO) 
end if 
return 
end 



program john 
c 
c Written by Johannes H. Sukamto 
c The program calculates the relationships between the different 
c coordinates for the slotted-electrode cell. 
c Its input is obtained from a slightly modified version of 
c PROGRAH RCALC of Orazem. c __________________________________ ___ 
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dimension fintga(lOOOOO) ,fintgc(lOOOOO),tta(lOOOOO) ,ttc(lOOOOO) , 

c 
c 
c 
c 
c 

+ xa(SOO) ,xc(SOO) ,ga(SOO) ,za(SOO) ,zc(SOO) ,gc(SOO) 
common/int/numintl,numint2,numint3,numint4,numintS, 

+ numint6,numint7,nurnx,dl,tg 
common/const/a,b,c,d,xmax,wimax,rescd 
common/limit/limitl,limit2 
common/points/fintga,fintgc,tta,ttc,xa,xc 
common/calc/ga,za,zc,gc 
complex za,zc 
call input 
call cxmax 
call cxcz 
call output 
stop 
end 

subroutine input 
common/int/numintl,numint2,numint3,numint4,numintS, 

+ numint6,numint7,numx,dl,tg 
common/const/a,b,c,d,xmax,wimax,rescd 

a,b,c,.d A,B,C,D in original geometry 
wimax y-max 
dl length of electrode 
rescd ohmic resistance 

c numint's 
c 

Number of intervals for integration; they do not 
require any changes unless 'max' and 'min' (look at 
output) differ significantly. Have the same number 
for the first 4, and the same nUmber for the last 2. 
number of evenly spaced nodes, rectangular geometry 

c 
c 
c numx 
c 

read*, a,b,c,d 
read*, wimax 
read*, dl 
read*, rescd 
read*, numintl,numint2,numint3,numint4,numintS,numint6,numint7 
read*, numx 
return 
end 

subroutine cxmax 
c;. c.alculate xmax 



165 

dimension fintga(100000),fintgc(100000),tta(100000),ttc(100000), 
+ xa(500),xc(500),ga(SOO),za(SOO),zc(SOO),gc(SOO) 

common/int/numint1,numint2,numint3,numint4,numint5, 
+ numint6,numint7,numx,d1,tg 

common/const/a,b,c,d,xmax,wimax,rescd 
common/1imit/1imit1,limit2 
common/points/fintga,fintgc,tta,ttc,xa,xc 

c a to I 
tta(l)-a 
width-sqrt«b-a)/2.)/f1oat(numint1) 
beta-O. 
xmax-O. 
first-fax(tta(l» 
fintga(l)-O. 
do 10 i-2,numint1 

beta-beta+width 
tta(i)-a+beta**2 
second-fax(tta(i» 
fintga(i)-fintga(i-1)+.S*(first+second)*width 
first-second 

10 continue 
tta(numint1+1)-(a+b)/2. 
second-fax(tta(numint1+1» 
fintga(numint1+1)-fintga(numintl)+.S*(first+second)*Width 

c I to b 
limit-numintl+numint2 
beta-sqrt«b-a)/2.) 
width-(0.-sqrt«b-a)/2.»/float(numint2) 
first-fbx(tta(numintl+l» 
do 20 i-numintl+2,limit 

beta-beta+width 
tta(i)-b-beta**2 
second-fbx(tta(i» 
fintga(i)-fintga(i-l)+.S*(first+second)*Width 
first-second 

20 continue 
tta(limit+l)-b 
second-fbx(tta(limit+1» 
fintga(limit+l)-fintga(limit)+.S*(first+second)*width 
limit1-limi t+l 

c -c to -I 
ttc(l)--c 
width-sqrt«d-c)/2.)/float(numint3) 
beta-O. 
first-fcx(ttc(l» 
fintgc(l)-O. 
do 30 i-2,numint3 

beta-beta+width 
ttc(i)--c-beta**2 
second-fcx(ttc(i» 
fintgc(i)-fintgc(i-l)+.S*(first+second)*Width 



first-second 
30 continue 

ttc(numint3+1)--(c+d)/2. 
second-fcx(ttc(numint3+1» 
fintgc(numint3+1)-fintgc(numint3)+.S*(first+second)*Width 

c _ I to -d 
limit-numint3+numint4 
beta-sqrt«d-c)/2.) 
width--sqrt«d-c)/2.)/float(numint4) 
first-fdx(ttc(numint3+1» 
do 40 i-numint3+2,limit 

beta-beta+width 
ttc(i)-beta**2-d 
second-fdx(ttc(i» 
fintgc(i)-fintgc(i-l)+.S*(first+second)*Width 
first-second 

40 continue 
ttc(limit+l)--d 
second-fdx(ttc(limit+1» 
fintgc(limit+1)-fintgc(limit)+.S*(first+second)*Width 
limit2-limit+1 
xmax-(fintga(limit1)+fintgc(limit2»/2. 
return 
end 

subroutine cxcz 
c calculate relations between derivatives of original and 
c rectangular geometries 
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dimension fintga(100000),fintgc(lOOOOO),tta(100000),ttc(100000), 
+ xa(SOO),xc(SOO) ,ga(SOO) ,za(SOO),zc(SOO) ,gc(SOO) 

common/int/numint1,numint2,numint3,numint4,numintS, 
+ numint6,numint7,numx,d1,tg 

common/const/a,b,c,d,xmax,wimax,rescd 
common/1imit/1imit1,limit2 
common/points/fintga,fintgc,tta,ttc,xa,xc 
common/ca1c/ga,za,zc,gc 
complex za,zc 
logical flag1,flag2 

c integrate up to a 
temp-O. 

S, sumrl-O. 
sumi1-0. 
widthz-a/float(numintS) 
t'!""O. 
first-fazrl(t) 
do 10 i-2,numintS 

t-t+widthz 
second-fazr1(t) 
sumr1-sumrl+.S*(first+second)*widthz 
first-second 

10. continue. 



second-O. 
sumr1-sumr1+.5*(first+second)*widthz 
de1-abs(1.-temp/sumr1) 
if (de1.gt.1.e-4) then 

if (numint5.gt.1000) then 
print*, 'PROBLEM WITH CONVERGENCE z-t, 0 to a' 
stop 

endif 
numint5-2*numint5 
temp-sumr1 
goto 5 

endif 
first-O. 
sumr2-sumr1 
za(1)-cmp1x(sumr1,sumi1) 

c integrate from a to b 
numint-2*(numint1+numint2)/numx 
width-xmax/float(numx-l) 
xa(l)-O. 
x-O. 
j-2 
temp-sqrt(b-a) 
first-O. 
ga(l)-gxa(tta(l» 
do 20 i-2,numx-l 

x-x+width 
30 if «x.ge.fintga(j».and.(j.lt.limitl» then 

j-j+l 
goto 30 

endif 
if (j.eq.limitl) goto 300 
xa(i)-fintga(j ) 
ga(i)-gxa(tta(j» 
widthz-(sqrt(b-tta(j»-temp)/float(numint) 
beta-temp 
temp-sqrt(b-tta(j» 
do 40 k-2,numint+l 

beta-beta+widthz 
t-b-beta**2 
second-fbz il (t) 
sumil-sumil+.5*(first+second)*widthz 
first-second 

40 continue 
za(i)-cmplx(sumrl,sumil) 

20 continue 
300 xa(numx)-xmax 

ga(numx)-gxa(tta(limitl» 
widthz--temp/float(numint) 
beta-temp 
do 50 k-2,numint+l 

beta-beta+widthz 
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t-b-beta**2 
second-fbz il (t) 
sumi1-sumi1+.5*(first+second)*widthz 
first-second 

50 continue 
za(numx)-cmplx(sumr1,sumil) 
sumi2-sumil 

c integrate from -b to -c 
c integrate from -b to -I 

templ-O. 
55 temp2-0. 

beta-O. 
widthz-sqrt«c-b)/2.)/float(numint6) 
t--b 
first-fbzr2(t) 
do 60 i-2,numint6+l 

beta-beta+widthz 
t--b-beta**2 
second-fbzr2(t) 
temp2-temp2+.5*(first+second)*widthz 
first-second 

60 continue 
c integrate from -I to -c 

beta-sqrt«c-b)/2.) 
widthz--beta/float(numint7) 
t--(c+b)/2. 
first-fczr2(t) 
do 70 i-2,numint7 

beta-beta+widthz 
t-beta**2-c 
second-fczr2(t) 
temp2-temp2+.5*(first+second)*widthz 
first-second 

70 continue 
t--c 
second-fczr2(t) 
temp2-temp2+.5*(first+second)*widthz 
del-abs(1.-templ/temp2) 
if (del.gt.l.e-4) then 

if (numint6.gt.lOOO) then 
print*, 'PROBLEM WITH CONVERGENCE, z-t, b to c' 
stop 

endif 
numint6-2*numint6 
numint7-2*numint7 
templ-temp2 
goto 55 

endif 
sumr2-sumr2+temp2 
zc(1)-cmplx(sumr2,sumi2) 

c integrate~from -~to -d 
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numint-2*(numint3+numint4)/numx 
xc(l)-O. 
gc(l)-gxc(ttc(l» 
x-O. 
j-2 
temp-O. 
beta-temp 
flag1-.true. 
flag2-.true. 
do 80 i-2,nurnx-1 

x-x+width 
90 if «x.ge.fintgc(j».and.(j.1e.1imit2» then 

j-j+1 
goto 90 

endif 
if (j.gt.1imit2) then 

print*,'OUTSIDE OF REGION 2, c TO d' 
stop 

endif 
xc(i)-fintgc(j) 
gc(i)-gxc(ttc(j» 
if (abs(ttc(j».lt.«c+d)/2.» then 

widthz-(sqrt(-ttc(j)-c)-temp)/f1oat(numint) 
beta-temp 
temp-sqrt(-ttc(j)-c) 
if (flag1) then 

t--c 
first-fczi2(t) 
flagl-.false. 

endif 
do 100 k-2,numint+1 

beta-beta+widthz 
t--c-beta**2 
second-fczi2(t) 
sumi2-sumi2+.5*(first+second)*widthz 
first-second 

100 continue 
zc(i)-cmp1x(sumr2,sumi2) 

else 
if (flag2) then 

t--c-temp**2 
first-fdzi2(t) 
temp-sqrt(d+t) 
flag2-.fa1se. 

endif 
widthz-(sqrt(d+ttc(j»-temp)/f1oat(numint) 
beta-temp 
temp-sqrt(d+ttc(j» 
do 110 k-2,numint+1 

beta-beta+widthz 
t-beta**2-d 
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second-fdzi2(t) 
sumi2-sumi2+.s*(first+second)*widthz 
first-second 

110 continue 
zc(i)-cmp1x(sumr2,sumi2) 

endif 
80 continue 

xc (numx)-xmax 
gc(numx)-gxc(ttc(limit2» 
widthz--temp/f1oat(numint) 
do 120 k-2,numint+1 

beta-beta+widthz 
t-beta**2-d 
second-fdzi2(t) 
sumi2-sum~2+.s*(first+second)*widthz 
first-second 

120 continue 
zc(numx)-cmplx(sumr2,sumi2) 
return 
end 

subroutine output 
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dimension fintga(100000),fintgc(100000),tta(100000),ttc(100000), 
+ xa(sOO),xc(sOO),ga(sOO),za(sOO),zc(SOO),gc(SOO) 

common/int/numint1,numint2,numint3,numint4,numintS, 
+ numint6,numint7,numx,d1,tg 

common/const/a,b,c,d,xmax,wimax,rescd 
common/points/fintga,fintgc,tta,ttc,xa,xc 
common/calc/ga,za,zc,gc 
complex za,zc 
print100,xmax,wimax 

100 format (2e1.7.8) 
print1s0,b,c,d 

150 format (3e17.8) 
print160,d1 

160 format (e17.8) 
print*,numx 
print160,rescd 
do 10 i-l,numx 

print200,xa(i),ga(i),xc(i),gc(i) 
10 continue 
200 format (4e17.8) 

do 20 i-1,numx 
print300,za(i),zc(i) 

20 continue 
300 format (4e17.8) 

error1-0. 
error2-1000. 
do 30 i-2,numx 

error1-amax1(error1,abs(xa(i)-xa(i-1»,abs(xc(i)-xc(i-1») 
error2-amin1(error2,abs(xa(i)-xa(i-1»,abs(xc(i)-xc(i-1») 



30 continue 
print*, 'max. - ' ,error1 
print*, ' min. - " error2 
return 
end 

function fax(t) 
common/const/a,b,c,d,xmax,wimax,rescd 
fax-2./sqrt(b-t)/sqrt(c+t)/sqrt(d+t) 
return 
end 

function fbx(t) 
common/const/a,b,c,d,xmax,wimax,rescd 
fbx--2./sqrt(t-a)/sqrt(c+t)/sqrt(d+t) 
return 
end 

function fcx(t) 
common/const/a,b,c,d,xmax,wimax,rescd 
fcx-2./sqrt(a-t)/sqrt(b-t)/sqrt(d+t) 
return 
end 

functfon fdx(t) 
common/const/a,b,c,d,xmax,wimax,rescd 
fdx--2./sqrt(a-t)/sqrt(b-t)/sqrt(-c-t) 
return 
end 

function fazr1(t) 
common/const/a,b,c,d,xmax,wimax,rescd 
if (t.eq.a) goto 10 
fazr1--sqrt(a**2-t**2)/sqrt(b**2-t**2)/sqrt(c**2-t**2)/ 

+ sqrt(d**2-t**2) 
return 

10 fazr1-0. 
return 
end 

function fbzi1(t) 
common/const/a,b,c,d,xmax,wimax,rescd 
if (t.eq.a) goto 10 
fbzil--2.*sqrt(t**2-a**2)/sqrt(b+t)/sqrt(c**2-t**2)/ 

+ sqrt(d**2-t**2) 
return 

10 fbzil-O. 
return 
end 

furtction fbzi2 (t) 
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common/const/a,b,c,d,xmax,wimax,rescd 
if (t.eq.a) goto 10 
fbzi2--2.*sqrt(a-t)*sqrt(-a-t)/sqrt(b-t)/sqrt(c**2-t**2)/ 

+ sqrt(d**2-t**2) 
return 

10 fbzi2-0. 
return 
end 

function fbzr2(t) 
common/const/a,b,c,d,xmax,wimax,rescd 
fbzr2-2.*sqrt(a-t)*sqrt(-a-t)/sqrt(b-t)/sqrt(c**2-t**2)/ 

+ sqrt(d**2-t**2) 
return 
end 

function fczr2(t) 
common/const/a,b,c,d,xmax,wimax,rescd 
fczr2--2.*sqrt(a-t)*sqrt(-a-t)/sqrt(b-t)/sqrt(-b-t)/ 

+ sqrt(c-t)/sqrt(d**2-t**2) 
return 
end 

function fczi2(t) 
common/const/a,b,c,d,xmax,wimax,rescd 
fczi2-fczr2(t) 
return 
end 

function fdzi2(t) 
common/const/a,b,c,d,xmax,wimax,rescd 
fdzi2-2.*sqrt(a-t)*sqrt(-a-t)/sqrt(b-t)/sqrt(-b-t)/ 

+ sqrt(c-t)/sqrt(-c-t)/sqrt(d-t) 
return 
end 

function gxa(t) 
common/const/a,b,c,d,xmax,wimax,rescd 
gxa-(t-a)*sqrt(t+a)/sqrt(b+t)/sqrt(c-t)/sqrt(d-t) 
return 
end 

function gxc(t) 
common/const/a,b,c,d,xmax,wimax,rescd 
gxc-(a-t)*sqrt(-t-a)/sqrt(-t-b)/sqrt(c-t)/sqrt(d-t) 
return 
end 
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program alan 
implicit double precision(a-h,o-z) 
character*72 11 
dimension x(Sl),y(Sl),phi(4,Sl),rl(4,2,Sl,Sl),phio(Sl), 
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1 r2(4,2,Sl,Sl),r3(4,2,Sl,Sl),r4(4,2,Sl,Sl),cd(Sl),g(lOO),phio3(Sl) 
1 ,za(Sl),zc(Sl),x3(Sl),g3(lOO) 

cornmon x,y,phi,rl,r2,r3,r4,my,mx,cd,xmax,yrnax,g,xmaxi,za,zc,bj, 
1 dj 

c ______________________ ____ 

c x,y are the coordinates of the rectangle. 
c phi stores the values of the unknowns on the four sides. 
c phi(3,i) is the current density on side 3. phi(l,i), phi(2,i) and 
c phi(3,i) are the values of the potentials on the four sides. 
c rl, r2, r3, and r4 store the values of the integrand for each side. 
c cd(i) is used to store the current density on side 1. 
c __________ ~~~ ____ ~ 

pi-3.l4lS926S3S8979dO 
read* , iflag 
read*,imax,damp,dj ,djinc,djmax 
tdamp-darnp 
read* ,rnx ,my 
read*,xmaxi,yrnaxi 
read*,bt,ct,dt 
read*,dl,tg,durn 
read*,nurnpts 
read*,resis 
write(l,*),resis 
write(2,*),resis 
bj-dj*resis/dl 
yrnax-yrnaxi/xmaxi 
xmax-l. ada 
read*,x(l),g(l),x3(l),g3(1) 
limit-(nurnpts-l)/(mx-l)-l 
do 78 i-2,mx 
do 77 j-l,limit 

77 read*,durn,durn,durn,durn 
78 read*,x(i),g(i),x3(i),g3(i) 

read*,durn,za(l),durn,zc(l) 
do 80 i-2,mx 
do 79 j-l,limit 

79 read* ,durn, durn, durn, durn 
80 read*,durn,za(i),durn,zc(i) 

do 1 i-l,mx 
1 x(i)-x(i)/xmaxi 

do 2 i-l,my 
2 y(i)-yrnax*dfloat(i-l)/dfloat(my-l) 

call fillmat 
c __ ~~~~ __________ __ 
c initial guess 

if (iflag.eq.l) then 
call readgue:ss 



3 

4 

else 
do 3 i-l,mx 

phi(l,i)-ymax*xmaxi*g(i) 
phi(3,i)--1.OdO*xmaxi*g(i) 

do 4 i-l,my 
phi(2,i)-phi(I,I)*(ymax-y(i»/ymax 
phi(4,i)-phi(1,mx)*(ymax-y(i»/ymax 

end if 
c~ ____ ~~ ________ __ 
100 call current 
c ____ ~~~~~----_ 
c solve for phi2 

do 6 i-2,my-l 
phi(2,i)-0.OdO 
do 7 j-l,mx-l 

a2-fa(phi(1,j),phi(1,j+l),x(j),x(j+l» 
b2-fb(phi(1,j), phi(l ,j+l) ,x(j) ,x(j+l» 
al-fa(cd(j) , cd(j+l) , x(j) ,x(j+l» 
bl-fb (cd(j) , cd(j+l) ,x(j ) ,x(j +1» 
a3-fa(phi(3,j),phi(3,j+l),x(j),x(j+l» 
b3-fb(phi(3,j) ,phi(3,j+l) ,x(j) ,x(j+l» 

7 phi(2,i)-phi(2,i)+al*r2(1,1,i,j)+bl*r2(1,2,i,j)+ 
1 a2*r2(2,1,i,j)+b2*r2(2,2,i,j)+a3*r2(3,1,i,j)+b3*r2(3,2,i,j) 

do 8 j-l,my-l 
a-fa(phi (4, j) ,phi (4, j+l) , y(j) , y(j+l» 
b-fb(phi(4,j) ,phi(4,j+l) ,y(j) ,y(j+l» 

8 phi(2,i)-phi(2,i)+a*r2(4,1,i,j)+b*r2(4,2,i,j) 
6 phi(2,i)-phi(2,i)/pi 

phi(2,1)-phi(1,1) 
phi(2,my)-0.OdO 

c ____ ~ __ ~~~ __ --__ 
c solve for phi4 

do 9 i-2,my-l 
phi(4,i)-0.OdO 
do 10 j-l,mx-l 

a2-fa(phi(l,j),phi(1,j+l),x(j),x(j+l» 
b2-fb(phi(1,j),phi(l,j+l),x(j),x(j+l» 
al-fa(cd(j),cd(j+l),x(j),x(j+l» 
bl-fb(cd(j) ,cd(j+l) ,x(j) ,x(j+l» 
a3-fa(phi(3,j),phi(3,j+l),x(j),x(j+l» 
b3-fb(phi(3,j),phi(3,j+l),x(j),x(j+l» 

10 phi(4,l)-phl(4,1)+al*r4(1,l,i,j)+bl*r4(I,2,i,j)+ 
1 a2*r4(2,l,i,j)+b2*r4(2,2,i,j)+a3*r4(3,I,i,j)+b3*r4(3,2,i,j) 

do 11 j-l,my-l 
a-fa(phi (2, j ) ,phi (2, j+l) , y(j) ,y(j+l» 
b-fb(phi(2,j),phi(2,j+l),y(j),y(j+l» 

11 phi(4,i)-phi(4,l)+a*r4(4,I,i,j)+b*r4(4,2,i,j) 
9 phi(4,i)-phi(4,i)/pi 

phi(4,l)-phi(l,mx) 
phi(4,my)-0.OdO 

c~~=-_______________ ~ 
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c solve for 13 
do 12 i-l,mx 
phio3(i)-phi(3,i) 
phi(3,i)-0.OdO 
do 13 j-l,mx-l 

al-fa(phi(l,j),phi(l,j+l),x(j),x(j+l» 
bl-fb(phi(l,j),phi(l,j+l),x(j),x(j+l» 
a2-fa(cd(j),cd(j+l),x(j),x(j+l» 
b2-fb(cd(j),cd(j+l),x(j),x(j+l» 

13 phi(3,i)-phi(3,i)+al*r3(1,1,i,j)+bl*r3(1,2,i,j)+ 
1 a2*r3(2,1,i,j)+b2*r3(2,2,i,j) 

do 14 j-l,my-l 
al-fa(phi(2,j),phi(2,j+l),y(j),y(j+l» 
bl-fb(phi(2,j),phi(2,j+l),y(j),y(j+l» 
a2-fa(phi(4,j),ph1(4,j+l),y(j),y(j+l» 
b2-fb(ph1(4,j),ph1(4,j+l),y(j),y(j+l» 

14 ph1(3,1)-ph1(3,1)+al*r3(3,1,1,j)+bl*r3(3,2,i,j)+ 
1 a2*r3(4,1,i,j)+b2*r3(4,2,i,j) 

ph1(3,1)-phi(3,1)/pi 
12 phi(3,1)-phio3(i)-damp*(phio3(i)-phi(3,i», 
c ____ ~--~--~--__ _ 
c solve for phil 

do 15 l-l,mx 
ph1o(i)-0.OdO 
do 16 j-l,mx-l 

a2-fa(phi(3,j),phi(3,j+l),x(j),x(j+l» 
b2-fb(ph1(3,j),phi(3,j+l),x(j),x(j+l» 
al-fa(cd(j),cd(j+l),x(j),x(j+l» 
bl-fb(cd(j),cd(j+l),x(j),x(j+l» 

16 ph1o(i)-phio(i)+al*rl(1,1,i,j)+b1*r1(1,2,i,j)+ 
1 a2*r1(3,1,i,j)+b2*r1(3,2,i,j) 

do 17 j-1,my-1 
a1-fa(phi(2,j),phi(2,j+1),y(j),y(j+1» 
b1-fb(phi(2,j),phi(2,j+1),y(j),y(j+1» 
a2-fa(phi(4,j),phi(4,j+1) ,y(j),y(j+1» 
b2-fb(phi(4,j),phi(4,j+1),y(j),y(j+1» 

17 ph1o(i)-phio(i)+a1*rl(2,I,i,j)+bl*rl(2,2,i,j)+ 
1 a2*rl(4,I,i,j)+b2*rl(4,2,i,j) 

15 phio(i)-phio(l)/pi 
c __ ~~~ __________ __ 
c check for errors 

error-O.OdO 
do 30 i-2,mx 

30 error-dmaxl(error,dabs(1.0dO-phio(i)/ph1(1,1») 
if (error.gt.l.d-4) then 

do 35 i-1,mx 
35 ph1(1,1)-phi(1,i)+damp*(phio(i)-phi(1,i» 

iter-iter+1 
if (iter.ge.imax) then 

print*,'the number of iterations exceeds ' ,imax 
print*,'errb~ , ,errbr 
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goto 999 
end if 
goto 100 

end if 
c __________________ _ 

c Print results 
print*, , , 
print*, , , 
print*, , J - ',dj 
print*, 'resis. - ' ,resis 

999 print*,'Number of iterations:' ,iter 
c __________________ _ 

c average current 
cd(l)--bj*(l.OdO-phi(l,l» 
sum-O.OdO 
do 250 i-2,mx 

cd(i)--bj*(l.OdO-phi(l,i» 
250 sum-sum+. 5dO*( cdC i)+cd(i-l) )*(z'a( i) - za( i -1» 

sum-sum/(za(mx)-za(l» 
do 300 i-l,mx 

za(i)-(za(i)-za(l»/(za(mx)-za(l» 
300 cd(i)-cd(i)/sym 

eta-sum/bj 
phimax-dabs(phi(l,l)-phi(l,mx» 
write(l,*),dj ,eta,phimax 
if «dj .eq.5.).or.(dj .eq.10.).or.(dj .eq.20.).or.(dj.eq.50.) 

+ .or.(dj.eq.100.» then 
write(2,*),dj 
do 500 i-l,mx 

500 write(2,*),za(i),char(9),cd(i) 
endif 
write(3,*),'J - ',dj 
do 8000 nni-l,mx 

8000 write(3,*),phi(1,nni),phi(2,nni),phi(3,nni),phi(4,nni) 
c increment dj 

c 

if (dj.lt.djmax) then 
dj -dj +dj inc 
bj-dj*resis/dl 
iter-O 
damp-tdamp 
goto 100 

endif 
end 

----------------------subroutine fillmat 
implicit double precision(a-h,o-z) 
dimension x(51),y(5l),phi(4,5l),rl(4,2,Sl,Sl),phio(Sl), 

1 r2(4,2,5l,Sl),r3(4,2,Sl,5l),r4(4,2,Sl,5l),cd(Sl),g(100), 
1 za(Sl),zc(5l),x3(Sl),g3(100) 
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common x,y, phi, rl, r2, r3, r4,my ,mx, cd" xmax ,ymax, g, xmaxi, za, zc, bj , 
L dj 
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do 1 i-l,mx 
do 1 j-l,mx-l 

rl(l,l,i,j)-fl(x(j+l),x(i»-fl(x(j),x(i» 
rl(1,2,i,j)-f2(x(j+l),x(i»-f2(x(j),x(i» 
rl(3,1,i,j)--O.SdO*(f3(x(j+l)-x(i),ymax)-f3(x(j)-x(i),ymax» 
rl(3,2,i,j)-x(i)*rl(3,1,i,j)-

1 (f4(x(j+l)-x(i),ymax)-f4(x(j)-x(i),ymax»*O.SdO 
r3(1,1,i,j)--(fS(x(j+l)-x(i),ymax)-fS(x(j)-x(i),ymax)+2.OdO* 

1 ymax**2*(f7(x(j+l)-x(i),ymax)-f7(x(j)-x(i),ymax») 
r3(1,2,i,j)-x(i)*r3(1,1,i,j)+ 

1 2.0dO*ymax**2*(f8(x(j+l)-x(i),ymax)-
1 f8(x(j)-x(i),ymax»-(f6(x(j+l)-x(i),ymax)-f6(x(j)-x(i),ymax» 

r3 (2,1, i,j )-ymax*( fS (x(j+l) -xC i) , ymax) - fS (x(j ) -xC i) , yrnax» 
r3(2,2,i,j)-x(i)*r3(2,1,i,j)+ 

1 ymax*(f6(x(j+l)-x(i),ymax)-f6(x(j)-x(i),ymax» 
1 continue 

do 2 i-l,mx 
do 2 j -1 , my -1 

if (i.eq.l) then 
rl(2,1,i,j)-O.OdO 
rl(2,2,i,j)-O.OdO 
r3(3,1,i,j)-O.OdO 

else 
r3(3,2,i,j)-O.OdO 

rl(2,1,i,j)-x(i)*(fS(y(j+l),x(i»-fS(y(j),x(i») 
r 1 ( 2 , 2 , i , j ( ) -x ( i ) * ( f 6 ( y ( j + 1) , x ( i) ) - f 6 (y (j ) , x ( i) ) ) 
r3(3,1,i,j)-2.0dO*x(i)*(f8(y(j+l)-ymax,x(i»-

1 f8(y(j)-yrnax,x(i») 
r3(3,2,i,j)-yrnax*r3(3,1,i,j)+2.0dO*x(i)* 

1 (f9(y(j+l)-yrnax,x(i»-f9(y(j)-yrnax,x(i») 
end if 
if (i.eq.mx) then 

rl(4,1,i,j)-O.OdO 
rl(4,2,i,j)-O.OdO 
r3(4,1,i,j)-O.OdO 
r3(4,2,i,j)-O.OdO 

else 
rl(4,1,i,j)-(xmax-x(i»*(fS(y(j+l),xmax-x(i»-

1 fS (y(j) ,xmax-x( i») 
rl(4,2,i,j)-(xmax-x(i»*(f6(y(j+l),xmax-x(i»-

1 f6(y(j),xmax-x(i») 
r3(4,1,i,j)-2.0dO*(xmax-x(i»*(f8(y(j+l)-yrnax, 

1 x(i)-xmax)-f8(y(j)-yrnax,xmax-x(i») 
r3(4,2,i,j)-ymax*r3(4,1,i,j)+2.0dO*(xmax-x(i»* 

1 (f9(y(j+l)-yrnax,xmax-x(i»-f9(y(j)-ymax,xmax-x(i») 
end if 

2 continue 
do 3 i-2,my-l 
do 3 j-l,mx-l 

r2(1,1,i,j)-O.SdO*(f3(x(j+l),y(i»-f3(x(j),y(i») 
r2(1,2,i,j)-O.5dO*(f4(x(j+l),y(i»-f4(x(j),y(i») 
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c 

do 
do 

r2(2,I,i,j)-y(i)*(f5(x(j+1),y(i»-f5(x(j),y(i») 
r2(2,2,i,j)-y(i)*(f6(x(j+1),y(i»-f6(x(j),y(i») 
r2(3,1,i,j)--O.5dO*(f3(x(j+1),ymax-y(i»
f3(x(j),ymax-y(i») 
r2(3,2,i,j)--O.5dO*(f4(x(j+1),ymax-y(i»
f4(x(j),ymax-y(i»)+y(i)*r2(3,1,i,j) 
r4(1,1,i,j)-O.5dO*(f3(x(j+1)-xmax,y(i»
f3(x(j)-xmax,y(i») 
r4(1,2,i,j)-O.5dO*(f4(x(j+1)-xmax,y(i»
f4(x(j)-xmax,y(i»)+r4(1,I,i,j)*xmax 
r4(2,1,i,j)-y(i)*(f5(x(j+I)-xmax,y(i»
f5(x(j)-xmax,y(i») 
r4(2,2,i,j)-y(i)*(f6(x(j+l)-xmax,y(i»
f6(x(j)-xmax,y(i»)+xmax*r4(2,1,i,j) 
r4(3,1,i,j)--O.5dO*(f3(x(j+1)-xmax,y(i)-ymax)
f3(x(j)-xmax,y(i)-ymax» 
r4(3,2,i,j)--O.5dO*(f4(x(j+l)-xmax,y(i)-ymax)
f4(x(j)-xmax,y(i)-ymax»+xmax*r4(3,1,i,j) 
4 i-2,my-1 
4 j-l,my-1 
r2(4,1,i,j)-xmax*(f5(y(j+l)-y(i),xmax)
f5(y(j)-y(i),xmax» 
r2(4,2,i,j)-y(i)*r2(4,1,i,j)+xmax*(f6(y(j+l)-y(i),xmax)
f6(y(j)-y(i),xmax» 
r4(4,1,i,j)-r2(4,1,i,j) 
r4(4,2,i,j)-r2(4,2,i,j) 

c The two following do loops account for, the fact the interior 
c angles at the corners are twice as small. 
c ______ _ 

do 5 j -1 , mx - I 
r3(1,1,1,j)-2.0dO*r3(1,1,1,j) 
r3(1,2,I,j)-2.0dO*r3(1,2,1,j) 
r3(2,1,I,j)-2.0dO*r3(2,1,1,j) 
r3(2,2,1,j)-2.0dO*r3(2,2,I,j) 
r3(1,1,mx,j)-2.0dO*r3(1,1,mx,j) 
r3(1,2,mx,j)-2.0dO*r3(1,2,mx,j) 
r3(2,I,mx,j)-2.0dO*r3(2,I,mx,j) 
r3(2,2,mx,j)-2.0dO*r3(2,2,mx,j) 
rl(I,I,1,j)-2.0dO*rl(I,I,1,j) 
r1(1,2,I,j)-2.0dO*r1(1,2,I,j) 
rl(3,1,1,j)-2.0dO*rl(3,1,1,j) 
rl(3,2,I,j)-2.0dO*rl(3,2,I,j) 
rl(1,I,mx,j)-2.0dO*rl(1,I,mx,j) 
rl(I,2,mx,j)-2.0dO*r1(1,2,mx,j) 
rl(3,I,mx,j)-2.0dO*rl(3,I,mx,j) 

5 rl(3,2,mx,j)-2.0dO*rl(3,2,mx,j) 
do 6 j-l,my-l 

r3(3,1,mx,j)-2.0dO*r3(3,1,mx,j) 
r3(3,2,mx,j)-2.0dO*r3(3,2,mx,j) 
r3(4,1,I,j)-2.0dO*r3(4,1,I,j) 

178 



6 

r3(4,2,1,j)-2.0dO*r3(4,2,1,j) 
r1(2,1,mx,j)-2.0dO*r1(2,1,mx,j) 
r1(2,2,mx,j)-2.0dO*r1(2,2,mx,j) 
rl(4,l,l,j)-2.0dO*rl(4,l,l,j) 
rl(4,2,1,j)-2.0dO*rl(4,2,l,j) 

return 
end 

c ____________________ _ 

c SUBROUTINE CURRENT IS WHERE THE KINETICS AND THE INFORMATION 
c FROM THE SCHWARZ-CHRISTOFFEL TRANSFORMATION ARE INPUT 
c ____________________ _ 

subroutine current 
implicit double precision(a-h,o-z) 
dimension x(Sl),y(Sl),phi(4,Sl),rl(4,2,Sl,Sl),phio(51), 

1 r2(4,2,Sl,Sl),r3(4,2,Sl,Sl),r4(4,2,Sl,Sl),cd(Sl),g(lOO), 
1 za(Sl),zc(Sl),x3(Sl),g3(100) 
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common x,y,phi,r1,r2,r3,r4,my,mx,cd,xmax,ymax,g,xmaxi,za,zc,bj, 
1 dj 

do 1 i-1,mx 
1 cd(i)--bj*(l.OdO-phi(l,i»*g(i)*xmaxi 

return 
end 

c ____________________ _ 

c THE FOLLOWING FUNCTIONS ARE INTEGRALS TO BE USED IN 2-D PROBLEMS. 
c THEY ARE CALLED IN SUBROUTINE FILLMAT. 
c ____________________ _ 

function fl(b,a) 
implicit double precision(a-h,o-z) 
if (a.eq.b) then 

fl-O.OdO 
else 

fl-(b-a)*(dlog(dabs(a-b»-l.OdO) 
end if 
return 
end 

c ______ ~------__ --
function f2(b,a) 
implicit double precision(a-h,o-z) 
if (a.eq.b) then 

f2-0.0dO 
else 

te-(a-b)**2/2.0dO*(dlog(dabs(b-a»-O.SdO) 
f2-a*(b-a)*(dlog(dabs(b-a»-l.OdO)+te 

end if 
return 
end 

c ____ ---::--____ ~ 
function f3(b,a) 
implicit double precision(a-h,o-z) 
f3-b*dlog(b**2+a**2)-2.0dO*b+2.0dO*a*datan(b/a) 



return 
end 

c ______ ~-------
function f4(b,a) 
implicit double precision(a-h,o-z) 
f4-0.5dO*(b**2+a**2)*dlog(b**2+a**2)-0.5dO*b**2 
return 
end 

c ______ ~------~ 
function f5 (b, a) 
implicit double precision(a-h,o-z) 
f5-datan(b/a)/a 
return 
end 

c ______ ~------~~ 
function f6(b,a) 
implicit double precision(a-h,o-z) 
f6-0.5dO*dlog(a**2+b**2) 
return 
end 

c ______ ~------~~~ 
function f7(b,a) 

c 

implicit double precision (a-h,o-z) 
f7-(b/(a**2+b**2)-datan(b/a)/a)/2.0dO/a**2 
return 
end 

-------------------function f8(b,a) 
implicit double precision(a-h,o-z) 
f8--0.5dO/(b**2+a**2) 
return 
end 

c ______ ~--------_ 
function f9(b,a) 
implicit double precision(a-h,o-z) 
f9--b/(b**2+a**2)/2.0dO+datan(b/a)/a/2.0dO 
return 
end 

c ______ ~--------__ 
function fa(pl,p2,zl,z2) 

c 

implicit double precision(a-h,o-z) 
fa-pl-(p2-pl)*zl/(z2-zl) 
return 
end 

-----------------function fb(pl,p2,zl,z2) 
implicit double precision(a-h,o-z) 
fb-(p2-pl)/(z2-zl) 
return 
end 

c ______ ~ ________ _ 
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subroutine readguess 
implicit double precision(a-h,o-z) 
dimension x(51),y(51),phi(4,51),r1(4,2,51,51),phio(51), 

1 r2(4,2,51,51),r3(4,2,51,51),r4(4,2,51,51),cd(51),g(100), 
1 za(51),zc(51),x3(51),g3(100) 
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common x,y,phi,rl,r2,r3,r4,my,mx,cd,xmax,ymax,g,xmaxi,za,zc,bj, 
1 dj 

do 1 i-1,mx 
read*,phi(1,i),phi(2,i),phi(3,i) 

1 read*.,phi(4,i) 
return 
end 



program scchan 
implicit double precision(a-h,o-z) 
character*72 11 
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dimension x(Sl),y(Sl),phi(4,Sl),rl(S,2,Sl,Sl),phio(Sl), 
lr2(S,2,Sl,Sl),r3(S,2,Sl,Sl),r4(S,2,Sl,Sl),cdl(Sl),g(100),phio3(Sl) 
1,vj(200),vr(200),wins(200),wele(200),xins(200),xele(200),cd3(Sl) 

common x,y,phi,rl,r2,r3,r4,my,mx,cdl,xmax,ymax,g,xmaxi 
1,vj,vr,wins,wele,xins,xele,cd3,hl 

c ____ ~----------_ 
read*,djint 
dj-dj int 
pi-3.l4lS926S3S8979dO 
damp-O.SdO 
read*,ikinet 
if (ikinet.eq.l)then 

print*, 'linear kinetics' 
ll-'J i(L)/iavg BI' 
print*,ll 
else if (ikinet.eq.2) then 
print~,'Tafel kinetics' 
ll-'delta i(L)/iavg 
print*,ll 
else 
print*, 'constant current' 
11-' delta i(L)/iavg 
print*,ll 
ll-'J 
print*,ll 
end if 
call tread 
call fillmat 
iter-l 

i(L)/iavg 

c ____________________ __ 

c initial guess 
iflag-O 
if (iflag.eq.l) then 

call readguess 
else 

do 3 i-l,mx 
phi(l,i)-ymax*g(i) 

3 phi(3,i)-0.ldO 
end if 
call current(3,ikinet,dj) 

In(Ec) 

In(Ec) 

BI' 

do 4 i-l,my 
phi(2,i)-(phi(1,1)-phi(3,1))*(ymax-y(i))/ymax+phi(3,1) 

In(g)' 

In(g)' 

4 phi(4,i)-(phi(l,mx)-phi(3,mx))*(ymax-y(i))/ymax+phi(3,mx) 
C77 ____ ~~ ____ --~~~ 
100 call current(l,ikinet,dj) 
c ____ ~--~----~--__ --
c solve for phi2 

do 6 i-2,my-l 



phi(2, i)-O. OdO 
do 7 j-l,mx-l 

a2-fa(phi(1,j),phi(1,j+l),x(j),x(j+l» 
b2-fb(phi(1,j) ,phi(l,j+l) ,x(j) ,x(j+l» 
al-fa(cdl(j),cdl(j+l),x(j),x(j+l» 
bl-fb(cdl(j) ,cdl(j+l) ,x(j) ,x(j+l» 
a3-fa(cd3(j),cd3(j+l),x(j);x(j+l» 
b3-fb(cd3(j) ,cd3(j+l) ,x(j) ,x(j+l» 
a4-fa(phi(3,j),phi(3,j+l),x(j),x(j+l» 
b4-fb(phi(3,j),phi(3,j+l),x(j),x(j+l» 

7 phi(2,i)-phi(2,i)+al*r2(1,1,i,j)+bl*r2(1,2,i,j)+ 
1 a2*r2(2,1,i,j)+b2*r2(2,2,i,j)+a3*r2(3,1,i,j)+b3*r2(3,2,i,j) 
1+a4*r2(S,1,i,j)+b4*r2(S,2,i,j) 

do 8 j-l,my-l 
a-fa(phi(4,j),phi(4,j+l),y(j),y(j+l» 
b-fb(phi (4,j) , phi(4 ,j+l) ,y(j) ,y(j+l» 

8 phi(2,i)-phi(2,i)+a*r2(4,1,i,j)+b*r2(4,2,i,j) 
6 phi(2,i)-phi(2,i)/pi 

phi(2,1)-phi(1,1) 
phi(2,my)-phi(3,1) 

c ____________ ~~--------_ 
c solve for phi4 

do 9 i-2,my-l 
phi(4,i)-0.OdO 
do 10 j-l,mx-l 

a2-fa(phi(1,j),phi(1,j+l),x(j),x(j+l» 
b2-fb(phi(1,j),phi(1,j+l),x(j),x(j+l» 
al-fa( cdl (j ) , cdl (j +1), x(j) , x(j+l» 
bl-fb(cdl(j) ,cdl(j+l) ,x(j) ,x(j+l» 
a3-fa(cd3(j) ,cd3(j+l) ,x(j) ,x(j+l» 
b3-fb(cd3(j),cd3(j+l),x(j),x(j+l» 
a4-fa(phi(3,j),phi(3,j+l),x(j),x(j+l» 
b4-fb(phi(3,j),phi(3,j+l) ,x(j),x(j+l» 

10 phi(4,i)-phi(4,I)+al*r4(1,l,I,j)+bl*r4(l,2,I,j)+ 
1 a2*r4(2,l,i,j)+b2*r4(2,2,I,j)+a3*r4(3,I,I,j)+b3*r4(3,2,I,j) 
1+a4*r4(S,I,i,j)+b4*r4(S,2,I,j) 

do 11 j-l,my-l 
a-fa(phi(2,j),phi(2,j+l),y(j),y(j+l» 
b-fb(phi(2,j) ,phI(2,j+1) ,y(j) ,y(j+l» 

11 phi(4,i)-phi(4,i)+a*r4(4,1,i,j)+b*r4(4,2,i,j) 
9 phi(4,i)-phi(4,i)/pi 

phi(4,1)-phi(l,mx) 
phi(4,my)-phi(3,mx) 

c _______________ ~----_ 
c solve for phi3 

do 12 i-1,mx 
phio3(i)-phi(3,i) 
phi(3, i)-O. OdO 
do 13 j -1 , mx - 1 

a1-fa(phi(l,j),phi(l,j+1) ,x(j) ,x(j+l» 
b1-fb(phi(l,j) ,phl.(l,j+1) ,x(j) ,x(j+l» 
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a2-fa(cdl(j) ,cdl(j+l) ,x(j) ,x(j+l» 
b2-fb (cdl (j) , cdl(j+l) , x(j ) , x(j+l» 
a3-fa(cd3 (j) , cd3 (j+l) , x(j) , x(j+l» 
b3-fb(cd3(j),cd3(j+l),x(j),x(j+l» 

13 phi(3,i)-phi(3,i)+a3*r3(1,1,i,j)+b3*r3(1,2,i,j)+ 
1 a2*r3(3,1,i,j)+b2*r3(3,2,i,j)+al*r3(5,1,i,j)+bl*r3(5,2,i,j) 

do 14 j-l,my-l 
al-fa(phi(2,j),phi(2,j+l),y(j),y(j+l» 
bl-fb(phi(2,j),phi(2,j+l),y(j),y(j+l» 
a2-fa(phi(4,j),phi(4,j+l),y(j) ;y(j+l» 
b2-fb(phi(4,j),phi(4,j+l),y(j),y(j+l» 

14 phi(3,i)-phi(3,i)+al*r3(2,1,i,j)+bl*r3(2,2,i,j)+ 
1 a2*r3(4,1,i,j)+b2*r3(4,2,i,j) 

phi(3,i)-phi(3,i)/pi 
12 phi(3,i)-phio3(i)-damp*(phio3(i)-phi(3,i» 

call current(3,ikinet,dj) 
c __________________ __ 

c solve for phil 
do 15 i-l,mx 
phio(i)-O.OdO 
do 16 j-l,rnx-,l 

a2-fa(cd3(j) ,cd3(j+l) ,x(j) ,x(j+l» 
b2-fb(cd3 (j) , cd3 (j+l) , x(j) , x(j+l» 
a3-fa(phi(3,j),phi(3,j+l),x(j),x(j~1» 
b3-fb(phi(3,j),phi(3,j+l),x(j),x(j+l» 
al-fa(cdl(j),cdl(j+l),x(j),x(j+l» 
bl-fb(cdl(j),cdl(j+l),x(j),x(j+l» 

16' phio(i)-phio(i)+al*rl(I,1,i,j)+bl*rl(I,2,i,j)+ 
1 a2*rl(3,1,i,j)+b2*rl(3,2,i,j)+a3*rl(5,1,i,j)+b3*rl(5,2,i,j) 

do 17 j-l,my-l 
al-fa(phi(2,j),phi(2,j+l),y(j),y(j+l» 
bl-fb(phi(2,j),phi(2,j+l),y(j),y(j+l» 
a2-fa(phi(4,j),phi(4,j+l),y(j),y(j+l» 
b2-fb(phi (4, j) , phi(4 ,j+l) ,y(j) ,y(j+l» 

17 phio(i)-phio(i)+al*rl(2,I,i.j)+bl*rl(2,2,i,j)+ 
1 a2*rl(4,1,i,j)+b2*rl(4,2,i,j) 

15 phio(i)-phio(i)/pi 
c __________________ __ 

c check for errors 
error-O.OdO 
do 30 i-2,mx 

30 if (phi(l,i).ne.O.OdO) 
1 error-dmaxl(error,dabs(l.OdO-phio(i)/phi(l,i») 

if (error.gt.l.d-4) then 
do 35 i-l,mx 

35 phi(l,i)-phi(l,i)+damp*(phio(i)-phi(l,i» 
iter-iter+l 
if (iter.ge.500) then 

print*,'greater than 300 iterations', 'error=' ,error 
goto 999 

end if 
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i 

goto 100 
end if 

999 call tprint(iter,ikinet,dj) 
dj-dj+djint 
if (dj.1t.10.0dO*djint) then 

if (dj.ge.9.0dO)damp-0.ldO 
iter-l 
goto 100 

end if 
end 

c ______ ~------~~ __ 
subroutine fi11mat 
implicit double precision(a-h,o-z) 
dimension x(51),y(Sl),phi(4,51),r1(5,2,51,Sl),phio(51), 
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1 r2(S,2,Sl,Sl),r3(5,2,51,Sl),r4(S,2,Sl,Sl),cdl(Sl),g(100),cd3(Sl) 
common x,y,phi,rl,r2,r3,r4,my,rnx,cd1,xmax,ymax,g,xmaxi 

l,vj(200) ,vr(200) ,wins(200) ,we1e(200) ,xins(200),xe1e(2 00),cd3,h1 
do 1 i-1,rnx 
do 1 j-1,rnx-l . 

r1(l,l,i,j)-f1(x(j+1),x(i»-fl(x(j),x(i» 
r1(l,2,i,j)-f2(x(j+l),x(i»-f2(~(j),x(i» 
r1(3,l,i,j)--0.SdO*(f3(x(j+1)-x(i),ymax)-f3(x(j)-x(i),ymax» 
rl(3,2,i,j)-x(i)*rl(3,l,i,j)-

1 (f4(x(j+1)-x(i),ymax)-f4(x(j)-x(i),ymax»*0.5dO 
r1(S,l,i,j)-ymax*(fS(x(j+1)-x(i),ymax)-fS(x(j)-x(i),ymax)) 
r1(5,2,i,j)-x(i)*r1(S,l,i,j)+ymax*(f6(x(j+1)-x(i),ymax)-

1 f6(x(j)-x(i),ymax» 
r3(l,l,i,j)--r1(l,l,i,j) 
r3(l,2,i,j)--r1(l,2,i,j) 
r3(S,l,i,j)-r1(5,1,i,j) 
r3(S,2,i,j)-rl(S,2,i,j) 
r3(3,l,i,j)--r1(3,l,i,j) 
r3(3,2,i,j)--r1(3,2,i,j) 

1 continue 
do 2 i-1,rnx 
do 2 j-1,my-l 

if (i.eq.1) then 
r1(2,l,i,j)-0.OdO 
r1(2,2,i,j)-0.OdO 
r3(2,1,i,j)-O.OdO 

else 
r3(2,2,i,j)-O.OdO 

r1(2,l,i,j)-x(i)*(fS(y(j+1),x(i»-f5(y(j),x(i») 
rl(2,2,i,j)-x(i)*(f6(y(j+1) ,x(i»-f6(y(j),x(i») 
r3(2,l,i,j)--x(i)*(fS(ymax-y(j+l),x(i»-

1 fS(ymax-y(j),x(i») 
r3(2,2,i,j)-ymax*r3(2,1,i,j)+ 

1 x(i)*(f6(ymax-y(j+1),x(i»-f6(ymax-y(j),x(i») 
end if 
if (i.eq.mx) then 

r1(4,l,i,j)-O.OdO 



else 

r1(4,2,i,j)-O.OdO 
r3(4,1,i,j)-O.OdO 
r3(4,2,i,j)-O.OdO 

r1(4,1,i,j)-(xmax-x(i»*(fS(y(j+1),xmax-x(i»-
1 fS(y(j),xmax-x(i») 

rl(4,2,i,j)-(xmax-x(i»*(f6(y(j+1),xmax-x(i»-
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L f 6 (y (j ) ,xmax -x ( i ) ) ) 
r3(4,1,i,j)--(xmax-x(i»*(fS(ymax-y(j+1),xmax-x(i»-

1 fS(ymax-y(j),xmax-x(i») 
r3(4,2,i,j)-ymax*r3(4,1,i,j)+ 

1 (xmax-x(i»*(f6(ymax-y(j+1),xmax-x(i»-
1 f6(ymax-y(j),xmax-x(i») 

end if 
2 continue 

do 3 i-2,my-l 
do 3 j -1 , mx - 1 

r2(1,1,i,j)-O.SdO*(f3(x(j+1),y(i»-f3(x(j),y(i») 
r2(1,2,i,j)-O.5dO*(f4(x(j+1),y(i»-f4(x(j),y(i») 
r2(2,1,i,j)-y(i)*(fS(x(j+1),y(i»-fS(x(j) ,y(i») 

. r2(2,2,i,j)-y(i)*(f6(x(j+1),y(i»-f6(x(j),y(i») 
r2(3,1,i,j)--O.SdO*(f3(x(j+1),ymax-y(i»-

1 f3(x(j),ymax-y(i») 
r2(3,2,i,j)--O.SdO*(f4(x(j+1),ymax-y(i»-

1 f4(x(j),ymax-y(i») 
r2(S,1,i,j)--(y(i)-ymax)*(fS(x(j+1),ymax-y(i»-fS(x(j),ymax-y(i») 
r2(S,2,i,j)--(y(1)-ymax)*(f6(x(j+1),ymax-y(1»-f6(x(j),ymax-y(l») 
r4(1,1,i,j)--O.SdO*(f3(xmax-x(j+1),y(i»-

1 f3(xmax-x(j),y(i») 
r4(1,2,i,j)-O.SdO*(f4(xmax-x(j+1),y(i»-

1 f4(xmax-x(j),y(i»)+r4(1,1,i,j)*xmax 
r4(2,1,i,j)--y(i)*(fS(xmax-x(j+1),y(i»-

1 fS(xmax-x(j),y(i») 
r4(2,2,i,j)-y(i)*(f6(xmax-x(j+1),y(1»-

1 f6(xmax-x(j),y(i»)+xmax*r4(2,1.i,j) 
r4(S,1,i,j)--(ymax-y(i»*(fS(xmax-x(j+1),ymax-y(i»-

1 fS(xmax-x(j),ymax-y(i») 
r4(S,2,i,j)-xmax*r4(S,1,i,j)+ 

1 (ymax-y(i»*(f6(xmax-x(j+1),ymax-y(i»-f6(xmax-x(j),ymax-y(i») 
r4(3,1,i,j)-O.SdO*(f3(xmax-x(j+1),ymax-y(i»-

1 f3(xmax-x(j),ymax-y(i») 
3 r4(3,2,i,j)--O.SdO*(f4(xmax-x(j+1),ymax-y(i»-

1 f4(xmax-x(j),ymax-y(i»)+xmax*r4(3,1,i,j) 
do 4 i-2,my-1 
do 4 j-1,my-1 

r2(4,1,i,j)-xmax*(fS(y(j+1)-y(i),xmax)-
1 fS(y(j)-y(i),xmax» 

r2 (4,2, i,j )-y( i)*r2 (4,1, i ,j )+xmax*(f6 (y(j+1) -y( i) , xmax)-
1 f6(y(j)-y(i),xmax» 

r4(4,1,i,j)-r2(4,1,i,j) 
4· r4(4,2,i,j)-r2(4,2,i,j) 

.. 



• 

c _____ ~:__ 
c The two following do loops account for the fact the interior 
c angles at the corners are twice as small. 
c ______ _ 

5 

6 

do 5 j-1,rnx-1 
r3(1,1,1,j)-2.0dO*r3(1,1,1,j) 
r3(1,2,1,j)-2.0dO*r3(1,2,1,j) 
r3(3,1,1,j)-2.0dO*r3(3,1,1,j) 
r3(3,2,1,j)-2.0dO*r3(3,2,1,j) 
r3(5,1,1,j)-2.0dO*r3(5,1,1,j) 
r3(5,2,1,j)-2.0dO*r3(5,2,1,j) 
r3(1,1,mx,j)-2.0dO*r3(1,1,mx,j) 
r3(1,2,mx,j)-2.0dO*r3(1,2,mx,j) 
r3(3,1,mx,j)-2.0dO*r3(3,1,mx,j) 
r3(3,2,mx,j)-2.0dO*r3(3,2,mx,j) 
r3(5,1,mx,j)-2.0dO*r3(5,1,mx,j) 
r3(5,2,mx,j)-2.0dO*r3(5,2,mx,j) 
r1(l,1,1,j)-2.0dO*r1(1,1,l,j) 
r1(l,2,1,j)-2.0dO*r1(l,2,l,j) 
r1(3,1,1,j)-2.0dO*r1(3,1,l,j) 
r1(3,2,1,j)-2.0dO*r1(3,2,l,j) 
r1(5,1,1,j)-2.0dO*r1(5,1,1,j) 
r1(5,2,1,j)-2.0dO*r1(S,2,1,j) 
r1(1,1,mx,j)-2.0dO*r1(1,1,mx,j) 
r1(1,f,mx,j)-2.0dO*r1(1,2,mx,j) 
r1(5,1,mx,j)-2.0dO*r1(5,1,rnx,j) 
r1(5,2,mx,j)-2.0dO*r1(5,2,mx,j) 
r1(3,1,mx,j)-2.0dO*rl(3,1,rnx,j) 
rl(3,2,mx,j)-2.0dO*rl(3,2,mx,j) 

do 6 j-1,my-1 
r3(2,l,mx,j)-2.0dO*r3(2,l,rnx,j) 
r3(2,2,mx,j)-2.0dO*r3(2,2,mx,j) 
r3(4,1,l,j)-2.0dO*r3(4,l,l,j) 
r3(4,2,l,j)-2.0dO*r3(4,2,1,j) 
r1(2,l,mx,j)-2.0dO*r1(2,l,mx,j) 
r1(2,2,rnx,j)-2.0dO*r1(2,2,mx,j) 
rl(4,1,1,j)-2.0dO*r1(4,l,1,j) 
r1(4,2,l,j)-2.0dO*r1(4,2,l,j) 

return 
end 

c ______ ~------
c SUBROUTINE CURRENT IS WHERE THE KINETICS AND THE INFORMATION 
c FROM THE SCHWARZ-CHRISTOFFEL TRANSFORMATION ARE INPUT 
c _______________ ___ 

subroutine current(ie1ec,ikinet,dj) 
implicit double precision(a-h,o-z) 
dimension x(51),y(Sl),phi(4,Sl),r1(S,2,51,Sl),phio(Sl), 
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1 r2(5,2,Sl,51),r3(S,2,Sl,Sl),r4(S,2,51,51) ,cd1(Sl) ,g(100) ,cd3(Sl) 
common x,y,phi,r1,r2,r3,r4,my,mx,cdl,xmax,ymax,g,xrnaxi 

l,vj(200),vr(200),wins(200),we1e(200),xins(200),xe1e(2OO),cd3,h1 
c~~ ________________ ~ __ ___ 

.j. 



c linear kinetics (ikinet-l) 
c Tafel kinetics (ikinet-2) 
c constant current (ikinet-3) 

c ______ ~--~------~-----------
if (ikinet.eq.l)then 

I 

2 

3 

4 

if (ielec.eq.l)then 
do 1 i-l,mx 
cdl (i)--dj *g( i)*(l. OdO-phi (1, i» 

else 
do 2 i-l,mx 
cd3(i)--dj*g(i)*phi(3,i) 

end if 
else if (ikinet.eq.2) then 

if (ielec.eq.l)then 
do 3 i-l,mx 
cdl(i)--g(i)*dexp(dj-phi(l,i» 

else 
do 4 i-l,mx 
cd3(i)--g(i)*dexp(phi(3,i» 

end if 
else 

if (ielec.eq.l)then 
do 5 i-l,mx 

5 cdl(i)--g(i) 
else 

do 6 i-l,mx 
6 cd3(i)--g(i) 

end if 
end if 
return 
end 
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c 
--~~~~--~--~~~ c THE FOLLOWING FUNCTIONS ARE INTEGRALS TO BE USED IN 2-D PROBLEMS. 

c THEY ARE CALLED IN SUBROUTINE FILLMAT. 
c ----------------------function fl(b,a) 

implicit double precision(a-h,o-z) 
if (a.eq.b) then 

fl-O.OdO 
else 

fl-(b-a)*(dlog(dabs(a-b»-l.OdO) 
end if 
return 
end 

c ________________ _ 

function f2(b,a) 
implicit double precision(a-h,o-z) 
if (a.eq.b) then 

f2-0.0dO 
else 

te-(a:..b)**2/2.0dO*(dlog(dabs(b-a»-O.5dO) 

• 



• 

~ 

f2-a*(b-a)*(dlog(dabs(b-a»-1.OdO)+te 
end if 
return 
end 

c ____________________________ ~ 
function f3(b,a) 
implicit double precision(a-h,o-z) 
f3-b*dlog(b**2+a**2)-2.0dO*b+2.0dO*a*datan(b/a) 
return 
end 

c ______ -:-______ _ 

function f4(b,a) 
implicit double precision(a-h,o-z) 
f4-0.5dO*(b**2+a**2)*dlog(b**2+a**2)-O.5dO*b**2 
return 
end 

c _________ -:-_________ ~ 
function fS(b,a) 
implicit double precision(a-h,o-z) 
fS-datan(b/a)/a 
return 
end 

c ______ -:-__ ~----~~. 
function f6(b,a) 

c 

c 

c 

c 

implicit double precision(a-h,o-z) 
f6-0.SdO*dlog(a**2+b**2) 
return 
end 

function f7(b,a) 
implicit double precision (a-h,o-z) 
f7-(b/(a**2+b**2)-datan(b/a)/a)/2.0dOja**2 
return 
end 

function f8(b,a) 
implicit double precision(a-h,o-z) 
f8--0.5dO/(b**2+a**2) 
return 
end 

function f9(b,a) 
implicit double precision(a-h,o-z) 
f9--b/(b**2+a**2)/2.0dO+datan(b/a)/a/2.0dO 
return 
end 

function fa(pl,p2,zl,z2) 
implicit double precision(a-h,o-z) 
fa-pl-(p2-pl)*zl/(z2-zl) 
return 
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end 
c __ ~,--__ ~~ 

function fb(pl,p2,zl,z2) 
implicit double precision(a-h,o-z) 
fb-(p2-pl)/(z2-zl) 
return 
end 

c _______ __ 

subroutine readguess 
implicit double precision(a-h,o-z) 
dimension x(Sl),y(Sl),phi(4,Sl),rl(S,2,Sl,Sl),phio(Sl), 
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1 r2(S,2,Sl,Sl),r3(S,2,Sl,Sl),r4(S,2,Sl,Sl),cdl(Sl),g(100),cd3(Sl) 
common x,y,phi,rl,r2,r3,r4,my,mx,cdl,xmax,ymax,g,xmaxi 

1,vj(200),vr(200),wins(200),wele(200),xins(200),xele(200),cd3,hl 
do 1 i-l,mx/2+l 

1 read*,phi(l,2*i-l),phi(3,2*i-l) 
do 2 i-2,mx-l,2 
phi(1,i)-phi(1,i-l)+(-phi(1,i-l)+phi(1,i+l»/2.0dO 

2 phi(3,i)-phi(3,i-l)+(-phi(3,i-l)+phi(3,i+l»/2.0dO 
return 
end 

c ____ ,--_____ _ 

subroutine tread 
implicit double precision(a-h,o-z) 
dimension x(Sl),y(Sl),phi(4,Sl),rl(S,2,Sl,Sl),phio(Sl), 

1 r2(S,2,Sl,Sl),r3(S;2,Sl,Sl),r4(S,2,Sl,Sl),cdl(Sl),g(100),cd3(SI) 
common x,y,phi,rl,r2,r3,r4,my,mx,cdl,xmax,ymax,g,xmaxi 

1,vj(200) ,vr(200),wins(200) ,weIe(200),xins(200) ,xeIe(200) ,cd3,hl 
read*,mx,my 
read*,hl 
print*, 'h/L-' , hI 
pi-3.l41S926S~S8979dO 
do 1 i-l,200 

1 read*,vj(i),wele(i),xele(i) 
do 2 i-l,200 

2 read*,vr(i),wins(i),xins(i) 
xmax-vj(200) 
ymax-2.0dO*Vr(200) 
x(l)-O.OdO 
ix-200/(mx-l) 
iy-200/(my-l)*2 
do 3 i-2,mx 

3 x(i)-vj«i-l)*ix) 
y(l)-O.OdO 
y(my)-2.0dO*Vr(200) 
y(my/2+l)-vr(200) 
do 4 i-2,my/2 
y(my-i+l)-vr(200)+vr(200-(i-l)*iy) 

4 y(i)-(vr(200)-vr(200-(i-l)*iy» 
g(1)-dsqrt(weIe(200)**2-wele(1)**2)/pi 
do 5 i-2,mx-l 

.. 



• 

g(i)-dsqrt(wele(200)**2-wele«i-l)*ix)**2)/pi 
5 continue 

g(mx)-O.OdO 
return 
end 

c ______ ~----~----~~ 
subroutine tprint(iter,ikinet,dj) 
implicit double precision(a-h,o-z) 
character*72 11 
dimension x(Sl),y(Sl),phi(4,Sl),rl(S,2,Sl,Sl),phio(Sl), 
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1 r2(S,2,Sl,Sl),r3(S,2,Sl,Sl),r4(S,2,Sl,Sl),cdl(Sl),g(100),cd3(Sl) 
common x,y,phi,rl,r2,r3,r4,my,mx,cdl,xmax,yrnax,g,xmaxi 

1,vj(200) ,vr(200) ,wins(200) ,wele(200),xins(200) ,xele(2 00),cd3,hl 
del-average(ikinet) 
delst-2.0dO*del*hl*x(rnx) 

c ______ ~------------~--------------___ 
if (ikinet.eq.l)then 

bl-(1.OdO-phi(4,my/2+1»/del/y(my/2+l) 
dil-dj*(l.OdO-phi(l,mx» 
printlOl,dj,dil/delst,bl 

else if (ikinet.eq.2) then 
ec-dj-phi(4,my/2+l)-y(my/2+1)*del-dlog(delst) 
gd-y(my/2+1)*del-phi(4,1)+phi(4,my/2+l) 
dil-dexp(dj-phi(l,mx» 
printl02,delst,dil/delst,ec,gd 

else 
ec-dj-phi(4,my/2+1)-y(my/2+1)*del-dlog(delst) 
gd-y(my/2+l)*del-phi(4,1)+phi(4,my/2+l) 
bl-(1.OdO-phi(4,my/2+l»/del/y(my/2+l) 
printl03,1.OdO,1.OdO,gd 
printl04,1.OdO,bl 

end if 
if (iter.ge.SOO)then 

print*,'The last run did not converge' 
stop 

end if 
101 format(3G13.6) 
102 format(4G13.6) 
103 format('infinity' ,4G13.6) 
104 format('infinity' ,3G13.6) 

return 
end 

c __ ~ __________ _ 

c CALCULATE THE AVERAGE CURRENT DENSITY 
function average(ikinet) 
implicit double precision(a-h,o-z) 
dimension x(Sl),y(Sl),phi(4,S1),rl(S,2,Sl,Sl),phio(Sl), 

1 r2(S,2,Sl,Sl),r3(S,2,S1,Sl),r4(S,2,Sl,Sl) ,cdl(Sl) ,g(100) ,cd3(Sl) 
common x,y,phi,rl,r2,r3,r4,my,mx,cd1,xmax,yrnax,g,xmaxi 

1,vj(200),vr(200),wins(200) ,wele(200) ,xins(200),xele(2 00),cd3,hl 
sum-O.OdO 



do 1 i-2,mx 
ex-(cd1(i)+cd1(i-1))*(x(i)-x(i-1))/2.0dO 

1 sum-sum+ex 
average-dabs(sum/x(mx)) 
return 
end 
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program scinf 
implicit double precision(a-h,o-z) 
character*72 11 
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dimension x(Sl),y(Sl),phi(4,Sl),r1(S,2,Sl,Sl),phio(Sl), 
1r2(S,2,Sl,Sl),r3(S,2,Sl,Sl),r4(S,2,Sl,Sl),cdl(Sl),g(100),phi03(Sl) 
1,vj(200),vr(200),wins(200),wele(200),xins(200),xele(200),cd3(Sl) 

common x,y,phi,rl,r2,r3,r4,my,mx,cdl,xmax,ymax,g,xmaxi 
1,vj,vr,wins,wele,xins,xele,cd3,hl 

c ____________________ _ 

read*,djint 
dj-dj int 
pi-3.141S926S3S8979dO 
damp-O.SdO 
read*,ikinet 
if (ikinet.eq.l)then 

print*,'linear kinetics' 
ll-'J i(L)/iavg 
print*,ll 
else if (ikinet.eq.2) then 
print*,'Tafel kinetics' 
ll-'delta In(gO) In(gl) 
print*,ll 
else 
print*,'constant current' 
end if 
call tread 
call fillmat 
iter-l 

c __________________ ___ 

c initial guess 
do 3 i-l,mx 

philinf-(1.0dO+dj)/(2.0dO+dj) 
phi3inf-l.OdO/(dj+2.0dO) 

phi(l,i)--philinf-g(i) 
3 phi(3,i)--phi3inf-g(i) 

call current(3,ikinet,dj) 
c~ ____ ~~ ________ ___ 
100 call current(l,ikinet,dj) 

c ____ ~---------------
c solve for phi2 

do 6 i-2,my-l 
phi(2,i)-0.OdO 
do 7 j -1 , mx -1 

iol 

a2-fa(phi(1,j),phi(1,j+l),x(j),x(j+l» 
b2-fb(phi(1,j),phi(1,j+l),x(j),x(j+l» 
al-fa(cdl(j),cdl(j+l),x(j),x(j+l» 
bl-fb(cdl(j) ,cdl(j+l) ,x(j) ,x(j+l» 
a3-fa(cd3(j) ,cd3(j+l) ,x(j) ,x(j+l» 
b3-fb(cd3(j),cd3(j+1),x(j),x(j+1» 
a4-fa(phi(3,j),phi(3,j+l),x(j),x(j+1» 
b4-fb(phi(3,j),phi(3,j+1),x(j),x(j+1» 

i02 i04' 

In(g2) In(g4)' 



7 phi(2,i)-phi(2,i)+a1*r2(1,1,i,j)+bl*r2(1,2,i,j)+ 

6 

1 a2*r2(2,1,i,j)+b2*r2(2,2,i,j)+a3*r2(3,1,i,j)+b3*r2(3,2,i,j) 
1+a4*r2(5,1,i,j)+b4*r2(5,2,i,j) 

phi(2,i)-phi(2,i)/pi 
continue 
phi(2,1)-phi(1,1) 
phi(2,my)-phi(3,1) 

c ____ ~--~--------__ 
c solve for phi3 

do 12 i-l,mx 
phio3(i)-phi(3,i) 
phi(3,i)-0.OdO 
do 13 j-l,mx-l 

a1-fa(phi(1,j),phi(1,j+l),x(j),x(j+1» 
b1-fb(phi(1,j),phi(1,j+1),x(j),x(j+l» 
a2-fa(cd1 (j) ,cd1 (j+1) ,x(j) ,x(j+1» 
b2-fb(cdl(j),cd1(j+1),x(j),x(j+l» 
a3-fa(cd3(j) ,cd3(j+l) ,x(j) ,x(j+1» 
b3-fb(cd3(j) ,cd3(j+1) ,x(j) ,x(j+l» 

13 phi(3,i)-phi(3,i)+a3*r3(1,1,i,j)+b3*r3(1,2,i,j)+ 
1 a2*r3(3,1,i,j)+b2*r3(3,2,i,j)+al*r3(5,1,i,j)+bl*r3(5,2,i,j) 

do 14 j-1,my-1 
a~-fa(phi(2,j),phi(2,j+l) ,y(j),y(j+1» 
b1-fb (phi( 2, j ) ,phi (2, j +1) ,y(j ) ,y(j+1» 

14 phi(3,i)-phi(3,i)+a1*r3(2,1,i,j)+bl*r~(2,2,i,j) 
phi(3,i)-phi(3,i)/pi 

12 phi(3,i)-phio3(i)-damp*(phio3(i)-phi(3,i» 
call current(3,ikinet,dj) 

c __________________ __ 

c solve for phil 
do 15 i-1,mx 
phio(i)-O.OdO 
do 16 j -1 , mx - 1 

a2-fa(cd3(j),cd3(j+1),x(j),x(j+l» 
b2-fb(cd3(j) ,cd3(j+l) ,x(j) ,x(j+1» 
a3-fa(phi(3,j),phi(3,j+1),x(j),x(j+1» 
b3-fb(phi(3 ,j), phi(3 ,j+l) ,x(j) ,x(j+1» 
a1-fa(cd1(j) ,cd1(j+1) ,x(j) ,x(j+l» 
bl-fb(cdl(j) ,cd1(j+1) ,x(j) ,x(j+l» 

16 phio(i)-phio(i)+al*rl(1,1,i,j)+b1*rl(1,2,i,j)+ 
1 a2*r1(3,1,i,j)+b2*rl(3,2,i,j)+a3*rl(5,1,i,j)+b3*rl(5,2,i,j) 

do 17 j-l,my-l 
al-fa(phi(2,j),phi(2,j+l),y(j),y(j+l» 
b1-fb(phi(2,j),phi(2,j+1),y(j),y(j+1» 

17 phio(i)-phio(i)+al*r1(2,1,i,j)+bl*rl(2,2,i,j) 
15 phio(i)-phio(i)/pi 
c ____________________ _ 

c check for errors 
error-O.OdO 
do 30 i-2,mx 
error-drnaxl(error,dabs(phi(l,i)-phio(i») 

194 

• 

• 



• 

!. 

30 

35 

continue 
if (error.gt.1.d-5) then 

do 35 i-1,mx 
phi(l,i)-phi(l,i)+damp*(phio(i)-phi(l,i» 
iter-iter+1 
if (iter.ge.500) then 

print*,'greater than 300 iterations' ,'error=' ,error 
goto 999 

end if 
goto 100 

end if 
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999 call tprint(iter,ikinet,dj) 
dj -dj +dj int 
if (dj.1t.50.0dO*djint) then 

if (dj.ge.6.0dO)damp-0.1dO 
iter-1 
goto 100 

end if 
end 

c ______ ~------~~--_ 
subroutine fi11mat 

1 

implicit double precision(a-h,o-z) 
dimension x(51),y(51),phi(4,51),r1(5,2,51,51),phio(51), 

1 r2(5,2,51,51),r3(5,2,51,51),r4(5,2,51,51),cd1(51),g(100),cd3(51) 
common x,y,phi,r1,r2,r3,r4,my,mx,cd1,xmax,ymax,g,xmaxi 

1,vj(200),vr(200) ,wins(200) ,we1e(200) ,xins(200) ,xe1e(2 00),cd3,h1 
do 1 i-1,mx 
do 1 j -1 , mx - 1 

r1(1,1,i,j)-f1(x(j+1),x(i»-f1(x(j),x(i» 
r1(1,2,i,j)-f2(x(j+1),x(i»-f2(x(j),x(i» _ 
r1(3,1,i,j)--0.5dO*(f3(x(j+1)-x(i),ymax)-f3(x(j)-x(i),ymax» 
r1(3,2,!,j)-x(i)*r1(3,1,i,j)-

1 (f4(x(j+1)-x(i),ymax)-f4(x(j)-x(i),ymax»*0.5dO 
r1(5,1,i,j)-ymax*{f5(x(j+1)-x(i),ymax)-f5(x(j)-x(i),ymax)) 
r1(5,2,i,j)-x(i)*r1(5,1,i,j)+ymax*(f6(x(j+1)-x(i),ymax)-

1 f6(x(j)-x(i),ymax» 
r3(1,1,i,j)--r1(1,1,i,j) 
r3(1,2,i,j)--r1(1,2,i,j) 
r3(5,1,i,j)-r1(5,1,i,j) 
r3(5,2,i,j)-r1(5,2,i,j) 
r3(3,1,i,j)--r1(3,1,i,j) 
r3(3,2,i,j)--r1(3,2,i,j) 

continue 
do 2 i-1,mx 
do 2 j-1,my-1 

if (i.eq.1) then 
r1(2,1,i,j)-0.OdO 
r1(2,2,i,j)-0.OdO 
r3(2,1,i,j)-0.OdO 
r3(2,2,i,j)-0.OdO 

else 



2 

1 

1 

rl(2,1,i,j)-x(i)*(fS(y(j+l),x(i»-fS(y(j),x(i») 
rl(2,2,i,j)-x(i)*(f6(y(j+l),x(i»-f6(y(j),x(i») 
r3(2,1,i,j)--x(i)*(fS(ymax-y(j+l),x(i»
fS(ymax-y(j),x(i») 
r3(2,2,i,j)-ymax*r3(2,1,i,j)+ 
x(i)*(f6(ymax-y(j+l),x(i»-f6(ymax-y(j),x(i») 

end if 
continue 
do 3 i-2,my-l 
do 3 j -1 , mx -1 

r2(l,1,i,j)-O.SdO*(f3(x(j+l) ,y(i»-f3(x(j) ,y(i») 
r2(1,2,i,j)-O.SdO*(f4(x(j+l),y(i»-f4(x(j),y(i») 
r2(2,1,i,j)-y(i)*(fS(x(j+l),y(i»-fS(x(j),y(i») 
r2(2,2,i,j)-y(i)*(f6(x(j+l),y(i»-f6(x(j),y(i») 
r2(3,1,i,j)--O.SdO*(f3(x(j+l),ymax-y(i»-

1 f3(x(j),ymax-y(i») 
r2(3,2,i,j)--O.SdO*(f4(x(j+l),ymax-y(i»-

1 f4(x(j),ymax-y(i») 
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3 

r2(S,l,i,j)--(y(i)-ymax)*(fS(x(j+l),ymax-y(i»-fS(x(j),ymax-y(i») 
r2(S,2,i,j)--(y(i)-ymax)*(f6(x(j+l),ymax-y(i»-f6(x(j),ymax-y(i») 

continue 
c ______ _ 

c The next two do loops account for the interior angles at the 
c corners being twice as small. 
c ______ _ 

5 

do 5 j-l,mx-l 
r3(l,l,l,j)-2.0dO*r3(l,l,1,j) 
r3(l,2,1,j)-2.0dO*r3(l,2,l,j) 
r3(3,l,l,j)-2.0dO*r3(3,l,l,j) 
r3(3,2,l,j)-2.0dO*r3(3,2,l,j) 
r3(S,l,l,j)-2.0dO*r3(S,l,l,j) 
r3(5,2,1,j)-2.0dO*r3(5,2,1,j) 
r3(1,1,mx,j)-2.0dO*r3(1,1,mx,j) 
r3(1,2,mx,j)-2.0dQ*r3(l,2,mx,j) 
r3(3,1,mx,j)-2.0dO*r3(3,1,mx,j) 
r3(3,2,mx,j)-2.0dO*r3(3,2,mx,j) 
r3(S!1,mx,j)-2.0dO*r3(S,1,mx,j) 
r3(S,2,mx,j)-2.0dO*r3(S,2,mx,j) 
rl(1,1,1,j)-2.0dO*rl(1,l,1,j) 
rl(1,2,1,j)-2.0dO*rl(1,2,l,j) 
rl(3,l,l,j)-2.0dO*rl(3,l,l,j) 
rl(3,2,l,j)-2.0dO*rl(3,2,l,j) 
rl(5,1,1,j)-2.0dO*rl(S,l,l,j) 
rl(S,2,1,j)-2.0dO*rl(5,2,1,j) 
rl(l,l,mx,j)-2.0dO*rl(l,l,mx,j) 
rl(l,2,mx,j)-2.0dO*rl(l,2,mx,j) 
rl(5,1,mx,j)-2.0dO*rl(S,1,mx,j) 
rl(S,2,mx,j)-2.0dO*rl(S,2,mx,j) 
rl(3,l,mx,j)-2.0dO*rl(3,1,mx,j) 
rl(3,2,mx,j)-2.0dO*rl(3,2,mx,j) 

do 6 j-l,my-l 

• 



• 6 

r3(2,1,mx,j)-2.0dO*r3(2,1,mx,j) 
r3(2,2,mx,j)-2.0dO*r3(2,2,mx,j) 
rl(2,1,mx,j)-2.0dO*rl(2,1,mx,j) 
rl(2,2,mx,j)-2.0dO*rl(2,2,mx,j) 
continue 

return 
end 

c ____________________ ~ 

c SUBROUTINE CURRENT IS WHERE THE KINETICS AND THE INFORMATION 
c FROM THE SCHWARZ-CHRISTOFFEL TRANSFORMATION ARE INPUT 
c ______ ~----~------_ 

subroutine current(ielec,ikinet,dj) 
implicit double precision(a-h,o-z) 
dimension x(Sl),y(Sl),phi(4,Sl),rl(S,2,Sl,Sl),phio(Sl), 
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1 r2(S,2,Sl,Sl),r3(S,2,Sl,Sl),r4(S,2,Sl,Sl),cdl(Sl),g(lOO),cd3(Sl) 
common x,y,phi,rl,r2,r3,r4,my,mx,cdl,xmax,ymax,g,xmaxi 

1,vj(200),vr(200),wins(200),wele(200),xins(200),xele(2OO),cd3,hl 

c ____ ~~----~--~--~~--~~ 
c linear kinetics (ikinet-l) 
c Tafel kinetics (ikinet-2) 
c constant current (ikinet-3) 
c ____________________________ __ 

if (ikinet.eq.l)then 
philinf-(1.OdO+dj)/(2.0dO+dj) 
phi3inf-l.OdO/(dj+2.0dO) 

if (ielec.eq.l)then 
do 1 i-l,mx 

1 cdl(i)--dj*g(i)*(l.OdO-phi(1,i)-philinf)-(phi3inf-philinf) 
else 

do 2 i-l,mx 
2 cd3(i)--dj*g(i)*(phi(3,i)+phi3inf)-(phi3inf-philinf) 

end if 
else if (ikinet.eq.2) then 

if (ielec.eq.l)then 
do 3 i-l,mx 

3 cdl(i)--g(i)*dabs(dj)*dexp(-phi(l,i»+dabs(dj) 
else 

do 4 i-l,mx 
4 cd3(i)--g(i)*dabs(dj)*dexp(phi(3,i»+dabs(dj) 

5 

6 

end if 
else 

if (ielec.eq.l)then 
do 5 i-l,mx 
cdl(i)--g(i)+l.OdO 

else 
do 6 i-l,mx 
cd3(i)--g(i)+1.OdO 

end if 
end if 
return 
end 
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c 
c---T~H~E~F-OL~L-O~W-I-N-G-FUN=--C-T-IONS ARE INTEGRALS TO BE USED IN 2-D PROBLEMS. 
c THEY ARE CALLED IN SUBROUTINE FILLMAT. 
c ______ ~--~--~~--~ 

function fl(b,a) 
implicit double precision(a-h,o-z) 
if (a.eq.b) then 

fl-O.OdO 
else 

fl-(b-a)*(dlog(dabs(a-b))-l.OdO) 
end if 
return 
end 

c ______ ~------~--
function f2(b,a) 

C 

implicit double precision(a-h,o-z) 
if (a.eq.b) then ' 

f2-0.0dO 
else 

te-(a-b)**2/2.0dO*(dlog(dabs(b-a))-O.SdO) 
f2-a*(b-a)*(dlog(dabs(b-a))-1.OdO)+te 

end if 
return 
end 

----=-----::-----::: function f3(b,a) 
implicit double precision(a-h,o-z) 
f3-b*dlog(b**2+a**2)-2.0dO*b+2.0dO*a*datan(b/a) 
return 
end 

c ______ __ 

function f4(b,a) 
implicit double precision(a-h,o-z) 
f4-0.5dO*(b**2+a**2)*dlog(b**2+a**2)-O.5dO*b**2 
return 
end 

c ____ =--_-::--_-::: 
function fS(b,a) 

c 

implicit double precision(a-h,o-z) 
fS-datan(b/a)/a 
return 
end 

----=-----~-
function f6(b,a) 
implicit double precision(a-h,o-z) 
f6-0.SdO*dlog(a**2+b**2) 
return 
end 

c _____ ~--------___ 
function f7(b,a) 
implicit double precision (a-h,o~z) 



f7-(b/(a**2+b**2)-datan(b/a)/a)/2.0dO/a**2 
return 
end 

c ______ ~------~~. 
function f8(b,a) 
implicit double precision(a-h,o-z) 
f8--0.SdO/(b**2+a**2) 
return 
end 

c ______________ __ 

function f9(b,a) 
implicit double precision(a-h,o-z) 
f9--b/(b**2+a**2)/2.0dO+datan(b/a)/a/2.0dO 
return 
end 

c ______ ~------~~ 
function fa(pl,p2,zl,z2) 
implicit double precision(a-h,o-z) 
fa-pl-(p2-pl)*zl/(z2-zl) 
return 
end 

c ______________ __ 
function fb(pl,p2,zl,z2) 
implicit double precision(a-h,o-z) 
fb-(p2-pl)/(z2-zl) 
return 
end 

c ______________ __ 

subroutine tread 
implicit double precision(a-h,o-z) 
dimension x(Sl),y(Sl),phi(4,Sl),rl(S,2,Sl,Sl),phio(Sl), 
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1 r2(S,2,Sl,Sl),r3(S,2,Sl,Sl),r4(S,2,Sl,Sl),cdl(Sl),g(lOO),cd3(Sl) 
common x,y,phi,rl,r2,r3,r4,my,mx,cdl,xmax,ymax,g,xmaxi 

1 

2 

l,vj(200),vr(200),wins(200);wele(200),xins(200),xele(2OO),cd3,hl 
read*,mx,my 
print* , I h/L- 0 I 
pi-3.l4lS926S3S8979dO 
ymax-l.OdO 
xmax-2.0dO 
do 1 i-l,rnx 
x(i)-xmax*dfloat(i-l)/dfloat(mx-l) 
pix-2.0dO*dlog(dcosh(pi*x(i») 
g(i)-dsqrt(l.OdO-dexp(-pix» 
continue 
do 2 i-l,my 
y(i)-ymax*dfloat(i-l)/dfloat(my-l) 
return 
end 

c ______ ~----~------~ 
subroutine tprint(iter,ikinet,dj) 
implicit double precision(a-h,o-z) 
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character*72 11 
dimension x(SI),y(SI),phi(4,SI),rl(S,2,SI,SI),phio(SI), 

1 r2(S,2,Sl,Sl),r3(S,2,Sl,Sl),r4(S,2,Sl,Sl),cdl(Sl),g(100),cd3(Sl) 
common x,y,phi,rl,r2,r3,r4,my,mx,cdl,xmax,ymax,g,xmaxi 

l,vj(200),vr(200),wins(200),wele(200),xins(200),xele(200),cd3,hl 
c ____ ~~~~------~~ __ ------__ --__ __ 

if (ikinet.eq.l)then 
philinf-(1.OdO+dj)/(2.0dO+dj) 
phi3inf-l.OdO/(dj+2.0dO) 
v-philinf-phi3inf 
bl-(1.OdO-phi(2,S)-philinf)*dj/v 
b2-(1.OdO-phi(2,9)-philinf)*dj/v 
b4-(1.OdO-phi(2,17)-philinf)*dj/v 
dil--dj*(1.OdO-phi(l,l)-philinf)/(phi3inf-philinf) 
printl0l,dj,dil,bl,b2,b4 

else if (ikinet.eq.2) then 
gl--phi(2,5) 
g2--phi(2,9) 

else 

g4--phi: (2,17) 
gO--phi(2,1) 
printlOl,dj,gO,gl,g2,g4 

print*,'Along insulator:' 
do 10 i-l,my 

10 print*,y(i),phi(2,i)+y(i) 
print*,'Along electrode:' 
do 20 i-l,mx 

20 print*,x(i),phi(I,i) 
end if 
if (iter.ge.500)then 

print*,'The last run did not converge' 
stop 

end if 
101 format(SGI3.6) 

return 
end 

v 

" 
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program luggin 
implicit double precision(a-h,o-z) 
dimension zw(0:5l),rd(0:5l),rp(101),y12(2,0:5l,5l), 

ly13(2,0:5l,101),y2l(2,5l,Sl),y22(2,5l,5l),y3l(2,101,51), 
lphi3(101),phi2n(0:5l),phi30(101),phi2(0:Sl), 
ly23a(5l),y13a(0:5l),cd(0:Sl),y23(2,Sl,101),y32(2,101,51) 
1,phil(0:5l),y3lp(2,101,0:5l),y2lp(2,5l,5l),philcd(0:51) 
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common y2l,y22,y23,y3l,y32,zw,rp,zstart,zstop,pl,ic,jc 
1,rd,nd,np,nw,pp,damp,pi,y23a,y12,y13,y13a,philcd,y31p,y2lp,cd 

pi-3.l4l59265358979dO 
c ________________ _ 

c pl- dimensionless length of capillary wall 
c nw- # of points on wall where potential is calculated 
c np- # of points on plane where potential is calculated 
c ______ ~~------__ 

call pread <,' 

call fillmat 
call current(O) 
icurr-O 

c ______________________ __ 

c Initial guesses. 
do 3 i-O,nw 

3 phi2(i)-pl+l.OdO-(1.OdO-0.7SdO/pl)*zw(i) 
do 4 i-O,'nd 
phil(i)-pl+l.OdO 

4 continue 
do 5 i-l,np 

5 phi30(i)-0.75dO*(1.OdO-2.0dO/pi*datan(rp(i)**2-l.0dO» 
c __________________ __ 

c calculate the potential on the insulating plane 
100 do 10 i-l,np 

phD (i)-O. OdO 
do 11 j-l,nd 

a-fa(rd(j) ,rd(j -1) ,cd(j) ,cd(j -1» 
b-fb(rd(j) ,rd(j-l) ,cd(j) ,cd(j-l» 
c-fa(rd(j),rd(j-l),phil(j),phil(j-l» 
d-fb(rd(j),rd(j-l),phil(j),phil(j-l» 

11 phi3(i)-phi3(i)+a*y3l(1,i,j)+b*y31(2,i,j)+ 
1 c*y3lp(1,i,j)+d*y31p(2,i,j) 

do 10 j-l,nw 
a-fa(zw(j),zw(j-l),phi2(j),phi2(j-l» 
b-fb(zw(j),zw(j-l),phi2(j),phi2(j-l» 

10 phi3(i)-phi3(i)+a*y32 (1,i,j)+b*y32(2,i,j) 
c ____ ~~--------___ --
c calculate the potential on the disk electrode 

do 70 i-O,nd 
phil(i)-philcd(i)+(0.6dO*phi3(1)+0.4dO*phi2(nw»*y13a(i) 

do 71 j -1 , np-l 
a-fa(rp(j+l)-1.dO,rp(j)-1.dO,phi3(j+l),phi3(j» 
b-fb(rp(j+l),rp(j),phi3(j+l),phi3(j» 

71 phil (i)-phil (i)+a*y13'(l, i, j )+b*y13 (2, i ,j) 



72 
70 

do 72 j-1,nw 
a-fa(zw(j),zw(j-1),phi2(j),phi2(j-1» 
b-fb(zw(j),zw(j-1),phi2(j),phi2(j-1» 

phi1(i)-phi1(i)+a*y12(1,i,j)+b*y12(2,i,j) 
continue 
phil (nd)-2 . OdO*phil (nd) 
phi1(nd)-phi1(nd-1) 
phi2n(0 )-phil (nd) 

c ____ ~~----~------
c calculate the potential on the wall 

do 20 i -l,nw 
phi2n(i)-(0.6dO*phi3(1)+0.4dO*phi2(nw»*y23a(i) 

do 21 j-l,np-l 
a-fa(rp(j+l)-1.dO,rp(j)-1.dO,phi3(j+l),phi3(j» 
b-fb(rp(j+l),rp(j),phi3(j+l),phi3(j» 

21 phi2n(i)-phi2n(i)+a*y23(1,i,j)+b*y23(2,i,j) 
do 22 j-l,nw 

a-fa(zw(j),zw(j-l),phi2(j),phi2(j-l» 
b-fb(zw(j),zw(j-l),phi2(j),phi2(j-1» 

22 phi2n(i)-phi2n(i)+a*y22(1,i,j)+b*y22(2,i,j) 
do 23 j-l,nd 

a-fa(rd(j) , rd(j -1) , cd(j) , cd(j -1» 
b-fb(rd(j) ,rd(j-l) ,cd(j) ,cd(j-l» 
~-fa(rd(jy,rd(j-l),phil(j),phi1(j-l» 
d-fb(rd(j) , rd(j -1) , phil (j) , phil (j -1» 

23 phi2n(i)-phi2n(i)+a*y21(1,i,j)+b*y21(2,i,j)+ 
1 c*y21p(1,i,j)+d*y21p(2,i,j) 

20 continue 
phi2n(nw)-2.0dO/3.0dO*phi2n(nw) 

c ____________________ ___ 

c Check for convergence 
error-O.OdO 
do 30 i-O,nw 

30 error-dmax1(dabs«phi2n(i)-phi2(i»/phi2(i»,error) 
if (error.le.1.d-5) goto 600 
if (error.1e.l.d-3)damp-0.ldO 
do 35 i-O,nw 

35 phi2(i)-phi2(i)+damp*(phi2n(i)-phi2(i» 
iter-iter+l 
if(iter.1e.500)goto 100 

600 continue 
if(iter.ge.500)print*,'DID NOT CONVERGE, ERROR - ' ,error 

c ________________ _ 

c PRINT RESULTS 
print *, 'wall' 
print*,zw(0),char(9),phi1(nd) 
do 500 i-l,nw 

500 print*,zw(i),char(9),phi2n(i) 
print*,'insu1ating plane' 
do 501 i-1,np 

501 print, *, rp( i) , chcr'r,(9) , phi3 (i) 

202 



502 

503 

print*,'disk electrode' 
do 502 i-O,nd 
print*,rd(l) ,char(9) ,phll(l) 
do 503 l-O,nd 
write(7,*),rd(i),phll(1) 
if (icurr.le.18) then 
icurr-icurr+2 
call current(lcurr) 
iter-l 
goto 100 

end if 
end 

c ______________ ~ ____ --__ 
c Subroutine to fill the matrix 

subroutine fillmat 
implicit double precision (a-h,o-z) 
dimension zw(0:51),rd(0:51),rp(101),y12(2,0:51,51), 

ly13(2,0:51,101) ,y21(2,51,51),y22(2,51,51),y31(2,101,51), 
Iphi3(101),phi2n(0:51),phi30(101),phi2(0:51), 
ly23a(51),y13a(0:51),cd(0:51),y23(2,51,101),y32(2,101,51) 
1,phil(0:51),y31p(2,101,0:51),y21p(2,51,51),phllcd(0:51) 

common y21,y22,y23,y31,y32,zw,rp,zstart,zstop,pl,ic,jc 
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l,rd,nd,np,nw,pp,damp,pi,y23a,yl2,y13,y13a,philcd,y3lp,y2Ip,cd 
mw-500 

2 

3 

mp-500 
md-500 
do 1 ic-l,nw 
do 2 jc-l,nw 
if «ic.eq.jc).or.(ic.eq.(jc-l»)then 

call integ3(zw(jc),zw(jc-l),10*mw,8) 
y22(1,ic,jc)-pp 

else 

call integ3(zw(jc),zw(jc-l),10*mw,9) 
y22(2,ic,jc)-pp 

call integl(zw(jc),zw(jc-l),mw,l) 
y22(I,ic,jc)-pp 
call integl(zw(jc),zw(jc-I),mw,2) 
y22(2,ic,jc)-pp 

end if 
continue 
do 3 jc-l,nd 

call integl(rd(jc),rd(jc-l),md,7) 
y2Ip(1,ic,jc)-pp 
call integl(rd(jc),rd(jc-l),md,21) 
y21p(2,ic,jc)-pp 
call integl(rd(jc),rd(jc-l),md,3) 
y21(1,ic,jc)-pp 
call integl(rd(jc),rd(jc-l),md,4) 

y21(2, ic ,jc)-pp 
do I jc-l,np-l 
if (ic.eq.nw) then 
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y23(l,ic,jc)-0.OdO 
y23(2,ic,jc)-0.OdO 

else 
call integ2(rp(jc+l),rp(jc),mp,S) 
y23(l,ic,jc)-pp 

~..; 

call integ2(rp(jc+l),rp(jc) ,mp,6) 
y23(2,ic,jc)-pp 

end if 
,",' 

1 continue 
do 10 ic-l,np 
do 20 jc-l,nd 

call integl(rd(jc),rd(jc-l),mp,14) 
y3lp(1,ic,jc)-pp 
call integl(rd(jc),rd(jc-l),mp,22) 
y3lp(2,ic,jc)-pp 
call integl(rd(jc),rd(jc-l),mp,lO) 
y3l(1,ic,jc)-pp 
call integl(rd(jc),rd(jc-l),mp,ll) 

20 y3l(2,ic,jc)-pp 
do 30 jc-l,nw 

call integl(z~(jc),zw(jc-l),mp,12) 
y32(1,ic,jc)-pp 
call integl(zw(jc),~w(jc-l),mp,13) 

30 y32(2,ic,jc)-pp 
10 continue 

do 100 ic-O,nd 
do 200 jc-l,nw 
if «ic.eq.nd).and.(jc.eq.l»then 

call integ3(zw(jc),zw(jc-l),10*mw,26) 
y12(1,ic,jc)-pp 
call integ3(zw(jc),zw(jc-l),10*mw,2S) 
y12(2,ic,jc)-pp 

else 
call integl(zw(jc),zw(jc-l),mw,lS) 
y12(1,ic,jc)-pp 
call integl(zw(jc),zw(jc-l),mw,16) 
y12(2,ic,jc)-pp 

end if 
200 continue 

do 300 jc-l,np-l 
call integ2(rp(jc+l),rp(jc),mp,17) 
y13(1,ic,jc)-pp 
call integ2(rp(jc+l),rp(jc),mp,18) 

300 y13(2,ic,jc)-pp 
100 continue !.. 

return 
end 

c 
c Basic Trapezoid integration 

subroutine integl(up,down,m,id) 
implicit double precision(a-h,o-z) 



" 

dimension zw(0:Sl),rd(0:Sl),rp(101),y12(2,0:Sl,Sl), 
1y13(2,0:Sl,101),y21(2,51,Sl),y22(2,51,51),y31(2,101,51), 
1phi3(101),phi2n(0:Sl),phi30(101),phi2(0:Sl), 
ly23a(Sl),y13a(0:Sl),cd(0:51),y23(2,Sl,101),y32(2,101,51) 
1,phi1(0:Sl),y31p(2,101,0:Sl),y21p(2,51,51),phi1cd(0:51) 

common y21,y22,y23,y31,y32,zw,rp,zstart,zstop,p1,ic,jc 
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1,rd,nd,np,nw,pp,damp,pi,y23a,y12,y13,y13a,phi1cd,y31p,y21p,cd 
pp-O.OdO 
j-1 
eps-(up-down)/df1oat(m-1) 
do 1 j-2,m 

x-down+eps*df1oat(j-1) 
or2-ord(id,x) 
pp-pp+eps*(or2+or1)/2.0dO 

1 or1-or2 
return 
end 

c ______________________ __ 

c Integration "log style" 
subroutine integ2(up,down,m,id) 
implicit double precision(a-h,o-z) 
dimension zw(0:Sl),rd(0:Sl),rp(101),y12(2,0:Sl,Sl), 

ly13(2,O:Sl,101),y21(2,5l,Sl),y22(2,Sl,Sl),y31(2,10l,S1), 
lphi3(lOl),phi2n(0:Sl),phi30(lOl),phi2(0:Sl), 
ly23a(Sl),y13a(O:Sl),cd(O:Sl),y23(2,Sl,lOl),y32(2,101,51) 
1,phi1(0:Sl),y3lp(2,10l,0:51),y21p(2,Sl,Sl),phi1cd(0:S1) 

common y2l, y22, y23', y3l, y32, zw ,.rp, zstart, zstop, pI, ic, j c 
1,rd,nd,np,nw,pp,damp,pi,y23a,y12,y13,y13a,philcd,y3lp,y2lp,cd 

upl-up-l.OdO 
downl-down-l.OdO 
xl-downl 
h~dlog(upl/downl)/dfloat(m-l) 
orl-ord(id,down1) 
if «id.eq.17).and.(jc;eq.l»then 

y13a(ic)-orl*downl 
else if «jc.eq.l).and.(id.eq.S» then 

y23a(ic)-orl*downl 
end if 
pp-O.OdO 
do 1 j-2,m 

x2-downl*dexp(h*dfloat(j-1» 
or2-ord(id,x2) 
b-d1og(or2/or1)jh 
pp-pp+(x2*or2-x1*or1)/(1.0dO+b) 
x1-x2 

1 or1-or2 
return 
end 

c~=-~~~ __ ~ ______ __ 
c This is for the addition and subtraction of singular values. 

subroutine integ3(up,down,m,id) 



implicit double precision(a-h,o-z) 
dimension zw(0:51),rd(0:51),rp(101),y12(2,0:51,51), 

1y13(2,0:51,101),y21(2,51,51),y22(2,51,51),y31(2,101,51), 
1phi3(101),phi2n(0:51),phi30(101),phi2(0:51), 
1y23a(51),y13a(0:51),cd(0:51),y23(2,51,101),y32(2,101,51) 
i,phi1(0:51),y31p(2,101,O:51),y21p(2,51,51),phi1cd(0:51) 

common y21,y22,y23,y31,y32,zw,rp,zstart,zstop,p1,ic,jc 
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1,rd,nd,np,nw,pp,damp,pi,y23a,y12,y13,y13a,philcd,y31p,y21p,cd 
call integ1(up,down,m,id) 
dif-up-down 
if (mod(id,2).ne.0)then 

te-0.5dO*dif**2*(d1og(dif/4.0dO)-0.5dO) 
if(id.eq.25)then 

corr-te 
goto III 

end if 
if (dabs(zw(ic)-up).le.0.0001dO)te--te 
corr-zw(ic)*dif*(d1og(dif/4.0dO)-1.0dO)+te 

else 
corr-dif*(d1og(dif/4.0dO)-1.OdO) 

end if 
III pp-pp-corr/2.0dO/pi 

return 
end 

c ______ ~----------------__ 
subroutine integ4(up,down,m,id,icurr) 
implicit double precision(a-h,o-z) 
dimension zw(0:51),rd(0:51),rp(101),y12(2,0:51,51), 

1y13(2,O:51,101),y21(2,51,51),y22(2,51,51),y31(2,101,51), 
1phi3(101),phi2n(O:51),phi30(101),phi2(0:51), 
1y23a(51),y13a(0:51),cd(0:51),y23(2,51,101),y32(2 i 101,51) 
l,phi1(0:51),y31p(2,101,0:51),y21p(2,51,51),phi1cd(0:51) 

common y21,y22.y23,y31,y32,zw,rp,zstart,zstop,pl,ic,jc 
1,rd,nd,np,nw,pp,damp,pi,y23a,y12,yI3,y13a,philcd,y31p,y21p,cd 

jc-icurr 
call integ1(up,down,m,id) 
corr-O.OdO 
if (id.eq.19) then 

dif-up-down 
corr-dif*(d1og(dif)-I.OdO) 
y-dcos(pi/2.0dO*(1.dO-rd(ic») 
pp-pp+corr/pi*P(icurr,y) 

end if 
return 
end 

c ____ ~~------~~--------______ _ 
function fa(x2,xl,p2,pl) 
implicit double precision(a-h,o-z) 
fa-pl-(p2-pl)*xl/(x2-x1) 
return 
end 

)'i 
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c ________________________ _ 

function fb(x2,x1,p2,p1) 
implicit double precision(a-h,o-z) 
fb-(p2-p1)/(x2-x1) 
return 
end 

c __ ~ ____ ~~ ________ ~ __ 
c This simulates a Pascal case statement for use in integration. 

function ord(id,x) 
implicit double precision(a-h,o-z) 
dimension zw(0:51),rd(0:51),rp(101),y12(2,0:51,51), 

1y13(2,0:51,101),y21(2,51,51),y22(2,51,51),y31(2,101,51), 
1phi3(101),phi2n(0:51),phi30(101),phi2(0:51), 
1y23a(51),y13a(0:51),cd(0:51),y23(2,51,101),y32(2,101,51) 
1,phi1(0:51),y31p(2,101,0:51),y21p(2,51,51),phi1cd(0:51) 
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common y21,y22,y23,y31,y32,zw,rp,zstart,zstop,p1,ic,jc 
1,rd,nd,np,nw,pp,damp,pi,y23a,y12,y13,y13a,phi1cd,y31p,y21p,cd 

if (id.eq.1) then 
ord--f2(x,zw(ic),1.0dO,1.0dO) 

else if (id.eq.2) then 
ord--f2(x,zw(ic),1.0dO,1.0dO)*x 

else if (id.eq.3) then 
ord--fl (0. OdO ,zw(ic) ,x,l. OdO)*x 

else if (id.eq.4) then 
ord--f1(0.OdO,zw(ic),x,1.0dO)*x**2 

else if (id.eq.5) then 
ord-f3(pl,zw(ic),x+1.0dO,l.dO)*(x+1.0dO) 

else if (id.eq.6) then 
ord-f3(pl,zw(ic),x+l.dO,1.dO)*x*(x+l.OdO) 

else if (id.eq.7) then 
ord-f3(0.OdO,zw(ic),x,1.0dO)*x 

else if (id.eq.8) then 
if (dabs(x-zw(ic».le.1d-8) then 
ord--O.5dO/pi*(1.0dO-dlog(2.0dO» 

else 
ord--f2(x,zw(ic),1.OdO,1.0dO)+ 

1 dlog«x-zw(ic»**2/16.0dO)/4.0dO/pi 
end if 
else if (id.eq.9) then 
if (dabs(x-zw(ic».le.ld-8)then 
ord--x/2.dO/pi*(1.OdO-dlog(2.0dO» 

else 
ord-(-f2(x,zw(ic),l.OdO,l.OdO)+dlog«x-zw(ic»**2/16.0dO) 

1 /4.0dO/pi)*x 
end if 
else if (id.eq.10) then 

ord--f1(0.OdO,pl,x,rp(ic»*x 
else if (id.eq.l1) then 

ord--f1(O.OdO,pl,x,rp(ic»*x**2 
else if (id.eq.12) then 

ord--f2(x,pl,1.OdO,rp(ic» 

,\{ ~. 



else if (id.eq.13) then 
ord--f2(x,pl,l.OdO,rp(ic»*x 

else if (id.eq.14) then 
ord-f3(0.OdO,pl,x,rp(ic»*x 

else if (id.eq.15) then 
ord--f2(x,O.OdO,l.OdO,rd(ic» 

else if (id.eq.16) then 
ord--f2(x,O.OdO,l.OdO,rd(ic»*x 

~lse if (id.eq.17) then 
ord-f3(pl,O.OdO,x+l.OdO,rd(ic»*(x+l.OdO) 

else if (id.eq.18) then 
ord-f3(pl,O.OdO,x+l.OdO,rd(ic»*x*(x+l.dO) 

else if (id.eq.19) then 
yq-dcos(pi/2.dO*(1.dO-rd(ic») 
y-dcos(pi/2. dO*(l'. dO-x» 
if (dabs(x-rd(ic».le.ld-7)then 
ord--dlog(8.0dO*rd(ic»/pi*P(jc,yq) 

else 
ord--fl(O.OdO,O.OdO,x,rd(ic»*x*P(jc,y)-

1 P(jc,yq)*dlog«x-rd(ic»**2)/pi/2.0dO 
end if 

else if (id.eq.20) then 
y-dcos(pi/2.dO*(1.dO-x» 
ord--x/(rd(ic)+x)*P(jc,y) 

else if (id.eq.21) then 
ord-f3(0.OdO,zw(ic),x,l.OdO)*x**2 

else if (id.eq.22) then 
ord-f3(0.OdO,pl,x,rp(ic»*x**2 

else if (id.eq.26) then 
if (x.le.ld-8) then 
ord--0.5dO/pi*(I.OdO-dlog(2.dO» 

else 
ord--f2(x,O.OdO,I.OdO,I.OdO)+dlog(x**2/l6.0dO)/4.0dO/pi 

end if 
else if (id.eq.25) then 
if (x.le.ld-8)then 
ord--x/2.dO/pi*(I.OdO-dlog(2.0dO» 

else 
ord-(-f2(x,O.dO,l.OdO,l.OdO)+dlog(x**2/l6.0dO)/4.0dO/pi)*x 

end if 
else 

print*,'Invalid 10 number' 
stop 

end if 
return 
end 

c ________________________ __ 

c This is the Green's function for axisymmetric problems. 
function fl(z,zq,r,rq) 
implicit double precision(a-h,o-z) 
pi-3.14l59265358979dO 
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w-«r-rq)**2+(z-zq)**2)/«r+rq)**2+(z-zq)**2) 
fl-2.0dO/pi*el(w)/dsqrt«z-zq)**2+(r+rq)**2) 
return 
end c ________________________ __ 
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c This is the r-component of the gradient of the Green's function 
function f2(z,zq,r,rq) 
implicit double precision(a-h,o-z) 
pi-3.l4l59265358979dO 
w-«r-rq)**2+(z-zq)**2)/«r+rq)**2+(z-zq)**2) 
zd-z-zq 
f2--(e2(w)*(r**2-rq**2-zd**2)/«r-rq)**2+zd**2)+el(w»/2.0dO/r/ 

1 dsqrt«r+rq)**2+zd**2)*2.0dO/pi 
return 
end 

c __ ~ ______ ~ ____________ __ 
c This is the z-component of the gradient of the Green's function. 

f~nction f3(z,zq,r,rq) 
implicit double precision(a-h,o-z) 
pi-3.l4l59265358979dO 
w-«r-rq)**2+(z-zq)**2)/«r+rq)**2+(z-zq)**2) 
zd-z-zq 
f3--2.0dO/pi*zd*e2(w)/«r-rq)**2+zd**2)/dsqrt(zd**2+(r+rq)**2) 
return 
end 

c ________________________ __ 

c Complete Elliptic Integral' of the First Kind 
function el(w) 
implicit double precision (a-h,o-z) 
dimension a(5),b(5) 
data a / l.38629436ll2dO, .09666344259dO, .03590092383dO 

1, .037425637l3dO, .0145ll962l2dO/ 
data b/ .5dO, .12498593597dO, .06880248576dO, 

1 .03328355346dO, .0044l7870l2dO/ 
d-a(1)+a(2)*w+a(3)*w**2+a(4)*w**3+a(5)*w**4 
el-d+(b(l)+b(2)*W+b(3)*w**2+b(4)*w**3+b(5)*w**4)*~log(1.OdO/w) 

return 
end 

c ________________________ __ 

c Complete Elliptic Integral of the Second Kind 
function e2(w) 
implicit double precision (a-h,o-z) 
dimension c(4),d(4) 
data c / .44325l4l463dO, .0626060l220dO, .04757383546dO, 

1 .Ol73650645ldO/ 
data d/ .249983683ldO, .09200l80037dO, .04069697526dO, 

1 .00526449639dO/ 
a-l.OdO+c(l)*w+c(2)*w**2+c(3)*w**3+c(4)*w**4 
e2-a+(d(l)*w+d(2)*w**2+d(3)*w**3+d(4)*w**4)*dlog(1.OdO/w) 
end 

c ____________ ~~~ ________ ___ 



subroutine pread 
implicit double precision(a-h,o-z) 
dimension zw(0:51),rd(0:51),rp(101),yI2(2,0:51,5l), 

lyI3(2,0:51,101),y21(2,5l,51),y22(2,5l,51),y3l(2,101,51), 
Iphi3(101),phi2n(0:51),phi30(101),phi2(0:5l), 
ly23a(5l),y13a(0:51),cd(0:5l),y23(2,51,101),y32(2,lOl,51) 
1,phil(0:5l),y3lp(2,101,0:5l),y21p(2,5l,5l),philcd(0:51) 

common y2l,y22,y23,y3l,y32,zw,rp,zstart,zstop,pl,ic,jc 
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l,rd,nd,np,nw,pp,damp,pi,y23a,y12,y13,yI3a,philcd,y3lp,y2lp,cd 
read*,np,nw,nd 
read*,pl 
zstop-lOO.OOdO 
zstart-O.OldO 
damp-0.5dO 
hp-dlog(zstop/zstart)/(dfloat(np-l» 
do 1 i-0,nw-5 

1 zw(i)-(pl-0.ldO)*dfloat(i)/dfloat(nw-5) 
do 100 i-l,5 

100 zw(nw-5+i)-pl-0.ldO+0.ldO*dfloat(i)/dfloat(5) 
do 2 i-l,np 

2 rp(i)-l.OdO+zstart*exp(hp*dfloat(i-l» 
do 3 i-O,nd 

3 rd(i)-dfloat(i)/dfloat(nd) 
return 
end 

c ______ ~----~ __ --_ 
subroutine current(icurr) 
implicit double precision(a-h,o-z) 
dimension zw(0:5l),rd(0:5l),rp(101),y12(2,0:5l,5l), 

ly13(2,0:5l,101),y2l(2,5l,5l),y22(2,5l,5l),y3l(2,101,51), 
lphi3(101),phi2n(0:5l),phi30(101),phi2(0:5l), 
ly23a(5l),y13a(0:5l),ed(0:5l),y23(2,51,101),y32(2,101,51) 
1,phil(0:5l),y3lp(2,101,0:5l),y2lp(2,5l,5l),philcd(0:51) 

common y2l,y22,y23,y3l,y32,zw,rp,zstart,zstop,pl,ic,jc 
1,rd,nd,np,nw,pp,damp,pi,y23a,y12,y13,y13a,philcd,y3lp,y2lp,cd 

do 1 i-O,nd 
x-dcos(pi/2.0dO*(1.OdO-rd(i») 

1 cd(i)--P(icurr,x) 

2 

md-lOOO 
do 2 ie-l,nd-l 

call integ4(rd(ic),0.OdO,md,19,icurr) 
philed( ic)--pp 
call integ4(1.OdO,rd(ic),md,19,icurr) 
philcd(ic)-philcd(ic)-pp 

continue 
ic-nd 
call integ4(1.OdO,0.OdO,md,19,icurr) 
philed(nd)--pp 
ic-O 
call integ4(1.OdO,0.OdO,md,20,icurr) 
philcd(O)--pp 



return 
end 

c __ ~~~ __ ~ __ ~~ __ ~ __ ~~ 
c Calculation of Legendre Polynomials 

function P(n,x) 
implicit double precision(a-h,o-z) 
pl-1.dO 
p2-x 
if(n-l)l,2,3 

1 P-pl 
return 

2 P-p2 
return 

3 nml-n-l 
do 4 nu-l,nml 
P-(x*dfloat(2*nu+l)*p2-dfloat(nu)*pl)/dfloat(nu+l) 
pl-p2 

4 p2-P 
return 
end 
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