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Abstract

Following the recent construction of unitary irrational central charge
on compact affine g, we begin a series of papers to report further so--
lutions of the Virasoro master equation and related topics in irrational
conformal field theory. This paper completes the maximal-symmetric sub-
ansatz by obtaining the three-parameter unitary irrational construction
(simply-laced gz);’}z, which contains the known solution (5«'U(2),,);¢23 and

involves a root of a root generically.
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1 Introduction

Affine Lie algebra was discovered independently in mathematics [1] and physics
[2]. 'The first representations [2] were constructed with world-sheet fermions [2,3]
to implement the proposal of current-algebraic spin and internal symmetry on
the string [2]. Examples of affine-Sugawara constructions {2,4} and coset con-
structions [2,4] were also given in the first string era, as well as the vertex oper-
ator construction of fermions and SU(n); from compactified spatial dimensions
{5,6). The generalization of these constructions [7,8,9] and their applications to
the heterotic string [10] mark the beginning of the present era. See {11,12,13,14]
for further historical remarks on affine-Virasoro constructions.

The original approach of Bardakci and Halpern {2,4] was recently resur-

rected in the general affine-Virasoro construction [15,16,17]
L=L":JJ," (1.1)

on the currents J, of affine g [1,2}. The resulting Virasoro master equation for
the inverse inertia tensor L = L' (and the generalization to include linear

terms in J, {15,16]) contains the familiar constructions

1. The affine-Sugawara nests [18]. These include the affine-Sugawara con-
structions [2,4,8], the coset constructions [2,4,8], the non-compact unitary

coset constructions {19]) and the nested coset constructions {20].

2. The linear conformal deformations [11,21]. These constructions unify and
contain a} the c-fixed deformations, which generalize continuous toroidat
[2,22,13,23,24] and orbifold compactifications [25,26], and b) the c-changing

deformations, which generalize the Fairlie-Feigin-Fuchs construction [27).

and a very large number of new constructions [18], which may include all possible
Virasoro constructions.

In particular, broad classes of solutions with unitary irrational central charge
on compact g have recently been annom?c(:ed [18], and there is every indication
that these solutions are only the first glimpse into a unitary irrational affine-

Virasoro universe of immense new structure: Geometric identification of the
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master equation as an Einstcin-like system on the group manifold G [16] is an-

other indication that classification of all solutions will be a formidable program.

The master equation has so far yielded the following new solutions

1. The generalized spin-orbit constructions (15} on non-semi-simple groups

g x UQ1)&ims/h where g/h is a symmetric space, which may be called
(g x UQ1)imorty,. (1.2)

. These constructions are intrinsically non-compact (or non-unitary) with
generically irrational central charge, although it may be possible to con-
struct unitary subspaces: recall that the original spin-orbit construction
on SO(D —1,2); D SO(D — 1,1), [2] contains the unitary sector of the
NS model [28] when D =10 and z = 1 {29].

2. Unitary quadratic deformations with rational central charge and continu-

ous conformal weights [17,18]

Cartan(simple g)#; SU(2)¥; (SU(2). x SU(2).)*, = #4  (13).

which are presumably new constructions of known deformations [18,30].

3. Constructions with unitary irrational central charge on compact g [18]
(SU(2):)2%  simply-laced g#* = (simply-laced g. )% (1.4)

which are conceptually new. These chiral constructions, and the presum-
ably related unitary irrational N = 2 constructions of [19], should be

considered for promotion to unitary irrational conformal field theory.

The central charges of the irrational constructions (1.2) and (1.4) involve
no more than a single square root, a behavior we call typc-one irrational. As
in general relativity, all the new solutions have becn obtained by the method
of consistent ansatze, and, in particular, the unitary type-one solutions given in
(1.4) were found in the maximal-symmetric subansalz within the basic ansatz
for simply-laced g [18]. Ouly Cartan(simple g) and the group SU(2) have been

completely solved..

“u

We begin liere a series of papers to report further unitary irrational solu-
tions of the Virasoro master equation and related topics in irrational conformal
field theory. This paper announces the completion of the maximal-symmetric

subansatz by the construction
(simply-laced gg,)gi22 (1.5)

which is generically unitary and irrational on the three-dimensional integer do-
main
(h>2, 222 9>2) (1.6)
where A is the dual Coxeter number of g. We refer below to the domain (1.6)
as the first quadrant. The new construction involves a root of a root generically
across the first quadrant, which we call type-two irrational behavior.
An embedding phenomenon is observed in (simply-laced g;)i'fz, such that
old and new type-one unitary irrational solutions live in two-ditnensional sub-

spaces of the construction. For example, the type-one unitary subconstructions
7 >3
h=2 (SUQ))¥
z=2 : (simply-laced gg)gfz (1.7)
g=2 : (simply-lacedg.)}

live on boundaries of the type-two construction, while the two-dimensional type-

one unitary subconstructions
(simply-lacedg;l“)‘;zz; (simply-]acedgé“)'f"’ . (1.8)

are located in the interior of the type-two construction. Similarly, the type-
zcro (rational) subspaces of the type-two construction tend to occur on one-
dimensional subspaces which are intersections of type-one subspaces.

The construction (simply—k\cedg,)‘}‘l22 completes the maximal-symmetric
subansatz, which is limited to simply-laced g. It is natural to consider the collec-

tion of all unitary irrational constructions in the maximal-symmetric subansatz
. . . >2
((simply-laced _ql.)"),\#, = simply-laced g¥ U (simply-laced g,,.);'*— (1.9)

which we call the maximal-symmetric construction. From this point of view,

simply-laced ¢# is only another two-dimensional type-onc subspace of the more
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general construction (1.9), which contains all presently known unitary irrational
solutions. ) »

In the second paper of this series, we study high-k expansions and new
unitary irrational constructions on SU(3), beyond the maximal-symmetric sub-
ansatz. In particular, we will fully solve the Dynkin-symmetsic subansatz [18] in
this case and find all but one of the physically distinct new unitary solutions in
the basic ansatz. Through high-k analysis and explicit construction of ali levels
of two of its unitary (Dynkin-symmetric)points, the last solution is identified
as a (presumably unitary) c-changing deformation, that is, a construction with

continuous central charge on compact g.

2 The Virasoro Master Equation

The general affine-Virasoro construction is [15,17)

L=L"']Jy (2.1a)
(6™, I8 = £, a4 mmGlas (2.1b)
a Y — tJab Ye abOm+4n,0 .
[L(m)‘ L(n)] ={m-— n)L(m+n) + 1_02"1("12 _ 1)6m+"'0 (2.16)

with symmetric normal ordering Top = $JoJs ¢ = Tia on the currents J, of affine
g [1,2], and Gy is a general Killing metric on G. Analysis of the system (2.1)

results in the Virasoro master equation [15,17]
Lab — 2Lachdeb - LCdLe!fceafd[b _ Lcdfcejfd!(dLb)e (22(1)

€= 2Gq L (2.2b)

for the inverse inertia tensor L® = L% on G. The construction is completely
general since g is not necessarily semi-simple or compact. In particular, to obtain

level z; = 2k; /¢? of g; in g = @1g; with dual Coxeter number by = Q /3%, take
Gab = ®rkinly,  focfoa® = — ®1Qml, (2.3)

where 5!, and ¥ are respectively the Killing metric and the highest root of
g1 The master equation is identified in [16} as an Einslein-like system for the

left-invariant metric g, = c;‘"[,,,bef’, on the group manifold G.

We remark on some general properties of the master equation which will

be useful in the analysis below, referring to [15,18] for further discussion.

1. Counting. A very large number of solutions of the master equation {18}
N(g) =2"®, n{g) = dimg(dimg — 1)/2 (2.4)

is expected generically on each manifold G, where n(g) is the number of
coupled quadratic equations remaining in the system after gauge fixing the
inner automorphisms of g. Most of these solutions will be new, since e.g.
N{g) is approximately 1/4 billion for g = SU(3).

The number of physically distinct solutions is generally less than N(g)
due to non-generic behavior of the coefficients. We mention in particular
the residual discrete automorphisms J, = QL J,, @ € SO(dimg) in the
adjoint, :

G = Gas, Q0L 7 = [ (2.5a)

(LY = L4 0} (2.5b)

under which the master equation is automatically covariant, so that L’
in (2.5b) is a solution, given a solution L. The conformal weights A =
LT, T; [12,18] and central charge ¢ in (2.2b) are invariant under all auto-
morphisms, so L' is physically equivalent to L. Other (accidental) degen-
eracy may include continuous solutions (degenerate quadratic equations)

and degenerate solutions.

2. K-conjugation covariance. Solutions to the master equation occur univer-

sally in KK-conjugate pairs [‘2,4,9,15,17]

L+L=1L,;, c+é=q¢ - (2.6qa)
L = e Z aydim g; » ,(2 6b)
=@, =) ——=— - (2.6b

g ’2kl+QI 9 1 :!‘.,+h’

where [, is the afline-Sugawara construction on g. K-conjugation covari-
ance L = L, ~ L of the master equation generates the afline-Virasoro.nests
[18] in the vertical direction (subgroup nesting) and provides a useful an-

alytic tool in the horizontal divection (fixed g}, guarantecing, for example,
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a closed-form solution for subsystems of up to three coupled quadratic

cquations [18].

. Unitarity. Unitary solutions on positive integer level of affine compact g

are recognized when L = real in the Cartesian frame with J{™" = J{-™)

[9,18].

. Cartan g# and high-level affine g. The two simple cases

a) Cartang: LB #£0, ap=1,...,rankg

b) high-level affine g: L% = (’)(k, , VD), a,b=1,...,dimg

are conceptually related since affine g is eﬂ‘ectxvely abelian at high level.
The master equation and its general solution in both cases may be written

in the unified matrix form

L=2LGL: L=-1_qoar} v 0 @.7)

] VG
with orthogonal € and diagonal 8, 0(1 — 8) = 0 for all compact g, not
necessarily semi-simple, which generalizes known results [18] for simple
compact g. The solution in the first case is the quadratic deformation
Cartan g#, which requires the Killing metric Gap on Cartang, 248 €
SO(rank g) in the adjoint and 8,4 = 0, 1. For the solution at high level, take
the full Killing metric G, °® € SO(dim g) in the adjoint and 8, = 0, 1.

As a result, the central charge takes integer values from zero to rank g or .

dim g respectively in the two cases.
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3 Ansitze for (Simply-laced g)?

3.1 The basic ansatz

As in general relativity, it is the function of ansitze to exploit the symmetries
of the system, thereby reducing the number of coupled equations and solutions:
The basic ansatz and the maximal-symmetric and Dynkin-symmetric subansatze
for simply-laced g and SU(2)? were studied in [18].

We discuss here the generalization of the basic ansatz and the maximal-

symmetric subansatz to the compact semi-simple groups
(simply-laced g)7 = simply-laced (g1)z, % ... x simply-laced (g,).,  (3.1.1)

with g; = g, V1 so that dimg; = dimg = (h + 1)rankg and z; = 2k;/p? for
1=1,..,q. The ansétze are simplest in the Cartan-Weyl basis, for which

Gas = @ikl nih =650, nl) =650 (3.1.20)

Moz A= _iatay f)7=—iND(a,f),y=a+8  (3.1.2b)

N, B) = N)(=v,0) = ~-N¥)(~a,-p) (3.1.2¢)

Za wePin =hp’8GF, 3 1=2k-2), (N(a,8))’=p*/2 (3.1.24)
at+f=y

where 6.48 = banB(I)> 6,,.2‘;'0 = Sa(ny+a(1)0 and so on, with amn.B(1) = 1,..,rankg
and a), B, (1, pt1) the roots of any g;, 1 = 1, ..,q. We also need the operators

and coeflicients
7;{; = TA(I)B(J)y 7;’5'] = Ta(’)fj(J); L;‘JB = L'“”B('}), L;’f = La(l)B(J) (313)

in the corresponding (g1, gs) block notation of [15).

Following {18], we define the basic ansatz for (simply-laced g)7 as
LIP#0, L #0 (3.1.4)

which keeps only the diagonal root components for all {pn} in each g;, while

AB

the general Cartan coiponents L{'P provide a linkage among all {g;}. ''he form

of the Virasoro operator in the basic ansatz is

L= Z STiuPTis +EZ @Lyyrrt + LTI gyt ) (3.1.5q)

1.J=1 AB =1 p>0

-1



q
e=2Y k(L +2X L") (3.1.5b)
I=1 A

p>0
and unitarity requires L{#, L{7” = real. The corresponding reduced form of

the master equation

9
LiP =2 37 kat 30 LIGLEE + 610 S(LE1 — (L3 0)))p  wp urt
p

A=) c
+3° (L‘,","’L,Cfpcu)p"(l) + L’j‘]"L_c,,"pC(J)pB(J)) (3.1.6a)
pC
' 2
#L =4k LT — 4 LiP o sy - 0?3 LT = % Y. LipLff
AB atf=p atfl=p
(3.1.6b)
2
\~ \~ P V- \~By 1 a,—x
T = 2k = LY + 20k + )L + 5 3 (LT — L)L
. atB=p
(3.1.6¢)
shows manifest consistency of the basic ansatz.
The full master equation (2.2a) and the basic ansatz (3.1.6) show
n(g?) = gdim g(¢dimg — 1)/2 (3.1.7a)
ng(g?) = q(dim ®(g) + rank g (grank g + 1)/2) (3.1.7b)

coupled quadratic equations respectively on an equal number of unknowns.
Although the reduced system (3.1.6) is generally much smaller than the full
master equation, the basic ansatz is presently unmanageable without further
subansitze. An exception is the solution Cartan(simply-laced g9)# contained in
(2.7).

3.2 The maximal-symmetric subansatz
The equal-level product group
(simply-laced g;)? = simply-laced {g1): % ... % simply-laced (g,) (3.2.1)

shows subgroup symmetry with kj = k = zp%/2, 1 = 1,...,q. Following the
intuition of Ref.[18] for simply-laced g and (SU(2)?, we have found the general

maximal-symmetric subansatz on (simply-laced g, )?

2 } ,

L = P Z:,p"u)pﬂm = L7260, Wi (3.2.20)
L;‘JB - ep—2(__1)9(1)+9(J)6A(l),8(.])1 I 75 7, (322b)
L3 = p™ Ly real, Vo, Vi A (3.2.2¢)

where 0y =0or 1, 1=1,..,q,and £ =0 for ¢ = 1. The maximal symmetry of
the subansatz under exchange of any two roots of (simply-laced g;)? is apparent
in the form (3.2.2). For clarity, we also give the Cartan sector of the subansatz

in ordinary matrix notation

(1 A B
P2LAB LAE B 1 B | e = (c)pmee (3.2.3)
09 L 4l ,
where | is a rank g unit matrix, so that the diagonal entries £; couple Cartan g;

to itself, while the off-diagonal entries €/Y couple Cartan g; to Cartan gy;.
The basic ansatz (3.1.6) degenerates in the maximal-symmetric subansatz

to the four coupled quadralic equations

C(l — 2y~ 2hL_) = M(L% = L2) + z(¢ — 1) {3.2.1a)
| 01 — 220y —2(q—2) = 2hL,_) =0 (3.2.40)
Lyt =2+ h —2) - — 44— (k — 2)Ly) = 0 (3.2:4¢)
Lo=(x=2L2 + (e + R)12 (3.2.4d)
¢ = qrrank g(Cy + hL_) (3.2.4¢)

9



for the four unknowns €4, and Ly. The phase choices in (3.2.2b) give 277!
solutions for each of the 16 solutions (€4, £, L) of (3.2.4), but these phase choices
are physically equivalent copies of the basic representative 0(1) = 0, V1, under

the involutive automorphisms * J' = QJ
J:‘(,) = (—l)o(’)JA“), E:,“) = (—1)8“)E(_|)a(l)p(l) (3.2.5a)

L' = L({6n}) = QT ({00} L({6} = 0)2({6(n}) (3.2.5b)

so only the basic representative need be considered. The Virasoro operator of

the maximal-symmetric subansatz

q g
PL=Y (cd S+ ST + LT+ 1) _,,))) +203 514
CoI=t A p>0 I>J A
(3.2.6)
is obtained from (3.1.5a) and (3.2.2) in this case.
Equations (3.2.4b-c) of the subansatz exhibit a two-fold factorization, which

simplifies the system (3.2.4) by splitting it into 4 sectors
2)Ly=0,0#0 (¢22)
3)Li#0,6=0
)Ly #0,8#0 (¢22)

each of which contains two coupled quadratic equations and hence four solutions

(3.2.7)

generically. The first three sectors contain known solutions !t : sector 1 contains
the Sugawara construction L(simply-laced g?) and its K-conjugate L = 0, as
well as Cartan(simply-laced g7) and its K-conjugate on simply-laced g3; sector 2
contains points in Cartan(simply-laced g?)# [18] and its K-conjugate on simply-

laced g9, while sector 3 contains outer products of simply-laced g# [18]

(simply-laced g¥)? = cimplyilacecl (g1)# x ... x simply-laced (gq)# (328)

*The 22971 copies found for (SU(2))} in [18] are gencrated by the automorphisms in
(3.2.5) and the additional SU(2) automorphisms Jy,) = Jany, E;a(,) = ()P DBy oy with

dn=0,1forr=1,...,q.
PI'he case £ = 0 in (3.2.4), which includes scctors 1 and 3, is eq.(8.3) of Ref.{18] with

BA(Ref [18]) = £q(here).

10

and products of the rational partners of simply-laced g¥.

The search for new solutions focuses on the first quadrant * of sector 4 with

Ly, 640

6l — 2y — 2hL_) = h(L% — L) + 2(q — 1)¢? (3.2.9q)
1 -2zl —z(q—2)—2hL_=0 - (3.2.9b)
1—2c+h—2)L_—4b—(h—2)L, =0 (3.2.9¢)
Lo=(z—-2)[% + (x4 W)L2 (3.2.94)

which is equivalent to a quartic equation. A single quartic can always be rear-

“ranged by K-conjugation into an effective quadratic equation [18], so the solu-

tions of the system (3.2.9) will be no worse than type-two irrational, involving

a root of a root.

lhe simply-laced gy identities of [5,31,13,18] imply that all level one solutions in the
maximal-symmetric subansatz are equivalent. to constructions in Cartan(simply-laced g3_,)#,

50 we restrict Turther explicit discussion to the first quadrant with h > 2, 2> 2, ¢ > 2.

11



4 (Simply-laced g,():;,t22

The four solutions of (3.2.9) form the construction we call (simply-laced gI)q#Zz,

1 U 7 (e) 7 {e)
by = ———(1 "—2 h U - +’—‘2U 4.1a
d 2(h+$)[ +5((h=2)(h + U7 = (= + h - 2)157)] (4.1a)
——————[ z(h——Q)U(‘) + (z — 2)USY) (4.1b)
2x(q —~
=14 qUP), Ly = -—UY 4.1
2(h+z)[ + 9U,"] + U, (4.1¢)
__ gqerankg -

U - e) .
= )[ H 1+ H (=94 U0 + -z 42U (41d)

- where we have defined the auxiliary quantities
U = (gz - 4)(q(z — 4) + 4)[V — 4eq’z(z — 2)(h — 2)(g — 2)VW] /2 (4.2a)

U = (2q*(h —2)(z —2) — 26(g— 2)VW)[V —4deg’z(z —2)(h— 2) (¢ —2) VIV]~1/?
‘ (4.2b)

7 = 22" (1 (22— 42+8)+4h (2> - 1122 +322— 24)+4(z* — 102> +-372° — 602 +40) |+
+16(g—1)[zq* (42> +120% (h—2) — (R + 601 —44)+16(3h —2) )+ 128](g—1)(z—1)]
(4.2¢)

W = z[zq*(h — 2z +6)® + 64(z — h — 2)(g — 1)) (4.2d)

and the four solutions are distinguished by € = 1,7 = 1. The quantities U,-(’)
and the irrational central charge in (4.1d) clearly involve a root of a root, so
the solutions are generically type-two as anticipated in Section 3. It is clear on

inspection that n = %1 labels K-conjugate partners at fixed €
L.(n =1)+ L.(y = —1) = L(simply-laced gg) (4.3)

while € = %1 labels distinct K-conjugate pairs.
- The construction (simply-laced 91)3#22 is generically unitary, although some
work is necessary to determine the non-unitary exceptions. The unitary domain

of the construction is defined by. the single condition

W>0 (4.4)

12

for integer h>2z>2, q > 2 in the first quadrant, since we have verified
numerically that V > 4¢%z(x — 2)(h — 2)(g — 2)VW when W > 0 in the first
quadrant. Analysis of the condition (4.4) shows that the construction is unitary
in the first quadrant except for the interior of a thin non-unitary wedge, shown
in Fig.1, whose (unitary) boundary is W = 0 and which is centered on the
plane z = & 2 +3, I # 2. Further characteristics of the non-unitary wedge are as

follows:

1. The wedge does not enter level two, so (simply-laced gg) 2? is completely

unitary.

2. The wedge narrows smoothly with increasing ¢ until, beyond a critical
value of ¢, only a single layer of non-unitary solutions are found on the
central plane z = -'21 +3, h#2

3. More precisely, we determine from (4.4) the width of the wedge in the
z-direction at large g
8 {h-
Az = Uik TS >1 45
Z\iTe O (4.5)

which shows that no more than one level is non-unitary for any g when

q > 64. Similarly, the width in  at large g,

Vi

shows that the wedge has narrowed precisely to the central plane when

+0(q"), ¢>1 (1.6)

q 2 256, as shown in Fig.1.

4. The wedge is broadest at its base (q = 2) and also broadens slightly with

increasing z, h Lo a finite width

Amzs"q_l+0(ir“), h>1 (4.7

s0 it is easy to check {rom the worst case that no more than four levels are

13



non-unitary for any particular (k,q). As examples, the list

(SU@))5>°

(SU@)z=3)% 2, (SUE))FE="

(SUMA)z=08)572, (SUM@)z=as)% ", (SU(4)s)2°
(SU(B)2=150)5 >, (SUB)zms6) 5% (SU(5)s)yy <=

(4.8)

contains all the non-unitary points of (S'U(n),)‘fz, 2 < n <5. The non-

unitary points in (SU(2))%, which form the tip of the wedge, were noted
in {18].

Figures 2a, 2b and 2c show three slices of the construction at ¢ =2, 3 and

256, in which the evolution of the wedge is clearly visible.
The lowest type-two central charges in the construction occur at z = ¢ =3

withe=1,n=—-1:
27 111 — 2./489-

dmmm@=3b————————

39317 — 324/489

C((SO(S)a)i) =14 (1 __5@6-v219)

74137 — 216249

17 4185 — 99\/465
117,/6510 — 270,/465

N 6768 — 51/2029
c(((Ba)y) =5 (1~
57,/66897 — 864,/4929

7 6636 — 20y/TBAA1
cW%m=%b— 0 >
31/205473 — 1512/T5441

and, more generally, the type-two central charge (4.1d) increases irrationally

) ~ 7.0231 (4.9q)

) ~ 6.5088 (4.9b)

) ~ 77648 (4.9¢)

) ~8.3219 (4.9d)

) ~ 8.8749 (4.9¢)

with &, z or q at fixed €, 5. In particular, we verify that the central charge

approaches correctly-bounded integers from below at high level

klim c=qdim®,(g) + (q +enlqg — 2))rank g/2 (4.10)

14

in agrecment with the asymptotic form (2.7). Similarly, the integer central
charges
c=Zlaz+nlale—1) +e(g—2)]+0(1), n>1 (4.11)

are observed for the classical groups SU(n) and SO(2n) at large n.

5 Unitary Subspaces of Lower Irrational Type

Type-one irrational constructions, involving only a single root, live generically
in two-dimensional subspaces of the type-two construction. The complete list of

unitary two-dimensional type-one subspaces of (simply-laced g,)"#22 is as follows

A. (SU@2))E

B. (simply-laced gg)gf2
C. (simply-laced ;)% 5.1)
. 5.
D. (simply-laced g,-‘”)g#22
E. (simply-laced gj, )%* (¢ =—1,9 # SU(n odd))
2

I'. the curved boundary of the wedge (1V = 0)

where the subspaces A,B,C and F form the boundaries of the unitary region. A
view of the type-one subspaces A,B,D,E and F from above at generic q is shown
in Fig.3, and these subspaces are also visible in the explicit g-slices of Fig.2. The
subconstructions D and E occur when W in (4.2d) is a perfect square, which also
generates type-one solutions sporadically in the interior of the unitary region:

as an example, the construction (SU(5)s)% with central charge

162 1246 + 65¢
SUBIR) = — [1 4+ e
c((SU))}) 7 ( 0 505319 — 1326780¢

resides in the type-two region between F=2andz=h+20f Iig. 3.

The type-one subspace (SU(Q)I);ES is known [18], and we give the explicit

), e=%l1, n=+1 (52)

forms of the new type-one subconstructions B,C,1),’and E in the following sec-
tion. The type-one subspace F on the boundary of the wedge includes the
particular cases

61

3
¢ ((5(1(5)4)':*) =7 (l + 1}—\{——:) , =21 (5.3a)

15



e

] _
8178 (1 + “2"85), n =+l (5.3b)

o(BmF) ==~ 1+ v

but this family of constructions is difficult to obtain explicitly over the full
boundary. All the solutions on the boundary of the wedge exhibit a degeneracy,
scen in the examples (5.3), such that the two solutions ¢ = %1 in (4.1) are
identical copies because WV = 0.

We also give the type-zero unitary subspaces of (siinply-laced g,)j#y, all of
which may be identified as known rational constructions. There is one unitary

rational two-dimensional subspace in the construction $

h
x:—é—-l-l (e =1, g # SU(n odd)) © (5.4)
and a number of unitary rational one-dimensional subspaces Y
1. h=2z=2 . (ANB, ANE, BNE)
2. h=2,¢=2 _
3. h=2z=4 (AN D)
4. z=2,9q=2 (BNC) (5.5)
5. z=3,¢9=14
=k g=2
g TTa2tha (CNE)
e =—1, g # SU(n odd)

whose loci tend to be intersections (e.g. AN B) of the type-one constructions A-
E above. The rational subspaces 1,2 and 3 were noted in [18)]. Rational solutions
are also found sporadically in the interior of the type-two and type-one unitary

domains.

5The two-dimensional construclions z = ’-5‘+ 1, € = 1 are rational partners (h? and (g/h)?,
with g/l the symmetric spaces of maximal dimension) [18] of the corresponding type-one
solution E=(simply-laced gé“)“#zz,e = -1, given explicitly in section 6.4. IV is a perfect
square for both choices ¢ = +1, and the quantity V — deq?z(z — 2)(71 - 2)g-2VWisa
perfect square for the rational partners.

TI'he rational subspaces in the list (5.5) are identified as follows: 1. U(1)2 and
(SU(2)./U(1)z)?. 2. Points in (SU(2): x SU2):)*, z # 4 and (SU2)¥)2
3. Points in (SU(?)f)q. 4. h = Cartan(diag(g x g)) and (g x g)/h. 5. TPoints in
h = Cartan(simply-laced g})# and (simply-laced g3)}/h. 6. h x h and g/h x g/h with g/h

tlie symmetric spaces of maximal dimension.
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The maximal-symmetric construction ((simply-laced g, )9)%, defined in (1.9),
includes the known one-dimensional construction simply-laced g# [18] as another
type-one subspace when ¢ = 1. The more general construction is visualized with
a single extra layer just beneath the (%, z) plane of Fig.1. The central charge of

simply-laced g# [18]

zrank g

c=———=[h 41+ 9B Y (F*(z — 2) + I(12 - 5z) + 22% — 10z 4+ 16)] (5.6a)
2(h + z)

B7'= (A%2? 4 4h(2® — 1322 + 40z — 32) + 4(z* — 102° + 412® ~ 80z + 64)) /2

= U J(z - 4) (5.60)

is obtainable by continuation to ¢ = 1 of ¢((simply-laced g_,)g?z)_ in (4.1d). Sim-
ilarly, the coeflicients of simply-laced g# may be obtained by setting € = 0 and

then ¢ = 1 in the general solution (4.1a-c).

17



6 New Unitary Type-One Subspaces

6.1 (Simply-laced gz);,:é22

The type-one subspace (simply-laced gg);’ge22

—_1__; __Q ~1(2 _ oy _ ~z a

=gl 28T -2 —eh)] (6.1.1a)

t= 1552(7‘ -2 (6.1.1b)

- 2(ill+2) [t—nel, Ly=n57"(q-2) (6.1
__qrankg ; PRy ~ ; .

M) h+1-5(ST (W - )g=2) +eh)] (6.1.1d)

S = g2(h + 2)2 — 32h(q — 1) (6.1.1¢)

lives on a boundary of (simply-laced g, )‘;EQ. The subconstruction is completely
unitary, as noted in Section 4, and the subspace is clearly visible in the g-slices
of Fig.2, becoming rational at ¢ = 2. The lowest irrational central charges of

the subconstruction are found at ¢ =3 withe =5 =1

c((SU@R)) =3 (1 — _\/%) ~ 2.477é (6.1.2a)
c((S0(8)2)3) = 6 (1 - 2—%) ~ 42679 (6.1.2b)
c(((Bs)2)}) =9 (1 - %5) ~ 6.1482 (6.1.2¢)
c(((En)2)3) = 22—1 (1 - \/—‘11—5_—?> ~ 7.1045 (6.1.2d)
c (((Ea)g)i) =12 (1 - 5—\/%) ~ 8.0663 (6.1.2¢)

and, more generally, the central charge (6.1.1d) increases irrationally with rank g

and/or q at fixed €,7.

6.2 (Simply-laced gy)?2 T
x) 3 \@%
The type-one subspace (simply-laced g..)%
1 .o
ly= ———[1 —gRh(h -2 6.2.1
o= gt - 2) 6210
enlt™! - =
e=-= V(2z — h — 2)(222 — z(h + 10) + 16) (6.2.1b)
1 .
= — 1+gR'2(h=2)), Ly=-—R Y (z-2 6.2.1
2(h+:1:)[ +nft a( ), L+ i (z—2) (6.2.1c)
c= 2RI R = 2)( — 1)) (6.2.1d)
(h+x)

R=\/h2z? + 4h(z® — 727 + 122 — 8) + 4z(z® — 622 + 13z — 8)  (6.2.1¢)

lives on a second boundary of (simply-lacedg,)‘fz. In this case, the central

charge (6.2.1d) of. the subconstruction is a function of 5 only, and the values
e = %1 label two physically equivalent copies of the same K-conjugate pair
(n = #£1) according to the automorphism £ — —¢. This subconstruction is the
worst possible case for unitarity, since the subspace includes the base of the

wedge, seen clearly in Fig.2a. The lowest unitary irrational central charges of

the subconstruction are found at n = —1,
c((SU@3)s)}) =5 (1 - ‘2&5) ~ 4.4969 (6.2.2a)
c((SO(8))}) = % (1 - ;8—5) = 4.5631 (6.2.20)
c(((Eeo)}) = % (1 - 13%) ~ 6.3018 (6.2.2¢)
c(((Br)e)y) =19 (1 - 192\%7) ~ 7.2129 (6.2.2d)
248 810

and, more generally, the central charge (6.2.1d) increases irrationally with rank g

and/or @ at fixed ¢ and 7.

-



6.3 (Simply-laced gf;+2)g#22

The type-one subspace (simply-laced g,;”)"#22 is

1 - - -
b= ———[1+ 7 ((h2 = k= 2)UP — UL 6.3.1a

d 4(h+l)[ '7((' Wi 2 )] ( )

n P2 (© 4 77

= [~ (R — U +RU. 6.3.1b

2q =2 )(h+2){ ( U 2] ( )

+ U8, Ly =—U® 6.3.1c

4(h+l)[ 7Uz°], + nYy ( )

o= %qrank g(h + 21 +9(h — U (6.3.1d)

where the auxiliary quantities in (4.2) have simplified to

U = (R — 4(q — 2))(19)~/? (6.3.20)

US) = q(7? — 4)(hq — 2¢(q - )Y RENH)~V/2 (6.3.2b)

RE = ¢®(h? - 4)*[q(9R? + 8k + 4) — deh(q — 2)]+

+16(q — 1)[g*(R* — 4)(3h + 2)(5k + 2) + 128(q — 1)}(h + 1)]. (6.3.2¢)
The subconstruction is completely unitary since it resides inside the unitary
domain of (simply-laced g,,)‘}fz, as shown in Fig.3. The subspace is also clearly
visible as the diagonal unit entries in the ¢ = 3 and ¢ = 256 slices of Figs.2)
and 2c¢. The lowest irrational central charges of the subconstruction are found

atg=2,e=1,n=-1,

[

((SU3)5)3) =5 (1 - \/—g——@) ~ 4.4969 (6.3.3a)
(¢

c((S0(8)s)) = (1—\/%3) 12.6475 (6.3.3b)

c(((Esha)}) = 42 (1 - \/W) ~ 30.7108 (6.3.3¢)
36

c(((Br)z)3) =70 (1 - M) ~ 49.7268 (6.3.3d)

105
Is) 198 (1 — ——— | ~ 88.7361 6.3.3¢
((( wlanli) = ( 117169) ' (6:3.3¢)

20

and, more generally, the central charge (6.3.1d) increases irrationally with rank g

and/or q at fixed € and 7.

6.4 (Slmply—lacedgh 1)q>2
The type-one subspace (simply-laced gbﬂ)‘p (e =—1, g# SU(n odd)) is
1 N (inia . .

to= ————[1+ T ((3h? — 4k — 4)U; — (3h — A,

=Gyl ts (3R — 4k — 4)U; — (3h - 2)U2)) (6.4.1a)
n(h - 2) 7

= | (h + 2)U, + U 6.4.1b
2((1_2)(,”)[ (b +2)Us + U] (6.4.15)
=G +2 Tl Ly =—nly (6.4.1¢)

qrankg(h +2) - 1 . .
2(3h +2) (Rt 1+ ((3" —4h— YU+ (h + Q)Uz)] (6.4.1d)

where the auxiliary quantities in (4.2) have simplified to

U= i(q(h +2) —8)(q(h — 6) + 8) R (6.4.20)

Up = i(z} +2)(16(g — 2) + ¢*(h — 2) R/ (6.4.25)

= -q‘(h +2)2(h — 121° + 5202 — 647 + 64)+
+16(g — D[¢*(h* — 8h® — 1612 — 16) + 64h%(q — 1)) (6.4.2¢)

Since it resides outside the wedge, this subconstruction is also completely uni-
tary. The subspace is clearly visible in the slices of Fig.2 as the (1,0) pairs I

of I'igs.2b,c, which become rational at ¢ = 2 in Fig.2a. The lowest irrational

central charges of the subconstruction are found at ¢ = 3, 3 = —1,
135 513
SUM)3)%) = — |1 — ——==] ~6.0838 6.1.3
c(( ( )3)#) 14 ( 135\/@) (6.4.3a)

I'he paired zeros in the (1,0) entries of Figs.2b,c are the rational partners with € = 1 of
. >2
(simply-laced 5”;+1);!_ &=-1
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c((SO®)}) = g (1 - 2]2\0/5) ~ 9.6446 (6.4.3b)
9

4027

E)d) = 22 (1 - —oee
e ((Ber)z) = 5 < 39/50066
285 (1_ 11633
57+/185641

2976 12391

Eg)e)d) = == (1 - ——

o ((Bsho)}) 23 ( 93/75821

and, more generally, the central charge (6.4.1d) increases irrationally with rank g

) ~23.2134 (6.4.3¢)

) ~ 37.5007 (6.4.3d)

) =~ 66.7827 (6.4.3¢)

and/or g at fixed 7.

We finally note that the lowest unitary irrational central charge in the con-
struction (simply-laced g,)‘;#22 is ¢((SU(3)2)%) in (6.1.2a). The lowest unitary
central charge in the maximal-symmetric construction ((simply-laced g,)9)¥ re-

mains the original value [18]

c((SUB)s)*) = 2 (1 - %) ~ 1.7659 (6.4.4)

obtained in siniply-laced g¥ .
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Figure Captions

Fig.1 The non-unitary wedge in (simply-laced g,);’fz.

Fig.2 a)(simply-laced g.)%; b)(simply-laced g;)%; c)(simply-laced g.)3°®. The in-

tegers n are type-n irrational and N is non-unitary.

Fig.3 (Simply-laced g 3#22 at fixed generic gq. The lettered subspaces are defined

in eq.(5.1); the integers n are type-n irrational, and the shaded region is

the non-unitary wedge.
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