
LBL-28275

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

APPLIED SCIENCE
DIVISION

To be presented at the Computer Simulation 1990
Multiconference, San Diego, CA, January 17-19,
1990, and to be published in the Proceedings

Specifying Dynamic Models in the
Simulation Problem Analysis Kernel

M.A. Moshier and E.F. Sowell

October 1989

APPLIED SCIENCE
DIVISION

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

-nn
o,. r
-::; :; 0

f1 D
p) ~ z ,_.
::£ !lJ C)
1!1 <"t 0
It! m iJ
X"!/!-(
i.11

IJ:i
.......
0.

10 .
(J'f
;SI

r r- tw
i-t· r-
crn i -s o fi)
!lJ u CD
-~ '< P}

'"< . ·-....J
c r!) tri

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

•

LBL-28275 Presented at the Society for
Computer Simulation 1990
Multiconference, San Diego, CA
Jan 17-19, 1990

October 15, 1989

Specifying Dynamic Models
in the Simulation Problem Analysis Kernel*

M. Andrew Moshier
Program in Computing, University of California, Los Angeles, CA 90024

Edward F. Sowell
Computer Science Dept., California State University, Fullerton, CA

Abstract
The Simulation Problem Analysis Kernel (SPANK) is a prototype

implementation of the Energy Kernel System (EKS). It is intended to
demonstrate some of the features that have been argued as necessary
for future simulation systems. In particular, with earlier versions of
SPANK, the model designer can specify static behavior as modeled by
systems of algebraic equations. More recent work has led to extensions
that allow the designer to specify dynamic behavior as modeled by sys
tems of equations together with certain predefined integration meth
ods. One drawback of this approach is that the integration methods
must be of a specific kind involving at most a fixed number of values
from previous time steps. In this paper, we propose to extend SPANK
in a more flexible way to give the designer the ability to specify any
of the standard difference methods for initial value problems. These
include Runge-Kutta methods as well as predictor-corrector methods.

The development of our extensions begins with a close look at how
the static version of SPANK specifies models. On this foundation, we
then look at two very simple integration methods, Euler's implicit and
explicit methods, for clues as to how we can extend the system de
scription language to admit dynamics. With the extensions to SPANK
called for by looking at Euler's methods, we show that Runge-Kutta
and predictor-corrector methods can also be specified. From this, we
argue that the extensions proposed herein are suitable for specifying
arbitrary finite difference integration methods. We conclude with a
brief discussion of further extensions that we believe would make the
SPANK system more useful for dynamic simulations.

*This work was supported by the Assistant Secretary for Conservation and Renewable
Energy, Office of Buildings and Community Systems, Building Systems Division of the
U.S. Dept. of Energy under contract No. DE-AC03-76SF00098, and by the National
Science Foundation under grant MSM-8614974.

1

1 Introduction

The Simulation Problem Analysis Kernel (SPANK) [SBEW86, SB89] demon
strates an object-oriented method of constructing models of large static prob
lems that closely mimics methods of constructing physical systems. Namely,
models are built from (models of) simple components by specifying how the
components are connected. Simple components are modeled by systems of
algebraic equations. Large systems are modeled by a collection of simple com
ponent models together with descriptions of how the individual components
are related. The promise of this approach is that the resulting description of
a large system is essentially a schematic of the corresponding physical sys
tem, and is constructed in similar manner to the physical system. Thus for
example, verification of the correctness of the model is vastly simpler than
verification that a single monolithic system of equations is correct - we sim
ply verify that the model was constructed to faithfully mimic the cqnstruction
of the physical system. Similarly motivated simulation environments are de
scribed in [Cla88b, Mat88, Mat89b, Mat89a, And89a, And89b, Sah88, SS89].
Also, see [Cla87, Cla88a, Hir88] for further discussions of the motivations for
the Energy Kernel System (EKS) of which SPANK can be seen as a proto
type.

In a later paper [SB88], it is shown that this same method can be ex
tended to dynamic behavior modeled by systems of differential equations.
The method proposed there, however, assumed a specific set of predictor
corrector integration formulas. In this paper, we show how the SPANK
method can be extended to permit a wide range of integration methods, in
cluding user defined methods. The extension involves solving two separate,
but related problems. First, SPANK uses the Newton-Raphson method for
finding solutions to the algebraic systems, but for systems of differential equa
tions there is no obvious choice for a single method of integration. Hence, we
must be able to support many different methods, preferably in such a way
as to allow new methods to be added. Second, specification of a system of
differential equations ought to follow in the spirit of the earlier system. That
is, small processes, e.g., the dynamic behaviors of small components, ought
to be modeled by small systems of equations that can be linked together to
model larger complicated behaviors. We show that these two problems can
be solved together in a very uniform way that allows both components and
integration methods to be described in the same formalism.

2

•

•

Figure 1: A system of three air collectors

2 Overview of SPANK: Static Models

Suppose we are asked to construct a model of the static behavior of
a certain configuration of three air collectors, represented schematically in
Figure 1. For the sake of simplicity, let us assume that we are only interested
in modeling the rate of flow of dry air through the various ducts, given rates
at the ducts numbered 1 through 4. Let us further assume that differences
in pressure are not of interest. We can model this by the following system of
equations.

0 - M1 +M2 -Ms
0 M3+M4-M6
0 - Ms+M6-M7

(1)

where M1 through M4 are given, and M5 through M7 are unknown mass
flows to be found.

Looking at a typical text on numerical analysis, one might get the impres
sion that such a system of equations springs forth complete from the mind
of the designer like Pallas Athena from the mind of Zeus. But of course it
does not. Rather it is arrived at, more mundanely, in stages with each stage
ensuring that some aspect of the physical system is faithfully represented.
In SPANK, these stages are reflected in the system description language, so
that a description not only accurately specifies a system of equations, but
also specifies the design steps taken to arrive at the system. Thus, in or
der to understand the system description language used in SPANK, we must
understand these design steps.

Consider the configuration of air collectors given in Figure 1 again, under
the same assumptions. We know that conservation laws require that the

3

behavior at each collector be modeled by an equation of the form

(2)

where 1nJ is the rate of flow of the outgoing stream of air and m1 and ~
are the rates of flow of the two incoming streams of air. Clearly, the actual
equations of our system must involve problem variables corresponding to the
flow rates at the various ducts, rather than the abstract quantities mi. So we
refer to Equation 2 as an equation schema to distinguish it from particular
instances where problem variables have been substituted for the mi.

As the first stage in the design, we chose three instances of the equation
schema 2, corresponding to the three components of the physical system.1

For convenience, we give these three instances the names c~, c2 and c3 • Then,
we can refer to the variables in equation c1 as c1 .m~, c 1.m2 and c1.m3, and
likewise for the variables in the other equations. Thus, as the result of the
first step in the design, we have the following three instances of 2.

• Equation c1 is 0 = c 1.mt + Ct.m2- Ct.m3

Next, we identify the given problem variables with certain variables in the
equations. Namely, we make the following identifications:

• Identify c1 .m1 with Mt.

• Identify Ct.m2 with M2.

• Identify c2 • m1 with M3 •

• Identify c2.m2 with M4.

Finally, we identify the three unknown problem variables (in general, as
many variables as there are equations) with other variables in the equations.
Namely, we specify

1 We assume that the ducts do not contribute any non-trivial behavior to the system.
So they are not considered components. If, for example, pressure were taken into account,
we might need to consider each duct to be a separate component.

4

•

•

•

• Identify c1 .m3 and c3 .m1 with Ms.

• Identify c2.m3 and c3.ffi2 with M6 .

• Identify c3 • m3 with M1.

So the steps involved in constructing the system in Figure 1 are (1) instan
tiate equations corresponding to system components, (2) identify equation
variables with problem variables, and (3) specify which problem variables
are to be solved for. Taken together, these three steps completely specify the
desired system of three equations in three unknowns. Correspondingly, the
SPANK language supports all three of these steps. First, the language has a
construct called declare, an example of which is

declare Ct, c2 , c3 collector;

The effect of this is to form three instances of the equation schema collector
and call them Ct, c2 and c3 •

2

For given problem variables, the language has a construct called input,
examples of which are

input Mt(Ct.mt);
input M2(ct.ffi2)i
input M3(c2.mt);
input M4(c2. ffi2);

The first of these specifies that M 1 is a parameter to the system identified
with the equation variable c1 • m1 . And again, the others read similarly. For
the unknowns, the language has a construct called link, examples of which
are

link Ms(ct.m3,c3.mt)i
link M6(c2. m3, c3. m2);
link M1(c3. m3);

The first of these specifies that M5 is an unknown identified with the equation
variables c1.m3 and c3 .m1 • The other two read similarly. Thus, in SPANK
the whole system modeling the collectors is specified as in Figure 2. A brief
look at this specification shows that certain well-formedness conditions must

2The language also supports introduction of new equation schemata such as collector.
For our purposes, though, we assume that these are already defined in a library of
schemata, corresponding to a catalogue of standard components.

5

declare Ct, c2 , c3 collector;
input Mt(Ct.mt)i
input M2(ct.~);
input Ma(c2.mt)i
input M4(c2.~);
link Ms(Ct.ma, ca.mt)i
link M6 (c2.m3, ca.~);
link M7(ca.ma);

Figure 2: SPANK specification of Figure 1

hold in order to completely specify a system of n equations in n unknowns.
Namely, (1) there must be exactly the same number of link statements as
there are equations declared in any declare statements; and (2) each equa
tion variable must occur in exactly one link or input statement. These are
trivial syntactic conditions, which, of course, SPANK checks automatically.

Digression. An important technical innovation in SPANK, but one that is
not directly relevant to this discussion, is that a system of equations as spec
ified above is subjected to certain graph-theoretic algorithms that attempt
to minimize the number of unknowns that must be solved for simultaneously.
The benefit of this is that, in general, a solution to a non-linear system of
n equations in n unknowns requires on the order of n 3 operations for each
iteration of Newton-Raphson's method. Hence, reduction of the number of
variables involved yields significant gains in efficiency. In fact, because prac
tical systems may involve hundreds of equations, this reduction can easily
spell the difference between a tractable and an intractable simulation prob
lem. See [SBEW86, SB89] for more discussion of this.

3 Dynamic models

Currently, SPANK supports algebraic equations. But in order to simulate
dynamic behavior, we must be able to describe differential equations as well.
Of course, the field of differential equations is very large. We cannot hope
to deal with all of it. Nevertheless, for the purpose of simulating dynamic
behavior, we can make three simplifying assumptions. First, we concern our-

6

•

•

selves only with ordinary differential equations. This corresponds roughly to
the assumption that our models involve only one independent variable (pre
sumably, this is time) and are suitably discretized. From the point of view of
practical dynamic models, this makes sense. Second, we deal only with ini
tial value problems. There is nothing radical in this either - most dynamic
simulations are cast as initial value problems, and most well-understood so
lution methods for differential equations solve initial value problems (see for
example [Gea71]).

Consider the problem of numerically solving an initial value problem for
a specific ordinary differential equation

y' = J(t,y) (3)

e.g., y' = ky +a: sin t, with initial value y(t0) = c on an interval [t0 , s]. 3

The reader will recall that an exact solution to this initial value problem is
a function y(t) such that y(t0) = c and

dy(t)jdt = f(t, y(t))

for all t in (t0 , s]. A numerical solution is, in spirit, a function y(t) that
approximates y(t). In practice, though, a numerical solution method gives
values of the approximation y(t) at a series of points. That is, a numerical
solution is actually just two sequences to, ... , tn = s and c = flo, ... , Yn so
that for every k ~ n, Yk approximates y(tk)· We will restrict our attention
to the problem of how to specify dynamic models for which such numerical
solutions are obtained.

To start, we will consider how to specify a numerical solution to the above
initial value problem using two very simple solution methods known as Euler's
methods. From this, we propose extensions to the SPANK system definition
language which support specification of Euler's methods. Then, having the
extensions in place, we consider how to use them to specify other more com
plicated solution methods: Runge-Kutta methods and predictor-corrector
methods. These considerations lead us further to refine our proposed exten
sions.

3 Actually, the equation may also involve variables other than y', t and y. But for clarity
of exposition, we will use equations of this form.

7

3.1 Euler's methods

For Euler's methods, we make the observation that in the neighborhood of
any particular value t, the exact solution y(t) is approximated by the function

u(x) = y(t) + (x- t)f(t,y(t))

So we can approximate y numerically with values Yk at points tk = t0 + kh
as follows

Yo = c
Yk+t = Yk + hf(tk, Yk)

(4)

This is the explicit Euler's method. The implicit version uses the (approxi
mate) derivative at tk+1 instead of at tk. That is,

Yo - c
Yk+t Yk + hf(tk+t, Yk+t)

(5)

For now, let us concentrate on the explicit method. Notice that this
method involves solving an algebraic system at each time step tk+I· Given
that SPANK already supports specifications of algebraic systems, it behooves
us to write out the algebraic part of the method in SPANK's language.

Suppose we have an equation schema named ODE given by equation 3
and another schema named Euler given by

Ynext = Y + hy'. (6)

Then, we can specify the algebraic part of the explicit Euler's method by
Figure 3.

Although this seems to capture the relationships between variables needed
to solve the problem, there are some issues not dealt with. Consider the
input statements declaring h and t. Although formally they look essentially
the same, the two variables serve very different purposes in the solution. In
particular, t varies at each step, whereas h is held constant. The variable y

likewise varies at each step, taking its initial value from c, and subsequent
values from Ynext· So we must specify, for example,

• y initially gets the value c.

e y subsequently gets Ynext·

8

"

•

declare Eqn ODE;
declare Eu Euler;
link y'(Eqn.y', Eu.y');
link Ynext(Eu.ynext)i
input h(Eu.h);
input t(Eqn.t);
input y(Eqn.y, Eu.y);
input t 0 ();

input c();

Figure 3: Algebra of Euler's method

What remains is to explain how the intended independent variable t is
incremented. For this, we can just require that t increment by a constant
value h at each step. So, we presume that a schema named Timestep is
available of the form

tnext = t + h

and specify that

• t initially gets the value of t0 •

• t subsequently gets tnext·

Putting these together, we extend SPANK with a construct that allow us
(1) to declare an input to be one that takes its value from previous steps and
(2) to specify how to obtain the values of those inputs. We add a statement
feedback, an example of which is

feedback y(Eqn.y, Eu.y)
initially c update-by Ynexti

which means that the variable y is identified with equation variables Eqn.y
and Eu.y. Also, y is initially set to c, and at each time step, y gets its
value from the latest value of Ynext· The time variable t would be declared
similarly with the additional declaration of a Timestep object having its
variables suitably identified.

Notice that we have not eliminated the original input statement. It
still has its use for true problem parameters, i.e., values that do not change

9

declare Eqn ODE;
declare Eu Euler;
declare T S Timestep;
feedback t(Eqn.t, TS.t)

initially to update-by tnexti
feedback y(Eqn.y, Eu.y)

initially c update-by Ynexti
link y'(Eqn.y', Eu.y');
link Ynext(Eu.ynext)i
link tnext(TS.tnext)i
input h(Eu.h, TS.h);
input to();
input c();

Figure 4: Euler's explicit method

through the course of the simulation. For example, the values of h, t0 and c
might be taken as problem parameters. Thus, the solution of the initial value
problem by Euler's explicit method can be specified as in Figure 4 in the new
syntax. Similarly, Euler's implicit method can be specified as in Figure 5.
To convince oneself that the latter specifies Euler's implicit method, consider
the algebraic systems that are solved at each step. Namely, this description·
specifies that the following system of equations be solved at each time step.

y' = f(t,y)
Y = Yprev + Hy'

(7)

Now, for the first time step, we have t = t0 , Yprev = c and H = 0, so this
reduces to

Yb = !(to, c)
Yo = c

(8)

This gives us the correct first value of flo = c. For the k + 1 step, we have
t = tk + h = tk+b Yprev = Yk and H = h. So this reduces to

Yk+t = f(tk+ll Yk+d
Yk+t = Yk + hyk+t

Again, this gives us the correct value of Yk+t·

10

(9)

declare Eqn ODE;
declare Eu Euler;
declare T S Timestep;
feedback t(Eqn.t, TS.t)

initially to update-by tnexti
feedback Yprev(Eu.y)

initially c update-by y;
feedback H(Eu.h)

initially 0 update-by h;
link y'(Eqn.y', Eu.y');
link y(Eqn.y, Eu.ynext)i
link tnext(TS.tnext)i
input h(T S.h);
input t 0 ();

input c();

Figure 5: Euler's implicit method

Digression. A word about our choice of the indicator feedback is in order.
Consider the algebraic part of Euler's explicit method again (Figure 3). We
can think of this as specifying a function from values for the input variables
(and initial estimates for the link variables) to values for the link variables
that solve the system of equations. Now, the feedback in the system is
clear. Namely, the feedback statements indicate how outputs returned by
the solving function are to be fed back to the function as inputs for the next
iteration.

3.2 Runge-Kutta methods

Here we show that the proposed extensions to SPANK, called for by a careful
look at Euler's methods, actually suffice to permit us to specify Runge-Kutta
solution methods as well. We demonstrate the idea by considering a Runge
Kutta method of order 2. The technique easily generalizes to other Runge
Kutta methods.

Essentially, Runge-Kutta methods workby finding some fixed number of
approximations of y(tk+I) and then taking a weighted average of these as the

11

value of Yk+I· There are many different Runge-Kutta methods, but they all
use this general strategy.

Without discussing the theoretical justification any further, one Runge
Kutta method of order 2 is given by the following.

Yo c
Uk+I Yk + hf(tk, Yk)
Vk+I - Yk + hf(tk+I, Uk+i)
Yk+I - !(Uk+I + VHI)·

(10)

That is, uk+I and vk+1 are approximations of y(tk+I), and Yk+I is taken as the
simple average of the two. Notice that this method uses equations already
found in Euler's method together with an equation that specifies the average
of the two approximations. So suppose along with the schemata ODE and
Euler, we have a schema named Avg2 as follows

(11)

Then we can specify the method as in Figure 6. Although this specification
is significantly more complicated than those for Euler's methods, it certainly
does accurately describe the desired method. Also, the basic technique of
specifying complicated interactions amongst the problem variables is clearly
general enough to support higher order Runge-Kutta methods. As an aside,
the method described here is an explicit one- implicit Runge-Kutta meth
ods can be developed in the same spirit as the implicit Euler's method.
Although implicit methods are more difficult to solve (they require solving
implicit algebraic equations), they can be specified in our language with no
additional constructs.

3.3 Predictor-corrector methods

So far, we have considered only solution methods that use the value Yk to
obtain the next value Yk+I· These are called single step methods. More
accurate approximations can be obtained by using information about several
previous values instead of just one. To demonstrate how such multiple step
methods can be specified in SPANK, we consider a class of very common
methods called predictor-corrector methods. In essence, a predictor-corrector

12

'-'

declare Eqnb Eqn2 ODE;
declare Eu1 , Eu2 Euler;
declare T S Timestep;
declare A Avg2;
link u(Eut·Ynext' Eqn2.y, A.xt);
link v(Eu2·Ynext' A.x2);
link y~(Eqnt·Y',Eut·Y');
link y~(Eqn2.y'.Eu2.y');
link Ynext(A.avg);
link tnext(T S.tnexb Eqn2.t);
feedback t(Eqn1.t)

initially t0 update-by tnexti
feedback y(Eqnt·Y)

initially c update-by Ynexti
input h(Eu1 .h, Eu2.h, TS.h);
input c();

Figure 6: 2nd order Runge-Kutta method

method involves finding the next value Yk+I by solving an implicit equation
in Yk+I - this equation is the corrector. Because this equation is implicit
it must be solved by some iterative method (Newton-Raphson). Because of
the expense of this iteration, it is in our interest to start the iteration with
an estimate of Yk+I which is as close as possible to the solution. This initial
estimate is given by an explicit equation, the predictor.

As an example, consider the implicit Euler's method again as given in
Figure 5. The corresponding equation is implicit in the unknown y. Newton
Raphson's method requires that we give an estimate of y to begin the iter
ation. Hence, the above specification leaves out an important datum: the
initial estimate of y. We could simply assume that the initial estimates are
carried over from values at the previous step. But, we would obtain a better
initial estimate of y by using the explicit Euler's rule to predict the value of
y. Thus, the link statements ought to be modified to permit us to specify
an initial estimate. An example of the extended link statement is

link y(Eqn.y, Eu.ynext' Eupredict·Y)
initially c predict-by Ynexti

13

declare Eqn ODE;
declare Eu, Eupredict Euler;
declare T S Timestep;
feedback t(Eqn.t, T S.t)

initially to update-by tnexti
feedback Yprev(Eu.y)

initially c update-by y;
feedback H(Eu.h)

initially 0 update-by h;
link y'(Eqn.y', Eu.y', Eupredict·Y');

link y(Eqn.y, Eu.ynext' Eupredict·Y)
initially c predict-by Ynexti

link Ynext(Eupredict·Ynext)i
link tnext(TS.tnext)i
input h(Eupredict·h, T S.h);
input to();
input c();

Figure 7: Euler's implicit method with predictor

This statement is taken to mean the same thing as the original version with
the additional information that Newton-Raphson iteration ought to begin
with y set to c for the first time step, and to the current value of Ynext
thereafter. Now, a more complete description of the implicit method, using
the explicit method to give us the initial estimates of y is given by Figure 7.

The effect of this change is simply to calculate in Ynext the value that the
explicit method would give as the next value of y, and then use that value as
the prediction of y in the iterative solution to the implicit method. Notice
also that the Ynext link does not have an initial value and prediction. The
reason for this is simple. The equations are explicit in Ynext so the number of
iterations of Newton-Raphson are not affected by the initial value of Ynext·
Thus we take a link statement such as

link Ynext(Eupredict·Ynext)i

14

to be an abbreviation of

link Ynext(Eupredict·Ynext)
initially 0 predict-by Ynexti

In that case, the above correctly specifies the desired method.
This revision of the implicit Euler's method demonstrates a very simple

predictor-corrector method (in this case, a single-step method). That is, we
use an explicit rule to predict a value for y and then use an implicit rule to
correct that prediction.

Multi-step predictor-corrector methods involve keeping track of values fJk,
Yk-ll ... , Yk-m at each step, for some fixed m. A well-known example of this
is Milne's method. To obtain a value of Yk+b this method requires values of
Yk-3 and Yk-t, together with values of the derivatives f(tk, Yk), f(tk-b Yk-l)
and f(tk-2, Yk-2)· Let us refer to f(ti, Yi) as the value fi· Then Milne's
method predicts the value of Yk+l by the following explicit equation schema

. (call it Milne-pred).

Yk+l = Yk-3 + 43h (2fk- ik-l + 2fk-2) (12)

And then corrects by the following implicit equation schema (call it Milne-corr).

(13)

Putting this into the system description language of SPANK we have
Figure 8. As with the methods already discussed, we can verify that this
correctly specifies Milne's method.

4 Systems of equations

In the preceding section, we concentrated on specifications of solution meth
ods for single equation problems. But our language can easily be used to
describe solution methods for systems of ordinary differential equations as
well. Namely, we have only to observe that all of the common solution
techniques generalize in a very simple way, by applying the method to each
equation separately. We can demonstrate the idea using the explicit Euler's

15

declare Eqn ODE;
declare P Milne-pred;
declare C Milne-corr;
declare T S Timestep;
feedback t(Eqn.t, TS.t)

initially to update-by tnexti
link Yk+1(C.yk+~, Eqn.y)

initially y3 predict-by Ynexti
feedback Yk()

initially Y2 update-by Yk+1i
feedback Yk-1 (C.yk-1)

initially y1 update-by Yki
feedback Yk-2(P.yk-3)

initially y0 update-by Yk-1;
link fk+1(C.fk+b Eqn.y', P.fk)

initially 0 predict-by f;
feedback fk(P.fk-b C.fk)

initially y~ update-by fk+1i
feedback fk-1(P.fk-2, C.fk-1)

initially y~ update-by fki
link Ynext(P.yk+1)i
link tnext(TS.tnext)i
input h(P.h, C.h, TS.h);
input y0 ();

input Y10;
input y2();
input y3();
input y~ ();
input y~();

Figure 8: 4th order Milne's method

16

v'

u
method. Suppose we want to solve the initial value problem for the following
system of ordinary differential equations.

Y~ - ft(t,yb · · • 'Yn)
(14)

Y~ - fn(t,yl,••• ,yn)

together with initial values for they functions: Yt(to) = Ct, ... , Yn(t 0) =en.
Furthermore, suppose we have equation schemata ODEt, ... , ODEn corre-
sponding to the equations y~ = ft(t,Yb···,Yn), ... , Y~ = fn(t,yt, ... ,yn)·
Then we can specify the solution as in Figure 9.

Of course, similar techniques allow us to specify other solution meth
ods for systems of equations. Moreover, by the standard technique we can
describe higher-order systems by factoring into larger systems of first-order
systems.

5 Further Extensions

One clear omission in our proposed extensions is the ability to specify so
lution methods in such a way as to be independent of the particular ODE
being solved. That is, for example each of the methods discussed above in
volves declaring one or more instances of an ODE. We do not need to know
anything about the ODE schemata except that it have variables t, y and y'
which are interpreted in the obvious way. So far as the solution method is
concerned, the requirements are purely formal, having only to do with the
form of the equation schema. It is reasonable to expect that we should be
able to encapsulate the description of a solution method in a similar way to
the encapsulation of a physical law in an equation schemata. One difference,
however, is that the resulting description would have to be parametric with
respect to the ODE. Thus, a reasonable further extension to SPANK would
be a means of encapsulating systems of equations such as the explicit Euler's
method above.

Namely, we would like to be able to declare a new parametric schema,
say explicit-Euler in such a way that for any particular schema ODE (with
schematic variables t, y, and y') the statement

declareS explicit-Euler(ODE);

17

declare Eqn1 ODEt;
declare Eqn2 OD~;

declare Eqnn ODEn;
declare Eu1 , ••• , EUn Euler;
feedback Yt(Eqn1 .y~, ... , Eqnn·Yb Eut·Y)

initially c1 update-by yn1 ;

feedback Y2(Eqn1 .y2, ... , Eqnn·Y2, Eu2.y)
initially c2 update-by yn2;

feedback Yn(Eqn1 .yn, ... , Eqnn·Yn, Eun·Y)
initially en update-by ynn;

independent t(Eqn1 .t, ... , Eqnn.t)
initially t0 increment-by h;

link y~(Eqn1 .y', Eut·Y');
link y~(Eqn2 .y', E~.y');

link y~(Eqnn·Y', Eun·Y');
link ynt(Eut·Ynext)i
link yn2(Eu2·Ynext);

link ynn(Eun·Ynext)i
input h(Eut.h, ... ,Eun.h);

Figure 9: A system of differential equations

18

would introduce a new set of equations to the system with interface :~ariables
S.y, S.y', etc. which solves the ordinary differential equation ODE by Euler's
explicit method. In this way, we would be able to build up a library of solution
methods, and thus keep the parts of a system that are due to the choice of
solution method separate from the parts that are due to the physical system
being modeled.

We expect this notion of parametric schemata to be of particular utility
when specifying systems of ODEs, though we have not worked out the details
sufficiently to say how these systems would be expressed.

6 Conclusion

We have shown that the approach to modeling static behavior in the Sim
ulation Problem Analysis Kernel can be extended in a principled way to
modeling dynamic behavior by adding to the description language constructs
that specify how time advances and how values for time dependent variables
are carried from one time step to the next. In particular, in this paper we
have shown that with our simple extensions one can specify a wide variety of
solution methods for solving initial value problems for ordinary differential
equations.

Some of the important attributes of static SPANK preserved with these
extensions are the following. One, the underlying system of algebraic equa
tions involved in a differential equation solution is given explicitly. Thus, the
implementation can easily take advantage of existing code for static SPANK.
Two, the basic intuition that a system can be built up component-wise by
specifying how the various components relate is preserved in the extensions.
Thus, even complicated models involving complicated solution methods can
be verified in a modular way. Three, the description language is essentially
declarative, i.e., neutral with respect to the particular algorithms used to
implement SPANK. This is important in that it allows a model designer to
concentrate on the already difficult task of accurately describing the physical
system without also having to deal with the task of implementing a partic
ular solution algorithm. In light of these observations, we expect that the
extensions proposed here will form the basis for a very general simulation
system suitable for modeling large and otherwise unwieldy dynamic systems.

19

References

[And89a] Andersson, M. An object-oriented modelling environment. In The
1989 European Simulation Multiconference, Rome, Italy, 1989.
Available from Lund lnst. of Technology, P.O. Box 118, S-221 00,
Lund, Sweden.

[And89b] Andersson, M. Omola- an object-oriented modelling language.
Technical report, Lund Institute of Technology, P.O. Box 118, S
221 00, Lund, Sweden, 1989.

[Cla87] Clarke, J. A. The Energy Kernel System: An overview in support
of three grant proposals. Technical report, Energy Simulation
Research Unit, Univ. of Strathclyde, 16 Richmond St, Glasgow,
G1 1XQ, U. K., 1987.

[Cla88a] Clarke, J. A. The Energy Kernel System. Building and Energy,
1988.

[Cla88b] Clarke, J. A. An object-oriented approach to modeling. In Pro
ceedings of User-1, Ostend, Belgium, 1988. Available from Soc.
for Computer Simulation, P.O. Box 17900, San Diego, CA 92117.

[Gea71] Gear, C. William Numerical Initial Value Problems in Ordinary
Differential Equations. Prentice-Hall, 1971.

[Hir88] Hirsch, J. J. A plan for the development of the next generation
building energy analysis computer software. In Proceedings of
the First Building Energy Simulation Conference, Seattle, U.S.A.,
1988. Available from Soc. for Computer Simulation, P.O. Box
17900, San Diego, CA 92117.

[Mat88] Mattsson, S. E. On model structuring concepts. In Proceedings of
the 4th !FAG Symposium on Computer-Aided Design in Control
Systems (CADCS), P.R. China, 1988. Available from Lund Inst.
of Technology, P.O. Box 118, S-221 00, Lund, Sweden.

[Mat89a] Mattsson, S. E. Concepts supporting reuse of models. In Pro
ceedings of Building Simulation '89, pages 175-180, Vancouver,

20

J

Canada, 1989. Available from International Building Perfor
mance Simulation Association, P.O. Box 282, Orleans, Ontario,
K1c 1S7, Canada.

(Mat89b] Mattsson, S. E. Modeling of interactions between submodels.
In The 1989 European Simulation Multiconference, Rome, Italy,
1989. Available from Lund lnst. of Technology, P.O. Box 118,
S-221 00, Lund, Sweden.

(Sah88] Sahlin, P. Modsim, a program for dynamical modeling and sim
ulation of continuous systems. Technical report, Institute. of Ap
plied Mathematics, Institute of Applied Mathematics. P.O. Box
26300, S-100 41 Stockholm, Sweden, 1988.

(SB88] Sowell, E. F. and W. F. Buhl. Dynamic extension of the simula
tion problem analysys kernel (SPANK). In Proceedings of User-1,
Ostend, Belgium, 1988. Available from Soc. for Computer Simu
lation, P.O. Box 17900, San Diego, CA 92117.

(SB89] Sowell, E. F. and W. F. Buhl. Object-oriented programming,
equation-based submodels, and system reduction in SPANK. In
Proceedings of Building Simulation '89, pages 141-146, Vancou
ver, Canada, 1989. Available from International Building Perfor
mance Simulation Association, P.O. Box 282, Orleans, Ontario,
K1c 1S7, Canada.

[SBEW86] Sowell, E. F., W. F. Buhl, A. E. Erdem, and F. C. Winkelman. A
prototype object-based system for HVAC simulation. In The Sec
ond International Conference on System Simulation in Buildings,
Liege, Belgium, 1986. Available from Laboratory of Thermody
namics, Univ. of Liege, B-4000, Liege, Belgium.

[SS89] Sahlin, P. and E. F. Sowell. A neutral format for building simu
lation models. In Proceedings of Building Simulation '89, pages
147-154, Vancouver, Canada, 1989. Available from International
Building Performance Simulation Association, P.O. Box 282, Or
leans, Ontario, K1c 1S7, Canada.

21

--~ :,.
~r· "

LA~NCEBERKELEYLABORATORY

UNIVERSITY OF CALIFORNIA
INFORMATION RESOURCES DEPARTMENT

1 CYCLOTRON ROAD
BERKELEY, CALIFORNIA 94720

,; ..

. '; ~ '!!: ~ ... "C J . ._(.) -
l/·. ,.

