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Abstract 

Traditional WKB theory yields wavefunctions which have diver
gences and are not invariant under any reasonable class of trans
formations. This letter presents alternative WKB wavefunctions 
which have no divergences and are symplectic invariants. 

PACS numbers: 03.65.Sq, 52,35,-g, 42.10.Dy. 

LBL-18244 

WKB theory is an eminently practical theory, finding wide application in all 

branches of physical science. Its uses are by no means limited to the Schrooinger 

equation, but rather encompass all types of linear wave equations, including 

integral equations. Nevertheless, WKB theory has a number of shortcomings, 

both practical and theoretical. 
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From a practical point of view, WKB theory suffers from a lack of a uni-

form approximation for the wave function, due to divergences at caustics. The 

methods developed to handle this problem are either nonuniform, or specific to 

special configurations of turning points, or special to one dimension. Further-

more, these methods are generally awkward and esthetically unappealing. An 

exception to this is the set of methods developed by Heller, 1 about which I will 

say more. 

From a theoretical point of view, it is notable that many features of tra.-

ditional WKB theory are not invariant under any reasonable class of transfor-

mations in the phase space of ray trajectories. For example, the usual WKB 

approximation does not commute with the Fourier transform: the locations of 

turning points and the structure of Stokes' lines are not the same in momentum 

space as in configuration space. Ideally, one would like to have a WKB theory 

whose results are independent of the phase space coordinates in which the cal

culations are carried out. Such goals motivated an early paper by Einstein2 on 

quantum mechanics, but have been absent from most work on WKB theory. 

In this letter I shall present a formula for a normal mode of a self-adjoint 

wave equation (in quantum mechanics, an energy eigenfunction) which is a 

symplectic invariant. The precise meaning of this term will be given later. In 

addition to being a symplectic invariant, the result is a uniform approximation 

to the exact wave function, i.e. it has no infinities at caustics. For simplicity, the 

result is presented in the context of a one-dimensional system; similar techniques 

can be applied to integrable systems in several dimensions, and, with some 

modifications, to nonintegrable systems. 
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There are several avenues to this result, each more or less abstract. For the 

sake of clarity, the following approach is fairly concrete, being based on a pic

ture developed by Maslov3 and Percival.4 We consider a one-dimensional wave 

equation, separable in time, which abstractly has the form Lt/J = 0 for some 

linear operator L. Corresponding to L is a function D(q,p,w) on a classical 

phase space, parameterized by the frequency w, which serves as the Hamilto

nian for the ray trajectories. As discussed by McDonald,5 there are persua-

sive reasons for taking D to be the Weyl symbol of the operator L; by this 

definition, D is a symplectic invariant. In quantum mechanical applications, 

D(q,p,w) = H(q,p)- E, where His the classical Hamiltonian and E =~;in 

other applications, D is a local dispersion relation. Here we identify p and k, 

and q and z, and we set 1& = 1. The ray trajectories in phase space generated 

by D are assumed to be closed curves for some range of w; thus, the system 

is bounded. Corresponding to this family of closed curves are the action-angle 

variables (1,8). 

We fix attention on one of these curves r, given by l(q,p) = Io = const., a 

portion of which is shown in Fig. 1. In standard WKB theory, a WKB wavelet 

is associated with each branch of the projection of this curve onto the q-axis. 

The degree to which this wavelet represents the true wavefunction depends on 

the quantity (8pf8q)r; the approximation is best when this quantity is zero, 

and becomes progressively worse as this quantity becomes large. It breaks down 

completely at the caustics, where (8pf8q)r is infinite. 

A common strategy4 for dealing with caustics is to switch to momentum 

space as one approaches a caustic, since this replaces (8pf8q)r by (8qf8p)I as 

the criterion of the goodness of the approximation; the latter is small when the 
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former is large. Continuity of the WKB wavelet on r is guaranteed by using 

the Fourier transform on some overlap region, evaluated by stationary phase; 

the result is a phase shift which accumulates as one moves around r, giving 

finally the Maslov index as a part of the quantization condition. 

We propose here to use not just the position and momentum representa-

tions, but rather a large number of intermediates, one for each of a number 

of small segments on r, with each representation chosen to be optimal on its 

particular segment. We divide the curve r into N small segments, (say) evenly 

spaced in the angle variable 6, with l::t.6 = 21rjN. The beginning of the n-th 

segment is marked by the point ~ = ( e, '1) in Fig. 1. We associate with each 

segment two canonical coordinate systems, Zn = (qn,Pn) and Zn = (Qn,Pn)· 

The system Zn = (qn,Pn) is related to z = (q,p) by a simple translation in 

phase space, namely Zn = z- ~· The system Zn = (Qn,Pn) is in tum related 

to Zn = (qn,Pn) by a fixed symplectic matrix R, according to Zn = RZ". For 

R we write 

R=(: ~)· (1) 

where we take a= 8qf86, b = 8qf8I, c = 8pf86, d = 8pf8I, all evaluated at 

The effect of these conventions is to maker appear in the (Qn,Pn) coor-

dinates as a curve passing through the origin, tangent to the Qn-axis. Further-

more, the coordinates (Qn, Pn) produce locally a copy of the (6, I) coordinate 

mesh, although (Qn,Pn) form straight lines everywhere, and (6,1) gradually 

curve as one moves away from (e,q). Thus, the range in Q" is 0 ~ Q" ~ l::t.6. 

To lowest order in l::t.6, the Hamilton-Jacobi equation is trivial to solve in the 
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(Qn, Pn) coordinates; the action is Sn(Qn, I) = an+ (I- Io)Qn; where an is 

a constant to be determined, and the local WKB wavelet is simply 

(2) 

where we have set I= I 0 • 

This wavelet from the n-th segment is transformed from the Qn represen-

-
tation successively to the qn-representation and finally to the q-representation. 

The first step involves a unitary transformation corresponding to the symplectic 

matrix R, which will be denoted by M(R). This unitary transformation is a 

member of the metaplectic group, which has been invesitgated by Bargmann6 

and others. There are two such unitary transformations M(R) for a given sym-

plectic matrix R, differing by a sign, and my notation M(R) will denote one 

of these, suitably chosen. For a specific· R, it does not matter which is chosen. 

But when R varies continuously through the space of symplectic matrices, as 

does R in Eq. (1) as we move around the curve r, then it is necessary to choose 

the sign for each R so that M(R) also forms a continuous family. The matrix 

elements of M(R) in the q-basis are given by 

±1 [ . ] (qjM(R)jq') = J2rib exp ;b (aq'2 - 2q'q + dq2
) , (3) 

when b 'I 0. When b -+ 0, the matrix element of M(R) becomes singular, in 

the manner of a 6-function, but M(R) itself is continuous and well behaved. 

Transforming from the qn-basis to the q-basis involves another unitary 

transformation T(\), which corresponds to the displacement \ in phase space. 

'This is a member of the Heisenberg- Weyl group of operators, and is given 

explicitly by T(\) = exp[i(17q- efo)J, where q,p are operators. Combining these 
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transformations, we have 

{qjWKB,n} = aoei0"{qjT(~)M(R)jO}, (4) 

where the left side denotes the n-th WKB wavelet in the q-basis. When we 

combine this with a similar expression for the ( n + 1 )-st segment and demand 

continuity, just as Percival has done for four segments, we find aa = etn+t -

etn = !(paq- qap). We also demand continuity between segment 0 and 

segment N - 1, when we have gone completely around f. This reproduces 

the EBK quantization condition, which requires that the action / 0 on f satisfy 

Io = n+ !· 
Finally, we add up the contributions from all the segments and take the 

limit N -+ oo, and we obtain the total q-space wave function 

(5) 

where cis a normalization constant, and where~ and Rare functions of 0, being 

evaluated along the curve r. The phase a = a( 0) is given by 

1 r' ( dq dp) 
a(O) = 2 }

0 
dO P dO- q dO . (6) 

I shall now explain the term "symplectic invariant." A given linear, inho-

mogeneous canonical transformation on the classical phase space corresponds 

to a definite displacement ~0 in phase space and a definite symplectic matrix 

Ro. These in turn can be placed into correspondence with a unitary transfor-

mation composed of T(~o) and M(Ro), acting on wave functions. A formula 

will be called a symplectic invariant if transforming the wave functions by the 

unitary operator has the same effect as transforming the classical coordinates 

by the given linear canonical transformation. By this definition, Eq. (5) is a 
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symplectic invariant. For example, if~ = dO) and R = R(O) in Eq. (5) are 

referred to the coordinates (q',p'), with q' = p, p' = -q, then the wave function 

which emerges is the Fourier transform of the one given, i.e. the answer emerges 

in the momentum representation. 

Explicitly evaluating the operators in Eq. (5), we find 

12"' ei(a.+.,q-('1/2) [ i ( 8p) ] 
1/J(q) = c dO exp "2 a (q- e) 2 

, 

0 2 . (£!~.) q 9 
"' ar · 9 

(7) 

in which form the symplectic invariance is less apparent. Again, a, e and 'I are 

functions of 0 as we move around r, as are the partial derivatives shown. 

An apparent drawback to this result is the singularity of the integrand 

as 8qf8I -+ 0. But there is an avenue around this difficulty, which uses the 

coherent state basis,7 and which always yields nonsingular integrands. I will 

report on this in more detail in the future; for now I merely note that the results 

are closely related to the techniques developed by Heller. 1 

Equations (5) and (7) can also be understood in terms of a propagator 

formalism. Effectively, we have replaced the exact propagator by an approxi-

mation which is composed of Heisenberg and metaplectic operators, referred to 

a certain classical trajectory. Similar approximations have been used in classical 

mechanics.8 The details of this connection will be given in the future. 
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Figure Captions. 

Fig. 1. Coordinate systems in phase space. 
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