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Study of the projectional emittance is an efficient way of probing the quality of a 
particle beam. In this work we deal with some computational aspects of the problem. We 
present the argument that in a beam optic code for the design or evaluation of the 
perfonnance of electrostatic extractors/accelerators which produce such (round) beams, one 
must include in the calculation beamlets with skew angles. This is necessary if one wants 
to compare calculations with emittance measurements for a beam with transverse 
temperature. We have developed new steps and modified an existing code for such a 
purpose and produced calculated results of emittance plots that can be compared with 
experimental observations. 

• This work was supponed by USASDC MIPR W31RPP-63-A087 and the Director, 
Office of Energy Research, Office of Fusion Energy, Development and Technology 
Division. of the U.S. Department of Energy under Contract No. DE-AC03-
76SFOO098. 
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1. Introduction 

An intense particle beam is usually formed by the extraction and acceleration of 

particles emanating from an emitter or source. In many applications, one prefers a beam 

with uniform intensity and low divergence. One way of studying the quality of the beam is 

to examine its transverse phase space intensity distribution in, say x-x' (the projectional 

emittance l ), using an emittance scanner.2-6 The principal elements of the scanner consist 

of two slits placed perpendicular to the propagating direction of the beam. One slit allows a 

portion of the beam to pass to measure the x coordinate of that portion. Another slit, 

located somewhat funher downstream, measures the angle with respect to the beam axis 

(the x' coordinate) and a detector behind the second slit measures the intensity. By moving 

the second slit transversely, different values of x' and intensity are recorded for the given 

x. Thus, by varying x and x', an emittance plot is produced. In this paper we concern 

ourselves with the computational aspect that arises from the consideration of the design of 

the extractor (accelerator) of a round beam using an axisymmetric electrostatic lens system, 

and how the computation is related to the emittance measurement method mentioned above. 

From this study we hope that we learn how to obtain a good quality beam for the desired 

application or for further acceleration. In general terms the procedure of our study is as 

follows: A beam optic code is used to trace the beam through the accelerator under study, 

and a phase space distribution in r-r' at a certain location is obtained. Then this is 

converted into a distribution in x-x' space that can be used to compare with a measured 

projectional emittance if desired. 

For a beam with finite temperature, it becomes necessary to include particle motion 

in the azimuthal direction (the ~ velocity component) in addition to motion in the radial 

and axial directions. The reason for this is explained in Section 2. On the other hand, 

before the beam tracing stans, we have to have a scheme to represent a continuous 3-D 

velocity distribution (Maxwellian in our case) with a finite number of beamlets. One such 

method is presented in Section 3. Because of the skew velocity component, we have to 
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modify the usual 2-D axisymmetric beam tracing code7 in order to correctly handle the 

particle motion. This is described in Section 4. The mapping from r-t space to x-x' space 

mentioned above is presented in Sections 5 and 6. Finally, in Section 7, some results of 

the calculations are compared with data from an H- accelerator in our experiment. 

It should be mentioned also that the beam dynamics presented is non-relativistic 

because this work is concerned with the low energy acceleration of an ion beam (up to 

several hundred keV). We leave the generalization to relativistic motion (say, more 

appropriate to an electron beam), to a future study. 

2. The Necessity of Skew Beams 

Suppose we have a particle beam emerging from a circle around the origin in the x­

y plane of an emitter with its axis along the z direction as shown in Fig. 1. Each point 

within the circle emits particles which shall be repsented by beamlets in the scheme 

explained in the following sections. (The "emitter" of the particles does not need to be a 

flat disc, but we shall use it for now for simplicity.) Next consider the coordinate system 

in Fig. 2. A beamlet starting at point 0 has in general a velocity vector 

(1) 

where va = re is what we call the skew velocity. Now suppose that all the beamlets in Fig. 1 

have no such velocity component. All those starting at x = 0, for all y, have x' = 0 (recall that 

x' = dxldz), whereas those starting at x ;II!: 0 have finite x'. Thus, in the x-x' phase plot. we 

should see a distribution like the one sketched in Fig. 3. This is clearly different from what we 

observe in our measurement of projectional emittances. a typical shape of which is sketched in 

Fig. 4. On the other hand, if those beamlets starting at x = 0 have skew velocity components 

and therefore have nonzero x', then they can contribute to the width of the emittance plot on the 
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x' axis. Thus, the discrepancy can be resolved by including in the analysis beamlets with skew 

angles, which carry the information about the transverse temperature of the beam. 

Since any particle beam in nature has a temperature (or some kind of transverse enegy 

spread), a correct, precise beam tracing code should take skew beamlets into account. There 

exist several codes that handle the optics of particle beams,7 but to our knowledge, this issue 

has not been addressed before. 

3. Representine; a 3-D Driftine; Maxwellian Velocity Distribution with a 

Finite Number of BeamIets 

In this section we shall work out a method for representing the starting condition 

for the computation of skew beam dynamics. Suppose that each point in the disc emitter in 

Fig. 1 produces a certain current density carried by particles with a Maxwellian velocity 

distribution. How should we represent them with a fmite number of beamlets? 

Let the particles have a velocity distribution function f given by (see Fig. 4): 

where 

va = rt3 = the skew velocity, 

u = (2:Tif2, 
kT. = the particle temperature , 

1 

Vo = (2:0(2 = the initial drift velocity, 
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and we have ignored the normalization factor in f because it does not concern us in the 

following development. Define, for a beam moving in the +z direction 

00 00 00 

(7) - - -
00 00 -

(8) - - -
I = J . clA, 
+ + 

(9) 

where ciA = I ciA I z is a surface element of the emitter. 

Let us flrst outline the general scheme of beamlet representation and then illustrate it 

with an example. We divide J+ into N x N beamlets: 

v v 
J

KL 
= I r.K+l dv I e.L+l dveI oo

o dvzvf. 
vr •K r ve,L (10) 

where 

K,L = 1. ... ,N. 

and a similarequatioo holds for 0KL. The divisions are imposed in such a way that each 

beamlet carries the same current. We define 

IKL = JKL oclA, (11) 
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and we demand that the IKL's equal each other for all K,L. This condition leads to simple 

equations for the v r,K's and va,L's, which can be solved easily. The beamlets so 

obtained have the follO\Ving properties: 

1 (12) 

2. for the magnitude of the current carried (13) 

by each beamlet, and 

3. ~ < v KL > = ,for the beamlet directions. 
DKL 

(14) 

Next we show an example of 5x5 representation. For the first integral in Eq. (10), 

we choose two parameters, <X 1 ,<X2, (see Fig. 5), whose values are to be detennined. 

Therefore, we have five ranges of integration: 

-(X 
1 

J -
00 

We have similar plans for the second integral in Eq. (10) with the corresponding 

parameters PI ,P2. Then we evaluate Eq. (10) explicitly. The results are 

<VKL > 

u 

where 

(17) 
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"(=vO=--ll. , 
(

E )112 

u kT. 
1 

(18) 

2 JYd _t
2 

th f' erf (y) = -::r; 0 t e - e elTOr unctlon. 

g(y) = 1 + erf(l). (19) 

hey) _ e-y2 + ...{iyg(y) (20) 

- g(y) 
hey) (21) 

F <xl =-erf (<Xl) + 1. F a.2 = - erf(<x2) + erf(<Xl)' F a3 = 2 erf(~), F <x4 = erf (<Xl) - erf (<x2), 

F as = 1 - erf(<x I ). and the E(3L' F(3L are same functions with <Xl and <X2 replaced by (31 

and (32' 

The condition Eq. (11) requires that all the product F ciI(F(3L's equal each other. It 

is logically simple to require that all the F <xK's equal each other. and the same for the 

F(3L's. This leads to identical conditions for the <x's and (3's. For the <x's. we have two 

independent conditions: 

1 - erf(<xI ) = erf(<xI ) - erf(~). 

1 - erf(<xI ) = 2 erf(~). 

This gives: 

7 

(22) 
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(24) 

2 
Thus a l = 0.5951, ~ = 0.1792, and F aK ="5 for all K. We have the same results for 

~ 1 '~2 and the F ~L 'so From these we obtain the r, a components of the velocity ratio, 

independent of the drift velocity v 0' 

<VKL > 

u 
.. = -0.9898, - 0.3761, 0.0000, 0.3761, 0.9898. r,a (25) 

The z component of the velocity ratio in Eq. (17) depends on the drift velocity v 0 

through the quantity G. It can easily be evaluated once the values of kTi and v 0 are given. 

For small and large values of v 0' we have the limits 

<VKL >/ 
u z 

1 1 < v > (8kT. )112 
vo~o) -:;r;= 2 ~' where < v>= ~ , (26) 

__ ~) Vo = (EOJ1I2 
vo~ u kTi 

(27) 

For a representation with more than 5,0 beamlets, the situation is not a great deal 

more complicated. For example, for Ilxll representation, we have five a's with the 

conditions 

9 
= 11' erf(~) = 

7 1 11 ' ... , erf(a,5) = 11 

We have tested a 45x45 representation (together with the mapping formula 

described in Section 5); the results are shown in Appendix B. 
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We should remark that, for the purpose of "beam launching", the method described 

in this section is sufficient, but not necessary. There are other methods,8 each with some 

advantages and disadvantages. 

To conclude, with the magnitudes of beamlet currents given by Eq. (13) and 

directions given by Eq. (14), we are ready to start the beam tracing provided that we have 

the correct beam dynamics to take into account the skew motion. 

4. Skew Beam Dynamics 

With the initial condition of the beam specified by the method described above, 

suppose now it enters a region of external electrostatic force. Let the Lagrangian of a 

particle of the beam be 

(28) 

where we have assumed that V has no a dependence for an axisymmetric situation. Then 

the equations of motions are: 

mr2e = J = constant, (29) 

J2 aV 
mr = 

mr3 q-ar (30) 

av mz = -q az . . (31) 

In Eq. (29), J is the angular momentum of the particle due to skew motion. Equations 

(30,31), together with the Poisson equation 
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1 --n, 
EO (32) 

form the basis of our new beam tracing code. It is still a 2-D code, involving only r and z 

coordinates. The method of obtaining the space charge density n from the beamlet cmrents 

is described in detail in Ref. 7. The fields - a;, -~~ are treated either as constants or 

linear functions of coordinates within mesh units imposed on (r,z). Solving Eq. (30) 

exactly within a unit would involve elliptic integral, which is quite messy. In practice, we 

use an approximation by replacing the r in the centrifugal force term in Eq. (30) with rO' the 

starting value in the unit, or with (r 1 + r2 + r3)13 when we use a triangular mesh. 

5. Mapping from r-r' Phase Space to x-x' Phase Space 

Mter we run the beam tracing code for a certain problem, with ingredients outlined 

in previous sections, we obtain a plot of the distribution of points in r-r' space for a chosen 

location in z. Now we want to convert this distribution into a corresponding distribution in 

x-x' space to construct a projectional emittance. 

First, let us consider the total current in the phase space. Suppose p 4 is the current 

intensity distribution} in transverse phase space. Then the total current I is the intergrral of 

this distribution: 

I = f dxdydx'dy' P4(x,y,x',y'), (33) 

= f rdrd9dr'da'P4(r,9,r',a')' (34) 

where (see Fig. 4) 
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, dx Vx 
x=-=-

dz ' Vz 

dr v , r r =-=-, 
dz Vz 

a'=rda = Va 
dz v' 

z 
and 

The relations between the two coordinate systems! are 

x' = r'cosa a'sin a, 

y' = r'sina + a' cos a. 

The inverse relations are 

r' = x'x+ y,l, 
r r 

a.' = -x,y + y'~, 
r r 

with 

x y D 
cos a = -;- , sin 9 = -; = ~ 1--;z . 

(35) 

(36) 

Now, if we have a point in r-r' space with coordinates r l' r I', skew velocity a'l 

and current 

(37) 

where 

riO = the initial radius of the ring of current when the beamlet stans, 
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!lr 10 = the width of the ring, and 

J 10 = the initial current density carried by the beamlet, 

then 

Put this p 4 into Eq. (34), after some calculus. (see Appendix A), and since! 

P2 = d2I/dxdx'. we have 

P2(x,x') = Jdydy'p 4 

(38) 

(39) 

There is a simple geometric interpretation for every factor in Eq. (39). One can easily 

verify the following: the factors preceding the 0 function give the portion of the current 

ring passed through the slit with width dx. The length of the arc is just dxlsin9 (see 

Fig. 6). And the argument in the 0 function is just the condition that the angle x' is due to 

the combined motions in the radial and skew directions. 

If there is no skew velocity. a'l = 0, and the argument of the 0 function gives 

r' 
x' = :Ix. 

r1 
(40) 

That is, a point in r-r' space is mapped into a straight line passing through the origin in x-x' 

space as shown in Fig. 7 A. with intensity distribution sketched in Fig. 7B. The sum of the 
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contributions from these phase points would give a plot that looks like the one sketched in 

Fig. 2. 

If there is skew velocity, ex'l ;z: 0, and 

(41) 

A point in r-r' space is mapped into a half-ellipse (see Fig. 8). If ex1' > 0, we get the half 

that is below the line Eq.(40). (It should be noted that this line is not the major axis of the 

tilted ellipse.) Specifically, from Eq. (41), we get 

r' 
where a =..J. , and b = ex'l . 

r1 

(42) 

Next we consider the value of ex'l0 Mter the beam optics calculation, we obtain the 

final values r 1 ,r' 1 for the phase point at location z. The value of ex'l is obtained by using 

Eq. (29) and the initial values r IO,ex' 10: 

r. 
ex, = .:lQ.,.." 

1 ..... 10· r1 (43) 

Recall that ex'10 is detennined by the beam initial temperature kTi (it is related to <OK1'> in 

Eq. (14», therefore Eq. (43) takes care of the accounting of beam heating due to radial 

compression or cooling due to expansion. Thus, 
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(44) 

where « va » is the input value from Eq. (14), (see also the example in Eq. (17)~, and 
u 0 . 

Ez is the beam energy at the phase plot location. Notice that b is just the intercept of the 

half-ellipse with the x' axis. 

6. Practical ImPlementation of the Mappin~ 

In order to do the mapping in practice, we have to impose a grid in the x-x' plane. 

Suppose we integrate Eq. (39) from xi to xi+ l' then 

(45) 

We deposit this amount of current, say, at the lower left corner of the grid cell under 

consideration: (xi,X'j)' where X'j is given by Eq. (41), in which x takes the value of xi. In 

order to calculate the contribution of one point (r 1 ,r' 1) to P2 on the whole grid, it is 

necessary to calculate the intersections of the half ellipse ofEq. (42) with the grid lines. 

7. Application of the Method and Comparison of the Results With Data 

We have studied a test case for the mapping fonnula Eq. (39), as well as for the 

beam1et representation described in Section 3, with a "flat-Gaussian" distribution which has 

a known analytic solution. The result is quite satisfactory and it is presented in 

Appendix B. 
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Next we apply the method to calculate the performance of an accelerator ofH- ions 

for magnetic fusion energy or other applications.9 In the example presented below, we 

choose to use a 35x5xS beamlet representation in r-r'-a' space due to computer time 

limitations. The initial velocity components are given by Eq. (25) in Section 3. In Fig. 9 

we show the trajectory plot of all the beamlets and the r-r' phase plot at the beam exit 

location. The H- ions stan their paths from the "emitter" at the left hand side. An emitter in 

this case is the assumed plasma boundary, with the requirement that the electric field there 

is low (s 1000 volt/cm). The source plasma, located to the left of this boundary, actually 

also contains positive ions and electrons. Their effect on this calculation is believed to be 

not significant and therefore is neglected. Our goal here is not to do a detailed comparison 

of the calculation with data, but rather to demonstrate the utility of the method. Therefore. 

a simplified physical picture mentioned above is adopted and we content ourselves with the 

following preliminary comparison. 

In Fig. 10, we show the trajectory plot and the corresponding exit phase plot for 

one set of beamlets with <.ve>/u equal to +0.9898, (see Eq. (25». This shows the effect 

of the centrifugal force tenn, which makes the beamlets "leave" the axis. A magnified 

version of the left-hand-side of Fig. 10, the trajectories near the emitter, is shown in 

Fig. 11. 

Accompanying the r-r' phase plot of Fig. 9 is a table (not shown) that contains, for 

each point, the values of r 1,r' 1 ,a' l' and II as described in Section 5. We use the mapping 

formula Eq. (45) to generate another table that contains the intensity distribution in x-x' 

phase space. Finally, a computer program developed by one of us (WFS) is used to 

produce a percentage contour plot. shown in Fig. 12. The measured intensity distribution, 

processed by the same contour plotting program, is shown in Fig. 13. 

As one can see, there is quite a change in appearance in going from the r-r' phase 

plot in Fig. 9 to the x-x' projectional emittance shown in Fig. 12. The result is reasonably 

close to the measured projectional emittance shown in Fig. 13. We believe that even better 
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agreement could be achieved by using more reflned physical input for the calculation; we 

leave that for future investigations. 

There are two technical points that should be addressed. Firs4 the emittance data 

shown in Fig. 13 is not centered at the origin because there is a magnetic fleld at the 

upstream part of the accelerator to sweep out the unwanted electrons, which are extracted 

together with the H- ions. This deflects the ion beam somewhat and causes the shift of the 

center of the plot (We ignore this effect in the calculation, too.) 

The second point is tha4 in order to produce Fig. 12, we have used a method of 

averaging in x-x' phase space. As we mentioned at the beginning of this section, we used 

only a 5x5 beamlet representation in r' -a' space for the problem in Fig. 9; this was due to 

computer time limitations in tracing a large number of beamlets over some distance. This is 

far less than the 45x45 representation we used in the simple test problem in Appendix B. 

The 5x5 representation, however, produces too much fluctuation in intensity P2 over the x-

x' grid and does not give a smooth-looking contour plot We use the well-known method 

of averaging to smooth out the initial result This is explained in Appendix C. We should 

emphasize that the use of this procedure is not strictly necessary but it is economical to do 

so. In our experience with several other cases of applications of the work described in this 

paper, this method works rather well. 

8. Discussions and Conclusions 

The main results of this paper are the 3-D beamlet representation scheme, the 

inclusion of the centrifugal force term in the 2-D beamlet dynamics and the mapping 

formula. We have shown that by including skew beamlets in the beam optic calculation, 

we are able to obtain a projectional emittance that can be compared with experimental 

observation. Furthermore, for reasonable assumptions of the initial beam properties, the 

calculated projectional emittances agree reasonably well with experimentally measured 

ones. Without the inclusion of skew beamlets, the comparison is poor. 
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The centrifugal force term is inversely proportional to r3; thus it effects strongly 

only on those beamlets near the axis. The resulting change in overall space charge 

disnibution is relatively small because those beamlets also carry smaller amounts of current 

(recall that each beamlet actually represents a ring of current in our axisymmenic system.) 

It is for this reason that ion optics codes that do not include skew beamlets can be used 

successfully in many cases for design purposes, even though they predict incorrect 

projectional emittances. 

Next let us discuss the question of maximal change in angle in going from r-r' 

space to x-x' space due to skew motion. Applying ax'/dx = 0 to Eq. (41), we obtain the 

maximal values 

(46) 

(47) 

Thus, the angle is increased by the square root factor. From the expression for (J.'l given 

by Eq. (44), we see that the increment is contributed to by various factors. In the case we 

studied in Section 7, the increase is only a few percent. In cases ~here one has large beam 

compression ratio and high temperature, the effect would be larger. 
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APPENDIX A: Derivation of the Mat!t!in~ EonDula 

In Section 5 we have 

(AI) 

Recall that 

(A2) 

where f(y Oi) = 0, therefore 

where YI± 

We have a similar formula for o(r'-r'I) 0 Notice, however, that the choice of 

y'l± = ± ~rlr _x,2 -a'r is not independent of the choice of y I±' in view of Eq. (35) 

and the assumption that we have an axisymmetric beam. Therefore, we have only two 

tenns (instead of four terms): 
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(A3) 

Putting Eq. (A3) into Eq. (AI), we obtain 

(A4) 

Now, if a'i = 0 , the two 0 functions combine to fonn 20 because of the relation 

o(-x)=o(x). If a'I;I!: 0, then because a'i is symmetrically distributed around the beam 

axis. we can always find another beamlet with a' = -a'l' so that Eq. (A4) can be 

simplified, without double counting, 

(AS) 

From the relation x2+.r = r2, we obtain xx' + y 1 y'l = r 1 r' 1. This relation, together with 

Eqs. (35.36). enables us to use Eq. (A2) to transfonn the 0 function in Eq. (AS) into the 

following from: 

o(-x' ~ + y' ~ - (1' J r. 1 r. 1 
I I 

= !l o[x, - (:1 x-a' GJ] 
r'l rl I ~~? (A6) 

Thus. we obtain Eq. (39). 
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APPENDIX B: Test of the MaQQin~ Founula with a Flat-Gaussian Distribution 

A flat-Gaussian distribution 10 is defined as 

(Bl) 

where PO(x,y) = constant for r ~ rO' x = dxldt, etc., and u is given by Eq. (4). Then after 

the integration over y and y, we have 

(B2) 

2 2kT. z 
where b = 1 ,~= a = 2..[ib PO' and x' = dxldz as before. The contours 

~2mc2 c 

of P
2 

in x-x' space 

are given by the conditions P2 = constant. Some of them are shown in Fig. 14, which 

represents the analytically derived projectional emittance given by Eq. (B2). 

For the test we consider a "pill-box" problem in which an ion beam, with initial 

conditions: radius = 1 em, kTi = 1.5 ev and Ez = 6.0 ev, propagates only a short distance 

in z. In this way, we obtain an initial phase plot without actually having to go through the 

beam dynamic part of our program. In order to gain sufficient fineness and accuracy for 

comparison with Fig. 14, we choose to use a relatively large nUIl?ber of bearnlets for this 

test problem. Namely, in r-r'-a' space we use 25x45x45 bearnlets. Corresponding to Eq. 

(25) in Section 3, we have the velocity component ratios in r' or (X': 

20 



-1.684, -1.302, -1.128, -1.00S, -0.907, -0.823, 
-0.750, -0.684, -0.624, -0.568, -O.51S, -O.46S, 
-0.417, -0.371, -0.326, -0.283, -0.241, -0.200, 
-O.IS9, -0.119, -0.079, -0.039, 0.000, 0.039, 
0.079, 0.119, 0.1S9, 0.200, 0.241, 0.283, 
0.326, 0.371, 0.417, 0.46S, 0.51S, 0.S68, 
0.624, 0.684, 0.750, 0.823, 0.907, 1.005, 
1.128, 1.032, 1.684. 

In Fig. lSA we show the r-r' phase plot. Each point in this plot represents, in 

addition to the r,I' values shown, an intensity given by Eq. (37) and the 45 skew velocity 

components given above. Feeding all these quantities into Eq. (45) and choosing a 100 x 

100 grid in x-x', we obtain a matrix of P2 values. Then with the help of a percentage 

contour plotting code we generate Fig. 15B, the projectional emittance computed from 

discrete beamlets. One can see that the contours in this plot are quite similar to those 

contours of P2 = constant in Fig. 14. 

Furthermore, from the distribution Eq. (B2), we obtain 

2 1 2 kT. 
< x' >=- b = 1 

2 132mc2 ' 

<xx'> 

~
T. 

= SOO rO ---t, for 'Y = 1 
mc 

]
112 

(B3) 

(B4) 

(B5) 

(B6) 

In Eqs. (BS,B6), if x is in cm, x' is in mrad, then Erms is defined to be in 7t-cm­

mrad. With rO = 1 cm, kTi = I.S ev, Ez = 6.0 ev and mc2 = 1.0 x 109 ev, we have 
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computed those quantities from the analytic expressions in Eqs. (B3-6) and from the 

numerical matrix which generate Fig. 15B. Here are the comparisons: 

x' rms 

erms 

Analytic 

0.50 em 

352.4 mrad 

0.020 1t - em - mrad 

Numerical 
(discrete beamlets) 

0.50 em 

345.9 mrad 

0.020 1t - cm - mrad 

It is obvious that with the number of beamlets chosen, the comparison between analytic and 

discrete-beamlet approaches is very good. The reason we get a slightly smaller value' for 

x'rms in the numerical case is because we chose to put the value of P2 in a grid cell in x-x' 

at its lower-left-hand comer, as we mentioned in Section 6. 
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APPENDIX C: The Method of Avera~n~ jn x-x' Space 

As we explained at the end of Section 7, an auxiliary averaging procedure is used to 

smooth out the result from the mapping calculation in the case when we use an economical 

but undesirably small number of beamlets in the representation of a continuous velocity 

distribution. We used an averaging procedure in which the intensity value in Eq. (45) at 

each point in the x':x' grid, whenever it is non-zero, is replaced by the average of its own 

itensity plus those of the surrounding eight points. The "non-zero" condition is due to the 

fact that we want to apply this procedure only to the interior points of the emittance. This 

averaging process can be repeated a number of times as explained below. 

In Fig. 16, we show the "raw" result of the contour plot from the mapping calculation 

for the problem described in Section 7. Notice that there are five dark streaks (corresponding 

to high intensities) in the x' direction. This is a consequence of the five beamlet 

representation in x' space. The gap widths between these streaks are $ 10 mrad. The width 

of the grid cells in x' we used in this plot is 1 mrad (50 mradl50 cells). If we define Nc to 

be the number of cells per gap, then 

Nc = gap ~dth = 10. 
cell WIdth 

Then, in analog to a diffusion problem, 11 we assert that in order for any 

infonnation to disperse from one streak halfway to the next streak. in either direction, it has 

to take (N d2)2 steps. Therefore, we choose the number of times to repeat the averaging 

process to be 

N -.::...£ (N )2 
avg 2 = 25. 

In practice, the result is not sensitive to the exact value of N avg. From Fig. 16 we 

produce Fig. 12 by using Navg = 20. For each average, we use 
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P2ew (i,j) = ! [P2(i -I,j) + P2(i,j) + P2(i + l,j) 

+ P2(i -I,j + I) + P2(i,j + I) + P2(i + I,j + I) 

+ P2(i-l,j-l) + P2(i,j-l) + P2(i-l,j-l)], 

provided P2(i,j) = O. Otherwise, we skip this process. We have also tried to do the 

average only inille x' (Le., j) direction, but the results are not much different for the cases 

we studied. 

This method of averaging is used only to smooth out the intensity fluctuation. It is 

a cheap way to "fill in with more beamlets" between the gaps. Obviously, we should not 

overdo it, or it will wash out the detail features of the emittance plot. On the other hand, if 

we are willing to use more beamlets, we can get smooth results without using this process, 

as we showed in the test case in Appendix D. 
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FIGURE CAPTIONS 

Fig. 1. 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Schematic drawing of a particle beam in which the beamlets have no skew 

velocity component. 

Coordinate system. 

Sketch of the shape of the projectional emittance produced by the beam shown 

in Fig. 1. 

Sketch of the shape on the projectional emittance observed in a typical 

. experiment with a real particle beam. 

Fig. 5. Ranges of integration for the five beamlet representation. 

Fig. 6. Geometric meanings of the factors in Eq. (39). 

Fig.7A. A point in (r,r') is mapped into a line in (x,x') by Eq. (40). 

Fig. 7B. The intensity factor in Eq. (39). 

Fig. 8. 

Fig. 9. 

A point in (r,r') is mapped into an half-ellipse in (x,x') by Eq. (41). 

Trajectory and exit r-r' phase plots of a H- ion beam from an axisymmetric 

electrostatic accelerator. We use 35x5x5 beamlets in r-r'-(J: space. 

Fig. 10. A subset of beamlets in Fig. 9, corresponding to 35x5x2 in r-r'-a' space, with 

<ve>/u = ± 0.9898. 

Fig. 11. A magnified version of the left-hand-side of Fig. 10. 

Fig. 12. Projectional emittance plot converted from the r-r' phase plot in Fig. 9 with the 

averaging procedure described in Appendix C. 

Fig. 13. Projectional emittance plot from experimental measurement. 

Fig. 14. Constant contour plot of the distribution Eq. (B2). Starting from the center of 

the plot, it shows the contours for P2/aro = 0.85, 0.65, 0.45 and 0.25, 

respectively. 

Fig. 15A. r-r' phase plot of a flat-Gaussian distribution. 
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Fig. 15B. Projectional emittance plot convened from the plot in Fig. 15A. Starting from 

the center of the plot. it shows the areas for 20%, 40%, 60%, 80% and 90% of 

the total current 

Fig. 16. Projectional emittance plot converted from the r-r' phase plot in Fig. 9 without 

the averaging procedure. 
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Ion Beam Optics with Skew Beams 
r=1.456 cm, E=33 kV, p=13 mT, 1=31 rnA 
Assumptions: kTi=4 eV, unifonn j at the emitter 
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Ion Beam Optics with Skew Beams 
r=1.4S6 cm, E=33 kV, p=13 mT, 1=31 rnA 
Assumptions: kTi=4 eV, unifonn j at the emitter 

One set of skew beams 
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Projectional Emittances in x-x' Phase Space 

r=1.456 cm, p=13mT, E=33kV, I=31mA 

Calculation: 
kTi=4 eV, 

unifonn j at the 
emitter 
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Projectional Emittances in x-x' Phase Space 

r=1.456 em, p=13mT, E=33kV, I=31mA 

Measurement: 
with 66% 
transparent 
multiple- hole 
aperture 
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