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The dependence on v of the period doubling scaling indices for uni­

modal maps with a critical point of the form I x 1 11 is numerically inves­

tigated. To perform extensive computations of these indices a new' sym­

bolic dynamics based technique in configuration space is introduced. For 

v - 1·· it is shown that the Feigenbaum bifurcation rate converges to the 

theoretically exact value 6 = 2 limit only if v- 1 is exponentially small. 

On the other hand, the existence of an upper bound for o(v - oo) is 

numerically verified. An accurate estimate of 29.8 is given for this limit. 

Moreover, the global functional form of o(v) is shown to have an interest­

ing symmetry. 
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1. Introduction 

Period doubling universality is a well established theory.1•2 It is well known, for 

instance, that the scaling behavior near the onset of chaos for unimodal maps of the 

interval3•4 with a critical point of order I x 1
11 only depends on v.5 In fact, v labels the 

universality classes of unimodal maps which share the same scaling behavior. In other 

words, the indices describing such scaling are class functionals. Since the classes are 

only parametrized by v, these indices are universal functions of v. In particular, the 

bifurcation points in parameter space geometrically accumulate to the onset of chaos 

value with a rate 6 and the highly bifurcated orbits scale around the critical point with 

a factor a. Both 6 and a are universal functions of v.6 In the range v· E (1, oo ), there are 

two singular limits in the scaling behavior. First of all, for v-+ 1 the scaling factor a 

can be shown to diverge, and the bifurcation tree to collapse. This limit can be analyzed 

rigorously in the framework of renormalization group theory as a perturbation to the 

tent map. Such analysis leads to the result that li(v-+ 1) = 2. Although the validity of 

the result is out of question, an accurate numerical check in the configuration space of 

the cascade is very difficult to achieve due mainly to the already mentioned divergence 

of a(v). At the opposite extreme, the other singular limit v-+ oo is equally difficult to 

study numerically but at the same time is more controversial from the theoretical point 

of view. On one hand, first order renormalization schemes seem to predict a square root 

divergence of 6(v) as v increases. This behavior is also suggested by earlier numerical 

results7 for unimodal maps with high (:=::::: 40) v. On the other hand, other renormaliza­

tion group arguments8•9•10 assure an upper bound of about 30 for 6(v). 

The aim of this paper is to elucidate numerically the v-+ oo limit for 8(v), not in a 

renormalization group framework, but rather by using its real space definition as the 

asymptotic rate of convergence for superstable parameter values. For this purpose, we 

introduce a map of infinite order in the sense that all its derivatives vanish at the criti­

cal point. In order to investigate the period doubling cascades in this extremely difficult 
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case, we developed a powerful numerical technique which we shall describe below. This 

tool is also appropriate to analyze with greater accuracy the limit v-+ 1+, which in turn 

is a good test for the reliability of the method. Finally, we speculate about the global 

form of the function 6(v) which shows a nice symmetry. Section 2 is devoted to the for­

mulation of the problem and the introduction of the maps to be studied in the 

remainder. In Section 3 we devise the numerical method, discussing also its conceptual 

background. Section 4 contains the main results of our numerical work. We conclude in 

Section 5 with a discussion of these results and their implications. 

2. The problem 

Renormalization group arguments show that 6, the asymptotic ratio between the 

stability width of successive periods in a period doubling cascade, is only dependent on 

the order of the maximum for unimodal maps. Given a unimodal recurrence of the 

interval 

{1) 

which presents a period doubling route to chaos as A is varied, this ratio is defined as 

{2) 

where An are the superstable points satisfying 

{3) 

for the 2" cascade. A00 is a critical point which lies on the border between the period 

doubling {or laminar) regime and the chaotic regime. 

The second scaling index a (which is universal in the same sense as 6) is defined as 

{4) 

where 
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d 2• -1 ( ) 
n = f >.. X max - X max = (5) 

This index describes the way successive branches of the attractor scale around the max-

imum off >..' x max· 

The Feigenbaum-Cvitanovic ·equation, 

g (z ) = - " g • g ( - = ] (6) 

fixes a and g for a given order of the maximum. Up to first order in a power series 

expansion, the following implicit equation for a can be obtained by direct substitution 

into Eq. (6) 

av 
--a=1 
v 

(7) 

where v is the order of the maximum. A plot of a(v) vs. v obtained from Eq. (7) is 

shown in Fig. 1. While this approximation for a(v) can differ from the exact values by 

as much as 15%, it gives essentially the correct asymptotic behavior. 

Clearly, there are two singular limits: 

a) v- 1. In this limit the scaling factor a(v) diverges and accordingly the widths 

of successive branches decrease faster than exponentially. This behavior is suggested by 

the fact that the limit map is approximated in the neighborhood of the critical point by 

the so called tent map: 

Xn + 1 = >.(1 - I 2xn - 1 I ) (8) 

For this particular case, all >-n collapse to a single value >.0 = 1/2 (i.e. the 2n cycles 

appear all at once )11 and the ·onset of chaos at tractor shrinks to a single point in phase 

space. Nevertheless, renormalization group theory assures that ti(v- 1) ->2 .4 Unfor­

tunately, numerical checks of this prediction are extremely difficult and the best result 
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in the literature we are aware of12 is 6(1.1) = 2.81. Notice that the main obstacle in the 

way of these computations is the increasingly high value of a(v) as the limit is 

approached. Large a implies that branches born at a given bifurcation are separated by 

a distance which is tiny relative to that of their parents. Therefore, the resolution 

required to detect a bifurcation rapidly exceeds the available computational precision. 

b) v--+> oo. Eq. (7) also shows that the scaling factor a(v) approaches unity in this 

limit. Consequently, the distance between branches in the neighborhood of the max­

imum does not scale geometrically from one generation to the next. On the other hand, 

there has been some controversy concerning the analysis of the asymptotic .behavior of 

O(v) in the renormalization group framework. While the power series truncation of the 

RG equations7 seems to indicate that o(v) diverges as Vv, more general argumentsS,Q,lO 

lead to an upper bound for o( oo ). Assuming that an upper bound exists, neither an exact 

theoretical prediction nor an accurate numerical determination of its value is available 

at present. 

An extremely important issue is the singularity of the double limit which leads to 

6( oo ). The sequence of maps / 11=1-k I x I" approaches a discontinuous limit f 00 , 

which takes on the value of -oo for x outside of [-1,1] and 1 inside. AB a consequence, 

the chaotic region progressively shrinks in parameter space. Since the limit f 00 has no 

dynamics, it is clearly impossible to calculate the scaling exponents while taking the 

v--+>oo limit for the f 11-family. It has thus been conjectured 10 that the correct way to 

take the limits is lim lim On (v), and that the reverse order is meaningless. However, 
v-oon -oo 

the above argument is based on the false assumption that all families of maps of this 

kind share the property of becoming discontinuous and flat in the limit. The value of o 
is influenced solely by the shape of the function near the maximum, and a maximum of 

order v certainly does not imply that the function should be homogeneous of degree v. 

Moreover, the scaling parameters are invariant under the addition of a function with an 

extremum of higher order at the same location. In particular, a bump function, that is 
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a C 00 function with all derivatives vanishing at the maximum, can be added to the 

I 
11
-family in order to stabilize the v-oo asymptotics. (Such a function cannot be ana­

lytic, but it may be C 00 on the real line). For example, one could use exp(-1/x 2
). The 

corresponding sequence of maps 

(9) 

does not share the pathological asymptotics of the I v-family. Accordingly, the limits 

can be inverted and the quantity lim lim 611 (v) can be obtained. We will show that this 
t& -+OOV-+00 

quantity exists, and will calculate it; furthermore, it will be found . to coincide within 

numerical error with the value previously obtained 10 for the reversed limit. Thus, ;;e 

suggest that this limit is far better behaved than it was previously assumed. 

Following the introduction of the g v-family, it is natural to use the inverse Gaus-

s1an map 

if X ~ 1/2 

Xn + 1 = (10) 
if X = 1/2 

in order to numerically evaluate 6( oo ). As already mentioned before, this map has all its 

derivatives equal to zero at the maximum; furthermore, it is continuous and all deriva­

tives are continuous on the real line. Therefore, this map can be regarded as unimodal 

with v = oo in the neighborhood of its maximum. 

To illustrate the origin of the difficulties that one faces in the numerical study of 

the above mentioned limits, let us consider the function F (:>..) = I >..
2• ( x max) - x max' 

whose zeroes define the A11 (see Eq. (3)). A short analysis shows that the derivatives of 

F at its zeroes behave asymptotically as (- 6/a)". For the v -1 + case, this implies 

that F (:>..) becomes very flat for relatively small n. , and therefore it is numerically 
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infeasible to determine the location of its zeroes. On the other hand, for the v --+ oo 

case, the derivative increases without bound, and standard numerical methods do not 

have enough stability to locate the zeroes, whenever these accumulate geometrically 

with a rate larger than ~ 25. The typical form of the derivative of F with respect to A 

for these two cases is shown in Fig. 2. 

These considerations lead us to the necessity of finding a new numerical technique 

to calculate the 6(v) function. We shall introduce such a technique in the following sec­

tion. 

3. The numerical method 

Before discussing the algorithm used in this work to calculate 6, let us review some 

results from the symbolic dynamics theory on which the method relies. 

It is well known that the stable periodic orbits of unimodal maps of the type given 

by Eq. {1) appear in a universal order (known as MSS after Metropolis, Stein and 

Stein)3 as the parameter A is increased. The basic tool employed in the proof of this 

result is the symbolic description of the trajectories. This description consists of associ­

ating to each orbit of period n a sequence of n symbols R, L or C, according to the 

position relative to the critical point of each orbit element, i.e.: R if the corresponding 

point of the orbit is to the right of the maximum where the derivative of the map with 

respect to x is negative, L if it is to th~ left and accordingly the derivative is positive 

and C if the iterate is at the maximum. It can be shown that the sequence correspond­

ing to a given periodic orbit is the same as the symbolic sequence of a transient, which 

starts from x 0 = x max; that is, the transient has the same topology as the orbit. Thus, 

by convention, the orbits always start with x 0 = x max' so as to avoid cyclic permuta­

tions of the sequences. It follows that no orbit can have a symbolic description with a 

C in the middle, since that would imply that the orbit is superstable with a shorter 

period. Therefore, superstable orbits always end with C. The symbolic description 
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defined in this way distinguishes between orbits corresponding to values of>.. < >.. 8 from 

orbits with >.. > >.. 8 wher~ A8 is the superstable point in the region. 

Due to several topological constraints, arbitrary sequences of symbols do not neces­

sarily correspond to allowed stable orbits. For example, no sequences may begin with 

LR , because the iterate of the maximum must be greater than the iterate of any other 

point. It is therefore impossible that the first iterate be in the L zone while the second 

iterate is in the R zone. 

The MSS work leads to an algorithm for the construction of the allowed sequences 

corresponding to superstable orbits and at the same time specifies the order in which 

these orbits appear in parameter space. A less publicized result13 is that the MSS order 

definition, which is somewhat complicated when defined in terms of the symbolic 

sequences, can be translated into a quite simple binary tree structure provided that the 

proper labeling is introduced. In this construction, each node of the tree is associated 

with a symbolic sequence such that both allowed and forbidden sequences are present. 

However, the natural order of the nodes which correspond to allowed sequences is pre­

cisely the MSS order. In other words, the tree translates the MSS order into the order of 

real numbers. 

The symbolic labeling of the tree proceeds as follows. With each link between two 

nodes either an R or an L is associated. The assignment of R 's and L 's to the links is 

done horizontally following the order LRRLLRRL... (see Fig. 3). Thus, each node 

represents a symbolic sequence which is obtained by reading the symbols on the 

corresponding chain of links from the top to the node. Note that the L symbol in this 

labeling indicates continue in the same direction while the R symbol means reverse 

direction. The relationship between the L or R symbols and the absolute left or right 

movements on the tree links (labeled in Fig. 3 as l or r ) is known as the Gray encod­

ing14 of the binary sequence, and has been widely used in error correction codes. In 

order to distinguish between the two labeling schemes we shall refer to the L , R 
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symbols as Gray-like and to the l, r symbols as ordinary binary. 

There is a simple interpretation to the labeling schemes in terms of a variation, €n , 

of the orbit, Xn 

Namely, the symbolic assignment then proceeds according to the following rule 

{ 
R if 8 n = - 1 

8
n = L if Sn = + 1 

•• =sign[ 1z ..] 
On the other hand, the sign of the variation, €n, is 

and consequently, the l , r sym bois are defined in terms of "n 

{ 
r if "n = - 1 

v = . 
n l 1f tJn = + 1 

(11) 

(12) 

(13) 

(14) 

In other words, the absolute movements on the tree can be deduced from the sign of the 

variation at the n-th iterate. We will now see how this is related to the MSS order. 

As already mentioned before, this binary tree contains any arbitrary sequence and 

only a subset of the nodes represent structurally permissible MSS sequences. However, 

it has been p~oved13 that the natural order of the nodes restricted to allowed sequences 

coincides with the MSS order. We will not reproduce here the details of the proof. 

Instead, we show in Fig. 4 the coordinate of the nodes which are associated with the 

symbolic sequences generated by the logistic map (v = 2), as a function of >-..15 It is 

obvious that only the allowed symbolic sequences are produced by the map and, of 

course, they appear in the MSS order as ).. increases. Our statement that the order of 
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the nodes is the same as the universal MSS ordering, is then, reflected by the fact that 

the graph in Fig. 4 is monotonic. 

A second ingredient necessary for our numerical method is also a result from the 

theory of symbolic dynamics. The symbolic sequence corresponding to the trajectory at 

the onset of chaos has the following renormalization property: the (infinite) sequence is 

inv~riant under the substitution R -+ RL and L ---+ RR .16 This may be used to prove 

that the sequence has a binary tree structure, and, moreover, that this is the same as 

the last digit 1 in the binary expansion of the natural numbers (see Table 1). Accord- · 

ingly, a straightforward formula for the computation of each symbol Si in the sequence 

can be found 

n; = m:.x{ k I 21 divides i} 

{
R ifni is odd 

Si = L if ni is even . 

(15) 

Furnished with these results, we can easily devise an extremely robust numerical 

method to detect superstable orbits. Since we are able to recognize whether an orbit 

produces a symbolic sequence which is before or after the desired superstable one, a 

bracketing search is possible. This approach assures convergence even for the singular 

limits mentioned above. More specifically, we iterate the maximum and compare the 

resulting symbolic sequence with the sought one as defined by Eq. (15). At the step 

where the two sequences differ, we stop the iteration, reset the ).. values and start again 

from the maximum. 

The idea of using symbolic dynamics based algorithms to detect superstable orbits 

is not completely new. Hao Bai Lin,17 for instance described a method in which the sym­

bol sequences are used to determine the correct branches of the inverse map in the back-

ward iteration of the critical point. However, this method requires computing the inverse 

map, a task which in general is more time consuming than computing the map itself. 
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Therefore, our algorithm presents the additional advantage of requiring only forward 

iterations. 

4. Results 

Using the tools developed in the preceding sections, we have computed the index fJ 

as a function of v for maps of the form 

Xn + 1 = >. { 1 - I 1 - 2xn I "') (16) 

for v between 1.0015 and 90. 

The function fJ(v) has been plotted in Fig. 5. It is clearly seen that fJ(v) is a smooth 

monotonically increasing function in agreement with the renormalization group 

theory.2•4 

In the following, we analyze our results for the two limits mentioned in Sec. 2, i.e. 

v - 1 and v - oo. 

a) The v - 1 + limit. While here a well established theoretical result is available 

(6(v- 1+)- 2), the convergence to the limit is extremely slow. Notice for instance 

that for v = 1.0015 we obtained 6 = 2.2442 ... a value which still differs by more than 

10% from the limit. Thus, the question of how fJ(v) behaves in this regime naturally 

arises. Interestingly enough, the attempt to fit a power law to fJ(v- 1)- 2 around v = 1 

fails in less than one decade. Moreover, the estimates for the exponent yielded by such 

fits systematically decrease when the data are restricted to intervals closer to v = 1. 

This behavior strongly suggests the asymptotic relation 

(v-1)~exp{a(6-2)- 6 } (17) 

or 

log(v- 1) ~ a + c 
(6-2)6 

(18) 

for small values of (v- 1). Although the multiplicative constant before the exponential 
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is uncertain, one would expect a reasonable estimate for the exponent b and the con-

stant a from the data close to v=l. In Fig. 6 we have plotted log( - log(v- 1 )-c ) 

versus log([)- 2) for several values of c • The graph becomes linear for small values of 

[)- 2. This confirms our hypothesis concerning the asymptotic behavior and allows us to 

estimate the value of the index b as the slope of the linear part. Moreover, the quality 

of the linear fit is best for c ~ 1.25 and this leads to b ~ .46. We will return to these 

results later when we discuss the global shape of f>(v). 

b) The v-+ oo limit. At first glance, the shape of the f>(v) curve shown in Fig. 7 

could support equally well both the hypothesis of a JV divergence or the existence of a 

finite asymptotic limit. However, as we shall see, a more refined analysis shows a ten-

dency which is compatible with the existence of the above mentioned upper bound. To 

further clarify this issue one could proceed with the computation of f> for increasingly 

higher {but finite) values of v. However, this approach becomes impractical above 

v ~ 100. Instead, we study the bifurcation sequence for the map in Eq. (10) which can 

be regarded as belonging to the v = oo universality class. In Table II the values of the 

bifurcation ratios f>n ( oo) are listed (corresponding to the n-th and ( n - 1 }th bifurca­

tions) for n between 4 and 18. A slow but monotonic convergence to f>( oo) ~ 30 can be 

observed. Moreover, an im~rovement to the estimation for f>( oo) can be achieved by 

means of the following method. Let us first define the function f>( q ) = f>n ( oo) where 

q = 1/n such that 

f>( oo) = lim f>( q ) 
q- 0 

(19) 

We know that f>( q) is monotonic, since it converges geometrically for the even and odd 

subsequencies, with a positive factor; for the same reason, the even and odd subsequen-

cies are convex, and are intertwined. We then use these facts in the neighborhood of 

q = 0 to assure that the value of the limit is bounded between f>( q ) and its Legendre 

transform 
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d6 i( q ) = 6( q ) - q­
dq 

(20) 

(21) 

indicating that the average 6( q ) should display accelerated convergence to the limit (see 

Fig. 7). This procedure leads to the result 6( oo) = 29.8 ... which is in agreement with 

the analytic estimate made in Ref. 9 by means of renormalization group arguments. 

c) The global form of 6(v). An interesting feature in the global dependence of the 

bifurcation rate c5 on the order of the maximum is revealed in Fig. 8. In Fig. 8(a) we 

show the n~merical derivative 68
1 of the function 68 (v8 ) where 68 = 6- 2 and 

v8 = log(v-1). Notice that 68 ' has a maximum at V8 ::=::::: 1.25 which coincides with the 

value of c mentioned above as the one optimizing the fit to the law of Eq. {18). Since 

our data are poorer as the order v increases, the curve 68 ' becomes noisy after this 

maximum. However, there is substantial evidence supporting the conjecture that 68 
1 is 

symmetric around its maximum. On the basis of this hypothesis, we can predict the 

value of 6( oo) using the results from the small v part of 6(v). This estimation leads to 

c5( oo) :=:::::: 31.2 which coincides with the actual value within 5%. Accordingly, Fig. 8(b) 

illustrates the conjectured symmetry of the function 68 (v8 ). 

A true confirmation of this symmetry should come from the systematic computa­

tion of 6(v) for increasing values of log(v- 1 ). Results of the work in progress on this . 

problem will be discussed elsewhere. 

5. Conclusions 

We have introduced a symbolic dynamics based procedure to economically perform 

large scale calculations of the scaling indexes for period doubling bifurcation sequences. 

With the help of such an algorithm we have calculated with great precision the function 



- 14-

c5(v) over a broad range of v values. In the v--+ 1+ limit we could conclude that the 

theoretical b = 2 result can only be reached for values of v exponentially close to 1. On 

the other hand, we have confirmed the existence of a finite limit for b(v--+ oo) giving, at 

the same time, an accurate estimate for its value. Finally, we presented evidence sup­

porting the conjecture that the behavior of the index b for exponentially large values of 

the parameter v is symmetric to its behavior for v exponentially close to 1. If confirmed, 

the predictive ability of this conjecture would be extremely helpful in completing the 

analysis of the universal metric properties dependence on the order of the critical point. 
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Decimal i Binary i n· 
' 

MSS Si Tree structure 

1 0001 1 R v* 
2 0010 2 L /., 
3 0011 1 R / 

.......... 

4 0100 3 R /' s 0101 1 R I ' "' 
,..,...• 

6 0110 2 L j '•' 7 0111 1 R I .......... 

8 1000 4 L • ~, 

9 1001 1 R \ .......... 

10 1010 2 L \ 
/., 

11 lOll 1 R \ / 
v .......... 

12 1100 3 R 
., ., 

13 1101 1 R ' ' v* -
14 1110 2 L '•' 15 .. 1111 1 R ........ 

Table I. 1be binary expansion of the first fifteen natural nwnbers and its relation ·to the 
corresponding members of the symbolic sequence for the 2- orbit at the onset of chaos. n; is 
given either by Eq. (15) or equivalently by counting the position of the (underlined) last digit 1 
from left to righL Eq. (15) also gives the b'anslation from n; to the i -th symbol of the period 
doubling attractor. 1be underlaying tree saucture is generated recursively starting from the 
lowest levels. 
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n ~(lin) ~lin) 0(1/n) 

4 15.84423 33.18954 24.51688 

5 19.80478 35.79244 27.79861 

6 22.49363 36.32217 29.40790 

7 24.52404 35.93053 30.22728 

8 25.85286 34.96990 30.41138 

9 26.84534 34.07744 30.46139 

10 27.49777 33.18256 30.34016 

11 27.99756 32.50903 30.25330 

12 28.33298 31.91092 30.12195 

13 28.59962 31.48098 30.04030 

14 28.78270 31.10806 29.94538 

15 28.93408 30.84240 29.88824 

16 29.04016 30.61049 29.82532 

17 29.13130 30.44494 29.78812 
'· 

18 29.19625 

Table D. The convergence 10 3_ of 0, y and a for the inverse Gaussian map (see text and Fig. 
7). 
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Figure Captions 

Figure 1. 

The trajectory scaling exponent, a vs. v as obtained from Eq. (7). 

Figure 2. 

The numerical difficulty in locating the superstable cycles in the v - 1 + and 

v - oo limits is a consequence of the pathological form the function 

F >.. = I t (x max)- x max assumes in the neighborhood of its zeroes, An • Here, the 

value of n was set to 10. In the v- 1 + limit (a) the derivative ofF >..(x ma.x) with 

respect to A around An becomes vanishingly small while in the v- oo limit (b) it 

diverges for large n . The arrows indicate the locations of the zeroes of F (:A). 

Figure 3. 

The binary tree with both the Gray and the binary labeling. The former orders the 

periodic orbits in parameter space. The symbolic sequence of a periodic orbit of 

length n corresponds to a path on the tree which is of length n and starts at its 

top. At the n -th level of the tree, scanning the nodes from left to right one 

encounters periodic orbits in the MSS order. 

Figure 4. 

The binary assigned node coordinates for the binary tree in Fig. 3 vs. the value of A 

at which the corresponding periodic orbits are superstable for the logistic map 

(v = 2). 

Figure 5. 

b vs. v for the range v E (1.0015, 90). 

Figure 6. 

The v - 1 + limit: the behavior of log(log(v- 1 )) as a function of log( b- 2) is shown 

to be linear for small values of (b- 2) (see Eqs. 17 and 18 ). The exact value of c 
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does not affect this trend. 

Figure 7. 
.., 

The v -+ oo limit: the convergence of 6( q ) (dotted line), "11 q ) (dashed), and 6( q ) 

(continuous) for the inverse Gaussian map (see Eqs. 10, 19, 20 and 21). 

Figure 8. 

The global form of 6(v): a) 6,' vs. v, (see text), b) 6B vs. vB where the continu­

ous line represents the same data as in Fig. 5 and the dashed curve is obtained by 

inverting the low v data with respect to the point vB = 1.25. 
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