
.J

. _,

LBL-28274
UC-350

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

APPLIED SCIENCE
DIVISION

Presented at the Building Simulation '89 Meeting,
Vancouver, B.C., Canada, June 23-24, 1989, and
to be published in the Proceedings

Neutral Format and Automatic Translations
for Building Simulation Submodels

E.F. Sowell and P. Sahlin

June 1990

APPLIED SCIENCE
DIVISION

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

-t.C"l
o r
))0·

n D
n:.~ z
~ !lJ (")
ro<"I:O
rp rp "U
~111-<

.111

IJ:I
a.

10 .
(.11
5I

r
O"C"l
-s 0

r
IJ:I
r
I

f"l.)
!ll"O ·co
)'< f(l
'< -..J
• n;, ..!=-

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United· States Government or any agency thereof or the Regents of the
University of California.

Proceedings of Building Simulation '89
IBPSA Conference
Vancouver, B.C.-- June 23-24, 1989

LBlr28274

NEUTRAL FORMAT AND AUTOMATIC TRANSLATIONS

FOR BUILDING SIMULATION SUBMODELS

Edward F. Sowell
Department of Computer Science
California State University, Fullerton

. Fullerton, CA 92634 ·

Per Sahlin
Swedish Institute of Applied Mathematics
Department of Building Services Engineering
Royal Institute of Technology
Sweden

June 1990, Rev.

Abstract
Much current research is directed towards development of software environments that
allow easy construction of building simulation models of widely varying structure and
purpose. The example, TRNSYS has been in use for a number of years. Recently, several
new such environments have been proposed. In spite of a considerable variation in model
description formats among environments, the underlying mathematical models of physi­
cal processes are very similar. While one of the principal aims has been to allow easy
sharing of models among users of the same environment, it has not been clear how porta­
bility was to be provided among different environments. Another objective has been ease
of component model definition, in order to encourage modifications and additions to
model libraries. This paper addresses both of these issues, by proposing a neutral and
natural format for component model expression. The proposed format encourages equa­
tion based model definition because such models can be converted to efficient algorithmic
form if needed, whereas the converse is not always true. Nonetheless, algorithmic com­
ponent descriptions are also supported in order to allow reuse of existing models. Other
key features of the proposed format are typing and declaration of linkage elements
between models, which allow development of compatible component families, and
enhance submodel exchange and reuse. The proposal considers underlying system model­
ing issues, including hierarchical submodel decomposition and methods for formal model
expression that allow automatic translation to various simulation environments. Also
discussed are the software tools needed for library maintenance and model translation.

This work was supported, in part, by the Assistant Secretary for Conservation and Renewable Energy, Office of Buildings Technolo-
gy, Building Systems and Materials Division of the U. S. Department of Energy, under Contract No. DE-AC03-76SF00098. ·

1

Table of Contents

1. Introduction•... 3

2. Model Structuring Principles 4

2.1 Equation Modeling ... 4

2.2 Component Interconnection................................. 5

2.3 Hierarchical Decomposition.................................. 7

2.4 Model Validation 8

3. The Format... 10
3.1 Global Declarations... 10

3.2 Continuous Model Elements................................. 11

3.2 .1 Equations... 12
3.2 .2 Links.. 12
3.2.3 Variables.. 1-2
3.2.4 Parameters and Model Parameters.............. 14

3·.2 .5 Functions... 15

3.2 .6 Flexible Model Descriptions 15

3.2.7 Parameter Processing.................................... 17

3.2.8 Flexible Model Descriptions- revisited....... 17

3.3 Algorithmic Models .. 18

4. Supporting Software.. lD

5. Discussion and Conclusions...................................... 20

Acknowledgements... 21

References .. 21

2

1. Introduction
There are currently several modular programs in use for simulation of buildings and
associated service systems, e.g TRNSYS, HVACSIM+, and NEPTUNIX. Additionally,
several new modeling environments for the same purpose have recently been proposed,
and are in various stages of development [CLARKE 1985, SOWELL 1986, SAHLIN 1987].
All of these alternatives are similar in the sense that the mathematical models of com­
ponents and subsystems are expressed in program modules that the user can interconnect
as needed to define the wanted system model. The usefulness of any such environment
depends on the availability of a library of predefined models for components in the
intended application area, and on the existence of a simple mechanism for implementing
new models when needed.

One might expect that component models could be interchanged among environments
because, at a given level of idealization, the mathematical models of the physical
processes are the same. Unfortunately, this is not necessarily the case because each
environment employs its own semantics and syntax for model expression and intercon­
nection. Without some form of standardization of component model definitions the
desired portability will be provided, at most, within modeling environments, but not
between them.

This paper suggests a possible starting point for such a standard, namely a Neutral
Model Format (NMF). The format is "neutral" in the sense that models are expressed in
a general manner, rather than in the format of any existing or planned environment.
The standardized definition encompasses only the essential information needed to express
a model unambiguously. This information is formalized in order to allow automatic
translation to the format of a particular simulation environment. The format is
"natural," meaning that the definition employs terms and constructs as close as possible
to the experience and training of scientists and modelers.

In this initial work, the focus is on models with a basically continuous behavior. This
includes building envelope as well as HVAC system models. Excluded are components
such as thermostats with a dead baud (hysteresis) and microprocessor based controllers,
which are better described in discrete time. Furthermore, the emphasis is on the machine
readable mathematical description of the models. Systematical model documentation has
been treated elsewhere [CLARKE 1984, DUBOIS 1988].

The discussion that follows begins with an overview of structured modeling principles
that motivate the NMF. Many of these are inspired by the work of Elmqvist and Matts­
son [ELMQVIST 1986, MATTSSON 1988]. This is followed by a description of the format,
supported by small examples.

3

•

•

2. Model Structuring Principles
The NMF in based on a few principles that ensure generality:

1. Continuous models are expressed in terms of equations.

2. Variables and interconnections are typed.
3,. Large models must allow hierarchical decomposition.

4. Validation is integrated into the modeling process.
These principles are briefly described and defended below.

2.1 Equation Modeling
The internal behavior of a continuous component of the NMF is described by a
differential-algebraic system of equations which for the general case can be written

J(x,x,p)=O,

where f is a vector function of the variable vector x, its time derivative x, and a param­
eter vector p • In all cases of interest here, this system of equations will be underdeter­
mined; some of the x 's will have to be given as functions of time.

Let us, for the sake of the discussion, separate between the equation model of a com­
ponent and a problem for the same component, where the problem is the underdeter­
mined equation model together with a selection of given variables. For example the equa­
tion model of a thermal resistance may be written

·. 0=q-UA(t1-t2),

where q is the heatfiow through the resistance and t 1 and t2 are the terminal tempera­
tures. Now, for this simple one-equation model three different problems, i.e. combina­
tions, of given and calculated variables may be given:

1. t 1 and t 2 given and q calculated

2. t 1 and q given and t 2 calculated
3. t 2 and q ·given and t 1 calculated

All three problems are well posed. In the following, the term well posed will be used in
this sense: able to produce a locally unique non-trivial solution. For more complex
models, only some selections of given variables will yield well posed problems

Each component model in most current simulation environments, e.g., TRNSYS and
HVACSIM+, is described as an equation model along with a single input-output selection
(a problem in our sense) and an algorithm for determination of outputs. The component
modeler makes this selection of inputs and outputs and devises the algorithm when the
model type routine is written.

The pre-selection of given variables leads in some cases to limitations in the actual use of
the models. Frequently a system modeler, using available types, would like to connect
the inputs of one component with the inputs of ariother and similarly for the outputs.
This, of course, is impossible and one of the component models has to be rewritten with
a different input-output selection. The system modeler is forced to become a component
modeler and write, debug, and compile FORTRAN code.

4

These difficulties are overcome in some of the more recently proposed environments
(e.g. SPANK [SOWELL 1986] and Ida, formerly Modsim [SAHLIN 1988]) by leaving the
input-output designations to the environment. This will substantially increase the versa­
tility of each component model.

The automatic input-output designation in more recent environments is done by keeping
equation models separate from input-output selections until the components are actually
connected together. This separation is only possible if equations are declared separately,
the way they are in the NMF.

Since some environments can do without explicitly stated input-output designations in
their component model format, one could argue that this information is inappropriate in
the NMF, which should be free of environment-specific non-essential information. There
are, however, several reasons for including one possible input-output designation (one
problem) for each NMF component model. Firstly, if this information was to be left out,
automatic translation would be impossible for input-output oriented environments.
Secondly, a viable input-output set is a part of the required validation procedure to be
described later. That is, a component modeler has to demonstrate at least one well­
posed problem for a model.

2.2 Component Interconnection
Having focused briefly on the internal behavior of component models we turn to the
interconnection mechanism between them. Little attention has been devoted to this
topic in many of the past discussions on the development of common component
libraries, although model reuse and exchange have been the primary motivations. How­
ever, one should be aware that sets of components developed by various groups will
remain incompatible, even when stored in a common library, unless a structured way of
constructing intercomponent links is imposed. Otherwise, the sockets and the prongs
will simply not fit together.

The development of a set of component models for a simulation task involves numerous
decisions, some of which are crucial and others which are less fundamental in nature.
Unfortunately, all of these decisions, not just the crucial ones, will later on influence the
compatibility with other models. It is our aim here to provide a component format which
encourages compatible choices among the trivial decisions without imposing any restric­
tions on the fundamental ones.

One of the initial crucial decisions to be made is the choice of a set of variables that will
represent the behavior of the simulated system to an appropriate degree of accuracy.
For example, in a simple HVAC circuit without cooling it might be sufficient to choose
dry air mass flow rate and air enthalpy as the main variables carrying information
among individual components. We are referring here to the set of variables involved in
the interaction among components; additional variables may be used internally. Once
this choice of interaction variables has been done, a compatible family of components can
be developed. For the HVAC circuit this might involve, for example, a collector, a distri­
butor, a heating coil and a simple zone model as shown in Figure 1.

The choice of interaction variables is affected by the component model complexity. For
example, if we wish to consider moist air problems, a cooling coil model should include

5

•

the effect of condensation, and thus some measure of air humidity must be included in
the air characterization. If the cooling coil is to be used in conjunction with the previous
models, the list of interaction variables to be carried around the circuit must be
expanded to include a moisture variable. The principle here is that the component in
need of the most information determines the interaction set of variables. Components
with smaller needs will ignore unnecessary interaction variables.

Collector

0 = -mout+min 1 +min 2 mout
0 = -houtmout+hin 1 min 1+hin 2 min 2 h out

Distributor

m ..
Jn

h

Heating Coil

m

h in

Zone

I J
min21 hin2

0 = -min+mout 1+mout 2

qsource
0 = -hout+hin + m

m hin

q air
.h = hin + m

Cp air temp = h
m = tunc { temp)

m h

mout2
h.

m

h out

Figure 1: A simple compatible family of component models. The zone model
has a control function (func) built in which determines the ventila-

• tion rate as a function of zone temperature.

Now, let us look at some of the trivial decisions for our sample case. Although the simu­
lation in principle can be carried out using vastly different sets of units in each com­
ponent, compatibility is enhanced if common units are used. This is an area where
encouragement, via access to existing models, and mild punishment, via compulsion to
write additional declarations, are likely to stimulate uniformity. For the sample HVAC

6

circuit, a similar argument can be made concerning the choice between temperature and
enthalpy as an interaction variable.

A mechanism for increased compatibility in this sense is variable typing. All interaction
variable types to be used in component models are declared globally in the NMF. A
modeler who is about to introduce a new model in the library will use already declared
types whenever possible.

The next step is to declare the groups of variable types that characterize compatible fam­
ilies. Such a group is called a link type in the NMF. Mass flow rate and enthalpy
together, and in this order, is an example of such a type. Examples of the typing syntax
are located in the beginning of Section 3.

The link concept also allows an environment user to connect submodels at the interface
level rather than variable by variable. This means, for example, that a fan outlet is con­
nected with a cooling coil inlet as far as the user is concerned; in the background, how­
ever, several variables may be involved in the connection. Most current simulation
environments, e.g. TRNSYS or HV ACSJM+, operate on the variable level, so the link con­
cept would simply be ignored. The more important library structuring effect of the link
typing concept is still retained.

In link-supporting environments link types can be used to check whether a user is mak­
ing meaningful connections. There are cases, however, when a strictly imposed typing
concept is too restrictive. Controllers, for example, should be allowed to interface with
various types of links. This is dealt with in the NMF by providing a generic link type
which can contain any number of any type of variable. An environment can then check
the individual variables in the connecting links for matching types rather than the links
themselves. A generic variable type is also provided in order to allow for suppressed type
checking on the variable level as well. Ways of constructing more elaborate and flexible
type checking in a modeling environment are discussed by Mattson [MATTSON 1988].

2.3 Hierarchical Decomposition
Another fundamental concept for structured modeling is hierarchical submodel decompo­
sition, i.e., one submodel within another in multiple levels. A composite building model
could then be composed of several submodels, each one representing a floor. A floor is in
turn built up of several zone models, which are built from wall models, and so on. One
major advantage of this method is that it enables incremental modeling and validation.
A modeler can make sure that a wall model behaves properly before it is used as part of
a zone model, which then is similarly validated and so on incrementally, approaching the
building level. Another advantage is that good graphical interfaces can be constructed
for a corresponding hierarchical presentation of a model, where a user first gets an overall
view of the system and then can zoom down for successively increased levels of detail.

Although most component models in the NMF will be used as part of composite or macro
models on the environment level, the formatting of composite models themselves, i.e., •·
interconnection templates, is not encompassed by the present proposal. There are several
reasons for this, including the obse1·vation that small models are inherently more readily
reused. At the same time we recognize that the process of component model develop-
ment, within the N11F, could benefit from hierarchical decomposition, so eventual exten-
sion to this capability is an open issue.

7

'•

2.4 Model Validation
Component model validation -.in the sense of making, sure that a model to some degree
of accuracy reproduces the behavior of the actual physical device - can only be done if
one has access to the device itself. Moreover, there is no way to stop someone from using
a library component in a non-intended way. The best one can do is to require extensive
that textual documentation be provided along with the library entry, including the back­
ground of the underlying mathematical model. The documentation aspect of library
building is beyond the scope of this paper.

The ambition of the NMF is to make sure that the entered models make sense from a
mathematical perspective. Unfortunately, even this is a difficult task. Existence of solu­
tions to non-linear equations is a very difficult subject and no general and practical
theory exists. A model may .work well over a particular parameter and variable range,
but be ill posed over another. In the end, we are left with the component modeler's abil­
ity to write robust models and to document them properly, including their ranges of vali­
dity.

What the NMF asks of a modeler is that a single problem - one input-output designa­
tion along with an equation model - be provided, and that its range of "well posed­
ness" is specified. The well posedness range is specified in two different ways: firstly, in
terms of explicit limits on the involved parameters and variables and, secondly, in terms
of accompanying documentation. Responsibility for the existence of solutions for other
possible input-output designations is left to the simulation environments.

A number of methods, of varying degrees of reliability, are available to the component
modeler in order to make sure that the single problem is well posed. These methods can
be applied separately or jointly. Eventually, there may be software tools to assist in this
process. The methods include: ·

1. Functional Linear Independence.
This means that no model equation can be formed by a linear combination of the
others.

2. Matching.

3.

There must exist a one-to-one matching between model equations and variables in
the designated output set.

Regular matrix pencil.
For a general component model (from Section 2.1) call the vector of the designated
input set u and the corresponding output vector x. Then the matrix (pencil):

A.§j__.§j_
ox · ox '

where A is some scalar, must be non-singular for all but a finite number of A's; this
must, of course, be true for the entire parameter and variable working range of the
component [SODERLIND 1988].

8

4. Numerical Testing.
This is the most reliable test and also one of the more practical. The idea is that
the modeler finds some algorithm for solving the designated problem and then, by
numerical experimentation, finds the range of well posedness in parameter and vari­
able space. As a minimum, it must be shown that a solution exists in the intended
operational regime. Possible tools for this testing would include a general purpose
differential-algebraic integrator such as DASSL [PETZOLD 1982] or even a simulation
environment.

Some solvers take advantage of information about "undesirable inverses" of individual
equations. The basic idea here is that a scalar equation, e.g., h (x ,y)=0, may be readily
inverted to yield x=g l(y) where g 1 is a well-behaved function, but the inverse y =g2(x)
may be problematical. One possible problem is that the function g2 may not be well
behaved numerically. For example, dg2j dx may become infinite in the range of interest,
or for environments that develop the inverses symbolically, g2 may not be obtainable as
a closed form expression, or even if obtainable it may have poor numerical properties or
be unwieldy. The list of undesirable inverses is optional in the format and can be left
out for the convenience of local modeling in environments that do not use this informa­
tion.

'

g

•.

3. The Format
In this Section the basic elements of continuous NMF models are explained and
exemplified. Some more advanced features have been omitted due to space limitations.
A formal syntax description has been formulated but is not included in this paper.

3.1 Global Declarations
As previously motivated, variable types and groups of such types, i.e., link types, are

.- declared globally. The global declarations are then referenced from each component
model declaration. Parameter types and constants are also declared globally within a
library of component models.

. .,

Some examples of global declarations are

VARIABLE_ TYPES

/*name unit kind*/
temp "D c" CROSS eg-
heat flux "kW" THRU
massflow "kg/h" THRU
enthalpy "kWh/kg" CROSS

LINK_ TYPES

/*name
heat _flow
heat _,source
mass_enthalpy

variable types ... * /
(temp, heatflux)
(heatflux)
(massflow, enthalpy)

P~ETER_TYPES

/*name
heat flow
heat_capacity
massfiow
temp

unit * /
"kW"
"kWh(,(kg Deg-C)"
"kg/hI
"D C" eg-

CONSTANTS

/*name
stef_boltz

value
5.77E-11

unit * /
"kW/(m2 K)"

-
The first two fields of a variable type declaration need no explanation, but "kind" may
not be familiar. All variables can be categorized as being of either direction dependent
flow-type (e.g. massflow, heat flow, electrical current, torque and force) or direction
independent potential-type (e.g. temperature, pressure, enthalpy, voltage and position).
The physics of flow-type variables says that they should sum to zero when two such
variables are connected together. They are traditionally called through variables and will
be called so here as well. On the other hand, potential-type variables are set equal to
each other when connected; they are called cross variables.

A link type declaration is a named list of a set of variable types.

10

3.2 Continuous Model Elements
The elements of continuous models will be introduced incrementally, starting with the
collector model of the sample HVAC circuit. All examples in this paper are designed pri­
marily to be simple and straightforwa1·d in order to illustrate the NMF. Most of them
have not been tested in practical simulation.

CONTINUOUS_MODEL

ABSTRACT

EQUATIONS

LINKS

mh_collector

"A tee-piece model for bringing together two separate
streams of temperated fluid"

/*mass balance * /

0 = -m_out + m_inl + m_in2

BAD_INVERSES () ;

/*energy balance * /

0 = -h_out*m_out + m_inl *h_inl + m_in2*h_in2

BAD_INVERSES (h_out, h_inl, h_in2)

/*type

mass_enthalpy
mass_enthal py
mass_enthalpy

name variables .•.• *I
ou.tlet POS_OUT m_out, h_out ;
inletl POS_IN m_inl, h_inl ;
inlet2 POS_IN m_in2, h_in2

VARIABLES

I* type name role def min max description* I
massflow m_out OUT 0. 0. BIG "outlet massflow II

massflow m_inl IN 0. 0. BIG 'inletl massflow"
massflow m_in2 IN 0. 0. BIG "inlet2 massflow"
,enthalpy h_out OUT 0. -BIG BIG "outlet enthalpy II•

enthalpy. h_inl IN 0. -BIG BIG "inletl enthalpy"
enthalpy h_in2 IN 0. -BIG BIG "inlet2 enthalpy"

END _MODEL

11

, . ..

3.2.1 Equations
As previously motivated, the internal behavior of continuous components is described by
a system of scalar equations, each of which is written

<expression> = <expression>,

where an expression may be a single variable, a first order time derivative, a parameter, a
number, or some mathematical combination of the above. The aim is to keep the syntax
as "natural" as possible. Expressions may also include references to separately defined
functions written in a programming language. The order of the equations is completely
arbitrary; the solution procedure is beyond the scope of the component model.

The optional list of bad inverses can be associated with each equation.

Format variables may be arrays, and vector operations can be defined through external
subroutine calls. The syntactical details of such operations have been omitted here.

3.2.2 Links
All variables that connect the model with neighboring models must appear in a link
declaration. The link type must be either globally declared or GENERIC. Each THRU
variable in the link is specified in terms of its direction of definition, e.g., positive in or
positive out.

3.2.3 Variables
Each continuous model variable is declared in six aspects:

Type.

Identifier.

Role.

Default value.

Minimum and
maximum limit

Explanatory textstring.

Each type that is referenced must be either globally declared
or of the GENERIC kind.

For array-type variables, index ranges are given.

As mentioned earlier, one feasible problem is specified for
each model. Variables are cast to play a certain role in this
problem as either given (IN) or as calculated (OUT).

Most environments will provide defaults for initial values
(of state variables) and of initial value guesses
(for algebraic variables).

Each variable is given a range, within which the model is
valid. Variables that only appear in the links (interfaces)
of a model- i.e. which do not appear in any of the equations­
are declared in the same way. Role is irrelevant for these
v~riables, but they are conventionally set to be IN.

A brief description of the variable

12

The mh_zone model involves some additional complexity:

CONTINUOUS_MODEL mh....simple_zone

ABSTRACT "A zone model with built in control of supply air flow rate
as an external function of zone temperature"

EQUATIONS

LINKS

I* type
mass_enthalpy
mass_enthalpy
heat_fiow

VARIABLES

I* zone energy balance *I
h = h_in + q_air/m

BAD_INVERSES () ;

I* temperature-enthalpy conversion *I
cp_air*temp = h

BAD_INVERSES () ;

I* required ventilation rate (massflow) *I
m = func(temp, m_max, m_min, t_max, t_min)

BAD _INVERSES (temp)

name
air_inlet
air_outlet
zone_air

variables *I
POS_IN m, lLin;
POS_OUT m, h;
temp, POS_IN q_air;

I* type name role def min max description* I
enthalpy h_in IN 0. -BIG BIG II entering air enthalpy
enthalpy h OUT 0. -BIG BIG II zone air enthalpy II

massfiow OUT .01 SMALL BIG II ventilation rate" m
heat flux q_air IN 0. -BIG BIG "air heat source II

temp temp OUT 0. -BIG BIG II • t t II atr empera ure

13

II

-.,;;

..

PARAMETERS

/*type name def min max
heat_capacity cp_air 28E-5 0. BIG
massflow m_max 50. SMALL BIG
massflow m_min .01 SMALL BIG
temp t_max 25. 0. BIG

·temp t_min 18. 0. BIG

FUNCTION

FLOAT func(temp, mmax, mmin, tmax, tmin)

LANGUAGE F77

INPUT

CODE

FLOAT temp, mmax, mmin, tmax, tmin;

description */
II • h t II air ea cap
II max vent rate"
II min vent rate"
"temperature at which venti-

lation is set to maxim urn
"temperature at which venti-

lation is set to minim urn II

to minimum II

. REAL FUNCTION FUNC(TEMP, WviAX, MMIN, TMAX, TMIN)

REAL TEMP, MMAX, MMIN, TMAX, TMIN

IF (TEMP.GE.TMAX) THEN
FUNC = MMIN

ELSEIF (TEMP .LE. TMIN)
FUNC = MMAX

ELSE
FUNC = (MMIN- MMAX)*TEMP /(TMAX- TMIN)

END IF

RETURN
END

END_CODE

END_MODEL

3.2.4 Parameters and Model Parameters
Parameters are used to adapt a generally formulated equation model to the behavior of
an actual device. They are declared under two separate headings: Model Parameters and
Parameters. The former allow a user to adapt a model structurally, in order to provide
internal flexibility in numbers; their purpose and use are further explained in Section
3.2.6. The latter class of parameters are the more straightforward; they · specify
behavioral properties such as size, heat capacity, and thermal conductivity.

14

3.2.5 Functions
Separate functions or subroutines are used either in the equation model or for parameter
processing, which is explained below. They may be written in various well known pro­
gramming languages, thus making it possible to reuse existing code within the NMF con­
text.

3.2.6 Flexible Model Descriptions
The main objective of simulation environments, as opposed to simulation programs, is to -
provide increased modeling flexibility. This flexibility can be separated into structural
and behavioral flexibility. The division between the two is somewhat diffuse; structural
flexibility means that mathematical models of structurally differing physical systems may ~
be built, and behavioral implies that a structurally fixed model may be adapted to simu-
late quantitatively different systems of the same basic structure.

The possibility exists here to interconnect component models in various configurations to
provide structural flexibility in simulation environments; in more traditional programs
the emphasis clearly is on behavioral flexibility.

Flexibility in numbers. It is convenient to provide some degree of structural flexibility
within a primitive component model. For example, a wall model can, in principle, be
constructed by connecting a number of separate instances of thermal resistance and mass
models in series. The potential accuracy of the model is then determined by the number
of layers (masses). However, this approach is cumbersome in several ways. The addition
of a layer, in order to alter the accuracy, is a modeling operation to be carried out in
several steps, i.e., instantiate a model, set its parameters, and connect it. It would be
much easier if this flexibility in numbers could be contained within a single wall model.
The NMF has a construct for flexibility in numbers, the FOR statement. Below, this
feature is illustrated by a finite difference model of a wall.

CONTINUOUS_MODEL thermal_wall

ABSTRACT "A 1D finite difference wall model"

EQUATIONS I* space discretized heat equation *I
FOR i = 2, n_layers -1

c*t '[i] = t[i- 1]- 2.*t[i] + t[i + 1] ;
c*t '[1] = taa- 2.*t[1] + t[2] ;

c*t '[n_layers] = t[n_layers- 1]- 2.*t[n_layers] + tbb ;

I* boundary conditions* I
0 = -ta + .5*(taa + t[1]) ;

0 = -tb + .5*(t[n_layers] + tbb) ;

0 . -qa + d*(taa- t[1]) ;

0 = -qb + d*(tbb - t[n_layers]) ;

15

"

..

LINKS

I* type
heat_flow
heat _flow

VARIABLES

I* type
temp
temp
temp
temp
temp
heat flux
heat flux

name

a.....side
b.....side

name

variables • •.• *I
ta, POSJN qa;
tb, POSJN qb;

role def

t[l..n_layers] OUT 0.
ta OUT 0.
tb out 0.
taa OUT 0.
tbb OUT 0.
qa IN 0.
qb IN 0.

MODEL_P ARAMETERS

min max description* I
-BIG BIG " fil " temperature pro e
-BIG BIG " a-side surface temp II

-BIG BIG "b "d f " -si e sur ace temp
-BIG BIG "a-side virtual temp "
-BIG BIG "b "d "t It II -si e VIr ua emp
-BIG BIG " a-side entering heat"
-BIG BIG ''b-side entering heat"

I* type name min max description *I
INT n_layers 3 BIGINT "number of temperature layers"

PARAMETERS

I* type name def min max description *I
c-type c 10. SMALL BIG- "rho*cp*dx*dx/ (lambda *3600.)"
d-type d 1. SMALL BIG "lambda*a/ dx"

I

I* easy access par~meters *I
5. SMALL BIG "wall area " area a

length thick .25 SMALL BIG "wall total thickness "
heat_ trans lambda .83 SMALL BIG "heat transfer coeff"
density rho 2050. SMALL BIG " wall density"
heat_capacity cp 1.2 SMALL BIG " llh . " wa eat capacity

P ARAMETERYROCESSING
walLpar(n_layers, c, d, a, thick, lambda, rho, cp)

FUNCTIONS

VOID wall_par (n, ccoeff, dcoeff, area, thick, lambda, rho, cp)

16

LANGUAGE F77

INPUT
INT n;
FLOAT area, thick, lambda, rho, cp;

OUTPUT
FLOAT ccoeff, dcoeff;

END_CODE /* The FORTRAN code is omitted*/

END _MODEL

A further example of the FOR statement comes from the mh_zone model. The version
discussed so far has a single qT-link which enables it to be connected to one external
component like a wall or a thermal resistance. It would be better to have a parameter
within the model (a model parameter) which determines the number of available qT­
links. A suitable number could then be selected during system modeling and the zone
core could be connected to an arbitrary number of walls.

Before we go into the feature provided for run time behavioral flexibility, the parameter
processing header of the wall model deserves to be mentioned.

3.2. 7 Parameter Processing
All the named coefficients of the equation model are declared as parameters. In addition,
extra parameters may be declared in a model. Frequently, the mathematical characteri­
zation of a model, i.e., the parameters that appear in the equation model, are quite
different from those that an engineer would spontaneously choose to specify the
corresponding physical device. For example, a zone model, which accounts for long wave
radiation between surfaces would have view factors (in some form) appearing in the
equation model. However, a user of such a model would usually not prefer to specify
these directly but rather the sizes, orientation, and reflectance of the surfaces themselves.

The mapping of user given parameters or, more informally, easy access parameters, onto
equation model parameters is done by one or more subroutines. The reference to these
routines is declared under the heading Parameter Processing.

3.2.8 Flexible Model Descriptions- revisited
Behavioral Flexibzlity. Increased behavioral flexibility is provided in the new environ­
ments by the possibility of replacing locally component or subsystem models without dis­
turbing the model as a whole. This feature is most frequently used to experimentally find
an appropriate level of approximation for a particular submodel. Behavioral flexibility is
often needed at run time as well. The internal description of a model may need to change
significantly as certain conditions are fulfilled. A typical example is when a component
goes into a saturated state, e.g., when a heating coil or a fan has reached its capacity
limit, or when a model has a singularity, which can be circumvented by a local re­
description.

17

....

Changes like these may be hidden in external functions, as was done with the ventilation
air demand equation of the mh_zone model. However, the model would be more legible
if they were declared explicitly. The construct provided for this in the NMF is the condi­
tional expression with a familiar programming structure:

/* required ventilation rate in the mh_simple_zone * /
m =IF temp>= tmax THEN

mmin
ELSE IF temp<= tmin THEN

mmax
ELSE

(mmin- mmax)*temp/(tmax- tmin)
END IF

3.3 Algorithmic Models
Although continuous elements form the bulk of building simulation models, algorithmic
models operating in discrete time are more suitable for certain components. Sampling,
microprocessor based controllers are obvious examples of physical components meeting
this description. A further activity in a simulation that lends itself to algorithmic
description is boundary data processing. For example, to calculate the amount of solar
radiation that falls on a certain surface at a particular time of day is more straightfor­
ward in algorithmic form. The inherent input-output orientation of an algorithmic
description is, in these cases, only a minor restriction, since one rarely is interested in the
reverse question: What input gives rise to this output?

For these reasons, algorithmic components are next on the list of items to be formatted
or standardized. Due to space constraints, we omit further discussion on this subject .

18

...

..

4. Supporting Software
Part of the NMF concept is also a set of supporting software tools. Among these are
translation tools for conversion of the models from the standard format to that of partic­
ular modeling environments. Also needed are tools for creation and maintenance of com­
ponent models, and those for creation and maintenance of libraries of such models. It is
envisioned that some organization will create and maintain a "base" library. This base
library and the software tools can be ported to any modeling environment. It is antici­
pated that, once ported, the base library will be augmented as required by the needs of·
the user.

The library itself contains models in the standard format. The translation software
should be partitioned into portions: one portion, called the interpreter, that remains the
same regardless of the target environment, and one portion, called the generator, that
generates the models in the format of a particular environment. The interpreter knows
the standard syntax and library format, while the generator knows the syntax and for­
mat of the target environment. Obviously, the interpreter can be delivered with the
library, while the generator will have to be customized for each environment. This is
somewhat like the task of porting systems software to different hardware environments;
it can be made relatively straightforward by providing implementers with example gen­
erators for well-known environments, and certain software tools that are commonly
needed .

19

5. Discussion and Conclusions
The NMF has been. proposed as an alternative to crafting component models for each of
the existing and evolving simulation environments. The NMF has the following precepts:
(1) Essential information about the component models is formalized in order to allow
automatic translation; (2) Continuous models are equation based; (3) The concept of
typed links encourages libraries of plug-compatible component models; (4) Mathematical
validation is required for each model. We have shown some of the details of the NMF
specifications in a few examples. However, it must be understood that as further com­
ponent models are developed in the format, changes and additions of this preliminary
proposal may be required.

A key part of the concept is· automatic translation. Feasibility of translation to a
specific. environment has. been demonstrated for SPANK using MACSYMA [BUHL 1989].
Furthermore, generation of Ida models is straightforward, since they are also equation
based. Type routines for TRNSYS and HVACSIM+ involve an additional difficulty
because algebraic equations are solved locally within each subroutine. A general purpose
non-linear algebraic equation solver will have to be part of the generators for these
environments. There are, however, several robust solvers readily available, for example,
in the SLA'fEC library. ·

Given a good generator, the format should provide a TRNSYS component modeler with a
time effective alternative to direct FORTRAN programming.

Perhaps the most significant potential outcome of the NMF would be the inception and
growth of a significant public domain library of building service system component
models. For this to occur, six events are required:

1. The acceptance of a standal·d format, perhaps based on the one proposed
herein.

2. The development of the software that interprets ~he standard format.

3. The development of a model generator for each of several widely used
environments, e.g., TRNSYS, and HVACSIM+.

4. The development of software tools for creation and maintenance of a library.

5. The creation and validation of an initial base library containing
frequently used component models, such as those used for building
energy analysis. The TRNSYS library could be a starting point.

6. Establishment of a mechanism for acceptance of new models for the base
library, as well as formation of new specialized libraries. '

Once these events have taken place, there should be be a strong incentive to use and
extend the library, both because of the economy relative to independent library develop-

.• ment by the user communities of each environment, and because of the desire of users to
employ accepted component models. Once the library comes into wide use, forces will
develop to extend it into new areas, such as control simulation.

20

Acknowledgements
The basic ideas behind the NMF came forth during a series of discussions at the Swedish
Institute of Applied Mathematics. The authors have merely put it all on paper. Partici­
pating in these discussions were Magnus Lindgren, Axel Bring, Lars Eriksson, and Gustaf
Soderlind.

References

BUill. 1989

CLARKE 1984

CLARKE 1985

CLARKE 1986

CLARKE 1988

DUBOIS 1988

W.F. Buhl, E.F. Sowell and J-M. Nataf, Object Oriented Program­
ming, Equation Based Submodels, and System Reduction in SPANK,
Proceedings of Building Simulation '89, The International Building
Performance Simulation Association, Vancouver, B.C., June 23-24,
1989. Lawrence Berkeley Laboratory report No. LBL- 28272

J.A. Clarke (ABACUS, Strathclyde UK) and L. Laret, (Laboratoire
de Physique du Batiment, Liege, Belgium), Explanation of the Data
Processor Proforma, working document, Dec., 1984.

J.A. Clarke, J.J. Hirsch, W.F. Buhl, A.E. Erdem, F.C. Winkelmann,
E.F. Sowell, A. Lahellec, N. Huang, J. Sornay and L. Laret, A "Pro­
posal to Develop a Kernel System for the Next Generation of Building
Energy Simulation Software, Lawrence Berkeley Laboratory, Nov.
1985.

J.A. Clarke, The Energy Kernel System: A Technical Overview,
Proceedings of the Second International Conference on System
Simulation in Buildings. Liege, Dec., 1986.

J.A. Clarke, A.D. Irving, S. Lockley and D. MacRandal, An Object­
oriented Approach to Building Pe1jormance Modeling, Proceedings of
USER1: A Working Conference for Users of Simulation Hardware,
Software and Intelliware, Ostend; Belgium, Septem her 6-8, 1988.

A.M. Dubois, Model-Based Computer Aided Modeling: The New Per­
spectives for Building Energy Simulation, communication from
CSTB, B.P. 21,06561 VALBONNE Cedex, France.

ELMQVIST 1986 H. Elmqvist, LICS: Language for Implementation of Control Systems,
Department of Automatic Control, Lund Institute of Technology,
Box 118, 21100 Lund, Sweden.

21

.>1

••

..

.,

J\1ATTSSON 1988 S.E. Mattsson, On Model Structuring Concepts, Presented at the
Fourth IF AC Symposium on Computer Aided Design in Control
Systems (CADCS), Beijing, China.

PETZOLD 1982

SAHLIN 1988

L.R. Petzold, A Description of DASSL: A Differential/ Algebraic Sys­
tem Solver, Proceedings of IJ\1ACS World Congress, Montreal,
Canada, 1982 .

P. Sahlin, MODSIM: A Program for Dynamical Modeling and Simu­
lation of Continuous Systems, Proc. 30th Annual Meeting of the
Scandanavian Simulation Society, ISSN0357-9387. Swedish Insti­
tute of Applied Mathematics, Box 26300, 10041 Stockholm, Sweden.

SODERLIND 1988 G. Soderlind, L.O. Eriksson (Swedish Institute of Applied
Mathematics, Box 26300, 10041 Stockholm, Sweden) and A. Bring
(Royal Institute of Technology, S-10044, Stockholm, Sweden),
Numerical Methods for the Simulation of Modular Dynamical Sys­
tems, Report from the Swedish Institute of Applied Mathematics.

SOWELL 1986 E.F. Sowell, W.F. Buhl, A.E. Erdem and F.C. Winkelmann, A Pro­
totype Object-based System for HVAC Simulation, Proceedings of the
Second International Conference on System Simulation in Buildings.
Liege, Dec., 1986. Lawrence Berkeley Laboratory report No. LBL-
22106

22

~ .. ~~ ··~):

LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA

INFORMATION RESOURCES DEPARTMENT
BERKELEY, CALIFORNIA 94720

-
'· . .,~ ;.

