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Abstract. In this paper we explore the structure and semantic properties of the entities stored in 

statistical databases. We call such entities "statistical objects" (SOs) and propose a new "statistical 

object representation model", based on a graph representation. We identify a number of SO 

representational problems in current models and propose a methodology for their solution. 

1. 0 INTRODUCTION 

For the last several years, a number of researchers have been interested in the various problems 

which arise when modelling aggregate-type data [1st SOBM], [2nd SOBM], [3rd SSOBM], [Rafanelli 

89]. Since aggregate data is often derived by applying statistical aggregation (e.g. SUM, COUNT) and 

statistical analysis functions over micro-data [Wong 84] the aggregate data bases are also called 

"statistical databases" (SOBs) [Shoshani 82], [Shoshani 85]. 

This paper will consider only aggregate-type data, a choice which is justified by the widespread use 

of aggregate data only i.e. without the corresponding micro-data. The reason is that it is too difficult to 

use the micro-data directly (both in terms of storage space and computation time) and because of 

reasons of privacy (especially when the user is not the data owner). 

In SOBs the entities stored are complex data structures (vectors, matrixes, relations, time series, 

etc.) which are generally called statistical tables. In this paper these complex structures will be called 

"statistical object" (SO), so as to stress the fact that there may be many possible configurations for that 

object (e.g. tables, relations, matrixes, graphs). 

Each SO is characterized by having a summary attribute, described by a set of modalities (or 

category attributes); the former is often called quantitative variable and the latter qualitative variable. 

The phenomenon described always has its "universe of definition" (for example, "Fruit products in 
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California"); moreover, the summary data are always fixed in time (or static as they are often called). 

This means that, for example, the production of fruit in California in the years 1981, 1982, .. , 1988 is 

quantified by a numeric value datum which does not change in time, but new value can be added over 

time. 

Various previous papers have dealt with the problem of how to logically represent an aggregate data ·~: 

reality (e.g. [Chan & Shoshani 81, Rafanelli & Ricci 83, Ozsoyoglu et al 85, Su 83]). Starting from those 

works, this paper will propose a new "statistical object representation model" (STORM), based on a graph 

representation. In the subsequent sections, after the necessary definitions, the proposed structure for a SO 

will be discussed and developed. 

We follow the defmition of the STORM model with an investigation of a well-formed SO, and develop 

conditions for it. Next, we develop the concept of and conditions for "summarizability" of a SO, which 

guarantee correct results of summary operations over statistical objects. 

2. 0 PROBLEMS WITH CURRENT LOGICAL MODELS 

2.1 BASIC CONCEPTS 

We start this section by briefly presenting four basic concepts that are unique to SDBs, and then 

discuss deficiencies of currently proposed models. 

1. Summary attributes -- these are attributes that describe the quantitative data being measured or 

summarized. For example, "population", or "income for socio-economic databases", or "production 

and consumption of energy data". 

2. Category attributes-- these are attributes that characterize the summary attributes. For example, "Race" 

and "Sex" characterize "Population counts", or "Energy type" and "Year" characterize the "production 

levels of energy sources". 

3. Multi-dimensionality -- typically a multidimensional space defined by the category attributes is 

associated with a single summary attribute. For example, the three- dimensional space defined by 

"State", "Race" and "Year" can be associated with "Population". The implication is that a 

combination of values from "State", "Race" and "Year" (e.g. Alabama, Black, 1989) is necessary to 

characterize a single population value (e.g.lO,OOO). 
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4. Classification hierarchies -- a classification relationship often exists between categories. For 

example "Cities" can be classified into "States", or specific "Products" (e.g. "Fruits", "Vegetables", 

"Grains" can be classified as "Agricultural Products"). 

These basic concepts are addressed in different models currently used to describe statistical data by 

employing essentially two methodologies: a) 2-dimensional tabular representation and b) graph­

oriented representation. We explore below some of the problems encountered using these 

methodologies in current models. 

In this paper, we define a STatistical Object Representation Model (STORM) which is independent 

from the above methodologies. As a consequence, a SO can then have a graphical representation, a 2-

dimensional tabular representation, or any other representation preferred by the user (e.g. a "relation"). 

2.2 PROBLEMS WITH THE TWO-DIMENSIONAL TABULAR REPRESENTATION 

The two-dimensional (2D) representation exists historically because statistical data have been 

presented on paper. This representation, although it continues to be practiced by statisticians today, 

changes the semantic concepts discussed above. In particular, we point out below several deficiencies. 

2.1.1 The concept of multi-dimensionality is distorted. 

By necessity, we need to squeeze the multi-dimensional space into two dimensions. This is 

typically done by choosing several of the dimensions to be represented as rows and several as columns. 

For example, suppose that we need to represent the "Average Income" by "Profession", "Sex" and 

"Year". Figure 1 is an example of a 2D tabular representation, where two of the dimensions have been 

represented as rows. Obviously, one can choose (according to some other preferred criteria) other 

combinations by exchanging the dimensions (e.g., "Year" first, then "Sex"), put two dimensions as 

columns, or even put all three dimensions as rows or columns. 

Models using this tabular representation technique improperly consider the different tables to be 

different statistical objects, while in reality only the 2D representation has changed. In general, the 2D 

representation of a multi-dimensional statistical object forces a (possibly arbitrary) choice of two 

hierarchies for the rows and columns. The apparent conclusion is that a proper model should retain the 

concept of multi-dimensionality and represent it explicitly. 
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2.2.2 The classification relationship is lost. 

In the 2D representation, classification hierarchies are represented in the same manner as the multi­

dimensional categories. Consider, for example, that "Professions" in Figure 1 are classified into 

"Professional Categories" as shown in Figure 2. 

Profession 

Chemical Executive Elementary 
Engineer .... Secretary ..... teacher 

80 1,841 2,600 1,038 

81 2,012 2,678 1,090 
Male Year 

82 2,199 2,758 1,166 

. . ....... ....... . ...... 

88 3,749 3,293 1,701 
Sex 

80 1,669 2,522 1,027 

81 1,825 2,597 1,079 

Female Year 
82 1,994 2,675 1,154 

..... . ..... . ..... . . 

88 3,399 3,194 1,683 

Figure. 1 
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Professional Category 

Engineer Secretary Teacher 

Profession Profession Profession 
Average Income 

• in California Chemical Civil Junior Executive Elementary College 
Engineer Engineer Secretary Secretary Teacher Teacher 

80 1,841 2,285 1,733 2,600 1,038 1,541 
f 

81 2,012 2,411 1,819 2,678 1,090 1,641 

Male Year 82 2,199 2,637 1,910 2,758 1,166 1,747 

. . ....... ....... ....... . ..... ...... 

88 3,749 4,521 2,560 3,293 1,701 2,500 

Sex 

80 1,669 1,825 1,698 2,522 1,027 1,525 

81 1,825 1,996 1,783 2,597 1,079 1,624 

Year 
82 1,994 2,184 1,872 2,675 1,154 1,729 Female 

..... ...... ...... . ..... . ..... . . 

88 3,399 3,744 2,508 3,194 1,683 2,524 

Figure 2 

As can be seen, there is no difference in the representation of "Sex" and "Year" and the representation 

1". of "Profession" and "Professional Category". However, it is obvious from this example that the values of 

average income are given for specific combinations of "Sex", "Year" and "Profession" only. Thus, 

._,' "Professional Category" is not part of the multi-dimensional space of this statistical object. As can be seen 

from the above example, there is a fundamental difference between category relationship and multi­

dimensionality. Usually, only the low-level elements of the classification relationship participate in the 

multi-dimensional space. This fundamental difference should be explicitly represented in a semantically 

correct statistical data model. 
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2.2.3 Lack of meta-data level. 

A 2D representation requires that the category names as well as the category instances be 

represented together. There is no separate description of what the statistical database is about (meta­

data). For example, the meta-data for Figure 2 consists only of "Average income" by "Sex", "Year" 

and "Profession", and professions are classified in "Professional Category", however, it is represented /', 

together with the data values. Consequently, the 2D representation becomes very large for tables with 

high dimensionality, or when the categories have a large number of instances. Such representation 

cannot comfortably fit on a page or a screen. In such cases, the representation spreads into multiple 

pages or screens. For example, if we add another dimension, "State" to Figure 2, we may need to 

represent each state on a separate page. This confuses the global understanding of the statistical object. 

It is therefore desirable to separate the representation of the categories and the category instances in 

order to achieve compactness of the semantic description of the database. 

2.3 PROBLEMS WITH CURRENT GRAPH-ORIENTED MODELS 

An attempt to correct some of the deficiencies of the 2D representation discussed above was made by 

introducing graph-oriented models. In these models t_he concepts of multi-dimensionality and classification 

hierarchies were introduced by having especially designated nodes. For example, in GRASS [Rafanelli 

83] (which is based on SUBJECT [Chan 81]) multi-dimensionality is represented by A-nodes (A stands 

for "association") and C-nodes (C stands for "classification"). Thus, the statistical object of Figure 2 

would be represented in GRASS as shown in Figure 3. Note that the node of the type S represents a 

"summary" attribute. 

While this approach has an explicit representation for multi-dimensionality and classification, it left 

the previously mentioned problem of the lack of meta-data level (section 2.2.3) unresolved. The lack of 

meta-data level is more subtle in the graph-oriented model and is explained in more detail below. 

2.3.1 Mixing categories and category instances. 

We refer again to Figure 3 and in particular to the classification hierarchy of "Professional Category" 

and "Profession". Consider the intermediate node "Engineer". It has a dual function. On the one hand, it 

is an instance of the "Professional Category". On the other hand, it serves as the name of a category that 

contains "Chemical Engineer", "Civil Engineer", etc. Note that the category "Profession" is missing in this 

representation. The reason is that after we expand the first level ("Professional Category") into its 

instances, all the next levels can contain only instances. 
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Another consequence of this representation is similar to the problem of large 2D tables mentioned in 

section 2.2.3 . Here too, a large number of instances of categories produces large graphs that do not fit 

easily onto a page or a screen. 

Average Income 

(Summary attribute) 

Sex 

M 

Figure 3 

For the above reasons, we have chosen a graph model that separates the categories and their 

instances into two separate levels. For example, the statistical object of Figure 3 will be represented at 

the meta-data level (intentional representation) as shown in Figure 4. Underlying this representation the 

system stores and maintains the instances and their relationship. The instances can become visible to a 

user by using an appropriate command. 
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Professional 
Category 

3. 0 THE STORM MODEL 

Average Income 
in California 

Year 

Figure 4 

Sex 

Before discussing the representational model, we define the basic components of a Statistical 

Object. 

3.1 STATISTICAL OBJECT 

Definition: A Statistical Object (SO) is a logical data structure defmed by a quadruple 

< N, C, S, f >, where: 

N is the name of the SO, which describes the universe of the phenomenon of interest (for example, 

"Gasoline consumption in the USA" is a name that conveys sufficiently the universe of that SO.) 

C is a finite set of category .attributes; each category attribute has a domain associated with it, and a 

"domain cardinality" which corresponds to the number of instances of the domain for that category 

attribute. Each category attribute also has a property called "unit of measure", which represents the 

unit of the domain. 
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S is a single summary attribute associated with the SO. The summary attribute also has a domain 

and a domain cardinality associated with it. In addition to the "unit of measure" property, it has the 

property "summary type". The semantics of this property will be explained below. 

f is a function which maps from the Cartesian product of the category attributes values to the 

summary attribute values of the SO. 

In general, the function f is "into", in the usual sense that not every element of the domain (i.e. an 

element of the cartesian product) maps to an element of the range (i.e. has a summary value associated 

with it). Alternatively, we can assign by default a "null" element to the range, and consider the function 

to be "onto", where non-existing mappings map to the null element. However, the issue of the 

meaning of nulls in Statistical Databases is more complex, and is discussed further in section 6.0 in the 

context of missing values. 

We can use the following notation to describe a SO: 

N (C(t). C(2) •... , C(n) : S), 

where N and S are the name and summary attribute of the SO, and (C(l). C(2) •... , C(n) are the 

components of the category attribute set C. The function f is implied by the ":" notation. For example, 

the following describes a SO on various product sales in the USA: 

PRODUCT SALES (TYPE, PRODUCT, YEAR, CITY, STATE, REGION: AMOUNT) 

As mentioned in the introduction, a statistical object SO represents a summary over micro-data. 

That summary involves some statistical function (count, average, etc.), and some unit of measure of the 

phenomena of interest (gallon, tons, etc.). Accordingly, the summary attribute has the two properties 

mentioned above: "summary type", and "unit of measure". In the example above, the summary type is 

SUM (or TOTAL), and the unit of measure DOLLARS. Note that the above SO is presumed to be 

generated over some micro-data, such as the individual stores where the products were sold. 

We note that the name of a SO is not necessarily a precise description of the SO universe. In the 

'": example given above on "Product Sales", the sales levels are given "by year and by city". Depending 

on the complexity of the SO, the name may reflect part or all of the category attributes involved. 

However, it should always reflects the summary attribute intended meaning. 

So far, we have described the SO in a form that resembles a relation description in a relational 

model, with the following structural semantics added: there is a single attribute designated as the 

summary attribute which has a "summary type" and a "unit of measure" associated with it, and there is 
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a function which maps elements of the cartesian product of the rest of the attributes (called category 

attributes) to the summary attribute. In the next section, we show that these structural semantics are 

not sufficient for describing a SO, since we need to know the relationship between the category 

attributes as well. In the example above on "product sales", suppose that product "type" can assume 

the values: metal, plastic, and wood, and that "product" can assume the values: chair, table, bed. How 

do we know if sales figures are given for products, product types, or both? Further, suppose that we 

know that figures are given for products, how do we decide whether these figures can be summarized 

into product type? Similarly, we need to know whether sales figures for cities can be summarized to 

state levels and to regions. In order to answer these type of questions, we need to capture the structural 

semantics between category attributes. For that purpose, we use the STatistical Object Representation 

Model (STORM). 

3.2 TI-IE STORM REPRESENTATION OF A SO 

It is best to visualize the STORM representation of a SO in a graphical form as a directed tree. The 

summary attribute and each of the category attributes are represented as nodes of type S and C, 

respectively. The root of the tree is always the node S. In addition, another node type is used, 

denoted an A node, to represent an aggregation of the nodes pointing to it. In most cases the nodes 

pointing to an A node will be C nodes, but it is possible that an A node will point to another A node. 

An example of a STORM representation of the SO "product sales" mentioned previously is given in 

Figure Sa. Another possible representation of the same example is shown in Figure Sb, which 

illustrates the possibility of an A node pointing to another A node. Note that an aggregation node has 

the domain generated by the cross product of its component domains. Thus, the node A pointed to 

nodes "type" and "product" in Figure Sb, represents combinations of type and product. 

The two representations of the SO "product sales" given in Figures Sa and Sb have radically 

different meanings. In Figure Sa the implication is that the sales amounts are given for each product 

(e.g. chair, table, ... ), and that products are grouped into types (e.g. metal, wood, ... ). Note that in 

this example, a product may belong to more than one type. On the other hand, in Figure Sb, the 

implication is that the sales amounts are given for each type-product combination. Thus, the sales 

figures are given for "metal-chairs", "plastic-chairs", etc. (These figures could obviously be zero or 

"non-existing). We would like to emphasize that there is no way of determining which representation 

is the desired one from the original description of the SO, and therefore, the choice of representation 

constitutes addtional semantic structure of the SO that should be provided by the database designer. 
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Type 

Product 

Type Product 

Product sales 
(in Dollars) 

Figures Sa 

Year 

Product sales 
(in Dollars) 

Figure 5b 

Region 

State 

City 

Region 

State 

City 

Other structural limitations of the STORM tree are that the S node has always a single A node 

pointing to it, and that a C node can have only a single C or A node pointing to it. The reason for the 

former limitation is that the values of S are defined for the cartesian product of some (relevant) subset of 

the category attributes. The reason for the latter is that if more that one C node point to another C node, 

then the semantic intention is that the aggregation of the pointing nodes relate to the other C node; thus, 
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an A node should exist between them. An example is shown in Figure 6, where the aggregation of car 

model and year maps into the displacement of the corresponding car engine. 

(D CarSales 

Displacement 

Model Year 

Figure 6 

We note that an A node does not have a name. However, one can think of the name as the 

concatenation of the names of the nodes pointing to it. In the simple case that only leaf nodes point to 

the A node, the concatenated name can be used. For example, the lower A node in Figure 5b can be 

named "type/product". In the case that a more complex tree structure is attached to the A node, the 

name can be generated by concatenating the names of the leaf nodes. For example, the A node in 

Figure 5a can be named "product/year/city". 

Another observation worth making is that in the case of an A node pointing to another A node, it is 

possible to collapse the structure to a single A node as shown in Figure 7. This can be easily verified 

by considering the components that make up the cross product elements of an aggregation node. This 

observation generalizes to multiple number of A nodes by applying the transformation of Figure 7 

repeatedly. In spite of this observation, we allow the representation of an A node pointing to another A 

node, because it helps in presenting the semantics of the SO. 
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Q 
C1 

C1 C2 ••·•• Ci 

Figure 7 

In summary, a STORM representation of a SO is a directed tree of nodes of typeS, A, and C, 

with the following structural constraints: 

a) There is only a single S node and it forms the root of the tree. 

b) A single A node points to the S node. 

c) Multiple C or A nodes can point to an A. node. 

d) Only a single Cor A node can point to another C node. 

4.0 MAPPING TYPES 

The STORM representation of a SO implies a mapping between the nodes of the directed tree. We 

explore here the properties of the various possible mapping. We refer again to the example given in 

Figure 5a. 

We already discussed the semantics of the A node as the aggregation of nodes pointing to it. 

However, as can be observed in Figure 5a, it is not immediately clear what are the components of the A 

'~ node. For example, in the branch with the nodes "region", "state", and "city", what is actually pointing 

to A? Is it "region", "state", or "city", or some combination of the these? The answer to this will 

depend on the type of the mappings between the C nodes. 

Let us first examine the mapping between "city" and "state". We assume that city names are unique 

within states, that is, each state can map into a single state. (We will show later what are the 

consequences of relaxing this assumption). This mapping is therefore "single-valued", or in other 
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words a function. Similarly, if we assume that states are unique within regions, then the mapping 

between the corresponding nodes will also be single-valued. In this case, the node that should be 

considered as relevant to the aggregation node A is only "city", because the product sales amounts are 

given for cities. However, the nodes "state" and "region" exist in that structure to indicate that the two 

single-valued mappings (city --> state, and state --> region) are also specified as part of the SO 

description, and therefore the sales amounts for states and regions can potentially be calculated. We call 

the ability for such summary type calculation "summarizability". As we will see in the next section, 

single valued mappings are one of the conditions for summarizability. 

Now, let us consider the branch in Figure Sa that includes "type" and "product". As mentioned 

above, a product (such as "chair") can be of several types (such as "metal" or "wood"). Such a 

mapping is called multi-valued (it is obviously not a function). Here again, as was the case with single­

valued mappings, the node relevant to the aggregation node A is the leaf node "product", because sales 

amounts are given by product and regardless of their type. However, as will be shown in the next 

section it is not possible, in general, to summarize sales amounts to the "type" level. 

Finally, we consider a special case of a multi-valued mapping that can and should be treated as a 

single-valued mapping. Consider, again, the case of the mapping between "city" and "state", and relax 

the condition that each city has a unique name within a state. This example is quite common in many 

countries. For example, Manhattan exists both in New York state, and in Kansas. Since city names 

can be the same in multiple states, the mapping can be considered multi-valued. However, this case is 

misleading, because there really exist different instances of cities, and thus there should be sales figures 

associated with each of these cities even if their names are the same. In such a case, we will consider 

the mapping to be of type ID (identification- the term is borrowed from Entity-Relationship modeling 

terminology). Accordingly, each city needs its associated state for unique identification, and the 

mapping can be considered single-valued. 

In the case of an ID mapping both nodes involved participate in the aggregation node A. Thus, in 

the example above both "city" and "state" are essential to the aggregation node. In addition, ID 

conditions can propagate to the next levels. Consider, for example, that there is an ID mapping 

between "state" and "region" as well. Then, all three nodes "city", "state", and "region" are essential to 

the aggregation node. However, what if the mapping between "state" and "region" is ID, but the 

mapping between "city" and "state" is not? In that case only "city" is essential to the aggregation node, 

since cities have unique names. 
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5. 0 SUMMARIZABILITY AND WELL-FORMEDNESS OF A SO 

We mentioned above the concept of summarizability in the context of a single SO. However, the 

structural semantics of a SO are not only necessary for the interpretation of a single SO, but also for 

combining information from multiple SOs. As an example, consider the two SOs that represent 

f' population by cities by year by sex, and area by state. Suppose that we wish to derive population 

densities by state by year. In order to achieve the desired result, we need to summarize the population 

~ from cities to states, as well as over sex, and then divide the corresponding results into areas of states. 

l'.i 
I 

The question arises under what conditions can we be sure that the summarization is done correctly. 

First, we defme the term summarizability of a mapping. 

Definition: Given the summary values for a C-node (or A-node) X and a mapping from node X to a 

C-node Y, the mapping is summarizable if using this mapping yields the correct summary values for Y. 

Theorem: A multi-valued mapping is not summarizable. 

Proof: Given a multi-valued mapping from X toY, then a summary value for an X instance may be 

shared by more than one instance of Y. In general, there is no way of determining how the shares are 

divided. Since the summary value for an instance of Y has to be determined from multiple component 

shares, it is impossible to correctly calculate the summary values for Y. 

To illustrate the above theorem, let us consider the previous example of the multi-valued mapping 

between products and types. Suppose that sales amounts for products are as follows: chairs- $1000, 

tables - $500. Suppose that we know from the mapping that some of the chairs and tables were made 

of metal and some of wood. It is obvious that without additional information there is no way of 

calculating the actual sales amount for metal and wood (although bounds can be found). 

Definition: A SO is summarizable if all of its mappings are summarizable. 

Obviously, a summarizable SO cannot contain multi-valued mapping. Usually, if a multi-valued 

mapping has been defmed, then the designer of that SO should consider making the two nodes involved 

components of the same A node, as was shown in Figure 5b for the example above. 

Summarizability also occurs for C-nodes under the same A-node. Consider for example, Figure 5b 

again. In that example, the nodes type and product are under the same A-node. We wish to summarize 

correctly sales by type as well as sales by product. This can be done because we can summarize over 

all products for a each type, and similarly summarize over all types for a each product. However, if 
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there was a single-valued dependency between the C-nodes, summarizability will not be possible. To 

see this point, consider an A-node that has "city" and "state" pointing to it. If the mapping is of type 

ID, then summarizing over all states for the same city name will yield the wrong result. If the mapping 

is single-valued, summarizing over states to get city values is unnecessary since there is only one state 

for each city. 

Putting C-nodes that have single-valued (or ID) dependency between them under the same A node 

can easily occur in the trivial case that all the C-nodes of a SO are put under a single A-node. Such will 

be the case for our example if we put "type", "product", "year", "city", "state", and "region" under the 

same A-node. In general, the situation can be more subtle. As an example, we refer again to Figure 6. 

In this case there is a single-valued mapping between the combination (aggregation) of nodes model and 

year, and the node displacement. If all three nodes were put under a single A-node, it may be more 

difficult to detect the single-valued dependency. Accordingly, we defme the following. 

Definition: A well-formed SO contains no multi-valued mappings along the branches of its tree, 

and no single-valued mappings between nodes that point to the same A-node. 

Corollary: A well-formed SO is a necessary condition for summarizability. 

6. 0 ADDITIONAL CONDITIONS FOR SUMMARIZABILITY 

We identified above two necessary conditions for summarizability, i.e. the two conditions for well­

formedness. There are two additional conditions for a SO to be summarizable. Together, all four 

conditions are sufficient to ensure that a SO is summarizable. 

To visualize the first additional condition, consider the mapping between cities and states. In order 

to summarize correctly over cities we need to know that there are no missing values. However, it is 

reasonable to assume that some small towns or other villages were not included in the list of cities, and 

therefore sales figures for them are not included. If we summarize to the state level, we will get 

incorrect results. 

To compensate for such situations, database designers often include another value for cities, which 

we will label "other". If a sales figure for "other" was available, then we could claim that the summary 

can be done correctly. We will call a mapping that satisfies this condition a "full" mapping. Obviously, 

this is a semantic condition that depends on the specific mapping. Some mappings may be naturally 

full. For example, the mapping between states and regions (e.g. west, mid-west, ... ) can be expected 

to be full because all the states will be partitioned into disjoint sets that belong to regions. 
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The second additional condition has to do with missing values. We make the distinction between 

non-existent and "unknown" or "missing" values. A non-existent value is one for which no valid 

category attribute combination exists. For example, in a database on cancer rates, a value for breast 

cancer for males (regardless of any other category attributes) does not exist. On the other hand missing 

values can occur for many other reasons. 
~ a 
' 

It is not possible to get correct results when missing values exist. The condition that there are no 

missing values is a global condition of the SO, and not unique to each mapping. We say that the SO is 

"complete" if it has no missing values. Although this condition is obviously required for 

summarizability, it could be tolerated if the information on the missing values is added to the response 

to the summary operation. Thus, in the case that only a small number of values are missing, most of 

the results will be correct or near correct. 

To summarize, the four conditions for summarizability are: 

a) The SO has no multi-valued mappings between nodes in the branches of the SO tree. 

b) The SO has no single-valued (or ID) mappings between nodes that point to the same 

aggregation A-node. 

c) All the single-valued (and ID) mappings are full. 

d) The SO is complete. 

We will call a SO that fulfills all four conditions "summarizable", and a SO that fulfills only the first 

three conditions "weakly summarizable". The first two conditions are sufficient for a SO to be 

considered well-formed. 

7. 0 CONCLUSIONS 

The work described here was motivated by limitations of current models for describing Statistical 

Databases. We have defined a new model, called the STatistical Object Representation Model 

(STORM), and showed how it overcomes these limitations. In addition, we have defined the 

conditions for a well-formed Statistical Object (SO), and the conditions for "summarizability", which 

are necessary to ensure that the results of statistical summaries are correct. 
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