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Abstract 
Much current research is directed towards development of software environments that 
allow easy construction of building simulation models of widely varying structure and 
purpose. The example, TRNSYS has been in use for a number of years. Recently, several 
new such environments have been proposed. In spite of a considerable variation in model 
description formats among environments, the underlying mathematical models of physi­
cal processes are very similar. While one of the principal aims has been to allow easy 
sharing of models among users of the same environment, it has not been clear how porta­
bility was to be provided among different environments. Another objective has been ease 
of component model definition, in order to encourage modifications and additions to 
model libraries. This paper addresses both of these issues, by proposing a neutral and 
natural format for component model expression. The proposed format encourages equa­
tion based model definition because such models can be converted to efficient algorithmic 
form if needed, whereas the converse is not always true. Nonetheless, algorithmic com­
ponent descriptions are also supported in order to allow reuse of existing models. Other 
key features of the proposed format are typing and declaration of linkage elements 
between models, which allow development of compatible component families, and 
enhance submodel exchange and reuse. The proposal considers underlying system model­
ing issues, including hierarchical submodel decomposition and methods for formal model 
expression that allow automatic translation to various simulation environments. Also 
discussed are the software tools needed for library maintenance and model translation. 

This work was supported, in part, by the Assistant Secretary for Conservation and Renewable Energy, Office of Buildings Technolo-
gy, Building Systems and Materials Division of the U. S. Department of Energy, under Contract No. DE-AC03-76SF00098. · 
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1. Introduction 
There are currently several modular programs in use for simulation of buildings and 
associated service systems, e.g TRNSYS, HVACSIM+, and NEPTUNIX. Additionally, 
several new modeling environments for the same purpose have recently been proposed, 
and are in various stages of development [CLARKE 1985, SOWELL 1986, SAHLIN 1987]. 
All of these alternatives are similar in the sense that the mathematical models of com­
ponents and subsystems are expressed in program modules that the user can interconnect 
as needed to define the wanted system model. The usefulness of any such environment 
depends on the availability of a library of predefined models for components in the 
intended application area, and on the existence of a simple mechanism for implementing 
new models when needed. 

One might expect that component models could be interchanged among environments 
because, at a given level of idealization, the mathematical models of the physical 
processes are the same. Unfortunately, this is not necessarily the case because each 
environment employs its own semantics and syntax for model expression and intercon­
nection. Without some form of standardization of component model definitions the 
desired portability will be provided, at most, within modeling environments, but not 
between them. 

This paper suggests a possible starting point for such a standard, namely a Neutral 
Model Format (NMF). The format is "neutral" in the sense that models are expressed in 
a general manner, rather than in the format of any existing or planned environment. 
The standardized definition encompasses only the essential information needed to express 
a model unambiguously. This information is formalized in order to allow automatic 
translation to the format of a particular simulation environment. The format is 
"natural," meaning that the definition employs terms and constructs as close as possible 
to the experience and training of scientists and modelers. 

In this initial work, the focus is on models with a basically continuous behavior. This 
includes building envelope as well as HVAC system models. Excluded are components 
such as thermostats with a dead baud (hysteresis) and microprocessor based controllers, 
which are better described in discrete time. Furthermore, the emphasis is on the machine 
readable mathematical description of the models. Systematical model documentation has 
been treated elsewhere [CLARKE 1984, DUBOIS 1988]. 

The discussion that follows begins with an overview of structured modeling principles 
that motivate the NMF. Many of these are inspired by the work of Elmqvist and Matts­
son [ELMQVIST 1986, MATTSSON 1988]. This is followed by a description of the format, 
supported by small examples. 
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2. Model Structuring Principles 
The NMF in based on a few principles that ensure generality: 

1. Continuous models are expressed in terms of equations. 

2. Variables and interconnections are typed. 
3,. Large models must allow hierarchical decomposition. 

4. Validation is integrated into the modeling process. 
These principles are briefly described and defended below. 

2.1 Equation Modeling 
The internal behavior of a continuous component of the NMF is described by a 
differential-algebraic system of equations which for the general case can be written 

J(x,x,p)=O, 

where f is a vector function of the variable vector x, its time derivative x, and a param­
eter vector p • In all cases of interest here, this system of equations will be underdeter­
mined; some of the x 's will have to be given as functions of time. 

Let us, for the sake of the discussion, separate between the equation model of a com­
ponent and a problem for the same component, where the problem is the underdeter­
mined equation model together with a selection of given variables. For example the equa­
tion model of a thermal resistance may be written 

·. 0=q-UA(t1-t2), 

where q is the heatfiow through the resistance and t 1 and t2 are the terminal tempera­
tures. Now, for this simple one-equation model three different problems, i.e. combina­
tions, of given and calculated variables may be given: 

1. t 1 and t 2 given and q calculated 

2. t 1 and q given and t 2 calculated 
3. t 2 and q ·given and t 1 calculated 

All three problems are well posed. In the following, the term well posed will be used in 
this sense: able to produce a locally unique non-trivial solution. For more complex 
models, only some selections of given variables will yield well posed problems 

Each component model in most current simulation environments, e.g., TRNSYS and 
HVACSIM+, is described as an equation model along with a single input-output selection 
(a problem in our sense) and an algorithm for determination of outputs. The component 
modeler makes this selection of inputs and outputs and devises the algorithm when the 
model type routine is written. 

The pre-selection of given variables leads in some cases to limitations in the actual use of 
the models. Frequently a system modeler, using available types, would like to connect 
the inputs of one component with the inputs of ariother and similarly for the outputs. 
This, of course, is impossible and one of the component models has to be rewritten with 
a different input-output selection. The system modeler is forced to become a component 
modeler and write, debug, and compile FORTRAN code. 
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These difficulties are overcome in some of the more recently proposed environments 
(e.g. SPANK [SOWELL 1986] and Ida, formerly Modsim [SAHLIN 1988]) by leaving the 
input-output designations to the environment. This will substantially increase the versa­
tility of each component model. 

The automatic input-output designation in more recent environments is done by keeping 
equation models separate from input-output selections until the components are actually 
connected together. This separation is only possible if equations are declared separately, 
the way they are in the NMF. 

Since some environments can do without explicitly stated input-output designations in 
their component model format, one could argue that this information is inappropriate in 
the NMF, which should be free of environment-specific non-essential information. There 
are, however, several reasons for including one possible input-output designation (one 
problem) for each NMF component model. Firstly, if this information was to be left out, 
automatic translation would be impossible for input-output oriented environments. 
Secondly, a viable input-output set is a part of the required validation procedure to be 
described later. That is, a component modeler has to demonstrate at least one well­
posed problem for a model. 

2.2 Component Interconnection 
Having focused briefly on the internal behavior of component models we turn to the 
interconnection mechanism between them. Little attention has been devoted to this 
topic in many of the past discussions on the development of common component 
libraries, although model reuse and exchange have been the primary motivations. How­
ever, one should be aware that sets of components developed by various groups will 
remain incompatible, even when stored in a common library, unless a structured way of 
constructing intercomponent links is imposed. Otherwise, the sockets and the prongs 
will simply not fit together. 

The development of a set of component models for a simulation task involves numerous 
decisions, some of which are crucial and others which are less fundamental in nature. 
Unfortunately, all of these decisions, not just the crucial ones, will later on influence the 
compatibility with other models. It is our aim here to provide a component format which 
encourages compatible choices among the trivial decisions without imposing any restric­
tions on the fundamental ones. 

One of the initial crucial decisions to be made is the choice of a set of variables that will 
represent the behavior of the simulated system to an appropriate degree of accuracy. 
For example, in a simple HVAC circuit without cooling it might be sufficient to choose 
dry air mass flow rate and air enthalpy as the main variables carrying information 
among individual components. We are referring here to the set of variables involved in 
the interaction among components; additional variables may be used internally. Once 
this choice of interaction variables has been done, a compatible family of components can 
be developed. For the HVAC circuit this might involve, for example, a collector, a distri­
butor, a heating coil and a simple zone model as shown in Figure 1. 

The choice of interaction variables is affected by the component model complexity. For 
example, if we wish to consider moist air problems, a cooling coil model should include 
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the effect of condensation, and thus some measure of air humidity must be included in 
the air characterization. If the cooling coil is to be used in conjunction with the previous 
models, the list of interaction variables to be carried around the circuit must be 
expanded to include a moisture variable. The principle here is that the component in 
need of the most information determines the interaction set of variables. Components 
with smaller needs will ignore unnecessary interaction variables. 

Collector 

0 = -mout+min 1 +min 2 mout 
0 = -houtmout+hin 1 min 1+hin 2 min 2 h out 

Distributor 

m .. 
Jn 

h 

Heating Coil 

m 

h in 

Zone 

I J 
min21 hin2 

0 = -min+mout 1+mout 2 

qsource 
0 = -hout+hin + m 

m hin 

q air 
.h = hin + m 

Cp air temp = h 
m = tunc { temp ) 

m h 

mout2 
h. 

m 

h out 

Figure 1: A simple compatible family of component models. The zone model 
has a control function (func) built in which determines the ventila-

• tion rate as a function of zone temperature. 

Now, let us look at some of the trivial decisions for our sample case. Although the simu­
lation in principle can be carried out using vastly different sets of units in each com­
ponent, compatibility is enhanced if common units are used. This is an area where 
encouragement, via access to existing models, and mild punishment, via compulsion to 
write additional declarations, are likely to stimulate uniformity. For the sample HVAC 
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circuit, a similar argument can be made concerning the choice between temperature and 
enthalpy as an interaction variable. 

A mechanism for increased compatibility in this sense is variable typing. All interaction 
variable types to be used in component models are declared globally in the NMF. A 
modeler who is about to introduce a new model in the library will use already declared 
types whenever possible. 

The next step is to declare the groups of variable types that characterize compatible fam­
ilies. Such a group is called a link type in the NMF. Mass flow rate and enthalpy 
together, and in this order, is an example of such a type. Examples of the typing syntax 
are located in the beginning of Section 3. 

The link concept also allows an environment user to connect submodels at the interface 
level rather than variable by variable. This means, for example, that a fan outlet is con­
nected with a cooling coil inlet as far as the user is concerned; in the background, how­
ever, several variables may be involved in the connection. Most current simulation 
environments, e.g. TRNSYS or HV ACSJM+, operate on the variable level, so the link con­
cept would simply be ignored. The more important library structuring effect of the link 
typing concept is still retained. 

In link-supporting environments link types can be used to check whether a user is mak­
ing meaningful connections. There are cases, however, when a strictly imposed typing 
concept is too restrictive. Controllers, for example, should be allowed to interface with 
various types of links. This is dealt with in the NMF by providing a generic link type 
which can contain any number of any type of variable. An environment can then check 
the individual variables in the connecting links for matching types rather than the links 
themselves. A generic variable type is also provided in order to allow for suppressed type 
checking on the variable level as well. Ways of constructing more elaborate and flexible 
type checking in a modeling environment are discussed by Mattson [MATTSON 1988]. 

2.3 Hierarchical Decomposition 
Another fundamental concept for structured modeling is hierarchical submodel decompo­
sition, i.e., one submodel within another in multiple levels. A composite building model 
could then be composed of several submodels, each one representing a floor. A floor is in 
turn built up of several zone models, which are built from wall models, and so on. One 
major advantage of this method is that it enables incremental modeling and validation. 
A modeler can make sure that a wall model behaves properly before it is used as part of 
a zone model, which then is similarly validated and so on incrementally, approaching the 
building level. Another advantage is that good graphical interfaces can be constructed 
for a corresponding hierarchical presentation of a model, where a user first gets an overall 
view of the system and then can zoom down for successively increased levels of detail. 

Although most component models in the NMF will be used as part of composite or macro 
models on the environment level, the formatting of composite models themselves, i.e., •· 
interconnection templates, is not encompassed by the present proposal. There are several 
reasons for this, including the obse1·vation that small models are inherently more readily 
reused. At the same time we recognize that the process of component model develop-
ment, within the N11F, could benefit from hierarchical decomposition, so eventual exten-
sion to this capability is an open issue. 
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2.4 Model Validation 
Component model validation -.in the sense of making, sure that a model to some degree 
of accuracy reproduces the behavior of the actual physical device - can only be done if 
one has access to the device itself. Moreover, there is no way to stop someone from using 
a library component in a non-intended way. The best one can do is to require extensive 
that textual documentation be provided along with the library entry, including the back­
ground of the underlying mathematical model. The documentation aspect of library 
building is beyond the scope of this paper. 

The ambition of the NMF is to make sure that the entered models make sense from a 
mathematical perspective. Unfortunately, even this is a difficult task. Existence of solu­
tions to non-linear equations is a very difficult subject and no general and practical 
theory exists. A model may .work well over a particular parameter and variable range, 
but be ill posed over another. In the end, we are left with the component modeler's abil­
ity to write robust models and to document them properly, including their ranges of vali­
dity. 

What the NMF asks of a modeler is that a single problem - one input-output designa­
tion along with an equation model - be provided, and that its range of "well posed­
ness" is specified. The well posedness range is specified in two different ways: firstly, in 
terms of explicit limits on the involved parameters and variables and, secondly, in terms 
of accompanying documentation. Responsibility for the existence of solutions for other 
possible input-output designations is left to the simulation environments. 

A number of methods, of varying degrees of reliability, are available to the component 
modeler in order to make sure that the single problem is well posed. These methods can 
be applied separately or jointly. Eventually, there may be software tools to assist in this 
process. The methods include: · 

1. Functional Linear Independence. 
This means that no model equation can be formed by a linear combination of the 
others. 

2. Matching. 

3. 

There must exist a one-to-one matching between model equations and variables in 
the designated output set. 

Regular matrix pencil. 
For a general component model (from Section 2.1) call the vector of the designated 
input set u and the corresponding output vector x. Then the matrix (pencil): 

A.§j__.§j_ 
ox · ox ' 

where A is some scalar, must be non-singular for all but a finite number of A's; this 
must, of course, be true for the entire parameter and variable working range of the 
component [SODERLIND 1988]. 
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4. Numerical Testing. 
This is the most reliable test and also one of the more practical. The idea is that 
the modeler finds some algorithm for solving the designated problem and then, by 
numerical experimentation, finds the range of well posedness in parameter and vari­
able space. As a minimum, it must be shown that a solution exists in the intended 
operational regime. Possible tools for this testing would include a general purpose 
differential-algebraic integrator such as DASSL [PETZOLD 1982] or even a simulation 
environment. 

Some solvers take advantage of information about "undesirable inverses" of individual 
equations. The basic idea here is that a scalar equation, e.g., h ( x ,y )=0, may be readily 
inverted to yield x=g l(y) where g 1 is a well-behaved function, but the inverse y =g2(x) 
may be problematical. One possible problem is that the function g2 may not be well 
behaved numerically. For example, dg2j dx may become infinite in the range of interest, 
or for environments that develop the inverses symbolically, g2 may not be obtainable as 
a closed form expression, or even if obtainable it may have poor numerical properties or 
be unwieldy. The list of undesirable inverses is optional in the format and can be left 
out for the convenience of local modeling in environments that do not use this informa­
tion. 

' 
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3. The Format 
In this Section the basic elements of continuous NMF models are explained and 
exemplified. Some more advanced features have been omitted due to space limitations. 
A formal syntax description has been formulated but is not included in this paper. 

3.1 Global Declarations 
As previously motivated, variable types and groups of such types, i.e., link types, are 

.- declared globally. The global declarations are then referenced from each component 
model declaration. Parameter types and constants are also declared globally within a 
library of component models. 

. ., 

Some examples of global declarations are 

VARIABLE_ TYPES 

/*name unit kind*/ 
temp "D c" CROSS eg-
heat flux "kW" THRU 
massflow "kg/h" THRU 
enthalpy "kWh/kg" CROSS 

LINK_ TYPES 

/*name 
heat _flow 
heat _,source 
mass_enthalpy 

variable types ... * / 
(temp, heatflux) 
(heatflux) 
(massflow, enthalpy) 

P~ETER_TYPES 

/*name 
heat flow 
heat_capacity 
massfiow 
temp 

unit * / 
"kW" 
"kWh(,(kg Deg-C)" 
"kg/hI 
"D C" eg-

CONSTANTS 

/*name 
stef_boltz 

value 
5.77E-11 

unit * / 
"kW/(m2 K)" 

-
The first two fields of a variable type declaration need no explanation, but "kind" may 
not be familiar. All variables can be categorized as being of either direction dependent 
flow-type (e.g. massflow, heat flow, electrical current, torque and force) or direction 
independent potential-type (e.g. temperature, pressure, enthalpy, voltage and position). 
The physics of flow-type variables says that they should sum to zero when two such 
variables are connected together. They are traditionally called through variables and will 
be called so here as well. On the other hand, potential-type variables are set equal to 
each other when connected; they are called cross variables. 

A link type declaration is a named list of a set of variable types. 
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3.2 Continuous Model Elements 
The elements of continuous models will be introduced incrementally, starting with the 
collector model of the sample HVAC circuit. All examples in this paper are designed pri­
marily to be simple and straightforwa1·d in order to illustrate the NMF. Most of them 
have not been tested in practical simulation. 

CONTINUOUS_MODEL 

ABSTRACT 

EQUATIONS 

LINKS 

mh_collector 

"A tee-piece model for bringing together two separate 
streams of temperated fluid" 

/*mass balance * / 

0 = -m_out + m_inl + m_in2 

BAD_INVERSES () ; 

/*energy balance * / 

0 = -h_out*m_out + m_inl *h_inl + m_in2*h_in2 

BAD_INVERSES (h_out, h_inl, h_in2) 

/*type 

mass_enthalpy 
mass_enthal py 
mass_enthalpy 

name variables .•.• *I 
ou.tlet POS_OUT m_out, h_out ; 
inletl POS_IN m_inl, h_inl ; 
inlet2 POS_IN m_in2, h_in2 

VARIABLES 

I* type name role def min max description* I 
massflow m_out OUT 0. 0. BIG "outlet massflow II 

massflow m_inl IN 0. 0. BIG 'inletl massflow" 
massflow m_in2 IN 0. 0. BIG "inlet2 massflow" 
,enthalpy h_out OUT 0. -BIG BIG "outlet enthalpy II• 

enthalpy. h_inl IN 0. -BIG BIG "inletl enthalpy" 
enthalpy h_in2 IN 0. -BIG BIG "inlet2 enthalpy" 

END _MODEL 

11 
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3.2.1 Equations 
As previously motivated, the internal behavior of continuous components is described by 
a system of scalar equations, each of which is written 

<expression> = <expression>, 

where an expression may be a single variable, a first order time derivative, a parameter, a 
number, or some mathematical combination of the above. The aim is to keep the syntax 
as "natural" as possible. Expressions may also include references to separately defined 
functions written in a programming language. The order of the equations is completely 
arbitrary; the solution procedure is beyond the scope of the component model. 

The optional list of bad inverses can be associated with each equation. 

Format variables may be arrays, and vector operations can be defined through external 
subroutine calls. The syntactical details of such operations have been omitted here. 

3.2.2 Links 
All variables that connect the model with neighboring models must appear in a link 
declaration. The link type must be either globally declared or GENERIC. Each THRU 
variable in the link is specified in terms of its direction of definition, e.g., positive in or 
positive out. 

3.2.3 Variables 
Each continuous model variable is declared in six aspects: 

Type. 

Identifier. 

Role. 

Default value. 

Minimum and 
maximum limit 

Explanatory textstring. 

Each type that is referenced must be either globally declared 
or of the GENERIC kind. 

For array-type variables, index ranges are given. 

As mentioned earlier, one feasible problem is specified for 
each model. Variables are cast to play a certain role in this 
problem as either given (IN) or as calculated (OUT). 

Most environments will provide defaults for initial values 
(of state variables) and of initial value guesses 
(for algebraic variables). 

Each variable is given a range, within which the model is 
valid. Variables that only appear in the links (interfaces) 
of a model- i.e. which do not appear in any of the equations­
are declared in the same way. Role is irrelevant for these 
v~riables, but they are conventionally set to be IN. 

A brief description of the variable 
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The mh_zone model involves some additional complexity: 

CONTINUOUS_MODEL mh....simple_zone 

ABSTRACT "A zone model with built in control of supply air flow rate 
as an external function of zone temperature" 

EQUATIONS 

LINKS 

I* type 
mass_enthalpy 
mass_enthalpy 
heat_fiow 

VARIABLES 

I* zone energy balance *I 
h = h_in + q_air/m 

BAD_INVERSES () ; 

I* temperature-enthalpy conversion *I 
cp_air*temp = h 

BAD_INVERSES () ; 

I* required ventilation rate (massflow) *I 
m = func(temp, m_max, m_min, t_max, t_min) 

BAD _INVERSES (temp) 

name 
air_inlet 
air_outlet 
zone_air 

variables .... *I 
POS_IN m, lLin; 
POS_OUT m, h; 
temp, POS_IN q_air; 

I* type name role def min max description* I 
enthalpy h_in IN 0. -BIG BIG II entering air enthalpy 
enthalpy h OUT 0. -BIG BIG II zone air enthalpy II 

massfiow OUT .01 SMALL BIG II ventilation rate" m 
heat flux q_air IN 0. -BIG BIG "air heat source II 

temp temp OUT 0. -BIG BIG II • t t II atr empera ure 

13 
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.. 

PARAMETERS 

/*type name def min max 
heat_capacity cp_air 28E-5 0. BIG 
massflow m_max 50. SMALL BIG 
massflow m_min .01 SMALL BIG 
temp t_max 25. 0. BIG 

·temp t_min 18. 0. BIG 

FUNCTION 

FLOAT func(temp, mmax, mmin, tmax, tmin) 

LANGUAGE F77 

INPUT 

CODE 

FLOAT temp, mmax, mmin, tmax, tmin; 

description */ 
II • h t II air ea cap 
II max vent rate" 
II min vent rate" 
"temperature at which venti-

lation is set to maxim urn 
"temperature at which venti-

lation is set to minim urn II 

to minimum II 

. REAL FUNCTION FUNC(TEMP, WviAX, MMIN, TMAX, TMIN) 

REAL TEMP, MMAX, MMIN, TMAX, TMIN 

IF (TEMP.GE.TMAX) THEN 
FUNC = MMIN 

ELSEIF (TEMP .LE. TMIN) 
FUNC = MMAX 

ELSE 
FUNC = (MMIN- MMAX)*TEMP /(TMAX- TMIN) 

END IF 

RETURN 
END 

END_CODE 

END_MODEL 

3.2.4 Parameters and Model Parameters 
Parameters are used to adapt a generally formulated equation model to the behavior of 
an actual device. They are declared under two separate headings: Model Parameters and 
Parameters. The former allow a user to adapt a model structurally, in order to provide 
internal flexibility in numbers; their purpose and use are further explained in Section 
3.2.6. The latter class of parameters are the more straightforward; they · specify 
behavioral properties such as size, heat capacity, and thermal conductivity. 
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3.2.5 Functions 
Separate functions or subroutines are used either in the equation model or for parameter 
processing, which is explained below. They may be written in various well known pro­
gramming languages, thus making it possible to reuse existing code within the NMF con­
text. 

3.2.6 Flexible Model Descriptions 
The main objective of simulation environments, as opposed to simulation programs, is to -
provide increased modeling flexibility. This flexibility can be separated into structural 
and behavioral flexibility. The division between the two is somewhat diffuse; structural 
flexibility means that mathematical models of structurally differing physical systems may ~ 
be built, and behavioral implies that a structurally fixed model may be adapted to simu-
late quantitatively different systems of the same basic structure. 

The possibility exists here to interconnect component models in various configurations to 
provide structural flexibility in simulation environments; in more traditional programs 
the emphasis clearly is on behavioral flexibility. 

Flexibility in numbers. It is convenient to provide some degree of structural flexibility 
within a primitive component model. For example, a wall model can, in principle, be 
constructed by connecting a number of separate instances of thermal resistance and mass 
models in series. The potential accuracy of the model is then determined by the number 
of layers (masses). However, this approach is cumbersome in several ways. The addition 
of a layer, in order to alter the accuracy, is a modeling operation to be carried out in 
several steps, i.e., instantiate a model, set its parameters, and connect it. It would be 
much easier if this flexibility in numbers could be contained within a single wall model. 
The NMF has a construct for flexibility in numbers, the FOR statement. Below, this 
feature is illustrated by a finite difference model of a wall. 

CONTINUOUS_MODEL thermal_wall 

ABSTRACT "A 1D finite difference wall model" 

EQUATIONS I* space discretized heat equation *I 
FOR i = 2, n_layers -1 

c*t '[i] = t[i- 1]- 2.*t[i] + t[i + 1] ; 
c*t '[1] = taa- 2.*t[1] + t[2] ; 

c*t '[n_layers] = t[n_layers- 1]- 2.*t[n_layers] + tbb ; 

I* boundary conditions* I 
0 = -ta + .5*(taa + t[1]) ; 

0 = -tb + .5*(t[n_layers] + tbb) ; 

0 . -qa + d*(taa- t[1]) ; 

0 = -qb + d*(tbb - t[n_layers]) ; 

15 



" 

.. 

LINKS 

I* type 
heat_flow 
heat _flow 

VARIABLES 

I* type 
temp 
temp 
temp 
temp 
temp 
heat flux 
heat flux 

name 

a.....side 
b.....side 

name 

variables • •.• *I 
ta, POSJN qa; 
tb, POSJN qb; 

role def 

t[l..n_layers] OUT 0. 
ta OUT 0. 
tb out 0. 
taa OUT 0. 
tbb OUT 0. 
qa IN 0. 
qb IN 0. 

MODEL_P ARAMETERS 

min max description* I 
-BIG BIG " fil " temperature pro e 
-BIG BIG " a-side surface temp II 

-BIG BIG "b "d f " -si e sur ace temp 
-BIG BIG "a-side virtual temp " 
-BIG BIG "b "d "t It II -si e VIr ua emp 
-BIG BIG " a-side entering heat" 
-BIG BIG ''b-side entering heat" 

I* type name min max description *I 
INT n_layers 3 BIGINT "number of temperature layers" 

PARAMETERS 

I* type name def min max description *I 
c-type c 10. SMALL BIG- "rho*cp*dx*dx/ (lambda *3600. )" 
d-type d 1. SMALL BIG "lambda*a/ dx" 

I 

I* easy access par~meters *I 
5. SMALL BIG "wall area " area a 

length thick .25 SMALL BIG "wall total thickness " 
heat_ trans lambda .83 SMALL BIG "heat transfer coeff" 
density rho 2050. SMALL BIG " wall density" 
heat_capacity cp 1.2 SMALL BIG " llh . " wa eat capacity 

P ARAMETERYROCESSING 
walLpar( n_layers, c, d, a, thick, lambda, rho, cp) 

FUNCTIONS 

VOID wall_par (n, ccoeff, dcoeff, area, thick, lambda, rho, cp) 

16 



LANGUAGE F77 

INPUT 
INT n; 
FLOAT area, thick, lambda, rho, cp; 

OUTPUT 
FLOAT ccoeff, dcoeff; 

END_CODE /* The FORTRAN code is omitted*/ 

END _MODEL 

A further example of the FOR statement comes from the mh_zone model. The version 
discussed so far has a single qT-link which enables it to be connected to one external 
component like a wall or a thermal resistance. It would be better to have a parameter 
within the model (a model parameter) which determines the number of available qT­
links. A suitable number could then be selected during system modeling and the zone 
core could be connected to an arbitrary number of walls. 

Before we go into the feature provided for run time behavioral flexibility, the parameter 
processing header of the wall model deserves to be mentioned. 

3.2. 7 Parameter Processing 
All the named coefficients of the equation model are declared as parameters. In addition, 
extra parameters may be declared in a model. Frequently, the mathematical characteri­
zation of a model, i.e., the parameters that appear in the equation model, are quite 
different from those that an engineer would spontaneously choose to specify the 
corresponding physical device. For example, a zone model, which accounts for long wave 
radiation between surfaces would have view factors (in some form) appearing in the 
equation model. However, a user of such a model would usually not prefer to specify 
these directly but rather the sizes, orientation, and reflectance of the surfaces themselves. 

The mapping of user given parameters or, more informally, easy access parameters, onto 
equation model parameters is done by one or more subroutines. The reference to these 
routines is declared under the heading Parameter Processing. 

3.2.8 Flexible Model Descriptions- revisited 
Behavioral Flexibzlity. Increased behavioral flexibility is provided in the new environ­
ments by the possibility of replacing locally component or subsystem models without dis­
turbing the model as a whole. This feature is most frequently used to experimentally find 
an appropriate level of approximation for a particular submodel. Behavioral flexibility is 
often needed at run time as well. The internal description of a model may need to change 
significantly as certain conditions are fulfilled. A typical example is when a component 
goes into a saturated state, e.g., when a heating coil or a fan has reached its capacity 
limit, or when a model has a singularity, which can be circumvented by a local re­
description. 
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Changes like these may be hidden in external functions, as was done with the ventilation 
air demand equation of the mh_zone model. However, the model would be more legible 
if they were declared explicitly. The construct provided for this in the NMF is the condi­
tional expression with a familiar programming structure: 

/* required ventilation rate in the mh_simple_zone * / 
m =IF temp>= tmax THEN 

mmin 
ELSE IF temp<= tmin THEN 

mmax 
ELSE 

(mmin- mmax)*temp/(tmax- tmin) 
END IF 

3.3 Algorithmic Models 
Although continuous elements form the bulk of building simulation models, algorithmic 
models operating in discrete time are more suitable for certain components. Sampling, 
microprocessor based controllers are obvious examples of physical components meeting 
this description. A further activity in a simulation that lends itself to algorithmic 
description is boundary data processing. For example, to calculate the amount of solar 
radiation that falls on a certain surface at a particular time of day is more straightfor­
ward in algorithmic form. The inherent input-output orientation of an algorithmic 
description is, in these cases, only a minor restriction, since one rarely is interested in the 
reverse question: What input gives rise to this output? 

For these reasons, algorithmic components are next on the list of items to be formatted 
or standardized. Due to space constraints, we omit further discussion on this subject . 
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4. Supporting Software 
Part of the NMF concept is also a set of supporting software tools. Among these are 
translation tools for conversion of the models from the standard format to that of partic­
ular modeling environments. Also needed are tools for creation and maintenance of com­
ponent models, and those for creation and maintenance of libraries of such models. It is 
envisioned that some organization will create and maintain a "base" library. This base 
library and the software tools can be ported to any modeling environment. It is antici­
pated that, once ported, the base library will be augmented as required by the needs of· 
the user. 

The library itself contains models in the standard format. The translation software 
should be partitioned into portions: one portion, called the interpreter, that remains the 
same regardless of the target environment, and one portion, called the generator, that 
generates the models in the format of a particular environment. The interpreter knows 
the standard syntax and library format, while the generator knows the syntax and for­
mat of the target environment. Obviously, the interpreter can be delivered with the 
library, while the generator will have to be customized for each environment. This is 
somewhat like the task of porting systems software to different hardware environments; 
it can be made relatively straightforward by providing implementers with example gen­
erators for well-known environments, and certain software tools that are commonly 
needed . 
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5. Discussion and Conclusions 
The NMF has been. proposed as an alternative to crafting component models for each of 
the existing and evolving simulation environments. The NMF has the following precepts: 
(1) Essential information about the component models is formalized in order to allow 
automatic translation; (2) Continuous models are equation based; (3) The concept of 
typed links encourages libraries of plug-compatible component models; (4) Mathematical 
validation is required for each model. We have shown some of the details of the NMF 
specifications in a few examples. However, it must be understood that as further com­
ponent models are developed in the format, changes and additions of this preliminary 
proposal may be required. 

A key part of the concept is· automatic translation. Feasibility of translation to a 
specific. environment has. been demonstrated for SPANK using MACSYMA [BUHL 1989]. 
Furthermore, generation of Ida models is straightforward, since they are also equation 
based. Type routines for TRNSYS and HVACSIM+ involve an additional difficulty 
because algebraic equations are solved locally within each subroutine. A general purpose 
non-linear algebraic equation solver will have to be part of the generators for these 
environments. There are, however, several robust solvers readily available, for example, 
in the SLA'fEC library. · 

Given a good generator, the format should provide a TRNSYS component modeler with a 
time effective alternative to direct FORTRAN programming. 

Perhaps the most significant potential outcome of the NMF would be the inception and 
growth of a significant public domain library of building service system component 
models. For this to occur, six events are required: 

1. The acceptance of a standal·d format, perhaps based on the one proposed 
herein. 

2. The development of the software that interprets ~he standard format. 

3. The development of a model generator for each of several widely used 
environments, e.g., TRNSYS, and HVACSIM+. 

4. The development of software tools for creation and maintenance of a library. 

5. The creation and validation of an initial base library containing 
frequently used component models, such as those used for building 
energy analysis. The TRNSYS library could be a starting point. 

6. Establishment of a mechanism for acceptance of new models for the base 
library, as well as formation of new specialized libraries. ' 

Once these events have taken place, there should be be a strong incentive to use and 
extend the library, both because of the economy relative to independent library develop-

.• ment by the user communities of each environment, and because of the desire of users to 
employ accepted component models. Once the library comes into wide use, forces will 
develop to extend it into new areas, such as control simulation. 
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