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CAPILLARY SURFACES IN MICROGRAVITY 

Paul Concus and Robert Finn 

We present here a selection of older and newer results on capillary surfaces, which 

in our view complement each other and form elements of a new and developing theory. 

Although much of the material applies in general gravity fields, we have tried to emphasize 

the particular interest related to a microgravity setting, and the applications peculiar 

to microgravity. We have made no attempt at completeness. Our attention is directed 

naturally to matters on which we feel a special competence because we discovered them 

ourselves; beyond that, we have included work by others that has stimulated our interest 

and to which we could respond. Even in this limited context, much has been omitted 

in the interest of exhibiting clear lines of conceptual development. We have included 

almost no proofs. For readers seeking more complete understanding of the field or detailed 

information on particular points, we trust we have included enough references to provide a 

basis for a fruitful literature search. For those with a more casual interest as well as (and 

especially) for new initiates to the wealth of exciting and challenging problems that have 

appeared in the last decades and continue to appear, we hope to have provided a useful 

overview of significant features of the current state of the art. 

For the general notion of capillary surface and associated variational characterization, 

we refer the reader to [1, Chapter 1 ]. We restrict ourselves here to particular configurations. 

1. The capillary tube 

We consider a semi-infinite cylindrical tube of homogeneous material and general 

section, closed at one end by a base n, in a uniform gravity field g either zero or directed 

toward the base. We attempt to cover n by a volume V of fluid, making contact angle 1 

with the walls, and to characterize the resultant free surface S (see Fig. 1). We at first 
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Figure 1. Partly filled cylindrical tube with base n. 
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seek the solution as a "graph" z = u( x, y) over n and are led by the principle of virtual 

work to look for a stationary "point" for the energy functional 

(1) 

under the constraint 

V = i udxdy. (2) 

Here ~ is the boundary of n; (3 = cos 1 is the relative adhesion coefficient (wetting energy 

density) of the fluid on the walls, constant for homogeneous materials; 1\, = pg/u, where p 

is the density change across S and u the surface tension. The indicated direction for the 

gravity field corresponds tog > 0. The coordinates are chosen so that z = 0 corresponds 

to the base n. For details of the derivation, see, e.g., (1, Chapter 1]. 

The Euler-Lagrange equation. for (1) becomes 

div Tu = K,U + .A, \lu 
Tu = --;===~ 

vh + 1Vul2 
(3) 

inn, with 

v · Tu = (3 (4) 

on~; v is the exterior unit normal on~' and ..\ is a Lagrange multiplier corresponding to 

the constraint (2). 

To determine the constant .A, we integrate (3) over n, obtaining by the divergence 

theorem and (2) 

.Ainl = -1\,V + i v · Tuds, 

which by ( 4) yields 

(5) 

The symbols 1~1, 1n1, ... denote the length or area of the indicated geometric quantity. 

Here we note that if V is replaced by V + C, where C is a constant, then addition of 

C 11n1 to u yields again a solution of (3),( 4) under the (new) constraint (2); that is, once 

a solution for some V is known, then solutions for any V are obtained by rigid vertical 

translation. It is necessary to show that by choosing V large enough we will have u > 0, so 
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that n is covered by S. Clearly this can be achieved (by the indicated family) if and only 

if u is bounded below inn. We shall see that such a bound cannot always be achieved, 

even for relatively simple geometries, and thus that the problem is in many interesting 

cases mathematically ill-posed. 

We note that the left side of (3) can be identified as twice the mean curvature H of 

the surface S. Also, ( 4) states that S meets the cylinder walls Z over ~ in the constant 

angle I· Thus the problem posed by (3),( 4),(5) can be interpreted geometrically: we are 

to find a surface of prescribed mean curvature H(z), which bounds a prescribed volume V 

over the cylinder base n, and which meets Z in a prescribed angle I· 

1.1. The circular tube. Here we seek solutions with rotational symmetry about an 

axis. Even in this case, the question of existence of a solution with prescribed data is not a 

triviality; the first proof in the literature appears in Johnson and Perko (2], over 150 years 

after the initial estimates of Young and of Laplace for the center and meniscus heights of 

the (presumed) solution surface. 

In 1806, Laplace presented his celebrated estimate for the height u0 of the surface 

on the axis of a narrow tube of radius a. The estimate is equivalent to approximation of 

the surface by a spherical cap. In the volume-constrained case considered here we find, in 

terms of nondimensiomil variables U0 = ~u0 , V = ~V, and contact angle 1, 

1 1 2 1- sin3 1 
Uo~-V--+- _£[V;I]· 

n cos 1 3 cos3 1 
(6) 

Laplace offered no proof for the asymptotic validity of (6), and no indication of how small 

a must be for prescribed accuracy. The first formal proof of asymptotic correctness of ( 6) 

was given by Siegel (3]. In (4] the exp~icit bounds in terms of Bond number B = 1w2 , 

7r 
for all B, 0 :::; 1 < '2, 
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are established. Both inequalities reverse if r < 1::; 1r, with V replaced by -V. It should 

be noted that these bounds are strict, not merely asymptotic. It can be shown that (7),(8) 

are best possible, in the sense that 

= £[V ) cos 1(1 + 2sin 1) B O(B2 ) 
Uo ' 1 + 6(1 + sin1)4 + (9) 

uniformly in 1, as B---+ 0. 

Similar bounds are established in [5) and [6) for the height U1 on the contact line and 

for the "meniscus height" U1 - U0 • Siegel [7) has given bounds that hold throughout the 

trajectory 0 ::; r ::; a, although they are somewhat less exact at the end points. 

1.2. General sections~ If the system (3),( 4),(5) is to reflect reality, one should 

expect solutions to exist when containers have reasonable sections, other than that of the 

disk. This topic has been studied mathematically in considerable generality (see [1) for 

references). For simplicity, we restrict attention here to sections n whose boundaries L; 

consist of a finite number n of smooth curves that meet in well-defined corners P1 , ... , P n, 

with interior half-angles a 1 , ... , an. We note that the condition ( 4) cannot be prescribed 

at the Pj, since vis not defined at these points. Nevertheless, if g > 0 we obtain the general 

result that there is exactly one surface z = u( x, y) over n, such that (3) holds strictly in 

n, the given volume V is achieved, and (4) holds strictly on L; except at the {Pj}· This 

result was first proved by M. Emmer [8) under some restrictions. For greater generality, 

see [9) and [1, Chapter 7). 

Observe that uniqueness holds without growth conditions at the {Pj}· In this respect, 

the behavior of solutions of (3) differs strikingly from that typically encountered for solu

tions of linear problems, for which failure to prescribe boundary conditions at even a single 

point can lead to nonuniqueness. The nonlinearity in the present problem constrains the 

solution near the exceptional boundary points, even though no data are prescribed there. 

The uniqueness follows from a general comparison principle, which is central to the 

material that follows. We define N u = div Tu - 1w. 

CP: Suppose Nu ~ Nv inn, v ·Tv~ v · Tu on L;\{Pj}· There follows 

i) if"' > 0 then v ~ u in n,. equality holds at any point if and only if v = u in n, 
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ii) if 1\, = 0 then v(x, y)- u(x, y)+ const. inn. 

This statement is adequate for the applications to be made here. More general state

ments (and results) can be found in [10]. The crucial point is that the result holds without 

growth hypotheses at the exceptional points { Pj}. 

Application 1: Suppose n contains a corner of interior angle 2a, as indicated in Fig. 

2. Let v(x, y) denote a lower hemisphere, whose equatorial circle lies over r. Since div Tv 

is twice the mean curvature of the surface v(x, y), we have 

div Tv=~ (10) 

in the disk B 0 bounded by r; also v meets the vertical (planar) walls Z over ~* in the 

constant angle /o = f-a. Let u(x, y) satisfy 

div Tu = Ku, K > 0, (11) 

in n, with boundary angle 1 such that /o ::::; 1 ::::; 1r /2. Then v · Tv 2: v · Tu on ~* n B 0 , 

while v ·Tv= 1 on r n n. We observe that lv · Tul < 1 on r n n in virtue of the finiteness 

of IVul, and we choose~=~* u (r n n), {Pi} to be the three intersection points r n ~*. 

We adjust v by an additive constant, so that its minimum is v0 = ; 6 • We then have by 

(11) 

div Tv = ~ = KVo ::::; KV (12) 

and thus Nv::::; Nu inn n B 6 • From CP we find immediately u < v inn n B 6 • Similarly, 

u > -v. But v ::::; vo + 8 and there follows 

2 
lui< K-8 + 8 (13) 

throughout D n Bo. This inequality holds for any configuration for which 1 lies in the 

interval If- 11 ::::; a, including the end points. But outside that interval a very different 

behavior prevails. In fact [11, 12], if If - 11 > a there exist positive constants C, € such 

that 

I 
cos B - V k2 - sin 

2 B I E 

u- k < Cr, 
1\,j 

k = sma 
' COS{ 

(14) 
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near P, see Fig. 2. Thus, in this case, lul-t oo at P, and we see that there is a discontinuous 

change in behavior as If - 11 passes through a. 

The discontinuity can be used effectively for accurate measurement of contact angle, 

at least when If - 11 is not too large. Fig. 3 shows results of a "kitchen sink" experiment 

carried out by Tim Coburn in the Medical School of Stanford University, using distilled 

water between plates of acrylic plastic. A change (effected by hand) of about 2° or 3° 

in the half-angle between the plates, yielded the change in observed peak height at P, 

from slightly under the bound (13) when If- 11 ~ a, to over ten times that bound when 

If- 11 > a, thus leading to a preliminary estimate of between 78° and 81 o for the contact 

angle lwa between water and acrylic plastic. Coburn's procedure was repeated recently 

under more controlled conditions by Mark Weislogel at NASA Lewis Research Center. For 

his materials he obtained accurately repeatable results of lwa = 80° ± 2°. By comparison, 

he found the reproducibility of other, standard methods to be more strongly affected by 

hysteresis, with uncertainty several times as large. 

The accuracy of the above method decreases rapidly as If- 11 increases, since the 

critical opening angle then becomes large and the height changes become restricted to a 

small neighborhood of the vertex, where observations are difficult. This point is addressed 

in the considerations that follow. 

Application II: The above results are for g > 0. If g = 0, the corner effect becomes 

still more striking. In fact, if g = 0 and n contains a corner at which If- 11 > a, 

then there is no solution of (3),( 4) over n for any ..\. This can be proved very simply by 

applying the divergence theorem to (3) over a domain cut off by a segment rat the corner, 

using the boundary condition ( 4) on~*, and the bound ITul < 1 on r. If If- 11 > a, a 

contradiction is immediately obtained by letting r -t P, see [13]. 

What does such a result mean physically? To get a feeling for what happens, observe 

that when If- 11 > a and the boundary segments at the corner are long enough, a 

circular arc r of radius 1/.A can b; positioned in the corner to meet~* in angle 1 at both 

intersection points (see Fig. 4). The vertical (cylindrical) surface determined by r defines, 

in a limiting sense, a solution of (3) that fills the corner, and leaves the remainder of the 
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Figure 3: Discontinuous dependence on data: g > 0. (a) a ~ 12°, (b) a ~ go. 
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base uncovered. (No such configuration can be found when I¥"- 11 :::::; a.) It is reasonable 

to expect that actual solutions attempt to adopt that shape, to the extent permitted by 

the remaining geometry of the container. This view is supported by experiments made by 

W. Masica at the NASA Lewis Research Center Zero Gravity Facility, using a cylindrical 

container with hexagonal cross section. In this case, if I¥"- 11 :::::; a, a solution surface 

exists and can even be given explicitly as the spherical cap 

u(x,y;8) = uo =f (15) 

where 8 is the radius of the inscribed circle, and u0 is determined by the constraint 

L udxdy = V. (16) 

Fig. 5 shows the results of drop tower experiments, using identical acrylic plastic containers 

and two different liquids. In Fig. 5a the liquid is a 20% ethanol in water solution, for which 

1 ~ 48°, and there holds I¥-- 1 1 < a; here the expected spherical cap is obtained. In 

Fig. 5b the liquid is a 30% ethanol in water solution, for which 1 ~ 25°, and there holds 

I¥-- 1l > a ; the fluid now attempts to fill the corners, and climbs to the top of the 

container, meeting the top and the upper boundary walls in the prescribed angle. The 

fluid height over the remainder of the base is significantly lowered. 

This behavior is the key to the following observations [14]. Consider the domain of 

Fig. 6, bounded by two line segments and a circular arc of radius 8. We suppose g > 0 

and I¥"- 1 1 :::::; a. It can then be shown [9] that a solution of (3) exists, with data 1 on I:. 

We note that a hemisphere of radius 8/ cos 1 and center at 0 meets the bounding cylinder 

Z in the constant angle 1 (except at the vertex, where the angle is undefined). Applying 

CP in ways similar to that used above, we are led to the inequality 

v 8 ( vk2- 1) v 8 ( vk2- 1) 
IS11- cos1 1 - k < u(x,y;g) < IS11 + cos1 1 - k (17) 

throughout S1 when 0 :::::; 1 < 1r /2, and the same inequality with u -----* -u, 1 -----* ( 1r - 1) 

when ¥" < 1 :::::; 1r. To fix the ideas, consider the case 0 :::::; 1 < 1r /2. If V is prescribed in 

advance, the formal solution u(x, y; g) might be partly below the base n, which is physically 

11 
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Figure 5. Discontinuous dependence on data: g = 0. (a) a + 1 ~ 1rj2 , (b) a + 1 < 1r /2. 
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Figure 6. "Ice-cream cone" domain. 
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unacceptable. However, we see from (17) that by choosing V large enough so that the left 

side of (17) is positive, the entire surface can be made to lie strictly above n. We note 

further that (17) is independent of g and continues to hold as stated as g '\. 0, the surfaces 

converging in fact to the spherical cap indicated above. 

Now we suppose I f - 11 > a. In this case the fluid tries to fill out the corner (as 

indicated above), as g '\, 0; thus, if the cylindrical container is sufficiently high then the 

bottom n must become uncovered, except for a small neighborhood of P. In particular, 

u(O, 0; g) will violate (17) for small enough g. Thus, we have found a procedure for de

termination of contact angle, which does not require measurements in the corner. This 

procedure can be expected to yield great accuracy for values 1 reasonably distant from 0 

and 1r, perhaps in the range I f - 11 < 70°. 

Application Ill: As we have seen, when g = 0, surfaces u(x, y) satisfying (3),( 4) 

need not always exist. ExpliCit geometric criteria have been given only under restrictive 

conditions, cf., Theorem 8 in [15] and [16]. However, the following useful (indirect) criterion 

appears in [15], see also [1, Chapters 6,7]. 

Let R-y = IEII~Js-y. A solution of (3),( 4) inn exists if and only if, for every strict subarc 

r (inn) of a semicircle of radius IR-yl that meets~ with angle I at both intersection points, 

as indicated in Fig. 7, there holds 

(18) 

In many cases of interest there can be found (up to inessential displacements) only 

a finite number of curves r with the required properties, and thus the matter can be 

settled by examining a finite number of cases. Of particular interest are those situations 

in which (18) holds vacuously, in the sense that there is no r satisfying the conditions. 

That is the case, for example, regardless of 1, in the configuration of Fig. 8, bounded by 

two parallel lines and semicircles, and we are thus assured of existence, regardless of h, for 

that configuration. 

This situation changes dramatically if we consider instead the configuration of Fig. 9, 

bounded by two non-parallel lines and smoothly-joined circular arcs. We observe from (18) 

14 
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that to any domain n there corresponds a critical value 'Yo(n) of 1 (and the supplementary 

critical value 1r - 'Yo), such that a solution exists if If - rl < If - 'Yo I and fails to exist if 

If- 11 > If -'Yo I· For then of Fig. 8 we have 'Yo = 0 (or 1r ); nevertheless if we let a --+ 0 

in Fig. 9 we find lim 'Yo(n) = 1r /2. That is, when the sides are parallel, a solution exists 
a~o . 

for any 'Yi but if they are non-parallel, then the closer they become to being parallel the 

more solutions are excluded. This nonuniformity in behavior is illustrated by the curves 

in Fig. 10, relating the critical 'Yo in [0, f] to p for differing values of a. For the regions 

below and to the left of the curves, solutions do not exist. As a --+ 0 the curves tend to the 

entire upper and right hand boundary segments; but a = 0 yields only the indicated single 

point (1,0). (The depicted curves join piecewise linearly the tabular values calculated for 

increment 0.025 in p.) 

Application IV: The domains n* that appear when <l> = 0 for some r as above 

can be interpreted physically. As remarked above, solution surfaces over n exist when 

If - rl < If - 'Yo I· Letting 1 --+ 'Yo from within the range of solvability, we obtain a' . 

sequence u(n) of surfaces satisfying (3) with "' = 0; this sequence can be normalized to 

converge throughout n* to ±oo (according as 'Yo s ¥-) and throughout n\!1* to a solution 

u0 (x, y). Thus, we can consider u0 (x, y) to determine a "generalized solution" over n, 

that is identically positive infinite over n*. Such "solutions" were first introduced in a 

formal mathematical way by Miranda [17] and are basic for the general existence theory 

[1, Chapters 6,7]. 

Alternatively, we could have normalized the u(n) to converge to a solution inn* and to 

=j=OO in n\n*. These properties can be exploited in conjunction with particular geometries 

(chiefly modifications of that in Fig. 11) to obtain procedures for accurate measurement 

of small contact angles. For example, in Fig. 11 the fluid height becomes infinite in the 

shaded region when If - rl 2:: If - 'Yo I· This work is currently in progress; preliminary 

results are encouraging. 

Application V: What happens if we fix 1 and let g '\. 0 (or equivalently Bond number 

B '\. 0)? This question is of considerable importance for Application II. It is known that 

17 
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Figure 9. Domain with non-parallel sides and circular-arc ends. 
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Figure 10. Critical/ vs. p, for a= 85°, 70°, 45°, 20°, 10°, 5°, 2.5°, 1°, .5°, .1°, 
.01°, from lower left to upper right, For a = 0° the curves degenerate to the single point 
p = 1, /o = oo. 
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Figure 11. Two-circle domain. 
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for reasonably smooth n a solution uB- u(x, y; B) always exists when B > 0. Siegel [18] 

proved that whenever a solution u0 = u( x, y; 0) exists, then (under some restrictions) there 

exists a constant C such that iuB- u 0
1 < CB uniformly inn. Tam [19] later removed 

the restrictions, and also to some extent the requirement that u 0 exist. He showed that 

whenever !1* is uniquely determined there exist functions C1 (B), C2 (B) such that 

{ 
±oo in n*' acc::rding as /o s f 
solution in !1\!1* 

{ 
solution in n* 
=j=oo in !1\!1*, according as /o S f . 

This is the sense in which transition to zero gravity must be interpreted in general 

(practical) situations. 

2. Uniqueness and non-uniqueness 

Surfaces u( x, y) that satisfy (3),( 4) in capillary tubes are uniquely determined when 

g ~ 0, and provide an absolute minimum for the mechanical energy. This follows easily 

from CP above. Miranda [20] showed that any energy minimizing surface that covers n 
must in fact have the form u(x, y) (i.e., the surface cannot bend over itself if it minimizes). 

More recently, Vogel [21] showed that there can be no stationary (equilibrium) configura

tion distinct from the minimizer. Thus, capillary surfaces in cylindrical tubes are strongly 

stable configurations that cover the base simply. 

A drop of liquid of volume V resting on a horizontal plane (Fig. 12) is also unique and 

energy minimizing [1, Chapter 3, Note 3]. Now imagine the plane continuously deformed, 

through a family of convex surfaces, into the cylinder (Fig. 13). Does the liquid surface 

remain unique? In general, certainly not! Consider the configuration of Fig. 14, in which a 

conical base meets the right-circular-cylindrical wall in a 45° angle, and suppose 1 = 45°. 

If the cone is filled from the bottom until just below the juncture point, a horizontal surface 

at that height provides a solution, with the volume V of the cone. Now observe that any 

volume v+ > V yields a capillary surface meeting the cylinder walls. This surface cannot 

be horizontal in view of the 45° contact angle. If fluid is removed until the contact line is 

just above the juncture point, a congruent surface is obtained with volume v- < V. By 
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Figure 12. Sessile drop on a horizontal plane. 
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considerations of continuity, there must be an intermediate configuration distinct from the 

horizontal one, and with the same volume. 

This discussion can be modified so as to yield an entire continuum of equilibrium 

interfaces, all of which bound the same volume and have identical mechanical energy [22,23]. 

In this continuum, the horizontal surface has been shown to be unstable [23,24] and thus it 

is unlikely to be observed physically. Using these considerations, one can design an axially 

symmetric container, as close to a circular cylinder as desired, which when half filled with 

liquid admits a continuum of symmetric solutions, but for which no interface of minimizing 

energy can be symmetric [23]. In Fig. 15 the radial section is shown of such a container 

admitting a continuum of symmetric solutions for 1 = 60° and zero gravity, along with 

some of the solution surfaces. The procedure works in any gravity field, however the size 

of the container becomes small and the effects can be difficult to observe, except under 

microgravity conditions. 

3. Stability 

If g > 0 then the free surface in a capillary tube yields a global energy minimum 

and hence is stable. Under reasonable conditions, this will also be so when g = 0, but 

in some senses there can be exceptions. For example, in the configuration of Fig. 6 when 

I~- 11 =a the free surface is clearly unstable under small perturbations of contact angle. 

For a detailed discussion of the instability see Langbein [25]. 

Similarly, a liquid drop on a horizontal surface (sessile drop) is stable for any g :2: 0. As 

was shown above, if the support surface is curved, stability cannot in general be expected. 

For a horizontal support surface II with g < 0 (or equivalently with g > 0 and the drop 

contacting II from below) one obtains the "pendent drop", for which stability criteria have 

a long history (see, e.g. [1, Section 4.15]); we indicate here recent results of Wente [26]. 

To describe them, we normalize the equation to the form 

div Tu = -u (19) 

in terms of nondimensional variables ( .JfKT u -+ u, .JfKT r -+ r ). It can be shown [27] that 

for any prescribed u0 < 0, there exist global axisymmetric solutions for which u(O) = u0 ; 
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Figure 13. Fluid on a plane, in an "intermediate" container, and in a cylinder. 
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Figure 15. Radial section of a container (solid curve) with selected free surfaces 
(dashed curves) from the continuum having the same energy, contact angle, and enclosing 
the same liquid volume with the container. 1 = 60°, g = 0. 
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these solutions are bounded in volume, up to the horizontal contact plane with positive u, 

and (for large Ju 0 I) exhibit a succession of "bubble-like" shapes, see Fig. 16. Wente shows 

[26]: 

a) Suppose 0 < 1 < 1r. Then for any sufficiently small volume V, there exist stable 

drops that are convex and resemble spherical caps. These drops are generated by profile 

curves whose tip is at u 0 , where Juol is large. As V increases, so does u0 , until an inflection 

point is reached. This drop is stable. With further increase of V, uo decreases; the drop 

profile contains an inflection but continues in some interval to remain stable. Instability 

occurs prior to occurrence of a second inflection (see Fig. 16). 

b) If 1 = 0 all profile curves contain an inflection. The curves are generated by 

starting with the solution u _ 0, then letting u0 decrease and considering the portion of the 

curve up to the first maximum. The limit of stability is reached prior to the appearance of 

a vertical point, i.e., before Juol ~ 2.5678 (cf., [27]). 

c) For any angle of contact, the drop height zncreases monotonically with volume 

throughout the range of stability. 

Wente also establishes stability criteria for two other configurations, in which the fluid 

drop hangs from a fixed circular aperture, under conditions either of constant pressure (the 

nearly empty medicine dropper) or of constant volume (the filled medicine dropper). In 

the latter case he shows that stable configurations can occur in which both a bulge and a 

neck appear. Fig. 17 shows a verification of this behavior in the latter author's kitchen 

sink, with a drop of water (colored with soluble ink) suspended in ricinoleic acid, which has 

a density of about 0.95, so that a near neutrally buoyant (small Bond number) condition 

anses. 

If g = 0, then all sessile (or pendent) drops on a horizontal homogeneous support 

plane are spherical caps. That is also the case for the "medicine dropper" problem with 

circular orifice. If the orifice is not circular, one is led to a generalization of the classical 

Plateau problem for minimal surfaces: among all surfaces through a given closed curve 

C and bounding with a given surface through C a prescribed volume V, to find one that 

minimizes area. The solution (soap-bubble) is a surface of constant mean curvature H. 
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(a) (b) (c) (d) (e) (f) 

Figure 16. Pendent drop formation with increasing volume, 1 = 90°. The line seg
ments indicate the plane of support. Configurations (a)-( e) are always stable; (f) will be 
stable if the increase of volume from (e) is sufficiently small. 
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Figure 17. Stable pendent drop with neck and bulge. 
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An existence proof was given by Wente [29]. Wente also showed that for sufficiently small 

Bond number a pendent drop through the orifice and supported by C must exist [30]. 

Another stability problem that has attracted much attention is that of a liquid column 

(liquid bridge) of volume V joining two parallel planes of distance h in the absence of 

gravity. The problem can be traced back to Rayleigh [31], who studied the linearized 

stability of infinite liquid columns whose sections are circular and found energy-decreasing 

perturbations of period equal to the circumference. The column joining parallel planes , 

with contact angle 1r /2 , was studied independently by Athanassenas [32] and by Vogel [33]. 

These authors obtained, by different procedures, the result that any stable configuration is 

a circular cylinder; if V > ~h3 the cylinder is stable, if V < ~h3 it is unstable. We note 

that the onset of instability appears at half the cylinder length at which it occurs for the 

classical Rayleigh instability. That is because of the differing boundary condition, which 

allows a larger choice of perturbations in the present case. 

Vogel continued his study with a series of papers [34, 35, 36] investigating stability 

criteria for contact angle 1 =/= 1r /2, and also for differing angles 11 ,12 on the two planes. 

He found a remarkable diversity in the kinds of behavior that can occur. We summarize 

here some of the results. 

The drop is necessarily rotationally symmetric and described by its meridional distance 

f(x) from an axis, with x E [0, h]. f(x) must satisfy the equation 

for some constant H, and the boundary conditions 

f'(O) =-cot /1 , f'(h) =cot /2· 

The following two conditions suffice for stability: 

1) The Sturm-Liouville problem 

7/J - ).. . t, 
f(1 + f'2 )1/2 - 'f/ 

7/Y'(O) = 7/Y'(h) = 0 
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has exactly one negative .eigenvalue; 

2). There is a smoothly parametrized family f(x; E) with f(x; 0) 

1H E) = 1~( E)- 0, and such that 

H'(O)V'(O) > 0. 

f( x), such that 

Here H(E), V( E) are the mean curvature and volume of the drops in the family. Physically 

this means that volume increases with increasing pressure in the drop. 

If L('¢) has two or more negative eigenvalues or if H'(O)V'(O) < 0 then the drop is 

unstable. 

For sufficiently large V, a stable drop exists whose profile is uniformly close to an arc 

of a circle. 

If /I + 12 "# 1r then the family of all profile curves without inflections can be 

parametrized by H, with condition 1) above holding throughout the family. 

Every convex drop is stable. 

There exist stable drops with inflection points in the profile curve (and which are thus 

not convex). 

If Jf"(x)J > a0 > 0 for a solution of (20, 21) then the first two eigenvalues Ao, AI of 

(22) satisfy Ao < 0 < AI. Thus, the only way an instability can develop is for condition 2) 

to fail. If that occurs, Vogel notes that for given /I, /2 each profile determines a pair of 

values H, V; he defines the point (H, V) corresponding to a profile on which V'(H) changes 

sign to be a point of instability of type 2. 

Another way for a family of profiles to become unstable is for condition 1) to fail; if 

AI passes through zero while condition 2) continues to hold, then we refer to a point of 

instability of type 1. 

In what follows, we consider the case /I = /2. Let II be the plane parallel to the 

two given ones and midway between them. Vogel shows [35] that at a type 1 point the 

instability manifests itself through a perturbation that is asymmetric with respect to II; at 

a type 2 point, symmetric perturbations give rise to the instability. 

Vogel found numerical evidence to support the view that there is an angle /o ~ 31.14°, 

such that if /I = 12 > /o the family of inflectionless profiles will become type 1 unstable, 
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corresponding to a bifurcation that occurs when an inflection appears at the boundary (he 

proves the existence of the bifurcations), while if 11 = 12 < /o the family of inflectionless 

profiles will exhibit a type 2 instability. For 11 = 12 no stable configurations with interior 

inflections were found. If 11 -j. 1 2 , no type 1 instability was observed. 

In [34] and in [36], Vogel presents a systematic numerical investigation of stability 

criteria and modes of breakdown, for varying combinations of angles /b 12 • In Figs. 18 

and 19 (taken from [35]), the two modes of breakdown are exhibited in two specific cases. 

Fig. 18 corresponds to 11 = 12 = 60°, and we see that, with decreasing H, V'(H) > 0 

until a bifurcation occurs. In Fig. 19, /I = 12 = 20°; in this case V'(H) changes sign prior 

to the bifurcation. 

We remark that since no breakdown by bifurcation was observed when 11 "1- 1 2 , the 

former of the above two cases is presumably an isolated event; a slight change in 11 or 1 2 

should lead to a splitting into two distinct branches, with type 2 instability replacing the 

bifurcation. 

4. Convexity 

When is a capillary surface convex? For a given constant contact angle 1 -j. 0, 1r in a 

capillary tube, it does not suffice that the base domain n be convex. To see that, consider 

.Q as indicated in Fig. 9, with 0 < !o < 1r /2, where /o is the critical angle. Take a sequence 

1 '\.. /O· Then the corresponding zero gravity solutions u(x, y; 1) of (3),( 4) exist and can 

be normalized so that u -t u 0 (x,y) (a solution of (3) with K = 0) uniformly in fl\f2*, 

u -t oo uniformly in .Q*. The solutions are symmetric with respect to the line PQ, and 

thus~~ JP =-tan/ -t -tan/o, ~~ IQ =tan/ -t tan/o· So if 1 is close enough to 

/o that u(P; !) - u(Q; 1) > JP- QJ tan/, an inflection must appear in the curve lying 

directly above PQ in the surface, and thus convexity will fail. A similar construction can 

be effected also when g > 0 (Korevaar [37]). 

Chen and Huang [38] proved that if g = 0 and 1 = 0 or 1r then convexity of n 
implies convexity of the solution surface. Under some restrictions, Korevaar [37] found by 

a different method the same result when g > 0. 
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Although the surface itself need not pe convex when n is convex, Chen [39] proved 

that there can be only one minimal point if 0 < 'Y < 1r /2. Chen's proof (and result) were 

improved in some respects by Siegel [40]. Huang (41] proved that if g = 0 and n is convex) 

then the (unique) minimal point must have distance at least 1n1/I'EI from the boundary 'E 

of n. If in addition n admits a line of symmetry) then the level curves of the solution 

surface are convex. 

In (10] it is shown by example that a drop resting on a horizontal plane (with variable 

contact angle so that it need not be symmetric) can wet a convex region and nevertheless 

not itself be convex. We have been informed that A.N. Wang has now found an example 

for which also the level curves are not all convex. 

We close by mentioning a striking result of Vogel [21] on sessile drops with variable 

contact angle: if 0 < 'Y < 1T /2, then the entire surface projects simply onto the support 

plane II. For any distribution of TJ let zo be the maximum height of the drop above IT. 

Then the portion of the drop with height exceeding ~z0 projects simply onto II . 
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