
t~· t 
l• . I 

LBL-28198 
Preprint 

ITl1l Lawrence Berkeley Laboratory 
~ UNIVERSITY OF CALIFORNIA 

Submitted to Computers in Biology and Medicine 

Rapid Detection of Spatial 
Pattern by Fourier Analysis 

C. Cullander, J.R. Baker, and T.F. Budinger 

November 1989 For Reference 

~, 

I 

L Not to be taken from this room 

. ---·- - --- ---- --- . _) 

: ' ' ~ ' ,:;. ' ~ 

·. · ·• . · Donner LabOratorY·· 
, ~ \ " ' ~ '"' . » ' 

;;. ~ M " '" > < ~ 

WB® :~ 
rnnr · f? ~·- . 
-·ULI:U ~ u~ 

mJG3TioB®GU .• 
Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098. 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 

0 

0 



Rapid Detection of Spatial Pattern by Fourier Analysis 

Christopher Cullander 

Department of Phannacy 

University of California, San Francisco 

San Francisco, CA 94143 

John R. Baker and Thomas F. Budinger 

Department of Electrical Engineering and Computer Sciences , 

University of California, Berkeley 

and 

Donner Laboratory 

Lawrence Berkeley Laboratory 

1 Cyclotron Road 

Berkeley, CA 94720 

November 30, 1989 

1This work was supported by the Office of Energy Research, Office of Health and Environmental 

Research, of the U.S. Department of Energy under contract No DE-AC03-76SF00098. 



Abstract 

Fast Fourier transform analysis can be used to accurately and rapidly detect pattern 

in large two-dimensional arrangements of points, such as the locations of cells in culture or 

plants in a unit square. We present here a sample study of pattern in spatial random point 

processes. This is evidently the first time that Fourier transform-based cross-correlation 

techniques have been applied to the analysis of point processes of biological origin. Radial 

profiles of the power spectra and autocorrelation estimates revealed a nearly constant in

terpore distance of 0.49 ±0.04 mm in the locations of eccrine gland pores on the surface of 

human skin. Additionally, gland-free areas may exist near hair follicles. 

Keywords: Spatial pattern, pattern recognition, Fourier analysis, spectral analysis, eccrine 

gland, point processes 
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1 Introduction 

The occurrence of patterns on a semi-microscopic scale in natural systems can be ana

lyzed using transformation techniques. In our investigations of possible mechanisms of skin 

electrical activity, we discovered patterns of sweat gland distribution through fast Fourier 

transform (FFT) analysis. This analysis is based on spatial transforms, and is distinct from 

contemporary image analysis, e.g. crystallography, as well as the techniques commonly used 

to analyze spatial point patterns (Diggle [1 ]). 

Let the spatial transform of a wide-sense stationary function f(x, y) be F(u, v), i.e. 

f(x,y) ¢:> F(u,v), 

where <=> denotes Fourier transformation. By wide-sense stationary, we mean that the 

autocorrelation function is spatially shift invariant. Applying the Wiener-Khinchin theorem, 

the inverse transform of the power spectrum IF(u, v)l2 is the complex autocorrelation of 

f(x,y): 

IF(u, v)j2 ¢:> f(x, y) ® /*( -x: -y) = f(x, y) 0 f*(x, y), 

where® is the convolution operation and 0 is the correlation operation (Oppenheim and 

Schafer (2]). 

2 Methods 

2.1 Analytical 

Analysis of an array of points takes place in three stages: (1) preparation of the location 

data for transform analysis; (2) forward transformation to determine the power spectrum; 

and (3) inverse transformation to obtain the autocorrelation estimate. Location information 

(for example, from a pattern recognition program) is used to create a data matrix in which 

the (x,y) location of each point is set to one against a null background. To avoid false 

overlaps in the convolution, the data array is surrounded by a frame of zero samples (zero

filled), with the frame width on each side equal to half the image dimension in that direction 

and windowed with a circular Hanning window; i.e., a quarter-period cosine rotated about 

the center. Following forward transformation, the magnitude of the resultant is stored as 

the power spectrum (PS). The PS is then inverse transformed and the absolute value of 

the resultant real array is stored as the autocorrelation estimate (ACE). The data, PS and 

ACE matrices are usually displayed as two-dimensional digital images with pixel brightness 

proportional to magnitude. 
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Whereas the FFT has expedited frequency analysis for the past 20 years, the actual 

implementation on real data of array sizes of 512 x 512 assumes the availability of com

putation techniques and machinery not always accessible to biomedical researchers. Thus 

as part of this research program, we have developed an approach that makes large array 

transformation practical on microcomputers (Baker and Budinger (3]). This algorithm uses 

rational pairs of sine and cosine coefficients selected, as shown in the Appendix, from a 

Farey series of order k, where k is the maximum positive integer representable on the ma

chine (Knuth (4]). When run on an IBM PC AT (8 MHz clock rate), the new algorithm 

provides 90 percent of the performance of a similar floating point algorithm executed on 

a VAX 11/780 equipped with a floating point processing unit. Program operation was 

verified using test images (impulse and square) that had predictable power spectra and 

autocorrelation estimates. 

2.2 Radial profile representation 

In an isotropic, diffuse pattern, the distribution functions of both the PS and the ACE 

matrices are radially symmetric about image zero. This makes it possible to construct a 

'mean radial profile' of the tw<?-dimensional image. The values of the mean radial profile 

represent the frequency space intensities averaged over each successive circumference. The 

intensities in the image matrix are radially averaged as follows: The distance from (i,j) to 

the image c~nter is rounded to the nearest integer m (i.e. there is no interpolation), the 

intensity at (iJ) is added to bin(m), and count(m) is incremented. Each such integral radius 

sweeps out a ring of pixels in the PS that have real radii r such that m- 0.5 < r < m + 0.5. 

The mean intensity at radius m is thus (total intensity in bin(m))/(total count(m)). The 

number of useful bins is determined by the largest spatial frequency detectable in the discrete 

transform Uc = /11/2 = 512/2 = 256, where / 11 is the Nyquist sampling frequency. 

In the power spectrum, the spatial frequency is u = n/ NT (where n is the frequency 

space index, N the number of samples, and T the spatial sample interval in millimeters), thus 

the inter-pattern spacing 1/u in the original data is NT/n or 512/(bin number- 1). Recall 

that the first bin contains the DC value, thus n = bin number - 1. For the autocorrelation 

estimate, a maximum at n indicates that features separated by n in the matrix are highly 

correlated (Frank (5]). The DC value (which corresponds to the inner product of the data 

array with itself at zero displacement in the ACE) as well as large near-DC values, should be 

zeroed before scaling the array for display and computing the radial profile for the analysis. 
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XBB 889-8921 
Figure 1: Digitized eccrine gland image of human skin sample with 2006 pores. 
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Radial profile of power-spectrum 
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Figure 2: Power spectrum radial profile for human skin sample with 2006 pores. Unit pillbox 

zero-fill and circular Hanning window has been applied to the dataset. 
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Figure 3: AutocoTTelation estimate radial profile for human skin sample with 2006 pores. 

Unit pillbox zero-fill and circular Hanning window has been applied to the dataset. 
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3 Results: An example of eccrine gland pattern analysis 

Eccrine sweat gland pore images have been analyzed with this technique (Cullander [6]). 

The imaging medium was a circular paper disc, 10 mm in diameter, which had iodine 

adsorbed to the starch sizing. When the iodinated paper is exposed to water (e.g. sweat), 

a sharply defined blue dot is formed in the wetted area. Pilocarpine was iontophoresed 

into the test area which was then was wiped dry, and the paper was pressed onto the skin 

by a plunger mechanism. After the gland imaging was completed, the unreacted iodine 

was allowed to evaporate, leaving blue dots on a. cream-colored field. Digitized images of 

gland prints were made using a Hamamatsu C1000 video scanning system, with the camera 

aperture adjusted for maximum dynamic range. A calibration image of a sheet of graph 

paper was made at the same time. 

The digitized gland images, an example is shown in Figure 1, were then analyzed as 

described in Section 2.1. The radial profile from the analysis of this image is shown in 

Figure 2. The maximum between bins 14 and 20 was associated with a pattern of small 

roughly circular gland-free regions or 'holes' in the field of points with a spacing of 1.48 mm 

to 2.11 mm; while the peak power (between bins 52 and 63) represents the modal spacing 

between the points themselves (0.45 mm to 0.55 mm). A similar value for the spacing 

was obtained from the ACE (Figure 3), and this value was very close to the minimum 

interpoint spacing. The secondary peaks between the two maxima. are harmonics of the 

first maximum's component frequencies. The association of each peak with a fundamental 

spatial frequency gave another estimate of the range of the low frequency maximum. A 

similar estimate could not be made for the second maximum since the harmonics of its 

components were buried in the high frequency fluctuations. 

The conclusion from transform analysis was that there was a minimum separation for 

the pore openings on the skin surface, and that the modal intergland distance was close 

to this minimum. This finding is probably a consequence of normal skin growth. With 

some exceptions (such as the formation of scars or stretch marks), increases in skin surface 

area are believed to take place by the diffuse addition of new tissue throughout the area 

rather than by the formation of patches of new skin. The number of eccrine glands does 

not change after birth, and as the individual grows, gland density decreases as the result of 

dilution; the skin of a. year-old infant has eight to ten times the gland density of an adult 

(Montagna. (7]). 

There is a. secondary pattern in most of the distributions that consists of small gland

free areas. The pattern probably has an anatomic basis. In cases where the hairs in a 

photograph of the test area. could be counted, the total number of hairs was close to the 
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number of holes in the gland location data. The spatial distribution of the hairs was also 

similar to that of the gland free regions. 

The assumption of wide-sense stationarity of the point process was verified by repeat

edly performing the analysis on regions of varying size and position. In each case, the 

power spectrum was found to be approximately equal. In general, these point patterns do 

not exhibit stoch~tic fractal morphology because the log-power spectrum is not described 

sufficiently by a linearly decreasing function. 

4 Summary 

Radial profiling provides a concise graphical representation of the two-dimensional 

power spectrum and autocorrelation estimates of a wide-sense stationary, isotropic point 

process, e.g. the eccrine sweat gland locations. From radial profiles, the frequency content 

and modal spacing of points in the two-dimensional field is easily inferred. Profiles of the 

power spectra and autocorrelation estimates of eccrine gland distribution found evidence of 

pattern, in that the pores tend to be about the same distance apart (0.49 ±0.04 mm) and 

may also be absent in the immediate neighborhood of hair follicles. 

This is evidently the first time that Fourier techniques have been used to make a spec

tral analysis of biologically related spatial point patterns. In general, these point patterns do 

not exhibit stochastic fractal morphology. Fourier analysis can provide information about 

the two-dimensional spatial organization of points accurately and more rapidly than can 

conventional statistical methods, but is perceived as requiring mainframe computing power. 

However, the rational arithmetic microcomputer FFT algorithm described has performance 

characteristics that are comparable to that obtained by minicomputers using floating point 

arithmetic . 
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6 Appendix 

The basic computation block of a fast Fourier transform (FFT) is commonly called a butter

fly. Figure 4 is a schematic of a butterfly computation for a radix-2 decimation in time FFT 

algorithm. The following equations describe the computations implied by the butterfly. 

Xm+t(P) = Xm(P) + WNxm(q) 
21rr . . 21rr 

= Xm(P) + [cos(N) + t sm(N)]xm(q) 

Xm+t(q) = Xm(P)- WNxm(q) 

= Xm(P)- [cos(
2
;r) + i sin(

2
;r))xm(q) 

Since the inputs xm(P) and Xm(q) are complex, each butterfly operation requires four real 

multiplications and six real additions. On most microcomputers, floating point arithmetic 

computations are considerably slower than performing similar operations on integers even 

if special hardware accelerators are available; There has been considerable effort in imple

menting FFT algorithms using only integer arithmetic to utilize the performance of integer 

computational units. However, integer FFT algorithms have two sources of error. The first 

is truncation due to finite word length and the second is quantization of the coefficients 

used to approximate sine and cosine (Oppenheim and Schafer [2]). 

We have developed a novel algorithm that uses only integer arithmetic and is insensitive 

to the effects of coefficient quantization. It uses rational pairs chosen from a Farey series 

(Knuth (4]) to approximate the sine and cosine values used to perform rotations. These 

values are precomputed and stored in a lookup table. For signed 16 bit computations, the 

maximum coefficient quantization error is 2-24·1 using this method compared to 2-16 using 

signed 16 bit fixed point coefficients. The algorithm also reduces truncation effects by using 

two sets of sine and cosine lookup tables. When truncation would result from a calculation 

during the mth step, a flag is set to cause a renormalization during the (m + 1)5t step of 

the algorithm. The renormalization is performed by using a sine and cosine table that have 

been scaled by one-half. This procedure·uses the property that if inputs to a butterfly have 

modulus 1, the outputs have at most modulus 2. Fixed point methods would loose one 

bit of precision from this step but the rational pair approximation actually gains one bit of 

precision. 

A register transfer level pseudo-coding of the algorithm is given in section 6.1. On 

the IBM PC AT, our integer algorithm to compute the butterfly requires approximately 
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775 clock cycles; whereas, on the same machine, a floating point algorithm using the 80287 

requires· approximately 1585 clock cycles. Both routines were written in macro assembler. 

Since the 80287 clock period is 50% longer than the 80286 clock period, the integer algorithm 

is 3.1 times faster and has speed comparable to a floating point algorithm on a VAX 11/780 

with a floating point unit. When implementing the algorithm with rational coefficients, we 

made the following assumptions. 

• Input to the butterfly has modulus 215 - 1 or modulus 216 - 2. 

• The sine and cosine table selected is unsealed for inputs with modulus 215 - 1 and is 

scaled by one-half for inputs with modulus 216 - 2. 

• There is hardware support for 

- signed 16 bit addition and subtraction with carry, 

- multiplication of signed 16 bit operands to form a signed 32 bit product, and 

- division of a signed 32 bit dividend by a signed 16 bit divisor to form a signed 

16 bit quotient and a signed 16 bit remainder. Overflow results if the quotient 

would be larger than 16 bits. 

The sine and cosine rational pairs for the FFT algorithm are found by choosing the 

rational number nd di generated from 

no = 0 

do = 1 

nt = 1 

dt = k 

ni+2 = l(di + k)/di+tJni+l - ni 

~+2 = l(di + k)/di+IJdi+l - di 

that is closest to the desired sine or cosine values; where k is equal to 215 - 1. A C language 

program to compute the coefficients is in section 6.2. 
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Xm(P) 

Xm(q) 

~r 
N 
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xm+l(q) 
Figure 4: Schematic of radix-2 decimation in time FFT butterfly. 



12 Rapid Detection of Spatial Pattern by Fourier Analysis 

6.1 Rational arithmetic FFT butterfly algorithm 

'* 
** Header: G(t) fftfar.alg 1.6 89/12/03 19:02:21 baker penguin UCB/LBL 

** 

** Name: fftfar 

** 
** Purpose: 

** 
** Radix-2 decimation in time FFT butterfly using rational 

** sine and cosine lookup values from a Farey series. 

** 
** Input parameters: 

** 
** 
** 
** 
** 
** 
** 
** 
** 
** 
** 

p.real, p.imag 

q.real, q.imag 

sin.numer, sin.denom 

cos.numer, cos.denom 

norm. in 

** Output parameters: 

** 
** p.real, p.imag 

** 
** q.real, q.imag 

** 
** 
** norm. out 

I• 
** Definitions. 

real and imaginary components of p 

real and imaginary components of q 

- numerator and denominator of 

sine(2Pi r/N) 

- numerator and denominator of 

cosine(2Pi r/N) 

- input is not normalized 

rotated real and imaginary 

components of p 

rotated real and imaginary 

components of q 

- output is not normalized 
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•I 

I• 
** 
•I 

I• 
** Input and output to butterfly. 

•I 
signed integer p.real<31:0>, p. imag<31: 0> 

signed integer q.real<31:0>, q.imag<31:0> 

I• 
** Rational sine and cosine values. 

*I 
signed integer sin.numer<15:0>, sin.denom<15:0> 

signed integer cos.numer<15:0>, cos.denom<15:0> 

I• 
** Normalization flag. 

•I 
boolean norm.in<O>, norm.out<O> 

I• 
** Temporary storage. 

•I 
signed integer temp1<31:0>, temp2<31: 0> 

signed integer tempa<15:0>, tempb<15:0> 

signed integer temp.real<31:0>, temp.imag<31:0> 

tempa .- q.real * cos 

I• 
** Multiplication by cosine numerator to form two word product. 

** Renormalization is handled by using a cosine scaled by one-half. 

•I 
temp1<31:0> .- q.real<15:0> * cos.numer<15:0> 

temp2<31:0> := q.rea1<31:16> * cos.numer<15:0> 

temp1<31:16> := temp1<31:16> + temp2<15:0> 

13 
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I• 
** Compute quotient and remainder vith cosine denominator as divisor. 

•I 
temp2<15:0> := temp1<31:0> DIV cos.denom<15:0> 

temp2<31:16> .- temp1<31:0> MOD cos.denom<15:0> 

I• 

** Compute and add round up. It can be +1. o. or -1. 

*-I 
temp1<31:0> := 2 * temp2<31:16> 

temp1<15:0> .- temp1<31:0> DIV cos.denom<15:0> 

tempa<15:0> .- temp2<15:0> + temp1<15:0> 

** tempb := q.imag • sin 

•I 

I• 

temp1<31:0> := q.imag<15:0> • sin.numer<15:0> 

temp2<31:0> := q.imag<31:16> • sin.numer<15:0> 

temp1<31:16> .- temp1<31:16> + temp2<15:0> 

temp2<15:0> := temp1<31:0> DIV sin.denom<15:0> 

temp2<31:16> .- temp1<31:0> MOD sin.denom<15:0> 

temp1<31:0> .- 2 * temp2<31:16> 

temp1<15:0> .- temp1<31:0> DIV sin.denom<15:0> 

tempb<15:0> .- temp2<15:0> + temp1<15:0> 

** temp.real .- tempa + tempb 

•I 
temp.real<15:0> := tempa<15:0> + tempb<15:0> 

I• 

** tempa .- q.imag * cos 
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temp1<31:0> := q.imag<15:0> * cos.numer<15:0> 

temp2<31:0> := q.imag<31:16> * cos.numer<15:0> 

temp1<31:16> := temp1<31:16> + temp2<15:0> 

temp2<15:0> := temp1<31:0> DIV cos.denom<15:0> 

temp2<31:16> := temp1<31:0> MOD cos.denom<15:0> 

temp1<31:0> := 2 * temp2<31:16> 

temp1<15:0> := temp1<31:0> DIV cos.denom<15:0> 

tempa<15:0> := temp2<15:0> + temp1<15:0> 

** tempb := q.real * sin 

•I 

I• 

temp1<31:0> := q.real<15:0> * sin.numer<15:0> 

temp2<31:0> := q.real<31:16> * sin.numer<15:0> 

temp1<31:16> := temp1<31:16> + temp2<15:0> 

temp2<15:0> := temp1<31:0> DIV sin.denom<15:0> 

temp2<31:16> := temp1<31:0> MOD sin.denom<15:0> 

temp1<31:0> := 2 * temp2<31:16> 

temp1<15:0> := temp1<31:0> DIV sin.denom<15:0> 

tempb<15:0> := temp2<15:0> + temp1<15:0> 

** temp.imag := tampa - tempb 

•I 
temp.real<15:0> := tempa<15:0> - tempb<15:0> 

** If necessary, renormalize p 

•I 
if (norm.in<O>) then 

15 



16 

I• 

temp1<31 :0> 

temp1<16> 

p.real<15:0> 

p.real<31:16> 

tempi <31: 0> 

temp1<16> 

p.imag<15:0> 

p. imag<31.: 16> 

end if 
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:= p.real<31:0> 

:= temp1<31> 

:= temp1<31:0> DIV 2 

:= 0 

:= p.imag<31:0> 

:= temp1<31> 

:= temp1<31:0> DIV 2 

:= 0 

** q.real := p.real - temp.real 

•I 

I• 

q.real<15:0> := p.real<15:0> - temp.real<15.:0> 

I• 
** Set flag for renormalize next cycle. 

•I 
if (OVERFLOW) then 

else 

if (BORROW) then 

q.real<31:16> := 1 

else 

q.real<31:16> := -1 

end if 

norm.out<O> .- 1 

q.real<31:16> .- 0 

end if 

** q.imag := p.imag - temp.imag 

•I 
q.imag<15:0> := p.imag<15:0> - temp.imag<15:0> 

if (OVERFLOW) then 

if (BORROW) then 

q.imag<31:16> := 1 
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I• 

else 

else 

q.imag<31:16> .- -1 

end if 

norm.out<O> .- 1 

q.imag<31:16> .- 0 

end if 

** p.real := p.real + temp.real 

*I 

I• 

p.real<15:0> := p.real<15:0> + temp.real<15:0> 

if (OVERFLOW) then 

else 

if (CARRY) then 

p.real<31:16> .- -1 

else 

p.real<31:16> .- 1 

end if 

norm.out<O> := 1 

p.~eal<31:16> .- 0 

end if 

** p.imag := p.imag + temp.imag 

•I 
p.imag<15:0> := p.imag<15:0> + temp.imag<15:0> 

p.imag<31:16> := 0 

if (OVERFLOW) then 

if (CARRY) then 

p.imag<31:16> .- -1 

else 

p.imag<31:16> .- 1 

end if 

norm.out<O> .- 1 

17 
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else 

p.imag<31:16> .- 0 

endif 

Rapid Detection of Spatial Pattern by Fourier Analysis 
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6.2 Rational sine and cosine table generation 

I• 
** Header: C)(t) farsincos.c 1.1 89/11/28 14:52:53 baker penguin UCB/LBL 

** 
** Name: farsincos 

** 
** Purpose: 

** Compute sine and cosine table of length n from a farey sequence 

** of length m. 

** 

static char SccsidO = "C)(t) farsincos.c 1.1 89/11/28 14:52:53 

tinclude <stdio.h> 

tinclude <errno.h> 

#include <math.h> 

main ( argc. argv) 

int argc; 

char •argvO; 

{ 

int 

double 

double 

double 

double 

int 

int 

baker penguin UCB/LBL"; 

i, m, n; 

s, c, angle; 

ts, tc; 

res, tres; 

scale; 

numer, denom; 

tnumer, tdenom; 

19 
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FILE •sin_file, •cos_file; 

printf("Table size: "); 

scanf("Y.d", tn); 

printf("Maximum integer: "); 

scanf("Y.d", i:m); 

printf("Scale factor: "); 

scanf("Y.le", tscale); 

sin_file = fopen("sin.dat", "w"); 

cos_file = fopen("cos.dat", "w-"); 

for (i = 0; i < n-1; i++) 

{ 

} 

angle = 2.0 * M_PI * i I n; 

s =scale* sin(angle); 

res = 1.0; 

for (tdenom = 1; tdenom <= m; tdeno~+) 

{ 

} 

tnumer = ROUND(s * tdenom); 

ts = (double) tnumer I (double) tdenom; 

tres = fabs(s- ts); 

if (tres < res) 

{ 

} 

numer = tnumer; 

denom = tdenom; 

res = tres: 

fprintf(sin_file, "\t\t\t{Y.10d, Y.10d},\n", numer, denom); 

angle =-2.0 • M_PI * (n- 1) In; 
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s =scale* sin(angle); 

res = 1.0; 

for (tdenom = 1; tdenom <= m; tdenom++) 

{ 

} 

tnumer = ROUND(s * tdenom); 

ts = (double) tnumer I (double) tdenom; 

tres = fabs(s- ts); 

if (tres < res) 

{ 

} 

numer = tnumer; 

denom = tdenom; 

res = tres; 

fprintf(sin_file, "\t\t\t{Y.10d, %10d}\n", numer, denom); 

fclose(sin_file); 

for (i = 0; i < n-1; i++) 

{ 

angle = 2.0 * H_PI * i I n; 

c 

res 

for 

{ 

} 

= scale * cos(angle); 

= 1.0; 

(tdenom = 1; tdenom <= m; tden~m++) 

tnumer = ROUND(c * tdenom); 

tc = (double) tnumer I (double) tdenom; 

tres = fabs(c- tc); 

if (tres < res) 

{ 

} 

numer = tnumer; 

denom = tdenom; 

res = tres; 

fprintf(cos_file, "\t\t\t{%10d, %10d},\n", numer, denom); 

21 
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} 
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} 

angle = 2.0 * H_PI * (n - 1) I n; 

c =scale* cos(angle); 

res = 1.0; 

for (tdenom = 1; tdenom <= m; tdenom++) 

{ 

} 

tnumer = ROUND(c * tdenom); 

tc = (double) tnumer I (double) tdenom; 

tres = fabs(c- tc); 

if (tres < res) 

{ 

} 

numer = tnumer; 

denom = tdenom; 

res = tres; 

fprintf(cos_file, "\t\t\t{Y.10d, Y.10d}\n", numer, denom); 

fclose(cos_file); 

exit(O); 

... 
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