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Abstract 

A tomographic inversion scheme is developed for interpreting audio-frequency elec­

tromagnetic (EM) measurements and for understanding the characteristics of the EM inverse 

problem. The formulation of this new approach, called EM diffusion tomography, is related to 

the recent developments in acoustic diffraction tomography. In the frequency domain, how­

ever, the significant mathematical difference between the acoustic and the electromagnetic 

problems is the background wave number which in the acoustic case is real while in the elec­

tromagnetic case is complex. By extending the acoustic image reconstruction formulation 

through the introduction of an inverse Laplace transform as a replacement for the inverse 

Fourier transform, the method can now be applied to map electrically conductive targets such 

as saline fluid filled fracture zones in reservoir environments. Since these conductors usually 

have a small conductivity-thickness product, the Born or Rytov weak scattering approximation 

can be applied to simplify the problem. This approach is first investigated using a model of 

two-dimensional (2-D) Cartesian geometry. Following this simple and useful model and using 

an additional far field approximation, more complex and realistic 2-D cylindrical symmetry and 

three-dimensional problems are solved. These last two cases are found to be identical to the 

2-D Cartesian one if a geometrical correction factor is applied to the data. Therefore, the pro~ 

perties of the reconstructed images for all three models are similar. 

The reconstructed conductivity image is found to be a band limited version of the actual 

conductivity distribution in the wave number domain. The inversion quality can therefore be 

inferred from the wave number domain coverage which is related to the source-receiver array 

arrangement and the background wave number or operating frequency. The cross-hole source­

receiver configuration has a lower wave number domain coverage and thus a poorer space 
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domain resolution in the lateral direction than along the vertical. To achieve the best possible 

resolution in the cross-hole situation, the largest possible operating frequency should be used. 

For an electrically conductive medium, however, a large source frequency implies severe field 

attenuation and increased solution instability. On the other hand, the inverse Laplace transform 

of band limited data is extremely unstable even for noise free data. Thus a suitable constraint 

such as that of targets which are more conductive than the background (fracture zone mapping 

application) is extremely helpful in enhancing target resolution and solution stability. To incor­

porate this constraint, we use a least squares inversion algorithm for image reconstruction 

instead of an inverse Laplace transform. 

The theoretical developments are illustrated with an extensive series of numerical experi­

ments. These are based on a number of hypothetical geological models to illustrate the 

strengths and weaknesses of electromagnetic diffusion tomography in a variety of situations. 

In particular we find that the target attitude (the dip angle of a thin conductor) can, in general, 

be properly recovered. For the cross-hole source-receiver configuration, image resolution in 

the horizontal direction is directly related to the source operating frequency. Lateral resolution 

can also be enhanced by including data acquired with a single-hole source-receiver array. 

Finally, in all the numerical models studied the Rytov approximation is better than the Born 

·approach. These numerical experiments prove audio-frequency EM tomography to be a valid 

technique for interpreting cross-hole EM observations. 

In order to furnish synthetic data for the above inversion experiments, numerical model­

ing codes are developed using an integral equation approach to simulate the electromagnetic 

response of the corresponding target geometries. We start with a simple two-dimensional (2-D) 

Cartesian model, progress to a cylindrical symmetry model and finally treat a three dimensional 

thin target structure representative of fracture zones. The newly formulated codes are tested 

against proven numerical solutions under some extreme cases and more importantly against 

laboratory scale model data. They are found to be both accurate and efficient and can be used 

to obtain the required numerical data as well as to provide some insight to the inverse problem. 
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Chapter 1 
Introduction 

1 

The detection and characterization of major fracture zones, whether natural or manmade, 

is vital for petroleum production in fractured reservoirs. It is also of great importance for the 

proper storage of radioactive waste in waste repositories or for the efficient extraction of geoth­

ennal energy from geothennal reservoirs. The fracture zones or faults encountered in these 

applications serve as hydrological pathways along which the crude oil, geothennal energy, or 

radionuclides migrate. 

The purpose of this research is to assess the feasibility of detection and mapping of the 

fracture zones with a cross-hole electromagnetic technique since these saline fluid filled zones 

are usually at great depth and are electrically more conductive than the host rock. But, the 

presence of fractures makes the inference of reservoir properties from electromagnetic measure­

ments much more difficult than would be the case in a conventional isotropic medium. The 

variations in fracture characteristics, such as size, orientation and others, are so complex that 

the full description of a reservoir may require other complementary methods. 

In this chapter, we review the electrical properties and geometrical parameters of fonna­

tions which may contain major fracture zones. A survey of the available geophysical tech-

niqi.Ies and the need for new approaches is also discussed. Then mathematical models are 

drawn for modeling and inversion studies for the crosshole electromagnetic method. , 

1.1 Electrical properties of fractured media 

It is well known that the electrical resistivity of reservoir rock is representative of its 

hydrological characteristics. Thus studies have been made, for many decades now, to deter-

mine the quantitative relationship between electrical resistivity and the porosity, saturation, or 

even the penneability in reservoir systems. For an isotropic medium, the most widely 

accepted fundamental relation between the electrical resistivity and the reservoir porosity is 
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Archie's empirical formula (1942). However, with the presence of large fracture zones or 

faults, this relationship may not hold true. Thus other geophysical methods are sought to 

characterize the fracture system and to provide the information required by hydrologists. Since 

the host rock and a fracture zone make different contributions to the electromagnetic response, 

they have to be discussed separately. 

There are many factors affecting host rock electrical resistivity. Porosity, saturation, and 

solution salinity are the most important and commonly considered ones. Others are tempera­

ture, pressure, clay and mineral content, wettability, and pore geometry. Thus, a wide range 

of host rock conductivities can be expected. Archie's experiments (1942) show that the forma­

tion resistivity is directly related to that of the formation fluid and that the rock matrix virtually 

has no effect on it. Thus the electrical conductivity or the salinity of formation fluid was one 

of the most intensively investigated subjects. Data are available from different sources on a 

variety of fluid compositions while Figure 1-1-1 illustrates the range of resistivity values of 

natural water (Hearst and Nelson, 1985). For example, crystalline rocks may have a porosity 

less than 0.01 so that if the contained fluid is fresh water, one could expect a conductivity as 

low as w-6 S /m. On the other hand, the conductivity of high porosity (>30%) sandstones 

saturated with brine could reach up to 0.3 S lm. In sedimentary rocks, the typical conductivity 

is around 0.01 to 0.1 S/m although the variation may span orders of magnitude depending on 

the particular geological situation. For a geothermal reservoir or a waste repository, much 

lower host rock conductivities can be expected. 

The effects of fracture zones on electromagnetic measurements are also determined by 

their geometrical parameters. These parameters fall into two categories, i.e. those of a single 

fracture or a group of fractures. Single fracture parameters include the fracture width, size, 

nature, and orientation. The multi-fracture parameters refer to their arrangement which 

includes their distribution and density. For a single fracture, the width or thickness usually 

varies from microns to millimeters. A single fracture of such a thickness is unlikely to alter the 

macro electrical property of the medium and borehole geophysical methods can hardly detect 

its presence except when it intersects the borehole. In reality, there are numerous fractures in 

the formation. Due to the nature of fracturing process, these fractures are usually oriented in 

one or a few dominant directions. Adjacent fractures with the same direction can be grouped 
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into a fracture zone. All these fracture zones constitute a fracture network. Their electrical 

characteristics are in general determined by the cumulative fracture openings in a fracture zone 

and the electrical conductivity of the fluid inside the fracture openings. 

An example of a fractured petroleum reservoir from Crary et al. (1987) is shown in Fig­

ure 1-1-2. Two laterologs, one shallow (LLs) and the other deep (LLd), and a televiewer sec­

tion are presented. Since the original formation fluid is resistive while the mud filtrate is con­

ductive, the permeable fracture zone corresponds to a significant anomaly on the LLs and LLd 

logs. Its cause is confirmed by the borehole televiewer as an intensively fractured zone more 

than 10 meters thick. At the fracture zone, the ratio of the apparent conductivity from LLs 

over that from LLd is around two. Nevertheless, the logs provide little information about the 

fracture extent. Other case histories in fractured petroleum reservoirs are provided by Van 

Golf-Racht (1982) and Nelson (1985). 

Examples of fracture detection problems for waste repositories can be found in Green and 

Mair (1983) and Olsson et al. (1987). Green and Mair (1983) investigated a typical case of 

fracture zone characterization. They conducted a multidisciplinary investigation of the feasibil­

ity of using crystalline rock bodies for the disposal of nuclear waste in Canada. An integtated 

interpretation of the surface seismic data along with selected borehole logs showed the fracture 

system depicted in Figure 1-1-3. The electrical conductance of the fracture zones inferred from 

their results is around 0~01 to 0.1 S. The thickness of the targets ranges from several meters to 

tens of meters. The granite host is very resistive because of low porosity (Katsube and Hume, 

1987). 

Numerous cases of fracture zones and faults found in geothermal fields are discussed in 

an extensive review by Goldstein (1985). Figure 1-1-4 is a three-dimensional geological section 

of a geothermal reservoir in New Mexico (Hulen, 1982; Goldstein, 1985). It shows the rela­

tionship between the various normal faults and the permeable sandstone units within the other­

wise low permeability Bandolier tuffs. In general, the permeable zones have tabular shape and 

are fluid filled. 

All these examples show that fracture zones or faults form a network of thin conductors. 

Because of formation fluid in the openings, they are electrically more conductive than the 
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background. The thickness-conductivity product of the fracture zones, however, is small (a 

fraction of a Siemen). The host rock can be either conductive as in a petroleum reservoir or 

resistive as in a geothermal field or a waste repository. 

1.2 Geophysical methods for fracture zone characterization 

Fracture detection and evaluation can be accomplished during various operations related 

to the exploration and production phases of oil field development. The reservoir hydrological 

system can be best described if one can define the main fracture zones or faults by means of 

geophysical or other investigations. Conventional surface or borehole geophysical surveys take 

advantage of the different physical properties associated with fracture zones. Most of the tech­

niques are based on the distortion of electromagnetic or electrical fields by electrically conduc­

tive fracture zones or on the attenuation of acoustic energy that accompanies wave propagation 

across them. 

In most situations, surface geophysical techniques can only provide information on frac­

ture zones or faults at shallow depth. Of the surface geophysical methods, high resolution 

seismic reflection with modern imaging techniques is of great help (Mair and Green, 1981; Pal­

mer, 1982). Electromagnetic (Adam, 1984; Vogelsang, 1987) and resistivity (Flovenz, 1984) 

methods are used by taking advantage of the high conductivity of fluid filled fracture zones or 

faults. Self potential anomalies associated with fluid flow along faults or zones of fractured 

rocks can also be utilized for delineating the targets (Lippmann, et al. 1984). The other avail­

able techniques are magnetic (Palmasson, 1976), magnetometric resistivity (Edwards, 1974), 

and·gravity. It is claimed that in most cases a combination of more than one method is neces­

sary for successful fracture characterization. 

If the target depth is beyond the reach of surface methods and if a borehole is available, 

surface to borehole techniques can be used for fracture mapping. VSP (Vertical seismic 

profiling) is employed to obtain better estimates for the acoustic and elastic properties by 

measuring both direct and reflected P and S waves (Fehler, 1982). Daniels (1983) investigated 

the hole to surface resistivity method. The mise-a-la-masse method used by Jamtlid et al. 

(1984) was shown to be successful for the delineation of fracture zones in crystalline rock. 
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Subsurface methods, such as logging, coring and hydrological testing, have also been 

used extensively. Deep boreholes provide the chance to use a wide range of techniques for a 

closer view of fracture zones, particularly those intersected by the hole. Geophysical well log­

ging and log analysis have received a great deal of attention in this regard (Suau and Gartner, 

1980). Zemanek et al. (1969) introduced the borehole televiewer for fracture location. Other 

logging methods, such as acopstic velocity, acoustic waveform, resistivity, dipmeter, spontane­

ous potential, temperature, neutron, gamma, and gamma spectral have also been used. A com­

parison of these logging methods can be found in Paillet (1981) and Crary et al. (1987). The 

fracture orientation can be determined by a few devices, such as the dipmeter and the acoustic 

televiewer. Due to the fact that conventional well logging methods have a radius of detection 

of only a few meters or a few tens meters at most, little information on the fracture extension 

can be predicted from the well log data alone. 

In order to know the geometry and location of targets not intersected by the borehole, 

newer geophysical techniques are being investigated. Among them, there is the cross-hole 

seismic method which maps anomalies in velocity distribution (Achenbach, and Viswanathan, 

1980; Fehler and Pearson, 1984). Data inversion methods using cross-hole seismic ray (Peter­

son, 1986) or diffraction (Wu and Toks6z, 1987) tomography are available and can be applied 

readily. High frequency electromagnetic imaging schemes are under research. Deadrick et al 

(1982) used high frequency (10 MHz to 100 MHz) cross-hole electromagnetic geotomography 

in mapping fractures between boreholes separated by 6 to 15 meters. Ramirez and Lytle (1983) 

investigated alterant tomography which makes use of the changes in electromagnetic attenua­

tion factor caused by forcing tracers into the rock mass. They performed a successful experi­

ment in a fractured granitic rock mass with a borehole separation of 9 meters. The feasibility 

of such radar system for fracture mapping was also studied by Chang (1984). 

Due to high attenuation at the radar frequency, however, a lower operating frequency 

must be used for the detection of conductive fracture zones between widely spaced holes espe­

cially where the host rock is also conductive. Thus the cross-hole audio-frequency electromag­

netic method appears to of interest for characterizing conductive fracture zones. This method 

has been used in mineral exploration (Emerson, 1987) where the interpretation methods are 

similar to those used for conventional surface data~ In this thesis, an analysis will be carried 
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out of both the modeling and the data inversion for the audio-frequency EM response of con­

ductive targets in a reservoir environment. 

1.3 Scope of research work 

Three goals are set for this thesis. The first of these embraces the development of com­

puter codes for numerical simulation of the electromagnetic response for three types of target 

geometries starting with a simple two-dimensional (2-D) case going on to the more compli­

cated cylindrical symmetry model and concluding with a three dimensional thin target model of 

fracture zones. Next, by analogy with seismic diffraction tomography, we investigate an inver­

sion method for the simple 2-D problem under a weak scattering assumption. Finally, in order 

to interpret data with cylindrical symmetry or 3-D situations for dipole source excitation, new 

relations are presented which, with the help of an additional far field approximation, are related 

to the 2-D solution. 

Numerical modeling for two dimensional and cylindrically symmetrical targets usually 

demands much less sophistication and computer time than a general three dimensional model. 

However, the programs for three dimensional numerical modeling usually involve enormous 

computing times. Furthermore, the available programs can only be used for conventional log­

ging applications or surface and airborne mineral exploration problems. Therefore a rapid and 

accurate quantitative simulation of the cross-hole EM response of conductive thin targets 

embedded in a conductive host rock is needed. A tabular conductor, such as the typical fracture 

zone or fault depicted in Figures 1-1-3 and 1-1-4, ranges from tens of meters to several hun­

dred meters in size. They are generally thin with thickness-conductivity products of about a 

fraction of Siemens or more. The host rock usually has a resistivity in excess of a few tens or 

hundreds ohm-m. At audio-frequency, these conductors can be assumed to be thin so that only 

their conductance or the thickness and conductivity product is of importance (Price, 1949; 

Weidelt, 1981). The advantage of the thin conductor assumption is a considerable saving in 

computing time. In this study, numerical codes for evaluating the cross-hole electromagnetic 

response of multiple thin tabular conductors are developed using an integral equation approach. 
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Once synthetic or physical data are available, it is important to ask what one can infer 

from the electromagnetic response? In other words, in order to resolve the associated geologi­

cal problem, the geophysical inverse solution must be considered. As computing facilities 

improve, more and more attempts at solving electromagnetic inverse problems appear in the 

literature. Oristaglio and Worthington (1980) used a damped least squares method to invert sur­

face and borehole electromagnetic data for two dimensional electrical conductivity models. 

Even the more complicated three dimensional situation has now also been attacked (Eaton and 

Hohmann, 1988). Therefore, the focus here is not on the solution of a similar problem with a 

variation in the application but rather on the understanding of some of the fundamental inver­

sion characteristics. We propose to take our lead from recent developements in acoustic tomog­

raphy (Wu and Toksoz, 1987) in order to form~late a new approach to interpreting electromag­

netic data. This technique which we call electromagnetic diffusion tomography attempts to 

form an image of the electrical conductivity of the subsurface. It is from this image that one 

can estimate the target parmaters such as orientation, conductance or size. Since many physi­

cal and mathematical obstacles still stand in the way of a fully automatic "inversion box" phy­

sical approximations and constraints must be used in any inversion process. Our technique is 

based on the Born or the Rytov weak scattering approximation which is valid under many cir­

cumstances especially when the fracture or invasion zone which are considered here have small 

conductance and/or a weak conductivity contrast with the host rock. 
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Chapter 2 
Two dimensional numerical modeling and tomographic inversion 

There is evidence of increasingly sophisticated attempts to make geophysical inversion an 

essentially mathematical process, thus transferring the burden from the interpreter to the com­

puter. These efforts presumably will make the interpretation process less of an art and more of 

a science (Treitel and Lines, 1988). In this context, tomography, or the formation of a cross 

sectional image of an object, is one of the intensively studied inversion techniques. In geophy­

sical applications, tomographic inversion is the estimation of the subsurface geological structure 

from a large number of systematic physical measurements. 

Because of much research and the acoustic wave nature of the problem, seismic tomogra-

phy has advanced to a stage of practical or near practical application (Peterson, 1986; and Wu 

and Toksoz, 1987 among the others). Little, however, is known of tomographic inversion of 

audio-frequency electromagnetic (EM) data. Thus a comparison of the mathematical and physi­

cal aspects of the audio-frequency electromagnetic and the acoustic seismic problems is useful 

in developing the EM inversion techniques. In this chapter in order to elucidate the charac­

teristics of low frequency electromagnetic or diffusion tomography we consider a simple two­

dimensional case. More realistic but complicated models energized by dipole sources will be 

discussed in Chapters 3 and 4. Before discussing tomographic inversion, we examine the for­

ward numerical solution of the electromagnetic problem that is needed to provide the synthetic 

data for use in the inversion analysis. 

2.1 Two dimensional (2-D) numerical modeling 

The forward modeling of the electromagnetic response of a two dimensional target is 

simple and straight forward. Its implementation in mineral exploration has already been investi­

gated by Hohmann (1971) and the others. Here it is considered for a specific cross-hole 

configuration where the targets are thin-sheet conductors (Price, 1949). In this section, we first 
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establish ari integral relation between the conductivity distribution and the secondary response. 

Then the numerical calculation of the EM response of conductive targets is implemented to 

generate synthetic data for the inversion studies. 

2.1.1 Mathematical formulation in two-dimensions 

The background medium is assumed to be conductive and homogeneous with two dimen­

sional conductive targets embedded in it. An infinitely long electric current source lies along 

the strike direction of the anomalous body and is harmonic in time. The secondary electromag­

netic response is calculated in Cartesian coordinates defined such that the y axis is in the strike 

direction and x and z are perpendicular to the strike. 

Since the operating frequency is low, say below 20KHz, and the medium is conductive, 

the displacement current is negligible (Ward and Hohmann, pl36, 1988). The Maxwell equa­

tions in frequency domain (assuming a time dependency ei 001
) are 

VxH= crE+Js, (2-1-1a) 

and 

VxE =-i COil H, (2-1-1b) 

where E and H are the electric and magnetic fields respectively. Js is the source current den­

sity and cr is the conductivity. ll is the magnetic permeability which is assumed to be of the 

free space value. The angular frequency is denoted by ro. 

Since we are considering a two-dimensional case with a current line source along the 

strike direction of the inhomogeneity, there only exists one component of the electric field. 

This electric field component is in the y-direction and is denoted by E. A scalar differential 

equation can be derived from equation (2-1-1) for a unit current source excitation, 

(2-1-2) 

r and rs are the observation and the source positions respectively. 

Next, define a scalar Green's function G which satisfies 

V2G - i CO!l<J 0 G = - 8(r-r') , (2-1-3) 
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where cr0 is a constant reference conductivity. Multiplying equation (2-1-2) by G and equa­

tion (2-1-3) byE and taking their difference, we have 

After integrating both sides of above equation over a surface that excludes the inhomogeneities, 

we arrive at 

E(r)= EP(r)+ ff (G V2E -E V2G )ds' 

where EP is the primary electric field and is given by 

Next, apply 2-D Green's identity to transform from a surface integral to a line integral. 

f aE ac 
E(r)= EP(r)+ (G-a -E-a )dl, 

c n n 
(2-1-4) 

The boundary of the inhomogeneity (Figure 2-1-1a) and the boundary at infinity (x 2 + z2 ~ oo) 

define c, the path of integration. On the infinite boundary, the line integration disappears. The 

direction n is normal to the boundary. 

We only consider thin conductors here, which according to Price (1949) and Weidelt 

(1981) can be defined by their thickness and conductivity product or the conductance. To 

make the approximation valid the electric field on the target should have but little change 

across the target thickness. The extent of validity of the thin target approximation has also 

been studied by Joshi et al. (1988) and they concluded that the thickness should be less than 

half the skin depth in order to correctly approximate a steeply dipping dike by a thin plate. 

After defining 1: to be the conductance and n' to be the unit vector perpendicular to the conduc-

tor (Figure 2-1-1b), Hand E fields on the target satisfy (Weidelt, 1981) 

[ n'xH ].~= 1:E. (2-1-5) 

Physically, this means that the difference of the tangential magnetic fields on two sides of the 

thin conductor equals the induced current in the target. In this 2-D problem, the saving in 

computing time with the use of thin conductor approximation is insignificant since the problem 

itself is very simple. However, in calculating the EM response of 3-D thin targets in Chapter 
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4, this simplification makes the numerical computation within reach. 

Since both the electric field E and the derivative of the Green's function G are continu-

ous across each thin conductor, the line integration around the target boundary on the second 

term, E dG , of equation (2-1-4) yields zero. With the relationship given in equation (2-1-5), 
dn 

equation (2-1-4) can be further simplified into 

ns 

E (r) = £P (r)- i (J)~ m~ll 'tm G E dl, 
m 

(2-1-6) 

where 'tm is the conductance of the m -th target and ns is the number of thin conductors. The 

integration is carried out along each target and then is summed up for all of them. 

The solution for the 2-D Green's function is the same as the field in a homogeneous 

medium produced by a unit current source and can be found from Ward and Hohmann (1988, 

p179), 

G(r,r')= - 1-K0 (ik0 lr-r'l), 21t 
(2-1-7a) 

or from the relationship between K 0 and HP) (National Bureau of Standards, 1972, p375) 

(2-1-7b) 

where K0 and HP) are respectively the modified Bessel and Hankel functions of second kind 

of order zero. k0 is the background wave number (k0
2= -i ro~a0 ). 

2.1.2 Numerical solution 

To solve the problem numerically, each thin target is assumed to be of different but con­

stant conductance 'tm. The thin conductors are discretized into lm small segments. On each 

segment, the electric field E is considered to be constant. If one lets r approach the point riJ 

of j -th cell on the i -th target, equation (2-1-6) can be written as 

ns lm 

Ei,j = Ei,J- i (J)~ L L 'tmEm,n f G (ri,j, r) dl. 
m=ln=l lm,n 

(2-1-8) 

If ri,J is not equal to r, a Simpson integration scheme is used for evaluating the integration on 
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the Green's function over the n-th cell of the m-th thin target. Otherwise the integration is 

carried out analytically on the first term of the asymptotic expansion of the Green's function. 

Equation (2-1-8) is a linear system of equations for the electric field. The electric field 

on these thin conductors is obtained by solving the resulting matrix equation. The electric 

response elsewhere can now be obtained by inserting the solution from equation (2-1-8) into a 

discretized version of equation (2-1-6). 

For completeness, we also introduce here the Born approximation which tells us that in a 

weak scattering situation, one can approximate the total electric field inside the integral by the 

primary field, or E = EP. With that approximation, equation (2-1-6) becomes 

ns 

E(r)= EP(r)-iffiJl L J 'tm G EP dl. 
m=llm 

The numerical solution of the Born approximation solution can be carried out by discretizing 

the above equation as in equation (2-1-8). 

Because there is no unknowns in the right hand side, the solution of this equation is a straight 

forward summation and no matrix equation solution is needed. 

2.1.3 Test of accuracy 

The accuracy of the developed code is tested. First the convergence is checked by vary­

ing the number of cells on the target. Then reciprocity is also found to be satisfied by inter­

changing the source and receiver. More importantly, the accuracy of the 2-D solution for thin 

targets is checked against a semi-analytical solution for the EM response of a 2-D circular 

cylinder in a homogeneous space. 

Let us consider the integral equation governing the EM response of general two dimen­

sional conductors (Hohmann, p329, 1988; note the difference in the factor before the integra­

tion sign due to a different definition of the Green's function). 

E(r)= EP(r) -iffiJl J (cr-<J0 )E(r')G(r,r')ds' , 
s 

(2-1-9) 
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where <J0 is the background reference conductivity. Since the induced current is in the strike 

direction, we can divide this arbitrarily shaped conductor into thin conductors (Figure 2-1-2) 

without cuting through the induced current. On each thin slice, the thin conductor approxima­

tion is valid. Thus the whole target can be taken as a model consisting of a number of thin 

conductors. Equation (2-1-9) then becomes 

/IS 

E(r)= EP(r)-iWJl L, J [(a--<J0 )lim]E(r')G(r,r')dl 
m=l m 

(2-1-10) 

where lim is the thickness of the m -th slice. [( a-a0 ) lim] is the product of excess conduc-

tivity and thickness and can be denoted as a conductance 'tm. Thus equation (2-1-1 0) and the 

equation (2-1-6) are virtually identical and the EM response can then be evaluated using the 

thin conductor program. By the way, this approach of calculating the fields for a general two 

dimensional target is not the most efficient one. Our reason for doing so is to verify the thin-

conductor numerical code by comparing its output to an analytical solution for a 2-D cylinder. 

An example of the electric field anomaly due to the presence of a cylinder is given in 

Figure 2-1-3. A cylinder of 20 meter diameter and 0.11 S/m conductivity is divided, either 

horizontally or vertically, into 10 thin conductors of 0.2 Siemens each (Figure 2-1-3a). The 

background conductivity is 0.01 S/m. The source strength is -~ -. The same response is also 
-z ro 

calculated by using a semi-analytical solution for a circular cylinder. (Dr. K. Lee*, personal 

communication). Figure 2-1-3b shows the comparison which verifies the accuracy of the 

numerical program. 

2.2 Electromagnetic diffusion tomography 

The diffusive nature of audio-frequency electromagnetic field in a conductive medium 

usually renders conventional geophysical ray tomography invalid. It is therefore worthwhile to 

make a comparison between the audio-frequency electromagnetic and acoustic wave fields to 

find any similarities and differences. From this discussion, we can develop a conductivity 

inversion scheme which is similar to diffraction tomography but deals with the diffusion 

*Earth Sciences, Lawrence Berkeley Laboratory, Berkeley, CA 94720. 
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phenomenon. In this respect, we closely follow the formulation for acoustic diffraction tomog­

raphy outlined by Wu and Toksoz (1987). A Born or a Rytov approximation which implies a 

weak scattering situation linearizes the system and thus simplifies the problem. 

2.2.1 Comparison of the EM and the acoustic problems 

Physically, the audio-frequency EM field in a conductive medium is a diffusive wave and 

the acoustic pressure field is a propagating wave. That is if a pulse is sent through a homo­

geneous medium the acoustic signal is received after a time delay with the source signal shape 

retained. On the other hand an EM signal is smoothed out and appears instantaneously 

(neglecting the displacement current) at the receiver. Because of the differing nature of these 

physical phenomena, it is impossible to adapt a technique such as a acoustic travel time ray 

tomography (Appendix A.1) to audio-frequency electromagnetic problem. 

Mathematically, for the two dimensional case, the electric field E (r) in a source free 

region satisfies the following scalar differential equation (Hohmann, p334, 1988) 

(2-2-la) 

Here cr(r) is the electrical conductivity. The acoustic wave field u (r) in the source free region 

obeys the equation (Yilmaz, p507, 1987) 

(2-2-1b) 

with C (r) denoting the sound velocity. Thus, the mathematical difference shows up in the 

time derivative. The EM equation has a first order derivative in t while the seismic equation 

has a second order. 

Defme a Fourier transform pair as 

-too 

f (k)= J f (x) e-ikx dx; 

-too 

f (x) = -1- J f (k) e +ikx dx . 
21t --oo 

(2-2-2a) 

(2-2-2b) 

If a Fourier transform with respect to time is applied to equations (2-2-1a) and (2-2-1 b), they 
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become 

(2-2-3a) 

Here, V(r) = E (r) for the EM problem and V (r) = u (r) for seismic problem. And 

(2-2-3b) 

for the seismic case, while 

(2-2-3c) 

for the e~ectromagnetic field; ro represents the anglilar frequency. Equation (2-2-3) shows that 

the EM and seismic problems are essentially the same except that the EM case involves a com­

plex wave number while in the seismic case it is real. Physically, the complex wave number 

implies a severe attenuation of the electromagnetic field. On the other hand, a real wave 

number means no attenuation so that the acoustic signal is only weakened by geometrical 

spreading. Because diffraction tomography is based on equation (2-2-3a) or equation (A-3) in 

Appendix A.2, the acoustic inversion technique, extended to a complex propagation constant, 

should be applicable to audio-frequency electromagnetics. 

2.2.2 EM modeling versus EM inversion 

To understand the difficulties of electromagnetic inversion let use examine the integral 

relationship between the conductivity distribution and the secondary response. Let E (r,r'), 

EP (r,r'), and E 8 (r,r') be respectively the total, the primary, and the secondary electrical field 

at r due to a source at r' with 

E (r,r') = EP (r,r') + E 8 (r,r'). 

Rewrite the integral relation in equation (2-1-9) 

E 8 (r8 ,r8 ) =-i k~ 0 (r)E (r,r8 ) G (r8 ,r) dxdz 
s 

(2-2-4a) 

Where rs and r8 are the source and receiver coordinates. The background wave number 

k~ = -i OOJ..lcro and the object function 0 (r) is defined as 

0 (r) = 1-k 2(r)/k~ = 1-cr(r)/cr0 . (2-2-4b) 



20 

Equation (2-2-4a) is a Fredholm integral equation of the second kind, which relates the 

object function 0 (r) to the electric field anomaly. In the forward modeling problem, the object 

profile 0 (r) is known everywhere. After discretizing the integration, equation (2-2-4a) is 

essentially a linear system of equations for the unknown field. Although computationally its 

solution may be difficult in some cases (say for a general 3-D problem) due to the inadequacy 

of computing power, the solution for the electric field is in principle straight forward. On the 

other hand, in the inverse problem to solve for 0 (r), the field values of Es or E are only 

known over a limited set of space points which usually lie outside the object volume of 

interest. In order to solve for the object function profile, one has to, in principle, solve for 

both the object function and the electric field inside the volume. Since the resulting equation is 

not linear, the inverse problem is rather complicated. 

One way of simplifying the problem is to use a weak scattering assumption which 

approximates the electric field inside the integral with the primary field. Then, the only unk­

nown is the object function 0 (r) or the medium property cr(r). Since the targets (fracture 

zones) under consideration are thin and their conductance is small, such an approximation 

should be acceptable in the cases considered here. 

2.2.3 The Born approximation solution 

In order to simplify the nonlinear equation (2-2-4a) for inversion purposes, a weak-

scattering Born approximation, 

(2-2-5) 

is employed to approximate the field inside the object volume. For a unit (1 ampere) source 

strength, £P(r,rs)= -iroj..tG(r,rs) and equation (2-2-4) becomes 

Es(rg,rs)= icoj..tf kJ O(r)G(r,rs)G(rg,r)dxdz 
s 

(2-2-6) 

Note that the Hankel function in (2-1-7b) can be expressed as (Morse and Feshback, p823, 

1953) 

+oo 

H}2)(ko lr-r'l)= _!_ f _!_ e-iy(x-x') eik,(z-z') dkz' 

1t-oo"f 
(2-2-7a) 
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where f= k0
2-k/. Then its Fourier transform in z direction is 

-too f HP)Cko lr-r'l) e -ik.z dz = 2e -iy(x-x')-ik,z'. 
--«> y 

(2-2-7b) 

Thus, for a cross hole geometry, if one takes Fourier transforms of equation (2-2-6) along the 

source and receiver lines, i.e. with respect to zg and z8 respectively, 

where ks and kg are the Fourier domain wave numbers corresponding to z8 and zg and 

"'2= k2 -k2. 
IS 0 S ' Y2= k2 -k2 g 0 g. 

Xs and xg are the horizontal coordinates of the vertical boreholes. 

(2-2-9) 

These steps are similar to those taken in acoustic diffraction tomography. While the 

seismic case is based on the use of real wave number kJ, the electromagnetic problem requires 

its complex equivalent so that further parallelism is inappropriate. Note that, in the seismic 

application, Ys and Yg are real numbers because k 0 is real and ks and kg are smaller than k0 

(Appendix A.2). For the electromagnetic field in a conductive medium, ks and kg are also real 

but ko is now complex. Therefore, the following substitutions are made, 

(2-2-10) 

Equation (2-2-8) now takes on the form, 

(2-2-11) 

Define a Laplace transform pair (Gradshteyn and Ryzhik, p1142, 1980) as following 

f(s)= Jf(x)e-sx dx, 

where f (x) is zero for x < 0, and [If (x) 12 e - 2
-o: dx is finite for 't > 'to~ 0. 

t+ioo 

f(x)= -
1-. J f(s)e+sx ds, 

21tl t-i 00 

(2-2-12a) 

(2-2-12b) 
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for x >0 and 't>'to. 

Since the inhomogeneities are contained within a finite volume, one can always shift the 

origin to make 0 (r) = 0 for x < 0 and also to ensure that [ lo (x, z) 12 dx with 'to= 0 remains 

finite. Thus we can say that one can solve for 0 (r) by taking the inverse Fourier transform in 

kz and inverse Laplace transform in sx of the left hand side of equation (2-2-11) so that, 

where Ys, y8 , ks, and k8 can all be expressed in kz and sx. The seismic equivalent is equation 

(A-13) given by Wu and Toksoz (1987) and Soumekh (1983). Thus, in principle, the cross 

borehole electromagnetic inverse problem is solved. 

2.2.4 The Rytov approximation solution 

The Rytov approximation is another widely used weak scattering approximation for sim­

plifying the integral equation in seismic applications (Devaney, 1981; Cheng, 1984). A similar 

procedure can also be applied to the electromagnetic inverse problem. As before, 

E (r, r') = £P (r, r') + Es (r, r'), (2-2-14) 

where E, £P, and Es are respectively the total, primary, and secondary fields at r due to a 

source at r'. Now let 

E(r, r')= e'lf(r,r'); (2-2-15) 

Substitute equation (2-2-15) into (2-2-3a). For a homogeneous medium, we have 

(2-2-16) 

For an inhomogeneous medium, we have 

(2-2-17) 

where k0 and 0 (r) are the background wave number and the object function, which are 

defined in the previous section. Let 
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'l's = '1'-'l'p' (2-2-18) 

and subtract equation (2-2-16) from equation (2-2-17), 

(2-2-19) 

Now if the problem satisfies the Rytov approximation, i.e. 

(2-2-20) 

equation (2-2-19) becomes 

(2-2-21) 

Introduce W (r, r') so that 

'l's = W(r,r')fEP(r,r'), (2-2-22) 

and put this into equation (2-2-21), 

Therefore for a source at rs, or (xs, zs ), and a measurement at rg, or (xg, zg ), this equation can 

be solved to get, 

W(rg, rs)=- J k}O (r)EP(r, rs)G (rg, r) dxdz. 
s 

(2-2-23) 

Together with equation (2-2-22), equation (2-2-23) can be rewritten into the following form for 

line source excitation. 

G (rg, rs)'lfs(rg, rs)=- J k0
2 0 (r) G(r, rs) G (rg, r) dxdz. 

s 
(2-2-24) 

Here 'l's can be found from the measured secondary response through equations (2-2-14), (2-

2-15) and (2-2-18). Since the right hand side of equation (2-2-24) is the same as that of equa­

tion (2-2-6) and the left hand side is known from the measurements, we can find the object 

function 0 (r) as was done in section 2.2.3 for the Born approximation approach. 
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2.2.5 Equivalence of Born and Rytov approximations 

It can be shown that the Born and Rytov approximations are equivalent if the magnitude 

of the secondary phase, 'l's• is small. From equation (2-2-14), (2-2-15), and (2-2-18), we have 

= e 'Vp+'V,- e 'Vp 

::: £P 'Vs . (2-2-25) 

Thus one would expect to have similar inversion quality when 'l's is small. However a 

difference can be found in their definition. The Born approximation in equation (2-2-5) requires 

that the secondary field be much smaller than the incident field. This requirement, from equa­

tion (2-2-4), demands that the object function and the total extent of the object volume be 

small. In the Rytov approximation case, equation (2-2-20) says that the secondary phase varia­

tion, IV'Jfs I, over one lk0 I must be much smaller than the object function IO I. Claims that 

one approximation is better than the other are not few (Devaney, 1981; Slaney and Kak, 1985, 

among others). We will examine this further in the numerical simulations. 

2.2.6 Validity of weak scattering approximation 

It is difficult to evaluate the validity of the weak scattering approximation for the two 

dimensional EM problem. Since all waves can be decomposed into plane waves, a one dimen­

sional problem will be considered instead. Such an approach is not new in optical applications 

(Keller, 1969; Oristaglio, 1985). Let a plane wave traveling in the x direction with a wave 

number k = k 1 be 

j( k)- -i k 1x u x, - e . 

If this plane wave is now in a medium with a wave number k = k 1 + ~. we have 

( k) 
-i (k 1 + t.)x 

u x, = e , 

where ~ is a small perturbation in k 1• In the weak scattering simplification, u (x, k) is approxi­

mated by u i (x, k ). Therefore the relative error introduced is 



u 

After expanding e i x t:. into series, we arrive at 

u 

I I . I 
1=11-eiXt:.l 
I 

= O(lx ~I), 
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(2-2-26) 

(2-2-27) 

where '0' denotes 'the order of'. It is clear now that the product of the wave number perturba­

tion and the traveled distance is responsible for the error introduced. The product, x ~. is the 

key to estimating the validity of the approximation. Furthermore, if one also considers the 

medium interface, the conductivity contrast is also a factor that affects the validity of any 

approximations (Oristaglio, 1985) 

2.3 Numerical construction of the 2-D tomographic image 

In principle, the inverse Laplace and inverse Fourier transform rep~esentation of the 

object function in equation (2-2-13) provides a direct way of evaluating the object function. 

The problem, however, is that the numerical inverse Laplace transform is extremely unstable. 

This is not difficult to understand because the high wave number components, which contain 

noise, are amplified during inversion. However, even for noise free but band limited data, the 

inverse Laplace transform is also unstable (This is discussed more fully in Appendix B). As 

pointed out by Bertero (1982), the problem of the numerical inversion of the Laplace transform 

is severely ill posed. In order to solve for the conductivity structure successfully, precautions 

have to be taken to ensure the stability of the solution. To reduce the uncertainty in the solu­

tion one needs smoothing and constrainting on the solution (Bertero et al, 1983) as required in 

regularization theory. Since the targets (fracture zones) under consideration are more conduc­

tive than the background in our problem, we can incorporate this constraint by discretizing the 

integral equation given in equation (2-2-8) and solving the resulting constrainted least squares 

or a quadratic programming problem. The usefulness of that explicit expression for studying 

the inversion quality will be expounded in a later section. 



26 

2.3.1 The constrained least squares solution 

Either the wave number domain equation (2-2-8) or space domain equation (2-2-6) can be 

used to solve for the object function. The reason we select equation (2-2-8) is that its solution 

can be extended to more complicated target geometries as we will see in the later Chapters. 

Integral equation (2-2-8) is first discretized over the area of interest (Figure 2-3-1), 

where N is the number of pixels and the integration is carried out on each pixel. Oj is the 

average of the object function over the j th pixel. Xs and Xg are the horizontal coordinates of 

the vertical boreholes containing source and receiver. This equation can now be written as 

with 

N 

Pi= L sij oj, 
j=1 

i --- the i th wave number combination of (kg , ks ), 

pi --- the filtered response or the left hand side of equation (2-3-1 ). 

(2-3-2) 

If we have M wave number combinations, for an N pixel image, a linear system of equa­

tions can be obtained. 

where 

(2-3-3a) 

S 1 = [ sij lNxM, N by M full matrix related to the geometry and wave numbers, 

0 = [ 0 It 0 2, · · · , ON f, N element solution vector, 

P 1 = [ p 1, p 2, · · · , p M ] T, M element vector of the filtered measurements. 

Note that equation (2-3-3a) is complex and can be reorganized into a real system of linear 

equations. Let 
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equation (2-3-3a) becomes 

SO=P (2-3-3b) 

This linear system of equations relates the electrical conductivity anomaly, or the object 

function, with the measured secondary field. The Fourier transform used in section 2.2.3 is a 

plane wave decomposition. The exponential terms in sij are plane waves withe -i[y,(xrx,)+k,zjl 

corresponding to a wave incident on the j th pixel and e -ilYs<xs-xi)+kszil corresponding to the 

scattered one from the same pixel (Figure 2-3-1). The summation from j=1 to N combines 

the contributions from every pixel. 

The linear system of equations in equation (2-3-3) is similar to that used in acoustic ray 

tomography (Appendix A.l). However, in ray tomography, only the pixels along a straight or 

' curved ray path contribute to the measured response. For the EM problem, a full matrix is 

required to describe the process. To solve such equations, conventional methods (such as ART 

algorithm in Huesman et al., 1977) do not work well because the matrix equation is quite 

unstable. Thus constraints must be introduced to ensure the stability of the solution. In order 

to solve equation (2-3-3b), we minimize the 12 norm of the misfit of a particular solution 0', 

or minimize 

s(O')=IIS 0' -P 11 2 (2-3-4) 

subject to constraints 

i= 1,2, · · · ,N. (2-3-5) 

Li and Ui are the lower and upper bounds respectively. For example, if we set Li = -oo and 

Ui = 0 everywhere, we limit the object function to be smaller than zero. In other words, one 

then only considers the case where the conductivity anomaly is greater than the reference back­

ground. The constraints in equation (2-3-5) provide the necessary stability to the problem and, 

more importantly, can also enhance the target resolution greatly (Stark, 1987). 

Equation (2-3-4) can be rewritten into 

(2-3-6) 

where the superscript T denotes the matrix transpose. Equation (2-3-6) is in a quadratic form. 
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Thus equation (2-3-6) and the constraints (2-3-5) together constitute a quadratic programming 

problem (Gill et al., 1981; Lawson and Hanson, 1974). Several computer mathematical 

libraries (for example: HARWELL, NAG, LLSQ) contain subroutines for its solution. The par­

ticular one used here is VE04A from HARWELL (Hopper, 1979). 

A simple example may be used to show the resolution enhancement obtained by incor­

porating constraints into the inversion. Figure 2-3-2 shows a one dimensional reconstruction of 

a o function from band limited wave number domain data. As we know, the Fourier transform 

of a o function (Figure 2-3-2a) is a constant (Figure 2-3-2b). The inverse Fourier transform of 

this constant of course returns the 8 function. However, if we limit the band width in the 

spectral domain (Figure 2-3-2c), the inverse Fourier transform is a sine function (Figure 2-3-

2d) with its amplitude and width controlled by the wave number domain coverage or band 

width. Now, instead of the inverse Fourier transform of the band limited data we impose a 

constraint that the inverted result can not be negative and use a constrained least squares 

approach in an attempt to recover the space domain 8 function from"the discretized Fourier 

transform integral. The outcome is given in Figure 2-3-2d and the 8 function is recovered. 

The band limited inverse Laplace transform can be implemented similarly and both the resolu­

tion and stability are enhanced greatly. 

2.3.2 Measure of solution quality 

When a sum of squares is minimized as in equation (2-3-4), certain statistical quantities 

can readily be calculated (Hopper, 1979; Menke, 1984). First, the residual variance of P can 

be estimated, 

(2-3-7) 

where M is the number of linear equations and k is the number of free variables which is 

defined as those not on the bounds. 

Another statistical measure is the variance-covariance matrix for the estimated solution 

0'. The least squares solution of equations (2-3-3) for the object function is (Menke, p58, 

1984) 
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where the superscript "-1" denotes the general inverse of the matrix. Assuming the data (P) 

are uncorrelated and all are of equal variance cr2, we then have the variance-covariance matrix 

[Cov OJ= [[S 7sr1S7 Jcr2I [[S 7sr1s7 f 

=a2[srsr~. 

where "I" is an indentity matrix. Then according to definition, the standard deviation of the 

solution is given by the square roots of the diagonal elements of this matrix. Therefore, the 

standard deviation of the model parameters depends on the data residual variance (cr2), which 

comes from the measurement noise and the model misfitting, and the way in which error is 

mapped from data to model parameters ([S 7 S r 1) (Menke, 1984). If the matrix [S 7 S] is non­

singular, its inverse is only related to the model configuration. However, this matrix is in gen­

eral singular and its general inverse, ([S T s r 1
), is incorporated by constraints. The bound vari­

ables are assumed to be known exactly and they have zero variance and covariance (Hopper, 

1979). 

2.3.3 Image smoothing 

Inversion of electromagnetic data in general is non-unique. Also, in the presence of 

noise, the inversion process is very unstable. Although the constraints mentioned in the last 

section stablize the computed image, a smoothing step may also be necessary. Any sharp vari­

ations in the solution are usually artificial and algorithm dependent since in most cases high 

wave number information is absent and the noise is forced to be amplified. 

Applications of smoothing can be found in EM (Constable et al., 1987) and seismic 

inversion problems. The use of smoothing techniques to form a better image is introduced in 

acoustic diffraction tomography (Slaney and Kak, 1985) by partially suppressing the high fre­

quency wave number before reconstruction and in ray tomography (Peterson, 1986) by taking a 

weighted average over nearby pixels. The parameters used for these purposes are basically 

empirical. Here we will incorporate smoothing in the quadratic programming problem. 

·Let the number of divisions of the image area in the horizontal direction be K and in the 

vertical be L (Figure 2-3-3). Then the total number of pixels is N (N = K L ). We define R 1 

and R 2 to be the summations of the differences of the object function between the adjacent 



pixels in either horizontal or vertical directions respectively. 

L K 
RI= I, I, (O(I-I)K+k-O(I-I)K+k-I)

2 

l=I k=2 

K L-I 

R2= I. I. (OLK+k -0(1-I)K+k )
2 

k=l 1=1 
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(2-3-8a) 

(2-3-8b) 

where 0 = [ 0 I• 0 2, · · · , ON] and D I and D 2 are two N xN matrices. We now would like 

to minimizeR 1 and R 2 in addition to the minimization of the misfit given in equation (2-3-4). 

Therefore, the problem in equation (2-3-4) becomes the minimization of 

(2-3-9)• 

where AI and A2 are Lagrange multipliers which control the smoothness in either horizontal or 

vertical directions. The larger is A1 or A2, the smoother is the resulting image. If both AI and 

A2 are zero, equation (2-3-9) reduces to equation (2-3-4). Equation (2-3-9) can now be 

expanded into 

The matrix D f D I is given by 

HI 
0 

DI TDI = 0 

0 

with 

1 
-1 

HI= 0 

0 

The matrix D I D 2 is defined as 

0 0 
HI 0 
0 HI 

0 0 

-1 0 
2 -1 

-1 2 

0 0 

0 
0 
0 

HI LxL 

(2-3-10) 

(2-3-lla) 

(2-3-llb) 
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r -/ 0 ~LL -/ 2/ -/ 
D 2 TD 2 = 0 -1 21 (2-3-12a) 

0 0 0 

with 

1 0 0 0 
0 1 0 0 

I= 0 0 1 0 (2-3-12b) 

0 0 0 1 KxK 

The problem now becomes the minimization of equation (2-3-10) subject to the con­

straints given by equation (2-3-5). 

2.4 Numerical examples 

A series of numerical calculations and tests are now conducted to find the limits of the 

validity and the characteristics of the inversion method outlined in the previous chapter. A 

comparison between the Born and Rytov inversion approaches and their limitations will be 

made. The effects of the individual survey parameters such as operating frequency, source or 

receiver array length, target conductance and attitude will also be discussed. The exact or Born 

approximated electromagnetic responses used in the reconstructions are generated numerically 

with the two dimensional modeling code described in section 2.1. 

2.4.1 Model parameters for the numerical calculations 

The target used in the following examples is two dimensional and is located in a homo-

geneous conductive background medium (Figure 2-4-1). An infinitely long harmonic electrical 

current source is placed along the target strike direction. The secondary electrical response is 

measured. One or two thin conductors are employed in the calculations and each has a 

thickness-conductivity product of 0.1 S. The target dip length is 80 meters. The cross-hole 

experiment is simulated for a borehole separation of 100 meters and source or receiver array 

length of 310 meters. 32 source and 32 receiver positions of equal separation are used to pro­

duce all the possible crosshole source-receiver combinations. An image area of 100 meters by 

160 meters, which is located in the central part of the source or receiver line, is divided into 10 
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by 32 pixels. The background medium has a conductivity, <10 , of 0.01 S lm and an operating 

frequency of 20KHz is used. All these parameters will be kept constant unless otherwise 

specified in any particular example. 

As for the selection of the constraint parameters involved in the inversion, a test run is 

provided for the purpose. Figure 2-4-2a is a model for a thin conductor dipping at 45°. The 

object function Oi (= 1-cr/cr0 ) of the i th pixel is made to satisfy Li < Oi < Ui as described in 

section 2.4.1. The solution for the object function in Figure 2-4-2b is constrained to meet 

Ui = 0 and Li =- oo for i = 1, 2, · · · , N (cf. equation (2-3-5)). These constraints mean that 

the inhomogeneity is more conductive than the background. This is reasonable in situations 

where fluid filled fracture exist. The condition imposed on Ui is indispensable for resolution 

and stability purposes. Although the thin target can be seen in the image fairly well, the out­

come can be improved further by additional constraints or smoothing. Since we are considering 

a weak scattering situation, the contrast between the anomalous body and the background 

should be reasonably small. If one imposes the condition on the object function that Li = -1.0 

for all i, the resulting image is shown in Figure 2-4-2c. Or if one does not want to set any 

limit on Li, and instead, uses the smoothing technique discussed in section 2.4.3, the outcome 

is shown in Figure 2-4-2d. In this example the smoothing parameters A.1 and A-2, which are 

defined in section 2.4.3, are both set equal to 0.03. In all the following analysis in this 

chapter, we will use the smoothing parameter A.1 = A.2 = 0.03 and will leave Li to be - oo. 

Born approximated data are also used to make sure that we are not pushing the limit of 

Born reconstruction too far. Another image (Figure 2-4-2e) is calculated for the same model 

parameters as Figure 2-4-2d except that the forward modeling also uses the Born approxima­

tion. It is found visually that the quality of this image is about the same as that of Figure 2-4-

2d. 

Figure 2-4-3 shows the standard deviation of the inversion results shown in Figure 2-4-2. 

When no smoothing is used and Li = -oo, the standard deviation (Figure 2-4-3a) is large and 

the residual variance is equal to 0.201. If constraint on Li is set to -1.0, a much smaller stan­

dard deviation is obtained (Figure 2-4-3b) while the residual variance is about the same. The 

case with smoothing provides better reliability even if there is no limit on Li (Figure 2-4-3c) 
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although with a little bit higher residual variance of 0.227. For Born approximated input data, 

the standard deviation of the solution is given in Figure 2-4-3d and its residual variance 

(0.017) is the smallest because the Born inversion model fits the Born modeling data best. 

2.4.2 Comparison between the Born and Rytov approximations 

In section 2.2 of the last chapter, we have discussed the limitation of weak scattering 

approximation by examing a simplified analytic case of a plane wave propagating in a nonuni­

form medium. Since any actual situation is more complex, ·numerical tests are necessary to 

compare the images of a thin sheet target of variable conductance reconstructed under the Born 

or Rytov approximation. 

By using the model of Figure 2-4-4a, we calculate the Born reconstruction image for con­

ductance values, 't, of 0.1, 0.2, and 0.4 S respectively. The 't = 0.1 case (Figure 2-4-4b) has 

already been shown in Figure 2-4-2d. Figure 2-4-4c and 2-4-4d are for 0.2 and 0.4 S conduc­

tances respectively. These images are a good representation of the original model except that 

the 't= 0.4 S case defines the thin conductor less accurately. The images reconstructed under 

Rytov approximation for the same model target conductances are provided in Figure 2-4-Sb 

through Figure 2-4-Sd. 

It is observed that when the target conductance is small, say 't = 0.1S, the images 

obtained using either the Born (Figure 2-4-4b) or the Rytov (Figure 2-4-Sb) approximations 

look about the same. With the increase in 't, it is apparent that use of the Rytov approximation 

(Figure 2-4-Sc,d) results in a better reconstruction. The less accurate images in Figure 2-4-4c,d 

are caused by the invalidity of Born approximation when the target conductance is large. Any 

further increase in conductance does not yield reasonable results for either Born or Rytov solu­

tions. 

The statistical analysis of the standard deviation for the 't = 0.1 case is given in Figure 2-

4-6. The Rytov approach has smaller standard deviation than the Born method. For com­

parison, the residual variance for these two methods is listed in the following table. 
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Table 2-4-1 Residual variance 

't= 0.1 s -r= 0.2S -r= 0.4S 

Born 0.277 2.22 15.6 

Rytov 0.108 1.20 9.97 

The Rytov approach has a smaller residual variance and is thus better than its Born equivalent 

Since the conductance used in the above examples is 0.1, 0.2, and 0.4S and the pixel 

size in horizontal direction is 10 meters, the anomalous conductivity is approximately 0.02 to 

0.05 S /m compared to a background conductivity of 0.01 S/m. Thus the contrast we are talk­

ing about is from 2:1 to 5:1. The reason why such a contrast can be handled is that the target 

is thin. As discussed in section 2.2, the image quality is in general related to both the target 

size and conductivity. The constraints in the quadratic programming algorithm (section 2.3.1) 

are also responsible for the enhanced image sharpness. 

2.4.3 Dependence on target orientation 

The model (Figure 2-4-7a) considered here is the same as the general model described in 

section 2.4.1 except that the dip angle, ~. has values of 0° and 90° in addition to the ~= 45° 

case considered above. The horizontal thin conductor (Figure 2-4-7b) is resolved quite well 

whereas the vertical one (Figure 2-4-7d) is smeared out in the horizontal direction. The blur­

ring phenomenon is less pronounced for a target with a small dip angle since the smearing 

effect is approximately in the dip direction. However, when the dip angle is large, say 

~ = 90°, this effect deteriorates the reconstructed image. This phenomenon associated with the 

cross-hole methods was observed by Wu and Xu (1979) in describing their holographic image 

reconstruction of electromagnetic data collected from physical modeling experiments. 

To show that the effect is not caused by the weak scattering Born approximation, exam­

ples using Born approximated forward modeling data are provided. Figure 2-4-7e, f, and g are 

the images corresponding to the target dip angle ~ = 0°, 45°, and 90° respectively. Compared 

to their corresponding images generated from exact data in Figure 2-4-7b through Figure 2-4-
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7d, they are again of the similar quality. Thus the poor resolution in the horizontal direction is 

not caused by the weak scattering approximation but rather by the physical limitation of the 

low frequency electromagnetic method using the cross-hole source-receiver configuration. 

Two thin conductors are used next to study the target resolution, in the horizontal and 

vertical directions, in a cross-hole situation. The two targets are parallel to each other and are 

40 meters apart in the vertical direction. The dip angle starts at 0° (Figure 2-4-8a) then 

increases to 30° (Figure 2-4-8b), 45° (Figure 2-4-8c), and 60° (Figure 2-4-8d). Both the 0° 

and 30° cases provide very good estimates and resolution of the thin conductors. However, as 

the dip angle increases further to 45° and 60°, the resolution in the horizontally shielded area 

becomes very poor. 

We now separate the two thin conductors by an additional 40 meters in the horizontal 

direction for the ~ = 60° case. Figure 2-4-9b is Born approximation image and Figure 2-4-9c is 

that obtained with Rytov approximation. Both images are fairly good, although the Rytov 

approach results in a better picture. For reference, a Born inversion of the data generated from 

Born approximated modeling code is also provided in Figure 2-4-9d. Its quality is close to 

that of the Rytov inversion result (Figure 2-4-9c) of the exact synthetic data. The resolution in 

the horizontal direction is better than that in the vertical. By the way, the comparison between 

Figure 2-4-9b and Figure 2-4-9c is another example showing that the Rytov approximation is 

superior to the Born one. 

2.4.4 Dependence on operating frequency 

The model to be discussed is the same as that of Figure 2-4-8b which was evaluated for 

an operating frequency of 20KHz and is replotted in Figure 2-4-lOb. As we have seen 

already the two targets with 30° dip angle are resolved quite well. For a lOK Hz operating 

frequency, the reconstructed picture is presented in Figure 2-4-lOc. Although the quality is not 

as good as that shown in Figure 2-4-1 Ob, the two conductive zones are still distinguishable. If 

the frequency is further reduced to 5KHz, the image (Figure 2-4-lOd) does not represent the 

original model any more. Thus, wherever possible, a high operating frequency should be util­

ized. Because of the severe attenuation of the electromagnetic field, there is always a trade-off 
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· between resolution and stability in selecting a suitable operating frequency. In the practical 

sense, a high frequency sign~ is usually weak and may be difficult to record. 

2.4.5 Source and receiver array length or space coverage 

The 100 by 160 meter image area only covers the central half of the 100 by 310 meter 

area covered by the source and receiver arrays which are 310 meters long each. If this length is 

reduced, the image quality will be deteriorated accordingly. Because of the diffusive nature of 

the low frequency electromagnetic field in a conductive medium, the EM field varies slowly 

over a large space. It is thus expected that the EM case requires a larger array coverage than 

the corresponding seismic application. Therefore the effect of the source and receiver array 

length should be investigated. 

Figure 2-4-lla shows the model for this study. The image for 310 meter array length 

(Figure 2-4-3d or Figure 2-4-llb) is basically the same as that reconstructed from an array 

length of 248 meters and source (or receiver) interval of 8 meters (Figure 2-4-llc). If the 

array length is further decreased to 186 meters and the source or receiver spacing to 6 meters 

(Figure 2-4-lld), the resulting picture quality is somewhat reduced although there is no 

difficulty in defining the conductive target. A worse image is found for the 155 meter array 

length (Figure 2-4-lle) although the position and dip angle are still discernible. One remedy 

for overcoming the insufficient space coverage is to extrapolate the measurements by taking 

advantage of the smooth field variation. 

2.4.6 Effect of random noise 

· Since in the inversion process we constrain the background to be less conductive than the 

anomalous conductors, the inversion result is relatively stable and not overly sensitive to ran­

dom noise. This matter can be investigated by adding a randomly generated number to the 

electrical response so as to simulate random noise. The root mean square of the random 

number is scaled to be certain percentage of the maximum response with randomly selected 

negative or positive signs. The average of the random numbers is zero. For the general 

model, with no noise added, the image of a dipping target (Figure 2-4-12b) is the same as 
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Figure 2-4-3d. As one increases the percentage of noise to ten (Figure 2-4-12c) or twenty 

(Figure 2-4-12d) percent, the dipping thin target is still recognizable although some deteriora­

tion is obvious. Therefore, despite the non-uniqueness of the electromagnetic inversion result, 

it is still meaningful if suitable constraints or stability measures are taken. 

2.5 Target resolution and wave number domain coverage 

In electromagnetic exploration, the detectability of a target has already been investigated 

to some extent (Fitterman, 1989; McCracken, et. al., 1986a,b). Fitterman (1989) studied the 

detectability levels for the central induction transient sounding. He pointed out two reasons 

why even parameters of a layered model may not be resolvable. One is equivalence, which 

refers to the measured response of two different models being indistinguishable within the con­

straints of measurement noise over the entire time range of the sounding. The other is that the 

measurements are not made over a time range where a difference in response occurs. Here, it 

is found that the source-receiver array arrangement is another important key factor in resolving 

geological features. From the tomographic point of view, these problems can be analyzed 

under the weak scattering approximation. 

There are two major sources of inaccuracy which limit the quality of the reconstructed 

images. One of these arises from the limitations of Born or Rytov approximation in the formu­

lation. Its effect can be overcome with the development of a more efficient algorithm and 

access to a more powerful computing facility. The other is due to different source-receiver 

array configurations and the operating frequency which is going to be discussed. The latter is 

related to the physical process itself. 

The explicit representation of the object function by equation (2-2-13) allows the conveni­

ence of studying the system behavior as is done in diffraction tomography (Wu and Toksoz, 

1987; Devaney, 1984). The wave number domain coverage of the object function for different 

source-receiver arrangements will now be discussed to clarify the demonstrated limitations of 

the inverted conductivity distribution. 

According to equation (2-2-13), if every point in the wave number domain (sx, kz) is 

known the object function can be determined exactly and the inversion yields a unique 
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solution. However, this is not possible for several reasons. The first of these is that the source 

and receiver positions are discrete and thus we can only have discrete samples of the object 

function in its transform domain. The second reason is that the maximum coverage of the 

object function in the wave number domain is determined by the background wave number 

corresponding to the frequency used and by the maximum Fourier domain wave numbers ks 

and kg . Another more important fact is that different array configurations result in distinctive 

patterns of wave number domain coverage. 

2.5.1 The wave numbers 

For a source array length Ds and a constant source interval !l8 , the corresponding max-

imum Fourier domain wave number k8 is rrJD.8 and the wave number increment is 2rt/D
8

• Thus 

k8 has values given below, 

(2-5-la) 

Similarly, for receiver array length Dg and constant sampling interval llg, kg takes the follow­

ing values 

kg= 0, ± 1·(2rt1Dg), ±2·(2rt!Dg), · · · , ±rtlllg. (2-5-lb) 

The variables Ys and Yg in equation (2-2-13) are defined by equation (2-2-9) and are rewritten 

here 

(2-5-lc) 

For the convenience in constructing the wave number domain coverage illustrations shown in 

this section, the maximum ks or kg is scaled to unit value, i.e. k8 or kg varies between 

-1 and 1. 

In order to take advantage of the inverse Fourier transform representation of the object 

function, lks I and I kg I in the acoustic problem must be smaller than k
0

, which means that the 

evanescent waves are negligible. The electromagnetic problem is not restricted by the back­

ground wave number k0 because of the introduction of the complex Laplace wave number sx 
' 

and lk0 I can either be smaller or larger thanks or kg. Nevertheless, from a practical point of 

view lk0 I should be smaller than lkg I or lks I because a large k0 implies a severe attenuation of 
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the EM field in a conductive medium. 

Before going into the wave number domain coverage problem for any particular array 

configuration, let us look at the Laplace or Fourier transform definition. For a real function 

f(x), the following relationships for the Laplace or Fourier transform can be derived. From the 

Laplace transform pair defined in equation (2-2-12), 

* * f(s ) = f (s), (2-5-2a) 

which says when f (s) at any point s is known, its value at the complex conjugate point s * 

can also be obtained by taking the complex conjugate off (s ). In the same way, from equa­

tion (2-2-2a) for the Fourier transform, we have 

f (-k)= !* (k), (2-5-2b) 

which tells us that if the function at k is given, its value at -k is then available. 

2.5.2 The cross hole source-receiver array 

The first case to be discussed is the cross hole configuration with source and receiver in 

separate holes and all possible source-receiver combinations. Rewrite equation (2-2-10) 

(2-5-3) 

First, let lk0
21 be of unit value. If we fix kg, say kg = 1.0, and vary ks according to the value 

given in equation (2-5-lb) and calculate Ys and Yg with equation (2-5-lc), we know from equa­

tion (2-5-3) that kz and sx move along an arc (Figure 2-5-la). The horizontal axis in the figure 

is either the real or the imaginary part of the Laplace domain wave number sx and the vertical 

axis is the Fourier domain wave number kz. Then another kg is selected and the same pro­

cedure is repeated. Finally these arcs make up the shaded area within which the object function 

in wave-number domain is covered (Figure 2-5-lb). The maximum sx and kz in this example 

are along the arcs defined by ks = ±1.0 or by kg= ±1.0 and are shown in Figure 2-5-la. 

It also should be mentioned that the real and imaginary components of sx are paired and 

the wave number domain coverage is in three dimensional (kz and the real and imaginary parts 

of sx ). The coverage in Figure 2-5-1 b is its 2-D projection. If we take a slice, say along 

kz = 1, of Figure 2-5-1b, the resulting relation between Re(sx) and lm(sx) is plotted in Figure 
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2-5-lc, where only Re(sx) is shown and the relation in equation (2-5-2) is also applied. The 

inverse Laplace transfonn should be carried out along such an curved path. 

Figures 2-5-2a and 2-5-2b show the wave number domain coverage for the same cross­

hole source-receiver configuration with lk}l now taking the values of 114, or 1116 respectively. 

As the background wave-number lk0 I becomes smaller, one obtains less coverage in the 

Im (sx) direction. The real component of sx becomes larger as lk0 I gets smaller, which says 

more information about the object function in x direction is smeared out. Therefore one ought 

to choose the highest possible operating frequency for the cross-hole source-receiver 

configuration. 

The wave number domain coverage of the object function for the numerical model in sec­

tion 2.4 can now be evaluated. For the parameters specified for that particular model the results 

are shown in Figure 2-5-3. It can be seen on the (kz, lm(sx)) plane that the coverage in the x­

direction is less than one tenth of its extent in the z-direction. The maximum horizontal wave 

number corresponds to a space length of more than 110 meters. Due to the severe attenuation 

associated with higher operating frequency or background wave number, little can be done to 

further increase the lateral or x-direction coverage. In seismic applications, it is well known 

that features less than 114 wave length usually can not be resolved. If this is also true in EM, 

one should not expect any horizontal resolution better than 30 meters for this particular exam­

ple without any prior knowledge of the target. Poor coverage and severe wave attenuation 

contribute to the need for suitable constraints which enhance the image resolution and stablize 

the inverse problem. 

As indicated in Appendix A for acoustic diffraction tomography, poor resolution in the 

lateral (x) direction is expected for this cross-hole configuration because of the poor coverage 

in the horizontal wave number. Furthennore here we have the presence of attenuation due to 

the complex Laplace domain wave number. Thus poor resolution should be expected in the 

reconstruction since, physically, the high wave number infonnation of the object function is 

smeared out along x direction. Mathematically, one has to sacrifice resolution for solution sta­

bility in the inversion. Nevertheless, the attenuation itself also contains information on the 

electrical conductivity of the medium. One simple example is from the comparison between 
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the conventional acoustic and electromagnetic well logs. A time harmonic sonic wave and a 

source-receiver pair of fixed separation in a homogeneous medium can not yield enough infor­

mation to determine the acoustic velocity. Instead, the sonic log must use a pulse signal. On 

the other hand a time harmonic electromagnetic tool can indicate the electrical conductivity of 

the medium because of the attenuation in the field amplitude. 

It should be pointed out that the expected corresponding seismic image quality is better 

than that of the EM image because of the fundamental difference in the physical properties 

involved. Theoretically, in the seismic situation one can increase the resolution by raising the 

operating frequency and the sampling density. In the electromagnetic application the image 

quality is limited because of the severe attenuation at high operating frequency. Increased sam­

pling density, in the crosshole EM case for example, improves the vertical resolution somewhat 

but is of little help in the horizontal direction. 

2.5.3 The single hole source-receiver array 

With source and receiver in a single borehole and with all the source-receiver combina­

tions, the relation between Csx, kz) and (ks, kg) is as following, 

(2-5-4) 

The single hole case is different from cross-hole configuration in that the backscattered field is 

measured instead of the transmitted one. Thus a positive sign before Yg in equation (2-5-4) 

takes the place of the negative one in that of equation (2-5-3) to account for the direction of 

the energy flow. 

By varying (kso kg) according to equation (2-5-1), the Laplace-Fourier domain (sx, kz) 

coverage can again be calculated. Figure 2-5-4a shows the coverage for a single frequency 

with lk}l to be of unit value. Figure 2-5-4b and Figure 2-5-4c show the coverage when lk}l 

equals 114 or 1/16. More coverage can be achieved by employing multiple operating frequen­

cies as it can be seen when one overlaps the coverages in Figure 2-5-4a through Figure 2-5-4c. 
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2.5.4 Other configurations 

Although the source-receiver configurations examined in this section do not directly relate 

to the theme of this thesis, they are interesting byproducts of the wave number domain cover­

age analysis. Thus the surface array configuration is similar to the single hole geometry with a 

90 degree rotation of the x-z coordinate frame. Therefore for surface multiple source-receiver 

combination the coverage can also be studied with 

(2-5-5) 

The above expressions are the same as those in equation (2-5-4) except for the switch in x and 

z. 

A special case of a surface array arrangement is the TE mode of the magnetotelluric 

(MT) method where there is only a single plane wave incident in the vertical direction. There­

fore in deriving the object function in section 2.2.3, a plane wave primary field (e -ikoz) is used 

and it is not necessary to take a Fourier transform over the source line in deriving the explicit 

expression for the object function. Thus, for a vertically incident wave, we have 

ks = 0. (2-5-6a) 

If we measure the field over an entire profile and take the Fourier transform along receiver line 

we have, 

kg= 0, ± 1·(21t1Dg), ±2·(21t/Dg), · · · , ±1t1Ag. (2-5-6b) 

Thus equation (2-5-5) becomes 

(2-5-7) 

Another source-receiver configuration of interest is the surface to borehole combination 

with the sources on the surface along x direction and receivers in a vertical borehole (z direc­

tion). By similar procedures as the above cases, the coverage can also be derived but one has 

to introduce complex Laplace wave numbers sx and Sz so that 

(2-5-8) 

Thus inverse Laplace transforms in both x and z directions are needed now. 



43 

2.3.5 Image distortion due to incomplete coverage 

As discussed above, wave number domain coverage provides guidelines for determining 

data interpretation quality and for choosing a suitable array for any specific application. If 

every point in the wave number domain is covered, the object function can be determined 

exactly. Unfortunately, the above discussion indicates that each different source-receiver array 

covers a distinct and finite area which is also frequency dependent. Define a function A (sx, kz) 

for the cross-hole situation such that 

point (sx, kz) covered 

point (sx, kz) not covered . 

If the exact object spectrum is 0 (sx, kz ), the spectrum obtained from measurements is 

(2-5-9) 

(2-5-10) 

Assuming that the exact image is 0 (x ,z ) and the inverted image is 0' (x ,z ), we have accord­

ing to the convolution theorems for Laplace and Fourier transforms 

0' (x, z) = 0 (x , z) * A (x, z ), (2-5-11) 

where A (x, z) is the space domain expression of the covered wave number domain, which can 

be derived by performing inverse Laplace and Fourier transforms on A (sx, kz) for each specific 

source-receiver array. The sign "*" denotes two dimensional convolution of 0 (x, z) and 

A (x,z). 

Note that the distortion due to the incomplete wave number domain coverage associated 

with particular source-receiver array and operating frequency can only make the reconstructed 

image blurred. The target characteristics, such as the dip angle of the thin conductors in our 

models, are resolved well because the distortion does not involve any rotation or shift in the 

wave number domain. 

The outcomes from the above theoretical analysis are exactly what we have observed 

from the numerical experiments in section 2.4. The inversion quality depends on the source­

receiver array configuration and the background wave number or the operating frequency. For 

a crosshole source-receiver array configuration, one should always choose the highest possible 
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operating frequency. Since as the frequency or the background wavenumber becomes smaller, 

the wave number domain coverage of the object function in the lm(sx) direction decreases. 

The reduced coverage makes the resolution decrease. For this same source-receiver 

configuration, it is also found that the image resolution is much poorer in the horizontal direc­

tion than in the vertical. Smoothing and constraints are extremely helpful in enhancing the tar­

get resolution and stablizing the solution. 

... 
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(a) A two-dimensional target (b) A 2-D thin conductor 

Figure 2-1-1 A two dimensional (2-D) model 
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Figure 2-3-1 Discretization for tomographic inversion 
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Figure 2-4-3 Standard deviation of the inversion results in Figure 2-4-2 
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Figure 2-4-4 Born images of a dipping conductor with different conductance 
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Chapter 3 
Tomographic inversion for a cylindrical symmetry problem 

In the previous chapter, two-dimensional tomographic inversion has been shown to be 

successful in characterizing electrically conductive targets which satisfy the weak scattering 

approximation. Now, this over simplified model will be extended by allowing a dipole source 

to replace the unrealistic subsurface line source. To allow this source geometry, we choose a 

simple cylindrical model. If we assume that the target zone displays axial symmetry about the 

borehole which contains the transmitter, the vertical magnetic dipole source only excites an 

electrical field in the azimuthal direction which in turn generates the magnetic anomaly at the 

receiver sites. The resulting scalar equation can now be readily solved. 

In the following analysis, the forward modeling code is first formulated and programmed 

to provide the necessary synthetic data for use in the inversion tests. A tomographic inversion 

scheme similar to that used for the two-dimensional Cartesian geometry is then developed for 

conductivity reconstruction. If an additional far field approximation is applied, the wave 

number domain coverage of the object function for this cylindrically symmetrical problem is 

found to be exactly the same as that for the two dimensional Cartesian model examined in 

Chapter 2. 

3.1 Formulation of the integral equation 

Numerical modeling studies for a conventional logging environment in a cylindrically 

symmetrical medium have been reported by a number of authors. For example, Zakharov and 

Nesmeyanov (1979) used an integral equation approach for a layered medium with an invaded 

zone, while the finite element method was applied to this problem by Anderson and Chang 

(1982). More recently, a newer method was studied by Pai and Huang (1988) using a general­

ized Haskell matrix method. All these codes, however, are for the conventional induction log­

ging configuration where the receiver and transmitter are separated by a fixed distance in the 



71 

same borehole. Our heed for cross-hole source-receiver synthetic data brings with it a numeri-

cal modeling problem which can be solved with an integral equation approach. 

3.1.1 A cylindrical symmetry model 

The cylindrically symmetrical model is shown in Figure 3-1-1. A cylindrical coordinate 

system is established with z as the vertical axis of symmetry. The background medium is 

assumed to be homogeneous and has an electrical conductivity of <J0 • The ring shaped con-

ductive target embedded in the homogeneous medium has a conductivity of cr(r). Vertical mag­

netic dipole sources are positioned along the axis of symmetry. It is well known that the verti­

cal magnetic dipole in this situation can only induce current in the azimuthal direction. The 

secondary magnetic field generated by the induced current is measured in another borehole. 

Two components of magnetic field will be present, one in the vertical direction and the other in 

the radial, or horizontal, direction. Since the horizontal component is difficult to measure in a 

borehole condition, the model analysis will be carried out for the vertjcal component only. As 

a matter of fact, in the cylindrical symmetry situation, as will be shown later, the two com­

ponents contain basically the same information providing observations are made over a long 

distance in the receiver borehole. From the noise suppression point of view, however, the 

extra measurements may serve to improve the stability of the inverse problem. 

3.1.2 The integral equation 

Since for a cylindrically symmetrical medium with magnetic dipole sources along the axis 

of symmetry we only have an electric field in the azimuthal direction, a scalar equation govern-

ing the relationship between conductivity and the electrical response can be deduced. The 

differential equation for the electrical field E $ derived from the Maxwell's equations in equa­

tion (2-1-1) is 

(3-1-1) 

where J $ is the external current source with current flowing in the azimuthal direction. The 

magnetic permeability J.L is assigned to have the free space value and ro is the angular 
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frequency used. The medium wave number is k2 which is equal to= -i roj.tcr(r). cr(r) denotes 

the conductivity distribution. Rearrange equation (3-1-1) into 

(3-1-2) 

where the background wave number k}= -i rojl.0"0 with 0"0 representing a constant reference 

conductivity. The object function 0 (r) is defined as 

O(r)= l-k 2!k}= l-cr(r)/cr0 • 

Next introduce a Green's function G such that 

V2G - ~ G + k} G = i roj.t3(r-r') . 
r 

From equations (3-1-2) and (3-1-4) and Green's scalar identity, we derive 

E<l>(rg,rs)= E~(rg,r8 )-f a 0 0(r)E<I>(r,r8 )G(rg,r)drdz, 
s 

(3-1-3) 

(3-1-4) 

(3-1-5) 

where the receiver point lies at r g = (rg, zg) and the source point is located at rs = (r8 , z8 ). 

E~ (=G) is the primary electrical field. The surface integration is over all the inhomogeneities, 

or over the area defined by O<r <oo and -oo<z <oo. The Green's function G defined by 

equation (3-1-4) is the same as the electric field generated by a circular current loop source 

carrying unit current and can be found from Wait and Hill (1980). 

a ,oo J('Ar') 
G( ')- · _ .!._J -ylz-z'l 1 J ('~ )d'~ r. r - l (l)jl a e 0 r..r Fl. • 

r 2 0 y 
(3-1-6) 

where i= 'A2 -k}. J 0('Ar) and J 1('Ar') are the zero-th and first order Bessel functions of first 

kind respectively. 

To solve for the H-field, one can use equation (3-1-5) and take Vx(~E<I>(rg)) with respect 

to the observation point r g • Here, 4) is a unit vector in <\> direction. 

H(rg, r 8 )= HP (rg, rs)- J 0"0 0 (r)E<I>(r, rs) GH(rg, r)drdz, 
s 

or 

Hs(rg,rs)=-Jao O(r)E<j>(r,rs)GH(rg,r)drdz. (3-1-7) 
s 
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Where Hs = H- HP and HP is the primary magnetic field in a homogeneous whole space gen­

erated by a vertical magnetic dipole. Now the Green's function GH relates the induced circu­

lar current loop with the magnetic field anywhere in the space (GH = (GHr, GHz )). 

The Green's functions GHr and GHz are the same as the magnetic field excited by a unit 

current loop source in a homogeneous space and also can be found from Wait and Hill (1980). 

00 

GHr(r,r')= _t_ ~ r e-"'flz-z'l~ltCA.r)Jt('A.r)d/..; 
2 uz 6 y 

(3-1-8a) 

(3-l-8b) 

If equation (3-1-7) is rewritten into its horizontal and vertical magnetic field components 

H:(rg,rs) and HJ(rg,rs) at the receiver point rg due to a source at rs, 

H:(rg,rs)= -00 J O(r)E$(r,rs)GHr(rg,r)drdz (3-l-9a) 
s 

and 

HJ(rg ,r8 )= -a0 J O(r)E$(r,rs)GHz(rg,r)drdz. (3-l-9b) 
s 

3.2 Forward numerical modeling 

The electromagnetic response in a cylindrically symmetrical medium is computed to fur­

nish the necessary synthetic data for later inversion analysis. To do this, the integral equation 

derived in the last section for the electric field on the target is discretized to form a linear sys­

tem of equations which are then solved by computer. Physical modeling results are used to 

verify the numerical data. 

3.2.1 Numerical modeling 

In the forward problem, the object function is given and the unknown in equation (3-1-5) 

is E $· Let r be a point on the target and discretize the inhomogeneity into N cells. The elec­

tric field can be readily solved for if one assumes that in each cell the electric field is constant. 

From equation (3-1-5), the electric field on the j -th cell satisfies 
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N 

Eq,.=E~.-LaoOiE$; J G(r',r)drdz, 
1 1 

i=l i-th cell 

(3-2-1) 

where the integration is evaluated numerically on the i -th cell in both the radial and depth 

directions. There are N such equations for N unknowns. After solving the system of linear 

equations for the electric field in all the N cells, the magnetic field can be calculated from 

equations (3-1-9a) and (3-1-9b). By discretizing these two equations, numerical integrations are 

carried out over the N cells so that the secondary magnetic field at i -th observation point is 

(3-2-2a) 

and 

N 

H~ = -ao L oj Eq,. J GHz(rg,r)drdz. 
j=l 

1 
j-th cell 

(3-2-2b) 

Simpson integration of the Green's function is carried out over each cell to increase the accu-

racy of the result. 

3.2.2 Verification by physical modeling 

To verify the numerical computations, two physical modeling data sets are used for the 

purpose of comparison. Because of the limitations of the available physical modeling facility, 

only cases with conductive targets in a free space are considered. 

The frequency domain relationship between the parameters of a scale model and that of 

its corresponding full scale system can be found from Frischknecht (1988, p368). 

cr' f ' z '2 = cr f 12 
, 

where f, cr and l are correspondingly the frequency, conductivity and characteristic dimension 

of the full scale system while f', a' and l' are those in the scale model. 

In this experiment the frequency scaling, or f If', is set to one. The relation between the 

characteristic space dimension is 1 em in the physical scale model to 20 meters in the full scale 

system (l I l' = 200011). Thus according to the above formula, the conductivity scaling factor 

cr I cr' = 11 (4x106
). The material used in the scale model is lead, which has a conductivity of 

4.56x106 Slm, and therefore cr= 1.14 Slm. The digital instrument reading here is accurate up • 
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to the third digit. While the accuracy of the target size and positioning is 5 mm or 1 meter in 

full scale. 

Figure 3-2-la shows the first full scale model of a ring shaped target with inner and outer 

radii of 64 and 120 meters respectively. Its thickness is 3.6 meters and its conductivity is 1.14 

S/m. The source and receiver are along the axis of symmetry and 120 meters away from, and 

on opposite sides of, the conductor. Both the source and receiver are fixed and they point in 

the z-direction. The results plotted in Figure 3-2-lb are the real and imaginary parts of the 

total magnetic field, normalized by the primary one, as a function of operating frequency. 

The second case checked is presented in Figure 3-2-2. The model (Figure 3-2-2a) con­

sists of a circular disk of 10.4 meters thick and 100 meters radius. The target conductivity is 

1.14 S/m. The source lies along the axis of symmetry and is fixed at 60 meters from the con­

ductor. The receiver is movable along a line parallel to, and 140m away from, the axis of 

symmetry. The operating frequency is 3K Hz. The numerical and physical modeling com­

parison is given in Figure 3-2-2b. 

Both examples show fairly good agreement between the numerical and physical modeling 

results. A number of other similar experiments were also conducted for other geometries. The 

comparison of these numerical and physical modeling results was also satisfactory. 

3.2.3 Influence of the source-receiver array configuration 

The source-receiver arrays chosen are critical in collecting the necessary information for 

data interpretation. Our numerical code allows us to demonstrate the characteristics of the 

different subsurface source-receiver array configurations. A vertical magnetic dipole (VMD) 

source and vertical magnetic field measurements are considered here because of the vertical 

borehole orientation. The basic model investigated is a ring-shaped target with a 60m by 20m 

cross-section. The source borehole is coaxial with the target while the receiver is either in the 

same well or in another one lOOm away. The target conductivity is 0.02 S lm and the back­

ground conductivity is 0.01 S lm. An operating frequency of 5K Hz is used. These parame­

ters will be kept constant unless otherwise specified. 
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The first array studied is a cross-hole source-receiver pair moving in parallel down the 

two boreholes (Figure 3-2-3). The secondary magnetic response is normalized by the ampli­

tude of the primary vertical magnetic field at the receiver. It is found that the two curves 

corresponding to a source-target separation (D ) of 1Om or 20m show only a small difference in 

amplitude. Nevertheless, the anomaly defines the vertical position of the target quite well 

because it peaks at the target depth. 

Next, let us look at the same model (Figure 3-2-4) with a fixed dipole source in one hole 

and a moving receiver in the other. The rest of the model parameters are ~e same as those 

shown in Figure 3-2-3. The amplitude of primary field at the source level is chosen as the nor­

malization factor. Although, the maximum peak-to-peak amplitudes are the same for the two 

different source-target separations, the curve shapes now show a more significant difference. 

The response for the target closer to the source has a wider shape. This example shows that the 

anomaly shape is very important in data inversion. The outcomes in Figures 3-2-3 and -4 sug­

gest that if we use several fixed source positions and take measurements along another 

borehole, it is possible to 'resolve a single target. However, in general, the response is very 

insensitive to the lateral position of the target. 

If both the source and receiver are in the same borehole, the electromagnetic response of 

the targets is found to be much more dependent on the target lateral position. Figure 3-2-5 is 

an example involving a source-receiver pair with a lOrn fixed vertical separation moving in a 

single hole. As the borehole-target distance varies from 10 meters to 20 meters, a significant 

change in the response is observed. Thus, to increase the lateral resolution the back-scattered 

fields should also be measured. Since the curve is normalized by the· primary vertical magnetic 

field of a source only 10 meters away, the relative secondary response is very small although 

its absolute value is at least of the same order as that for the cross-hole cases. 

The effect of different operating frequency on the target response is illustrated in Figure 

3-2-6 using the same model as that shown in Figure 3-2-5 with the source-receiver in the same 

borehole. The target edge is again either lOrn or 20m away from the well. Two frequencies 

of 5K Hz and 20K Hz are compared. The amplitude of the secondary magnetic response is 

normalized by the amplitude of the primary field at the receiver site. The ratio of the 
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maximum amplitudes of lOrn and 20m target-borehole separation is about 3.0 for f= 5KHz and 

3.7 for f= 20KHz. The contribution from a distant conductor is relatively larger at the lower 

frequency. Thus, in order to achieve necessary resolution, use of multiple operating frequencies 

is advisable. 

The numerical experiments with different source-receiver array configurations and operat­

ing frequencies show that: (1) The cross hole source-receiver array has poor resolution in the 

lateral direction. (2) Both the shape and the peak-to-peak values of the measured response are 

important in data interpretation. (3) To resolve the lateral position better, the back scattered 

field should also be measured, i.e. source and receiver in a single hole. (4) Multiple operating 

· frequencies may increase the resolution, especially in the single hole case. 

One should note that these findings regarding array sensitivity reinforce the conclusions 

derived from the wave number domain coverage approach in the previous chapter for the 2-D 

Cartesian model. Although the above conclusions are based on a few numerical examples, a 

more mathematically rigorous analysis would confirm them 

3.3 Inverse solution based on the weak scattering approximation 

In this section, the integral relation in equation (3-1-9) will be simplified by applying the 

Born approximation under a weak scattering assumption. Then Fourier transforms are used to 

find the corresponding wave number domain relationship. With an additional far field approxi­

mation, the derived formula is found to be the same as the 2-D expressions discussed in the 

previous chapters. 

3.3.1 Born approximated integral equation in wave number domain 

Using a procedure similar to that described for deriving the two-dimensional tomographic 

inversion, the Born approximation is introduced here by assuming that the problem satisfies the 

weak scattering condition. After replacing the total electric field E q,(r, rs) inside the integral 

sign of equation (3-1-9) with the primary field E~(r,rs), equation (3-1-9) becomes 

H;(rg, rs)= - J 0'0 0 (r)E~ (r, rs) GHr(rg, r) drdz (3-3-la) 
s 
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and 

HJ(rg, r8 )= - J 0 0 0 (r)E~ (r, rs) GHz (rg, r)drdz . (3-3-lb) ·. 
s 

The primary electric field for a vertical magnetic dipole source of unit strength can be found 

from Ward and Hohmann (1988, p176) 

i COJl. r . -ik R 
E~(r,r8 )= --- [-

3 
(l+zk0 R )e " ], 

47t R 
(3-3-2) 

For the cross-hole source-receiver configuration, the next step is to take Fourier 

transforms of equation (3-3-1) with respect to z8 and zg. Noting that rg = (rg,zg) and 

rs = (r8 ,Z8 ), we have 

H;(rg ,kg; r8 , k8 )= - J 0 0 0 (r ,z )E~(r ,z; r8 , k8 )GHr(rg ,kg; r, z)drdz (3-3-3a) 
s 

and 

HJ(rg ,kg; r8 ,k8 )= - J 0 0 0 (r ,z)E~(r, z; r8 , k8 )GHz(rg ,kg; r, z)drdz . (3-3-3b) 
8 

The variables k8 and kg are the Fourier domain wave numbers corresponding to space domain 

z8 and zg values respectively. The transformed primary E-field, E~ (r, z; r8 , k8 ), can be 

derived readily from equation (3-3-2) from the definition of the Fourier transform and by using 

a relation provided by Gradshteyn and Ryzhik (formula 6.616.4, p710, 1980) 

E P( . k )-~ -ik,zK (' ) q> r, z • r8 • 8 - Ys e 1 zr Ys • 
27t 

(3-3-4) 

where K 1 is the first order modified Bessel function of the second kind and Y8 is defined as 

y'f= k}-k/. 

The transforms of the Green's functions for the magnetic fields are deduced from equation d-
1-8). Two relations from Gradshteyn and Ryzhik (equation 7 of p1147 and formula 6.541 of 

p679, 1980) are applied in the derivation. The horizontal component of the Green's function 

in Fourier domain is then given by 
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2 k2 k2 Yg = o- g · 
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(3-3-5a) 

/ 1 and K 1 are the first order modified Bessel functions of the first and second kinds respec­

tively. The vertical component of the Green's function in the Fourier domain is 

(3-3-5b) 

where /0 is the zero-th order modified Bessel function of first kind and K0 is the zero-th order 

modified Bessel function of the second kind. 

In the cross hole case, 0 < r < r g • Therefore 

(3-3-6a) 

and 

(3-3-6b) 

Put equation (3-3-4) and equation (3-3-6) into equation (3-3-3) to obtain the following 

wave number domain relationship between the secondary response and the object function. 

H s( k . k )- -k} K (' )Joe) -i(k.+kg)ZK (' )/ (' )d d . (3-3-7a) z'g•g•'s·s---zrtYsYg 0 ZrgYg rre 1 zrys 1 zryg rz 

The above equations are for the cross-hole situation but similar relationships can also be 

derived for other source-receiver combinations. 

Now, let us rearrange equation (3-3-7) into 

Hs(r k · r k ) · 
z g , g , s, s _ J O ( ) -1 (k. + k8 ) z K (. ) I (. ) d d 
2 - r re 1 zrys 1 zryg r z 

-k 
2

; Ys Yg Ko (irg Yg) 

(3-3-8a) 



and 

H 8(r k · r k) · · 
- -r----"g_• --'g"-•_s •_s __ J O ( ) -1 (k, + k8 ) z K (. ) I ( · ) d d 
-k2 
_o_Yskg K 1(irg Yg) 
21t 

- r re 1 zrys 1 zryg r z 
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(3-3-8b) 

It is found that the right hand sides of these equations are identical while the left hand sides 

represent the filtered measurements. Thus, if a data profile along the entire receiver borehole is 

available, one of the above two equations is redundant. This can also be proven to be true 

without using the Born approximation. 

3.3.2 Wave number domain coverage under far field approximation 

In order to understand the quality of the reconstructed image, the wave number domain 

coverage of the object function is examined by using an asymptotic expansion of the Bessel 

functions for the far field. From Stinson (1976, p267), we have the following relations for any 

integer n 

I (x)=- I 1 ex 
n -\1 27tX for lx I ~ oo and lx I» In I (3-3-9a) 

for lx I ~ oo and lx I » In I (3-3-9b) 

It should be mentioned that the far-field approximation in EM has much less validity than that 

in seismic method. Because of the severe attenuation of high frequency EM fields in a conduc­

tive medium, the argument in In(x) or Kn(x) can not be very large in the practical sense. 

However, analysis shows that the far-field assumption is still acceptable. The following table is 

for the absolute value of the relative error for the modified Bessel function under the far field 

approximation (calculated from the handbook by National Bureau of Standards, 1972). 
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Table 3-4-1 Relative error of the Bessel functions under far-field approximation 

x=1 x=2 x= 10 X= 20 

K 0(x) 9.5% 5.3% 1.2% 0.6% 

K 1(x) 23.% 14.% 3.5% 1.8% 

I o(X) 14.% 8.6% 1.3% 0.6% 

ft(X) 92.% 31.% 4.0% 1.9% 

To be specific for our numerical examples, the absolute value of the arguments, i.e. lirys I and 

liry
8 

I, varies between 0 to about 30. Therefore, it is expected that the outcome is within rea­

sonable error range if the target is a certain distance away from the borehole. The more con­

vincing verification comes from later numerical experiments which show "that the approxima­

tion is valid. 

Using the far field approximation, we can substitute equation (3-3-9) into equation (3-3-

8a) to arrive at, 

(3-3-10) 

After making the following substitutions, 

(3-3-11) 

equation (3-3-10) becomes 

H s( k. k )( 4i"f21ti )-'- irgYg_fO() -ik,z -rs'dd 
z r8 , 8 , 's, s 2_

1 
"'~~'c e - r e e r z 

-ko "'II'Ys 
(3-3-12) 

A comparison of equation (3-3-12) with the corresponding two-dimensional situation discussed 

in Chapter 2 immediately shows that this equation is the same as equation (2-2-11) except for 

the fact that on the left hand sides different weighting factors are applied to the measurements. 

Therefore, the object function 0 (r) can be readily derived by the inverse Laplace transform in 

the lateral direction and the inverse Fourier transform in the vertical direction of equation (3-

3-12). 
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_ 1 J[Hs( k . k )( 4i..J21ti )-~ ir8 y8 ] rs, ik,z dk d O(r)- --2-. z rg, g•rs, s 2_
1 

"'lrg e e e 2 Sr. 
(21t) l -ko "'IYs 

(3-3-13) 

Therefore, the most important finding is that the discussion in Chapter 2 on the wave 

number domain coverage of the object function is also valid here. Inevitably, for the cross­

hole source-receiver configuration, we will expect relatively poorer resolution in the horizontal 

direction than that obtainable along the vertical. For the single hole configuration, where the 

source and receiver are in the same borehole, expression similar to that of 2-D Cartesian model 

can also be derived. The wave number domain coverages are identical if a far-field assumption 

is applied to the cylindrical symmetry model. 

3.4 Tomographic inversion of synthetic data 

We now go on to the numerical experiments in EM tomography. First, we want to show 

that the 2-D Cartesian formulation discussed in the previous Chapter can be used in a cylindri­

cally symmetric medium after a geometric correction is applied. Then we consider different 

source-receiver array combinations without applying the far field approximation. 

The cylindrically symmetrical model in these numerical experiments has a background 

conductivity of 0.01 S lm. An operating frequency of 20K Hz is chosen. 32 source and 32 

receiver positions are used in the cross-hole configuration in all possible source-receiver combi-

nations. The source or receiver spacing is 10 meters. The image area (lOOm by 160m) is the 

central part of the lOOm x 310m area covered by the source and receiver array. 

3.4.1 2-D Cartesian model solution after geometric correction 

Under the additional far field approximation the cylindrical symmetry problem becomes 

analogous to the 2-D ~artesian one. Equation (2-2-11), after the modification for a geometric 

factor, can be used to solve it. Rewrite equation (3-3-12) for the cylindrical symmetry model 

H s( k k )( 4i..J21ti )-~ irg"fg foe) -ik,z -rs,d d z rg, g; rs, s 2_
1 

"'lrg e = r e e r z , 
-ko "'IYs 

(3-3-14a) 

and compare to equation (2-2-11) for the 2-D Cartesian model 

E s( k . k) 4YgYs <-iy,x,+iygxg)_ Co() [ .k ]dxd Xg•g•Xs•s . 2 e -)_ rexp-SxX-l 2 Z Z, 
-l rojlk0 S 

(3-3-14b) 
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where rg = xg (the borehole separation) and Xs = 0. Then the factor for geometric correction in 

the 2-D algorithm for the cylindrical symmetry data is then 

(4i..J21ti ..Jr;)l(-k}f¥;) 

(4yg Ys) I (-i ro~}) 
(3-3-15) 

Figure 3-4-1 shows a horizontal disk model of 80 meter diameter and 10 meter thickness. 

Its conductivity is twice the background. The synthetic data, i.e. the z-component of the mag­

netic anomaly with vertical magnetic dipole source excitation, generated for this model is first 

inverted using the 2-D Cartesian model with a correction for the geometric effect. The resulting 

image is shown in Figure 3-4-1 b. It is found that the target is basically resolved except that 

the area near the source borehole does not show the correct conductivity value. This is caused 

by the invalid use of the far field approximation when the target position does not actually 

satisfy it. Therefore, it is also necessary to program the inversion problem without the far field 

assumption. 

Again, because of the instability of the inverse Laplace transform, equation (3-3-13) can 

only be utilized to study the system characteristics. The actual way of solving for the object 

function, 0 (r), is to discretize the integral equations given by equation (3-3-8) without the far 

field approximation. The resulting linear system of equations is inverted with the same con­

strained least squares approach as was used for the two-dimensional Cartesian geometry. One 

has to note that constraints are most necessary for improvements in both resolution and stabil­

. ity. Figure 3-4~1c shows the new inversion result (without the far field approximation) where 

it can be clearly seen that the edge close to the source borehole now is resolved much better 

than previously. 

These numerical experiments show that the cylindrical symmetry problem can be treated 

as a 2-D Cartesian geometry problem after a geometrical factor correction. Although the area 

near the source or receiver is not well resolved due to the invalidity of the far-field approxima­

tion, the approach is still valuable since one is usually interested in the area away from the 

borehole and the near field area can be resolved by other conventional logging techniques. 
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3.4.2 Cross-hole source-receiver array configuration 

Next, we consider a fictitious enhanced oil recovery problem. The problem can be stated 

as the monitoring of saline water/oil front in a fracture zone sandwiched in a homogeneous for­

mation. Since the oil has low electrical conductivity while the saline water has high conduc­

tivity, the front can be mapped if one can distinguish changes in the conductivity distribution. 

Figure 3-4-2 (a) gives the model parameters of a simplified problem. The target is 20 meters 

thick and the anomalous conductivity is assumed to be twice that of the background. Tests are 

carried out for the migration of the saline water to lateral distances of Lx = 20, 40, 60, 100 

meters. The z-component of the EM response is used in this calculation and these synthetic 

data are generated from the exact numerical code calculating the EM response of cylindrically 

symmetrical medium discussed earlier in this chapter. The reconstructed images shown in Fig­

ure 3-4-2 (b) through (e) are not based on the far field approximation. The extent of the high 

conductivity anomaly can be mapped reasonably well. 

We next vary the thickness of the anomalous conductor. The lateral extent is fixed at 60 

meters (Figure 3-4-3a). The reconstructed images are shown in Figure 3-4-3b, Figure 3-4-3c 

and Figure 3-4-3d for thickness, Tz, values of 10, 20, and 40 meters. It is clearly seen that the 

reconstructed images can show the difference of target positi~n. size, and conductivity reason­

ablely well. For different target conductivity, a model with a 60m x 10m conductor is studied 

(Figure 3-4-4a). The reconstructed images are presented in Figure 3-4-4b, c, and d which 

correspond respectively to the conductivity values of cr = 0.02, 0.04, 0.06 S lm. The recovered 

conductivity is found to be smaller than the actual one while the size is larger than the model 

input. The frequency effect is demonstrated in Figure 3-4-5. For frequency 2.5, 10, and 20 

KHz, the reconstructed images (Figure 3-4-5) are little different in quality since the target is 

horizontal. These three frequencies correspond to a borehole separation to skin depth ratio of 

approximately 1, 2, and 3. 

3.4.3 Combination of cross-hole and single-hole source-receiver data 

From the wave number domain coverage analysis of Chapter 2 and the comparison 

between 2-D Cartesian and cylindrical symmetry models given earlier in this Chapter, better 

·• 
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images should be achieved by combining the measurements of cross-hole and single hole 

source-receiver arrays. The sources will be assumed to be along the axis of symmetry of the 

medium while the receivers are either in another hole or in the same one as the source with all 

the possible combinations. 

Figure 3-4-6 and Figure 3-4-7 are the reconstructed images of a 'ring' of a 60m by 20m 

cross-sectional area. This target is either 10 or 20 meters away from the source borehole. The 

solutions with the cross-hole source-receiver configuration for these two models are given in 

Figure 3-4-6b and Figure 3-4-7b. The images are somewhat blurred. The single-ho~e source­

receiver arrangement results in the solutions shown in Figure 3-4-6c and Figure 3-4-7c. The 

side of the target closer to the source borehole is resolved quite accurately. Nevertheless, due 

to the attenuation characteristics of the EM wave in a conductive medium, the far side of the 

target from the single-hole measurements can not be defined correctly. With the combination 

of both source-receiver array configurations, much better images are arrived at as shown in 

Figure 3-4-6d andFigure 3-4-7d. 

To summarize, we find in this chapter that the cross-hole audio frequency electromagnetic 

technique can be applied to recover the conductivity image in a cylindrical symmetry situation. 

Through theoretical and numerical analyses, the recovered conductivity distribution is shown to 

have similar characteristics to that with 2-D Cartesian geometry. Under the weak scattering 

and far field approximations, the wave number domain coverage of the object function is ident­

ical to that for the 2-D Cartesian geometry discussed in the last chapter. The coverage tells us 

that the maximum lateral resolution for the cross-hole source-receiver array is directly related 

to the maximum operating frequency. Due to severe attenuation associated with the high fre­

quency electromagnetic field, however, the maximum operating frequency, and therefore the 

maximum lateral resolution, is limited. We also find that better images can be constructed by 

combining the single-hole source-receiver data with those from cross-hole array. 
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Figure 3-2-3 Nonnalized secondary magnetic field response (z-component) for a crosshole 
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Figure 3-4-3 Reconstructed images of targets with varying vertical extent 
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Figure 3-4-4 Reconstructed images of targets of different conductivity 
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Figure 3-4-5 Reconstructed image quality as a function of frequency 
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Figure 3-4-6 Resolution enhancement by combining the transmitted and backscattered fields 
(the distance between source borehole and target is 10 meters) 
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Chapter 4 
Modeling and tomographic inversion for 3-D thin conductors 

The 2-D Cartesian and cylindrical symmetry models investigated in the previous two 

chapters are fundamental and instructive but are insufficient to simulate realistic fracture zones. 

On the other hand, currently available three dimensional numerical modeling programs (Wan-

namaker et al., 1984; Weidelt, 1981; Lee et al., 1981; Dyck et al., 1980; to name but a few) 

for evaluating the electromagnetic response of 3-D conductive targets either involve enormous 

computing time or are limited to, for example, a surface source and receiver or a single con-

ductor or a free space background. Therefore, it is necessary to develop a rapid and accurate 

quantitative simulation program for computing the subsurface EM response of multiple thin 

conductive targets (fracture zones) and a corresponding 3-D inversion method. 

Since fracture zones are usually thin, much computational time can be saved by again 

using the thin sheet approximation (Weidelt, 1981; Price, 1949) which combines the target con-

ductivity and thickness into a single conductance parameter. Numerical modeling of the audio 

frequency EM response of thin conductive targets embedded in a conductive host rock can be 

carried out with an integral equation approach which is similar to Weidelt's formulation (1981) 

for evaluating the EM response of a single such target with source and receiver in the air. The 

code developed here, however, can be used for modeling of multiple electrically thin conduc­

tive conductors detected with a subsurface source and receiver. Both numerical and physical 

modeling checks of the developed numerical code show that it is acceptably accurate. 

Because of the complexity and nonuniqueness inherent to 3-D inversion, the experiments 

with the forward modeling code can provide some insight into the characteristics of the inver-

sion problem. By examining the calculated electromagnetic response, one can investigate the 

utility of different array arrangements, such as cross-hole, single hole, tandem moving source-

receiver, and fixed source with moving receiver. These numerical experiments are an aid to 

choosing the right source-receiver combination in order to obtain sufficient information for data 
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interpretation purposes. 

Use of tomographic inversion in a 3-D situation is investigated by assuming that an array 

of source or receiver boreholes is available. In the more practical case where only one pair of 

source receiver boreholes exists, an additional assumption must be used in order to make the 

solution unique and stable. Under the weak scattering and far field assumptions, the inversion 

characteristics of the 3-D case are found to be similar to those for the 2-D cases discussed in 

the previous chapters. Finally, we show the results of numerical experiments in locating target 

representative of electrically conductive fracture zones. 

4.1 The thin sheet approximation 

·As mentioned in the first chapter, numerous papers and reports on the electrical and 

geometrical parameters of the fracture zones are available. The finding is that the fracture 

zones of interest are generally thin and are filled with saline water, which makes them more 

conductive than the host rock. Depending on the geological situation, their thickness­

conductivity products range from 0.01 to 1.0 Siemens or more. The host rock may be some­

what conductive as in a petroleum reservoir or resistive as in a waste repository. The size of 

the tabular conductors ranges from tens of meters to several hundred meters. 

The geological situations encountered in these applications suggest the following model 

for the numerical calculation (Figure 4-1-1). The thin conductors (two in this illustrative 

model) are represented by rectangular thin sheet like targets of size ai by b i , i = 1, 2, · · · , ns , 

where ns is the number of sheet-like conductors. The upper edge of the rectangular targets is 

horizontal. Because these tabular conductors are thin, only the conductance 'ti or the thickness 

and conductivity product of the fracture zone is of importance. This assumption is justified if 

the distance from the source to any of the conductors is much larger than the target thickness, 

the observation point lies not too close to any of the targets and the electromagnetic penetration 

depth is much greater than the thickness. In other words, the tangential electrical field Es on 

these targets varies slightly across the full thickness. Joshi et al. (1988) discuss the validity of 

the thin sheet conductor approximation from an analysis of laboratory scale model data. They 

conclude that the thin sheet assumption is valid if the thickness is less than half the skin depth 
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in the conductor. 

Define three unit vectors ai, 6i, ei such that ai is in the strike direction of the i -th thin 

conductor, Gi in the dip direction and ei is defined by ai X Gi. For the thin sheet approximation 

(Price, 1949), we have on the i th thin target 

(4-1-1) 

where Es. is the tangential electric field and H denotes the magnetic field. Physically, equation 
I 

(4-1-1) means that the induced current, 'ti(r)Es.(r), on a thin conductor is equal to the 
I 

difference of the tangential magnetic fields on the two sides of the thin target. 

The conductive targets are assumed to lie in a homogeneous half space of conductivity 

cr2. Above the half space, there is an overburden of conductivity cr1 and thickness D. The 

strike angle of the i -th target is denoted by Yi and its dip angle by ~i. The coordinate of the 

center of the top edge is (X li, X 2i, Hi), where Hi is the depth to the horizontal top of the i th 

thin conductor from the surface. The source, at a depth of· H~x, is harmonic in time (ei 001
). 

The depth of the receiver is represented by Hrx. In the cross-hole case, the separation between 

the transmitting and receiving wells is Xdh . 

In all calculations we use a unit dipole moment (M = 1 A ·turn ·m 2). The displacement 

current is neglected, and the magnetic permeability is assumed to have the free space value 1-lo 

of 41tx10-7 (H lm ). The boreholes whose diameter is assumed to be nil are considered to be 

vertical and their effects are not taken into account in the calculation. 

4.2 Formulation and solution of the integral equations 

Our approach to the calculation of the frequency domain magnetic field response is simi­

lar to the algorithm developed by Weidelt (1981) who calculated the magnetic field anomaly 

for a thin conductor and a magnetic dipole source and receiver in the air. Here the EM 

response of multiple thin conductors with a subsurface source and receiver is going to be 

investigated. 
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4.2.1 Integral equation formulation 

Beginning with Maxwell's equations and the assumption that the displacement current is 

negligible, 

one arrives at, 

VxE(r) = -i (J)J,!0 H(r) , 

VxH(r) = cr(r)E(r) + Je (r) , 

(4-2-1) 

(4-2-2) 

(4-2-3) 

where E and H are the electric and magnetic fields respectively. Je is the source current den­

sity. And kn2= i (J)j..l0 an. The subscript n has the value of 0, 1, 2 corresponding respectively to 

the field location in the air, overburden, or the conductive half space. 

Let x 1, x 2 and x 3 be a system of Cartesian coordinates so that x 1 and x 2 are parallel to 

the layer interfaces and x 3 is perpendicular to them. ~1 • ~2• x3 are unit vectors in x~o x 2 and x3 

directions respectively. Define a Green's function Gi in a layered medium with i=l, 2, 3 

denoting a dipole source oriented in x1, x 2 and x3 directions respectively. 

VxVxGi(r,r0 ) + kn2GJr,r0 )= xi8(r-r0 ), 

where Gi = (Gli,G2i•G3i) 

(4-2-4) 

Multiply Eq.(4-2-4) by E(r) and Eq.(4-2-3) by Gi, then integrate their difference in a 

volume V which consists of the whole space but excludes the volume occupied by the targets. 

Following Green's vector theorem (Tai, 1971, p6) 

[[P·VxVxQ-Q·VxVxPJdv = Jv[QxVxP...,..PxVxQJ ·ds, 

we have fori= 1,2 and 3 

Ei(r0 )= -i (J)J,!0 [Je (r)·Gi(r0 , r)dv + [[E(r)·VxVxGi(r0 , r)-Gi(r0 , r)·VxVxE(r)]dv 

(4-2-5) 

where the primary electric field Eni (r 0 ) is defined by 
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(4-2-6) 

av, the boundary of V, consists of the boundaries of the thin conductors and the infinite dis-

tance surface on which the surface integration disappears. And fi is the outward normal unit 

vector. Since VxGi and Gi are continuous everywhere for r0 within V and r on Si and the 

electric field E satisfies the relations given by the equation (4-1-1) and (4-2-1), equation (4-2-

5) now can be reduced to 

i=1,2 and 3. . (4-2-7) 

After introducing a Green's dyadic function 

(4-2-8) 

equation (4-2-7) then can be written into a vector form 

ns 
E(r0 )= En(r0 )- iCOJ.L0 L J't(r)g(r0 ,r)·Es/r)ds 

J=l si 

(4-2-9) 

On the i -th target, the tangential electrical fields are 

ns 
E8;Cr0 )= Ens;(r0 )- iCOJ.L0 LJ'tj(r)g8 (r0 ,r) ·E8/r)ds , 

J=lsi 

(4-2-10) 

where g8 is the Green's function that relates the tangential electrical field to the current distri-

bution on the thin conductors and is discussed in Appendix C. Similarly, the magnetic field at 

any point anywhere in the space is given by 

ns 
H(r)= Hn(r) + LJ'tj(r)E8/r0 ) .Vxg(r0 ,r)ds0 • 

J=lsi 

(4-2-11) 

Here E8 is the total tangential electric field on the conductor, and Ens is the incident tangential 

electrical field on the thin target. Likewise, H is the total magnetic field and Hn is the incident 

magnetic field at the point of observation. g8 (r,r0 ) and g(r,r0 ) are the Green's dyadic func-

tions relating the tangential current distribution on the target with the electric field everywhere. 
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The conductance t(r) is the conductivity-thickness product, which is assumed to be a constant 

over each thin sheet conductor. 

4.2.2 Numerical solution 

Both the incident fields Ens and Hn and the Green's dyadic function g and gs are related 

to the dipole fields in a layered medium (3 layers considered here) and are easy to evaluate 

(Weidelt 1981; Johansen et al., 1979; and Lajoie et al., 1976). After the thin conductors are 

discretized and Ens and gs are calculated, equation (4-2-10) is discretized and solved for Es, 

which is then used in equation ( 4-2-11) together with the calculated Hn and V 0 xg to obtain H 

at the receiver sites. For easy reference, the mathematical details needed for the numerical 

evaluation are provided in Appendix C.5. 

4.3 Verification of the program 

Both numerical and physical modeling verification is done to ensure that the developed 

code is accurate. 

4.3.1 Numerical checks 

The model used for the numerical verification is shown in Figure 4-3-1 and is symmetri­

cal with respect to the plane defined by the two boreholes. Two identical thin conductors are 

embedded in a conductive half space of conductivity 0.01 S lm. An overburden of conduc­

tivity 0.02 S lm and thickness 20m covers the half space. The two thin targets are discretized 

into the same number of cells (8x8 on each). Their conductance is 10 S each and their dip 

angle is 45°. An operating frequency of lK Hz is used. A cross-hole parallel source and 

receiver pair moves down along the boreholes. The source is a vertical magnetic dipole of unit · 

moment. The other parameters are indicated on the illustration. One of these parameters will 

be varied in each case to define the computational accuracy. The secondary magnetic field is 

measured in Ampere/meter. 

We know that if the mathematical and numerical approach is correct, then as the number 

of divisions on each conductor increases, the results should converge. Figure 4-3-2 shows the 
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results for different numbers of divisions, NaxNb with Na and Nb denoting the number of 

cells in the strike and dip directions respectively. It is found that as N ax N b varies from 4x4 

to 6x6 to 8x8, the horizontal and vertical magnetic field responses converge. There is almost 

no difference between the 6x6 and the 8x8 curves. Generally, the minimum number of divi­

sions depends on the conductor size as compared to the background induction number or the 

operating frequency and the host rock conductivity. The cell size should be smaller than the 

shortest distance between the source and target or between the target and receiver. 

We next verify the reciprocity. Figure 4-3-3 shows the same model but two different 

sources are used. The symbol "~" marks denotes the data profile for the horizontal magnetic 

response in the right hole for a vertical magnetic dipole (VMD) source on the left. While "+" 

symbol is used for the vertical magnetic response seen in the left hole for a horizontal mag­

netic dipole (HMD) source on the right. It is found that both curves niatch closely. 

Yet another way of checking the computational accuracy is by reducing the separation of 

the two targets. Ih the limit, the EM response should be the same as that of a single conductor 

with a conductance that equals the sum of the conductances of the two. Here both targets 

move toward each other, starting at a horizontal separation of 30 meters, while the dip angle 

and the other parameters remain fixed. It is evident that the response shown in Figure 4-3-4 

for two conductors with a horizontal separation 0.4 meters matches very well with that of a 

single conductor of conductance 2x10 S positioned between them. These results verify our 

expectations. 

Numerical checks are also made against the PLATE program by Dyck et al. (1980) for a 

thin tabular conductor in free space. Figure 4-3-5 shows one of the cases compared. The 

model consists of a thin conductor of 100 by 100 meters and is symmetrical about the plane 

defined by the boreholes. The target conductance is 1.0 S and the operating frequency is 1.0 

KHz. A unit moment magnetic dipole source is fixed in one hole at a depth of 50m while the 

secondary magnetic field profile is taken in another hole. In this comparison, the target is 

divided into 10 by 10 cells in our program. While in the calculation of the PLATE program 

four eigen-currents (Dyck et al., 1980) are used to approximate the induced current in the tar­

get. A good match between these two sets of results is obvious. 
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4.3.2 Comparison with physical modeling 

In addition to the numerical verifications, we also carried out some scale modeling checks 

for conductors situated in free space. The target material in the physical scale modeling is 

made of lead. The scaling factors between the parameters of a full scale system and those of 

the scale model are the same as before (cf. Chapter 4). 

f If'= 111; Ill' = 2000/1 ; 

where f, a and 1 are correspondingly the frequency, conductivity and characteristic dimension 

of the full scale system while f ', a' and 1' are those in the physical scale model. 

The full scale system consists of either one or two thin conductors of 300 by 300 meters 

and is symmetrical about the plane defined by the boreholes. Each target has a conductance of 

4.1 S. The operating frequency is 3K Hz. The model geometry is shown in the illustrations of 

the comparison between the numerical and physical modeling results. Figure 4-3-6 shows the 

. results for a single conductor while Figure 4-3-7 contains the data for two thin conductors of 

same size and conductance. Both illustrations show that the numerical and physical outcomes 

match each other quite well, so that we conclude that the developed code is both accurate and 

efficient. For 20 cross-hole source-receiver combinations and a model with two thin conduc­

tors buried in a conductive half space with an overburden the computational time is about 60 

seconds on an IBM3090 computer. It is about 30 seconds for conductors situated in a homo­

geneous whole space. More importantly, the developed forward modeling program allows us 

to calculate numerical data in realistic multi-target situations. 

4.4 Source-receiver array configuration effects 

As shown in the previous Chapter, the source-receiver arrays chosen are critical in col­

lecting the necessary information for data interpretation. Let us now briefly examine this for 

the finite thin conductor case. Only a vertical magnetic dipole source and vertical magnetic 

field measurements are considered because of the borehole orientation. The basic model inves­

tigated has one or two thin vertical conductors between two boreholes separated by 150 meters. 

The targets are perpendicular to and symmetric about the plane defined by the boreholes. Each 

conductor has a strike length a= 150 m and dip length b = 100 m and a conductance 't= 1 S. 
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The whole space background conductivity is assumed to be 0.01 S lm. An operating frequency 

of 10K Hz is used. Note also that the secondary magnetic field shown in the following figures 

are normalized by the amplitude of the whole space field. 

4.4.1 Cross-hole parallel transmitter and receiver 

The first combination studied is for the cross-hole source-receiver moving in parallel 

down the two boreholes (Figure 4-4-1). The magnetic response is normalized by the amplitude 

of the primary vertical magnetic field at the receiver. It is found that the two cmves 

corresponding to a source-target separation (X8 ) of 50 m or 100 m are identical because of 

reciprocity. For a target at X8 = 75 m, the response is still about the same as at the two previ­

ous positions. This source-receiver combination is thus insensitive to the lateral position of the 

target. Nevertheless, the anomaly defines its vertical position quite well. 

The above example is for a single conductor. Now suppose there are two parallel identi­

cal thin conductors between boreholes (Figure 4-4-2a). Can the cross-hole measurements indi­

cate the changes in the target separation? The secondary magnetic response normalized by the 

primary field amplitude for vertical thin conductors separated either 50 m or 30 m is plotted in 

Figure 4-4-2b. It is clear that the difference for these two target separations is small. Thus the 

parallel source-receiver array is again insensitive to the lateral variations in target position. 

4.4.2 Cross-hole fixed source and moving receiver 

Let us look at a model (Figure 4-4-3a) with a fixed dipole source in one hole and a mov­

ing receiver in the other. The model parameters are shown in the illustration. The amplitude 

of primary field at the source level is chosen as the normalization factor. Although, the max­

imum peak-to-peak amplitudes are the same for source-target separation of either 50 or 100 

meters, the curve shapes are different. In general, the response for a target closer to the source 

has a wider shape. This example shows that the anomaly shape is very important in data inver­

sion. The outcome suggests that if we use several fixed source positions and take measure­

ments along another borehole, it is possible to resolve a single target. 
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When there are two targets present, however, and their separation is varied as shown in 

Figure 4-4-2, the fixed source and moving receiver cross-hole configuration does not result in 

any significant change in the magnetic anomaly. The normalization factor is the primary field 

amplitude at the source level in the receiver borehole. These results tell us that even when one 

uses all the cross-hole source-receiver combinations it may still be difficult to resolve conduc­

tors which shield each other. 

4.4.3 Source and receiver in tandem 

It has been shown that the cross-hole source-receiver configuration is not very sensitive to 

lateral conductivity variations. However, if both the source and receiver are in the same 

borehole, the observed electromagnetic response related to the targets is much more dependent 

on their lateral position. Figure 4-4-5 is an example for a source-receiver pair with a 15 m 

fixed vertical separation moving in a single hole near a vertical conductor. As the borehole­

target distance varies from 50 meters to 75 meters, a significant change in the response is 

observed. One might also notice that the imaginary component shows a much smaller change 

than its real component does. This phenomenon differs from the secondary EM field of a target 

located in free space where both components change at similar rate as the conductor moves 

away. In this illustration, the imaginary component is mainly due to the phase shift by the con­

ductive background. In general, there is no way to predict whether one component will show 

less variability. 

For two parallel conductors of 30 m or 50 m separation (Figure 4-4-6), the computed 

responses also differ clearly. These changes are mainly related to the distance of the nearest 

conductor to the source-receiver borehole. Thus as shown above, to increase lateral resolution 

the back -scattered fields should also be measured. Since the curve is normalized by the primary 

vertical magnetic field of a source only 15 meters away, the relative secondary response is very 

small although its absolute value is of the same order as that for the cross-hole cases. 

The effect of different operating frequency in the single hole case is illustrated in Figure 

4-4-7 using the same model as that shown in Figure 4-4-5 for a single vertical conductor with 

the source-receiver in the same borehole. The target is either 50m or 75m away from the well. 



110 

Two frequencies of IOK Hz and 5KHz are used. The amplitude of the secondary magnetic 

response is normalized by the amplitude of the primary field at the receiver site. It can be seen 

that the contribution from a distant conductor is relatively larger at the lower frequency. Thus, 

in order to achieve necessary resolution, use of multiple operating frequencies may be advis-

able. 

Conclusions about the array arrangements and operating frequency for this three dimen­

sional situation are the same as those in section 3.2.3 where the cylindrical symmetry model 

are investigated through a number of numerical experiments. Since the discussion is limited to 

a few examples, more mathematical approach is going to be taken next. 

4.5 3-D electromagnetic tomography 

The inverse problem for any three-dimensional target based on the data collected from 

one or two boreholes is under-determined and is also much more complicated than its two­

dimensional counterpart. The situation is somewhat similar to the elastic problem in the 

seismic method although here one only needs to solve for a single unknown (electrical conduc-

tivity) instead of the multiple parameters (density and Lame constants) in the seismic method 

(Beylkin and Burridge, 1989). In this section, we will start with the assumptions that there are 

two arrays of source and receiver boreholes arranged parallel to each other as shown in Figure 

4-5-1 and that the measurements are taken for all crosshole source-receiver combinations. A 

three-dimensional inverse solution is then derived under the weak scattering approximation. and 

by assuming the target to be short. Then, with an additional far field approximation, an 

inverse solution can be found for the crosshole (two borehole) array. 

4.5.1 Tomographic analysis under the weak scattering approximation 

A Cartesian coordinate system is chosen with the z-axis along the vertical borehole, while 

x-axis and y-axis are in horizontal (Figure 4-5-1). Following similar steps to those outlined in 

the previous chapters, an integral equation is first established. From Hohmann (p318, 1988), 

the electric field E(r) for a general three-dimensional problem satisfies 

E(r)= EP(r)+ J g(r,r')-(a---o0 )E(r')dv', (4-5-la) 
v 



·~ . 

111 

where EP is the primary field, g is the Green's dyadic function, cr is the conductivity distribu­

tion and 0'0 is a constant background conductivity. The integration is carried out all over the 

space with respect to the coordinate variable r'. After introducing the secondary field 

Es ( = E- EP ), the above equation becomes 

Es (r) = J g (r, r')·( O'--Q'0 )E(r') dv' . (4-5-lb) 
v 

To derive the integral equation for the secondary magnetic field, one only needs to take the 

curl with respect to r on both sides of equation (4-5-lb) and also make use of the relation in 

equation (2-1-lb). Thus we have 

Hs(r)= Jgu(r,r'}(cr--<r0 )E(r')dv'. (4-5-2) 
v 

The Green's dyadic function gu is related to the magnetic field in a homogeneous whole space 

generated by an electric dipole source pointing in one of the three coordinate directions and 

can be found from Ward and Hohmann (p174, 1988). 

Gxx = 0; (4-5-3a) 

(4-5-3b) 

(4-5-3c) 

(4-5-3d) 

Gyy = 0; (4-5-3e) 

(4-5-3t) 

Since in the borehole we measure the magnetic field, the following discussion will con-

centrale on equation (4-5-2). After applying the Born approximation, 

E(r') = EP (r') , 
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under a weak scattering assumption, equation (4-5-2) becomes 

Hs(r)= J gH(r,r')·(O"-o0 )EP(r')dv'. (4-5-4) 
v 

For a vertical (in z-direction) magnetic dipole source excitation, the primary electric field 

in a homogeneous medium is (Ward and Hohmann, p176, 1988) 

(4-5-5a) 

(4-5-5b) 

Ef=O, (4-5-5c) 

Therefore, the secondary magnetic field at point r8 or (x8 ,y8 , z8 ) due to a source at rs or 

(xs•Ys•zs) can be rewritten from equation (4-5-4) to read, 

Hs (r8 , rs)= f (cr-o0 ) [xGxyEj+yGyxEf+z(GzxEf+GzyEj)] dv . (4-5-6) 
v 

Since the borehole condition usually only allows the measurement of the vertical magnetic 

field, we will mainly study that component. 

H:(r8 ,rs)=J(cr-o0 ) [GzxEf+GzyEf] dv. (4-5-7) 
v 

With the introduction of equations (4-5-3) and (4-5-5), the above equation can be. expressed as 

(4-5-8) 

Now taking the Fourier transforms with respect to z
8 

and zs and denoting the 

corresponding Fourier domain wave numbers with k
8 

and ks, we have 



where 

a <2> a <2> + -=;-Ho (r8 y8 )-::;-H0 (r8 "(8 ) ]dv, 
ox8 ox 

'V2 k 2 k 2. 
lg = 0- g ' 
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(4-5-9) 

(4-5-lOa) 

(4-5-10b) 

and H J2> is the zero-th order Hankel function of the second kind. In deriving equation (4-5-9), 

an identity given in Gradshteyn and Ryzhik (fonnula 6.616.4, p710, 1980) is applied. 

After taking Fourier transforms with respect toYs and y8 and making use of the relation 

given in equation (2-2-7b), equation (4-5-9) finally becomes 

(4-5-11) 
v 

where the object function 0 (r) is defined as before, 0 (r) = 1-ala0 , and kys and ky
8 

are the 

Fourier domain wave numbers corresponding toYs and y8 respectively. The wave number k2s 

and k 28 are defined as 

k 2 = y2 _ IE 2 . 
2s S '"YS ' (4-5-12) 

If the following substitutions are made, 

(4-5-13) 

the object function 0 (r) can be derived from the inverse Fourier transforms in ky and kz and 

the inverse Laplace transfonn in sx of equation (4-5-11). Numerically, however, this is impos­

sible because of the instability of the inverse Laplace transfonn. Nevertheless, from this 

expression we see that the inversion characteristics are the same as the previous 2-D Cartesian 

and cylindrical symmetry models except that there is one more variable. 
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4.5.2 Solution with an additional far field approximation 

Usually only one or two boreholes are available and obviously then the inverse problem 

is nonunique. Nevertheless, if suitable assumptions and constraints are applied the conductivity 

distribution on the plane defined by the source-receiver boreholes can be determined. Equation 

(4-5-9) can be cast into the following form after taking the derivatives, 

where 

n, . -t(Y-Ys ) 
'l's=Slll --; 

rs 
n, . -t(Yg-Y) 
'l'g=sm --. 

rg 
(4-5-15) 

Under the far field approximation, the above equation is simplified by using the following 

relationship (Stinsop, 1976) 

if x ~ oo and lx I » n . 

Now, we have 

(4-5-16) 

Since there is no control in the y-direction, some assumption must be made in order to make 

the inverse solution unique. Let us assume that the anomalous conductor is located between 

the source and receiver boreholes and that it is not too close to either the source or the receiver 

borehole (Figure 4-5-2). The target extension in the y-direction is also assumed to be small 

when compared to the borehole separation. Therefore, 

's:::: X; 

1 2 
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Under these conditions and after the integration with respect to y, the vertical magnetic ano-

maly is 

(4-5-17) 

where 11y is the width in y-direction within which the target is located. x8 is the borehole 

separation while Xs is zero. The integration is carried out on the x-z plane. 

Equation (4-5-17) is again familiar to us because it is similar to equation (4-4-10) for the 

cyHndrical symmetry case or to equation (2-2-8) for the 2-D Cartesian model. The only 

difference is a geometric factor. Thus, the remarks made in chapter 2 regarding the wave 

number domain coverage of the object function 0 (r) are equally applicable to this three­

dimensional case. The wave number analysis also verifies the conclusions drawn from the 

numerical experiments discussed in the previous section. Studies of other source-receiver 

configuration can be carried out similarly and their wave number domain coverage and resolu­

tion can also be examined. 

The above discussion for a finite target of small strike extent is only one of the models 

that one can use to make the solution unique and stable. I conjecture that other assumptions, 

such as that the target has infinite extension in the y-direction, should also provide a good 

solution. The main idea behind the geometrical factor correction is to get rid of one space vari­

able such as they-axis in a 3-D Cartesian geometry or the azimuthal dependence in a cylindr­

ical symmetry geometry. The geometrical difference between the 2-D line and 3-D point 

dipole sources is the main reason for this approximation. A similar approach can be found in 

seismic applications as shown by Esmersoy (1986), Bleistein (1984) and the others. 
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4.5.3 Numerical examples 

The expression given in equation (4-5-17) is similar in form to those for the 2-D Carte­

sian or the cylindrical symmetry models except for the different weighting factor in the wave 

number domain transform of the measurements. Thus, one can take advantage of the 

developed codes in the previous chapters to solve for the 3-D conductivity distribution. Of 

course, only the conductivity distribution on the plane defined by the source-receiver boreholes 

will be presented. Anything more than that would be unrealistic without any further assump­

tions or additional knowledge of the target parameters. 

Rewrite equation (4-5-17) for the 3-D far field approximation, 

and also rewrite the equation (2-2-11) for the 2-D Cartesian model, 

(4-5-18b) 

Therefore, the factor for the geometric correction to be used with the 2-D algorithm and 3-D 

data is 

(4-5-19) 

The model for the numerical calculation consists· of a dipping conductor of finite size 

(lOOm x 80m) buried in a homogeneous background of conductivity 0.01 S lm. The thin target 

has a conductance of 0.1 S. Higher conductances are chosen later to show the validity of the 

weak scattering approximation. The conductive target is symmetrical about the plane defined 

by the two vertical boreholes. An operating frequency of 10KHz is used. The synthetic data 

is generated with the numerical program discussed earlier in this chapter. Vertical magnetic 

dipole (VMD) sources are placed in one hole and the vertical magnetic anomaly is measured in 

the other one which is 100 meters away. The number of sources and receivers is 32 x 32 with 

all possible cross-hole source-receiver combinations. Both the Born and Rytov reconstruction 

methods are tested. 
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After applying the correction for the geometric factor, the two dimensional inversion 

scheme is applied to invert the data generated by our 3-D thin conductor modeling code. We 

also assume in equation (4-5-17) that l:!.ylxg = 1.0. Figure 4-5-3a shows the model of the dip­

ping conductor. Inverse solutions for the conductivity distribution are given in Figure 4-5-3b 

and c. These results provide reasonable estimates of the target. The residual variance for the 

inversion is 12.4 for the Rytov and 13.8 for the Born method of approximating the fields on 

the conductor. 

To reduce the dimensionality of the problem, other correction factors for geometric 

spreading can also be used under various assumptions for the target extent in the strike direc­

tion. The geometric difference between the 2-D line and 3-D point dipole sources is one of the 

main concerns for this approximation. Therefore, one may also use the correction factor 

appropriate to the cylindrically symmetry model, which uses dipole source, with the 2-D Carte­

sian coordinate inversion to obtain a solution for the 3-D case. By doing this, one also saves 

the trouble of setting the value l:!.y lxg in equation (4-5-17) or in the correction factor of equa­

tion (4-5-19). 

In Figure 4-5-4 and latter, the same 2-D inversion method is used but with a different 

correction factor (equation 4-4-15) which is derived for the cylindrical symmetry model. Fig­

ure 4-5-4 shows the inversion results for the Born approximation reconstruction for three 

different dipping conductor models (13= 0°,45°, 90°). Similarly, Figure 4-5-5 shows the out­

comes for the Rytov approach. Both approximations result in a reasonable representation of the 

original model. Nevertheless, one should notice that the part of the target closer to the source 

borehole is not reconstructed as well as the far side of the conductor. These might be caused 

by the invalidity of the far field approximation when the target is actually close to the source. 

The statistical measures are also calculated for the above models. First the residual vari­

ance is calculated and is shown in the following table. 
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Table 4-5-1 Residual variance of the Born and Rytov models 

B= oo B= 450 B= 90° 

Born 0.3133 0.3792 0.3958 

Rytov 0.2916 0.2049 0.1961 

In all these cases, the Rytov method has smaller residual variance than the Born method which 

tells that there is a better data fit for _the Rytov method. The standard deviation for the Born 

and Rytov solutions is calculated and shown in Figure 4-5-6. Together with what we have 

already seen in the residual variance analysis, it is clear that the Rytov approach is superior. 

The B = 45° case in Figure 4-5-4 and -5 corresponds to the model in Figure 4-5-3. One 

can visually notice that there is some improvement in the inversion result by using the present 

. correction method. If one looks at the residual variance for the B = 45° case in the in Figure 

4-5-3, -4, and -5, it is evident that the second approach to the geometric factor correction is 

better. 

Models with two thin conductors are also used to study the target resolution in the hor­

izontal or vertical directions for the cross-hole source-receiver array arrangement. The two tar­

gets are parallel to each other and are 40 meters apart. Figure 4-5-7 is for the Born and Rytov 

images of two horizontal sheet conductors. The images of two dipping ( 45°) conductors are 

shown in Figure 4-5-8. Those of two vertical conductors are presented in Figure 4-5-9. For 

the horizontal and dipping target cases, good estimates of model parameters are obtained 

except for the side near the borehole due to the limitation of the far field approximation. How­

ever, the resolution for two vertical conductors shielding horizontally each other is very poor. 

The deteriorated quality is mainly due to the poor wave number domain coverage of the object 

function in the horizontal direction under the cross-hole geometry. 

A higher target conductance is used next and the outcome of the inversion is shown in 

Figure 4-5-10 and Figure 4-5-11. In Figure 4-5-10 a target conductance of 1.0 S is used while 

in Figure 4-5-11 the conductance is 2.0 S. In these two cases, the Rytov method yields images 

with nearly correct position and conductance. On the other hand, the Born approximation 
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solution gives quite poor quality. As the conductance further increased, both methods fail. The 

Rytov method is valid up to a conductance of 't = 2.0 S but the Born method has a much lower 

range of validity. 

It should be pointed o_ut that the weak scattering approximation applied in the 3-D inver­

sion implies that the channeling current is dominant over the induced current in the target. The 

assumption is valid for targets situated in a conductive background (Newman et al., 1989). Pre­

caution must be taken if one wants to solve for targets situated in a resistive host rock because 

the current in the target is inductive and its pattern is totally different from that of channeling 

current. 

In all the examples shown above, the Rytov method has a smaller residual variance and 

standard deviation than the Born method. These inversion results also show that the theoretical 

analysis in the previous section is valid. There is poorer resolution in the horizontal direction 

than that in the vertical for the cross-hole source-receiver configuration. It is also found that 

the two-dimensional inversion scheme is applicable in the cases of three-dimensional target and 

source if an approximation is made to correct for the geometric factor. 
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Chapter 5 
Conclusions and recommendations for further research 

5.1 Conclusions 

Integral equations can be solved numerically to model the cross-hole audio-frequency 

electromagnetic response of three types of conductive targets. The conductors considered are 

two-dimensional with Cartesian or cylindrical symmetry geometry. A more complicated situa­

tion involving finite size thin sheet conductors embedded in a conductive space can also be 

modeled. Both numerical and physical modeling checks reveal that the code accuracy is satis­

factory. Forward modeling serves two purposes, it furnishes the necessary synthetic data for 

inversion studies and provides an understanding of the inverse problem. 

Once the three forward modeling codes are available, the inverse problem can be investi­

gated using a tomographic method which, by analogy with acoustic diffraction tomography, 

we have named electromagnetic diffusion tomography. Since the target (fracture) zones under 

consideration have small electric conductance or thickness-conductivity product, a weak scatter-

ing approximation (Born or Rytov) can be applied to simplify the problem. Under this 

assumption, the target resolution of the audio-frequency electromagnetic method can be exam­

ined through numerical experiments and by investigating the wave number domain coverage of 

the object, or conductivity, function. The target detectability is found to be related to the 

source-receiver array arrangement and the source operating frequency. 

For 2-D Cartesian geometry, the wave number domain coverage for various source-

receiver configurations is similar to that seen in the acoustic diffraction tomography (Devaney, 

1984; and Wu and Toksoz 1987). However, due to the diffusive nature for the audio­

frequency electromagnetic field in an electrically conductive medium, the coverage in the EM 

case is much lower than that for the acoustic problem. The wave number domain analysis tells 

us that the inverted conductivity image is extremely band limited in the wave number domain. 

.. 
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For cross-hole source-receiver configuration, the horizontal coverage is much smaller than the 

vertical coverage and thus the space resolution in the lateral direction is poorer than that in the 

vertical. The maximum lateral coverage is related to the operating frequency used. One 

should use the highest frequency whenever possible. Also, the lateral resolution can be 

enhanced greatly if one uses both the cross-hole and single-hole measurements. 

The wave number domain coverage also reveals that target characteristics, such as the dip 

angle of the thin conductors considered in most of the numerical experiments, should be prop­

erly recovered since there is no rotation or shift in the wave number domain. The distortion 

due to the incomplete coverage (missing high wave number) only makes the image blurred. 

Because of the narrow band of coverage of the object function in the wave number 

domain and in order to enhance and stabilize the inversion result, constraints should be used 

whenever possible. On the other hand, if no prior information is imposed on the inversion 

process, one should always solve for the smoothest image because any rapid change is artificial 

and unstable. In order to incorporate the constraint that the target is more conductive than the 

background, the derived explicit solution for the object function can not be used. Instead, the 

integral equation relating the secondary response and the unknown conductivity is discretized 

to form a linear system of equations. Then a constrained least squares method or a quadratic 

programming algorithm can be used to obtain the inverse solution. 

Under an additional far field approximation, the 2-D cylindrical symmetry and the 3-D 

models are found to have the same inversion characteristics as the 2-D Cartesian model. After 

a correction of the geometrical factor, the 2-D inversion methods are applicable to these more 

complicated situations. 

Numerical experiments with different target geometries demonstrate the results with the 

cross-hole source-receiver configuration and the combined cross-hole and single-hole source­

receiver arrays. It is also found from the numerical calculations that the Rytov approximation is 

superior to the Born one. 
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5.2 Recommendations for future work 

Our inversion analysis is carried out under a weak scattering Born or Rytov approxima­

tion. In order to have wider application, it is necessary to extend the approach to a more gen­

eral situation involving higher conductivity contrasts. By analogy with the acoustic problem 

(Slaney and Kak, 1985), it may be possible for our weak scattering EM problem to be 

extended somewhat by using the Born series. Nevertheless, such an approach has its shortcom­

ings in convergence. Other conventional iterative inversion methods may be of help, however, 

at present, the large amount of computing time involved and the convergence problem may 

prohibit this approach from being widely used in routine data interpretation. 

In solving for the three-dimensional situation, both weak scattering and far-field approxi­

mations are applied. These approximations imply that the channeling current is dominant over 

the induced current in the target, as might be expected for a conductive background and a low 

conductivity contrast between the target and the background medium. If one wants to extend 

our technique to high resistivity background, a new algorithm must be developed to take care 

of both types of currents which cause a totally different EM response (Newman et al., 1989). 

The scheme for obtaining the conductivity distribution involves a matrix inversion, which 

is time consuming if there is a large number of unknowns. Therefore, techniques which do not 

demand matrix inversion would be preferred. The backpropagation algorithm (Devaney, 1982) 

used in the acoustic diffraction tomography might be one of the approaches that one might be 

able to use. Here, the difficulty lies in incorporating the necessary constraints to enhance and 

stabilize the EM inversion result. 

The numerical inversion analysis in this thesis principally deals with the cross-hole 

source-receiver configuration. Studies based on the back-scattered field (i.e. source and 

receivers in the same borehole) should be helpful in increasing the resolution. In that case, as 

indicated by the wave number domain coverage a multifrequency approach should be taken. 
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Appendix A 
Seismic tomographical methods 

Two general types of seismic tomographical methods are available. The first is ray 

tomography, which employs a straight ray optical model. The other is diffraction tomography, 

which utilizes either the Born or the Rytov weak scattering approximation. A brief review of 

both methods is given here to provide additional background for our treatment of the EM 

inverse problem. 

A.l Ray tomography 

Ray tomography was first applied in medical radiology and astrophysics. Early papers can 

be found from Bracewell (1956), Cormack (1963,1964), Bracewell and Riddle (1967), and a 

number of others. Later, it was adapted to seismic travel time data (Bois et al., 1972; Wang et 

al., 1983; and Peterson, 1986). By taking advantage of similarity between the physical 

phenomena involved, ray tomography has also been applied to study the high frequency elec­

tromagnetic problem in a highly resistive background medium (Dines and Lytle, 1979; Daily, 

1984) Seismic ray tomography relies on the well known fact that the time delay between 

transmitting and receiving a signal is related to the source-geophone separation and the sound 

velocity in the medium, i.e. distance = time x velocity or time = distance x slowness, where 

slowness is the reciprocal of velocity. 

For the cross-hole case (Figure A-1), the formation between boreholes is first divided into 

cells, or pixels. Under the straight ray optical assumption, the sonic wave traveling along the 

line connecting the source and receiver arrives at the geophone first. Thus for a single experi­

ment, i.e. for a particular source-geophone combination, there is a linear equation relating the 

measured time delay with the medium property along the ray path. 

where 

N 

I. Sjj !1 =Pi' 
j=! 

(A-1) 



siJ --- the length of the segment of the i th ray intersecting the j th pixel; 

fJ --- the averaging of the slowness (1/velocity) inside j th pixel. 

Pi --- the time interval for the i th source-geophone combination. 
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If we have M source-receiver combinations, for an imaging area of N pixels, a linear sys­

tem of equations can be obtained. 

where 

SF=P, 

S = [ siJ 1NxM, aN by M sparse matrix related to the geometry; 

F = [f 1,f 2, · · · ,fN ]r, anN element vector to be solved; 

P = [p 1,p 2, · · · •PM ]r, an M element vector from measurements. 

(A-2) 

Numerous studies to solve the linear system of equations with a sparse coefficient matrix 

have been done in medical tomographic applications (Gordon et al., 1970; Herman et al., 1973; 

Huesman et al., 1977; to name but a few). The most popularly used reconstruction method in 

seismic application is the algebraic reconstruction technique, or ART, which is an iterative 

reconstruction scheme (Peterson, 1986). Ray tomography, as discussed above, can be summar­

ized by the projection and backprojection theory (Macovski, 1983) with variations for specific 

applications. A very extensive review on this subject can also be found from Mersereau and 

Oppenheim (1974). 

A.2 Diffraction tomography 

The theoretical development of diffraction tomography was done by Wolf (1969) 

although the term 'diffraction tomography' was not used then. Contributions to this area are 

also from Mueller et al., 1978, Mueller et al., 1979, and Johnson and Tracy, 1983, among the 

others. Devaney (1984) first investigated its geophysical application in seismic exploration. 

Later, Wu and Toksoz (1987) compared acoustic diffraction tomography with holography and 

prestack seismic migration. Recently laboratory investigations of the method and comparisons 

with ray tomography were carried out by Lo et al. (1988). Diffraction tomography is more 

mathematically complex than ray tomography. The basic steps involved, however, are as fol­

lows. 
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First, an integral relationship is established between the measured secondary response and 

the acoustic property of the medium. In a source free region the acoustic pressure wave within 

a two dimensional acoustic medium satisfies the following scalar wave equation (Wu and 

Toksoz, 1987), 

ol V2 u(r)+ -
2

- u(r)= 0, 
C (r) 

(A-3) 

where u (r) is pressure, ro is angular frequency, and V'2 is the Laplacian operator. The two­

dimensional coordinate system is shown in Figure A-2. By decomposing u (r) into incident 

( u 0
) and scattered ( U ) waves, i.e. 

and defining object function 0 (r) as 

u(r)= u 0 (r)+U(r) 

c2 
O(r)= 1--0

-, 

C2(r) 

(A-4) 

(A-5) 

an integral relation between the object function and the measured secondary response can be 

derived. 

U (r) = - J k}O (r')u (r')G (r,r')d r', 
s 

(A-6) 

where k0 = ro!C0 and C0 is the reference background velocity. The integration is on the area 

of interest and G (r,r') is the two dimensional Green's function. 

G(r,r')=-! H0°>(k0 lr-r'l). (A-7) 

Here H y> is zero order Hankel function of the first kind. 

The second step is to assume that the inhomogeneity has a small contrast with the back­

ground medium. Thus Born approximation (u :::: u 0 =G) can be applied to equation (A-6). 

Let rs be the source position and r8 be the geophone position and assume unit source excita-

tion, 

U(r8 ,rs)= -k} J 0(r)G(r,r3 )G(r8 ,r)dr, 
s 

(A-8) 

where the change of notation from U (r) to U (r8 , rs) is for the clarity of coordinate relation. 
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Next, Fourier transfonns along source and geophone lines (i.e. with respect to zs and zg) 

are taken respectively as an example in the cross-hole case (Figure A-2). After denoting ks as 

the Fourier domain ~ave number along source line and kg as that along the geophone line, we 

have 

Where 

v2- k 2 k2. 
IS- 0- S ' 

2 k2 k2 
Yg = o- g · 

xs and xg are the horizontal coordinates of the vertical boreholes (Figure A-2). 

(A-9) 

(A-10) 

Finally, the object function can be reconstructed by double inverse Fourier transfonns. If 

the following substitutions are made, 

(A-ll) 

equation (A-9) becomes 

(A-12) 

Thus the object function can be derived by inverse Fourier transfonns in kx and kz on the left 

hand side of equation (A-12). 

(A-13) 

The inverse problem is then solved. Besides the mathematical elegance of equation (A-

13) in obtaining the object function, fonnula (A-11) provides the basis for studying system 

resolution. Since ks and kg can only have finite number of values, kx and kz are limited to 

certain values too. In addition, equation (A-10) tells us that k8 and kg must be smaller than or 

equal to k0 since kx must be real in order to take advantage of the inverse Fourier transfonn 

scheme. Thus the resolution, which is related to the highest Fourier domain wave number, is 

limited by k0 and the object function in wave number domain is band limited. In the cross­

hole case, the wave number domain coverage of the object function is shown in Figure A-3 

with the shadowed area being covered. It is obvious that poor resolution in the lateral direc­

tion (x-direction) is expected for this source-geophone configuration. 
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Appendix 8 
Instability of Laplace transform of band limited data 

It should be noted that the inverse Laplace transfonn of band limited data is very 

unstable. To show this fact, a simple 8 function is used. Let 

f(x)= 8(x-x0). 

According to equation (2-2-12a), its Laplace transfonn is F (s) = e -sxo. With the inverse 

Laplace transform expression in (2-2-12b), the function f (x) can be recovered from F (s ). 

't+ioo 

f (x)= -
1-. I F(s)esx ds 

2m 't-ioo 

't+ioo 

= _1_. I e<x-xo)s ds • 
2m 't-ioo 

where 't (:2!:0) is a constant and the integration is along the line Re (s) = 't. Make variable sub-

stitution, 

Then we have 

S='t+iy; ds=idy. 

+oo 

f(x)= _1_ J e(x-xo)t ei(x-xo)y dy 
27t -oo 

+oo 
(x-xo)t 1 J i(x-xo)ydy =e - e 

27t -oo 

(x-xo)t = e 8(x-x0) = 8(x-xo). 

However for band limited data 

't+i L/2 

f(x)= ~ J F(s)esx ds 
2m 't-i L/2 
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+LI2 
(x-x0)'t 1 1 i(x-x0)y dy =e - e 

21t - 12 

=e 
(x-x

0
)'t Sin((X-Xo)£/2) 

1t(X-Xo) 

The exponential term e (x-xo!t makes the inversion unstable and the unstability is integration 

path dependent (t dependent). Since the actual integration path (Figure 2-5-lc) for our appli­

cation is more complicated than the above one, precaution must be taken by incorporating con­

straints into the inverse process to stablize the problem. 
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Appendix C * 
Mathematical expressions related to 3-D thin conductors 

C.l Green's Functions aij in g(r0 1r) 

The Green's functions will be considered in a three layer medium. A Cartesian coordi­

nate system x 1, x 2, and x 3, is defined so that x 3 is perpendicular to the layer interfaces and x 1 

and x 2 are parallel to them. The upper half space, x 3<0, is air which has a null conductivity 

(cro= 0). The overburden, D >x3>0, has a conductivity of cr1 and the lower half space, x 3>D, 

of cr2• For source and receiver in the lower half space, the Green's functions satisfy 

and the tangential component of G and the normal component of crG at the layer interfaces are 

continuous. Decompose the Green's function into as and ai), so that 

i=1,2,3 and j=1,2,3 . 

Where as is the homogeneous whole space Green's function and is given by 

and ai} is given by 

1 1 ifl oo[ udu 1 oo[ udu a 11 = ----- qq/0(ur)- +- qvf0(ur)- + 
4rtki ax[ a2 47t ~ 

00 

+- (qljl-q$)[h(ur) cos $---l1(ur)]-, 1 [ 2 1 udu 
47t ur ~ 

* The mathematical expressions in this appendix are derived by following the method of Lajoie and West 
(1976). Some of the Green's functions are from a report by Weidelt (1981). Dr. K. Lee of Lawrence 
Berkeley Laboratory provided some of his personal notes to confirm the derived formula. 
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1 1 a2 
00

[ udu 1 
00

[ udu . 
G12= ---2 a a qr,lo(ur)- + -

4 
(qvt-qd!)J2(ur)- cos<!Jsm<!J, 

47tk2 x 1 x2 <X2 1t ~ 

1 1 a2 
00

[ udu 
Gl3= ---2 a a qr,lo(ur)-' 

41tk2 X1 X3 ~ 

1 1 a2 
00

[ udu 1 
00

[ udu . 
Gzl=---2 a a qr,lo(ur)- + -

4 
(qv-q 41).!2(ur)- cos<!Jsm<!J, 

47tk 2 Xz x1 ~ 1t ~ 

1 1 a2 
00

[ udu 1 OOJ udu G 22 = ----- qr,l0(ur)- +- qvf0(ur)- + 
41tki axf ~ 41t ~ 

1 1 a2 
OOJ udu 

G23= ---2 a a qr,lo(ur)-, 
47tk2 x2 x3 ~ 

l 1 a2 
OOJ udu 

G3z= --2 a a qr,lo(ur)-, 
47tk 2 x3 x2 ~ 

1 1 a2 
OOJ udu I OOJ udu 

G33= --
2

-
2 

qr,lo(ur)--- qr,l0(ur)-, 
41tk2 ax3 <X2 47t <Xz 

where 

(m=1,2), 

R= lr-r0 I , 

cos$= (x 1-x 10)/r , sin$= (x 2-x 20)/r , 



160 

and J 0(ur ), J 1 (ur) and J 2(ur) are the zero, first and second order Bessel functions respec-

tively. 

C.2 The Green's Function gs (r0 1r) 

To solve equation (4-2-10), the Green's function gs must be calculated first. Equation 

(4-2-8) is rewritten here in a simplified way 

with the unit vectors omitted. The expressions for GiJ (i=l,2,3; j=l,2,3) can be found in 

Appendix C. I. Two coordinate systems xi, Yi, zi and x1, Yi, z1 are introduced in the same 

way as the reference coordinate x 1, x 2, x 3. Then the xi, Yi• zi system is rotated horizontally 

by an angle Yi and the x1, YJ· z1 system by YJ· Supposing the sources are in xi, Yi• zi direc­

tions and the observations are made in x1, y1, z1 directions, then 

[ 

cosyi sinyi 0 l [ G 11 
= -sinyi cosyi 0 G 21 

0 0 1 G31 

G 12 G 13] [ cosy1 
G 22 G 23 siny1 
G32 G33 0 

-siny1 
cosy1 

0 

Next the coordinate system xi, Yi• zi or x1, y1, z1 is rotated along the axis xi or x1 by an angle 

~i or ~j so that the sources are in ai and si directions and the observation points are in aj and 

61 directions. The Green's functions with source in ~i direction or with the measurements in 

e.1 direction are not used, therefore they are not given in the following. 

= [ ~ 0 
cos~i 

GX;Yj 

GY;Yj 

GZ;Yj 
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More explicitly, we have G=G 0+G 1 with G 0 and G 1 given by 

where 

00 00 

1 [ udu A=- q¢10(ur)-, 
41t ~ 

1 r udu 
B= 41t 6q~0(ur) ~ , 

udu udu 
00 -- 00 

C= -· q¢1 1(ur)-- , 1[ ~ 
41t ~ 

D=- q~ 1(ur)-- , 1[ ~ 
41t ~ 



G= (D-C) cos2<!> , 
r 

H= [(A-B)+ (D-c)1.] cos<J>sin<l>, 
r 

a a a . -= -cosy· + -smy· , aaj ax J ay J 

a ac. A) a f.t a.f.t --=- -smy·COSp· + -COSp·Cosy· + -Stnp·, 
abj ax J J ay J J az J 

a ac. !3) a 
13 

a.
13 -=- -Stn"-'·COS · +-COS ·COS"'·- -Sin · 

a~ ax II I dy I II az I • 

Note that the above Green's functions can be rearranged into the fonn 

so that S and <1> are unrelated with __!_
2

• 
kz 

C.3 Incident Fields En and H11 

162 

(C-la) 

(C-lb) 

The same coordinate definitions as in section C.l are used. If both the source and 

receiver are in the lower half space, the incident electric and magnetic fields are as following. 

( 1) Grounded vertical electric dipole (G. V.E.D.) source of unit moment 

.. 
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k~ ~ } e- u2 u udu --- f--qq! 0(ur)- . 
R 6 k}: <X.z a2 

(2) Vertical magnetic dipole (V M.D.) source of unit moment 

k~ ~ 
r(xrx3o) 2 e- 1 J 2 udu 

Hnr= 
4 

(3+3k 2R+(k 2R) )-
4
- + -

4 
q"' 1(ur)u -. 

R 1tR 1t <X.z 

1 ~l u3 udu +- q"'0(ur)---. 
41t <X.z <X.z 

(3) Horizontal magnetic dipole (H.M.D.) source of unit moment 
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E = __ ~""o_ 3 30 (l+k R)-e __ i 0011 [x -x -k-fl 

11%2 41t R2 2 R 

C.4 Green's Functions Ha,b ( Ha,b=V'xGa,b ) 

The Green's Function Ha and Hb relate the induced current on the thin conductors to the 

magnetic response at the receiver. Similar to the coordinate definitions in Appendix C.l, for 

source and field points in the lower half space Ha,b(r0 /r) will be given by the following for­

mulas. 

~ ~ 

+ --:::~- qvfl(ur)- sm<t> + --:::~- qq/ 1(ur)- cos4>. 1 a [ udu . 1 a [ udu 
41t uX20 ~ 41t uX10 ~ 

1 a ~[ udu A 1 a ~J udu . A - --:::~- q~ 1(ur)- cos4>cosl-'- --:::~- qq/ 1(ur)- sm4>cosl-' 
41t uX10 ~ 41t uX20 0.2 



·• 

OC) 2 

1 l , , ( ) u udu . n.. • A +- qlj'l' 1 ur --- sm"'sml-'. 
41t ~ ~ 

1 x 1-x 10 -k-J? 
Hbx = -· -

3 
(l+k2R)e sin~-

2 41t R 
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1 a OC)! udu . 1 
00

! u 2 udu . - --- (q -q~).l 1(ur)- sm<t>cos~-- q¢1 1(ur)-- cos4>sm~. 
41t oxw 'I' ~ . 41t ~ ~ 

The definitions for cos<\>. sin<\>, ~. R , r are the same as before and ~ is the dip angle. 

The unit vector 6 is in the dip direction. a and t 1 are in the same direction. If they are 

different, a coordinate rotation must be made. 

C.S Numerical solution of the integral equations 

( 1) The tangential electrical fields on the conductors 

Equation (4-2-10) can be rewritten into, for the 4; component on the i th conductor in 

the strike direction, 

(C-2) 

where Ena. is given by Appendix C.3. Define J8 .= 'tE8 . as the tangential current on the j th 
I J J 

conductor and assume 

(C-3) 

with v= 0 on the four sides of each rectangular thin conductor. The tangential electrical field 

will be solved indirectly by solving for 'I' and 4> first. Thus, as was found by Weidelt (1981), 

the numerical error due to small ki or cr2 will be avoided. Putting equation (C-la) and (C-3) 

into equation (C-2), one arrives at 
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Then the critical tenn with ~ or -
1
- will be 

k2 0'2 

1 1IS 

= -1:J<I>a. d'Vj = 0, 
0'2 ·-1 J }- j 

where i1sj is the boundary of sj. Therefore 

(C-4a) 

and similarly the tangential electrical field in dip direction is 

(C-4b) 

Equation (C-3) gives 

(C-5a) 

(C-5b) 

where liai,n and !:JJi.m are the width and length of each individual cell on the rectangular tar­

gets. <Pi .m ,~~ or 'Vi .m ,~~ are the values of <1> or 'V on the grid point (m ,n) of the i th thin con­

ductor (Figure C-1). The electrical fields Ea;.mn and Eb; . .mn are taken as constants on each cell. 

•• 



It is also found that the substitutions 

{ 
<\>i,k,l + Ct; 

<\>i,.t,l -> <l>i.kJ + Cz; 
k+l even 
k+l odd 
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(c 1 & c 2 constant) 

will not alter the values given by equation (C-5). Therefore two of the <!>' s on each target can 

fiS 

be set to zero or any other values. The total number of independent <1> and 'JI is 'L2><N ai xN bi. 
i=l 

A linear complex system of equations for the potentials <1> and 'JI will be established from 

equations (C-4) and (C-5). After <1> and 'JI are solved, Es can then be derived from equation 

(C-5). 

(2) Solving for the magnetic fields at the points of interest 

Equation (4-2-11) can be rearranged as 

where 

are given by Ha. b-= VxGa. b· (Appendix C.4) with a,. and t 1 in the same direction. If a,. is 
J' J J' J 

not in the direction of t 1, coordinate rotations must be made for the magnetic fields from each 

conductor. The incident field H,. (r) is listed in Appendix C.3. 
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n n+1 

m 

m+1~--------------------~ 

(n, m) (n+ 1, m) 

.1 bm 

(n, m+ 1) (n+ 1, m+ 1) 

Figure C-1 The notations on one of the cells in calculating thin conductor EM response 
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Supplement 
List of the developed FORTRAN codes 

A list of the developed numerical codes are provided here. The details of the input 

parameters and output results are given in each program. 

(1) Program 'TWODSH' calculates the frequency domain electromagnetic response of 

thin conductors in a two-dimensional Cartesian coordinates by an integral equation approach. 

The targets are located in a homogeneous conductive whole space. Electrical line source is 

used. The output is the secondary electrical field. 

(2) Program 'T AHDCY' simulates the frequency domain electromagnetic response of a 

cylindrical symmetry medium. The target is located in a homogeneous conductive whole space. 

VMD source is along the axis of symmetry which is also the z-axis. The magnetic anomaly is 

solved by an integral equation approach. 

(3) Program 'SHEETS' calculates the electromagnetic response from multiple tabular 

conductors. The conductive targets are located in a homogeneous conductive half space with 

overburden on top of it. An integral equation approach is used in solving the magnetic anomaly 

excited by magnetic dipole source. 

(4) Program 'EMTOMO' computes the conductivity distribution of a two-dimensional 

medium under Born approximation. The target is assumed to be located in a homogeneous con­

ductive whole space (2-D). Electrical line sources are used and the input is the secondary 

electrical field. With an additional far-field approximation, this program can be used to com­

pute the conductivity images of 2-D cylindrical symmetry or 3-D situations with VMD dipole 

source excitation and the secondary magnetic field as input data . 

(5) Program 'TOM02H' computes the conductivity distribution of a cylindrical sym­

metry medium under Born approximation. The target is located in a homogeneous conductive 

whole space. Vertical magnetic dipole sources are along the axis of symmetry while the secon­

dary magnetic field is measured in another bore):lole or in the same one. 
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