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Abstract 
The Simulation Problem Analysis Kernel (SPANK) is a prototype 

implementation of the Energy Kernel System (EKS). It is intended to 
demonstrate some of the features that have been argued as necessary 
for future simulation systems. In particular, with earlier versions of 
SPANK, the model designer can specify static behavior as modeled by 
systems of algebraic equations. More recent work has led to extensions 
that allow the designer to specify dynamic behavior as modeled by sys
tems of equations together with certain predefined integration meth
ods. One drawback of this approach is that the integration methods 
must be of a specific kind involving at most a fixed number of values 
from previous time steps. In this paper, we propose to extend SPANK 
in a more flexible way to give the designer the ability to specify any 
of the standard difference methods for initial value problems. These 
include Runge-Kutta methods as well as predictor-corrector methods. 

The development of our extensions begins with a close look at how 
the static version of SPANK specifies models. On this foundation, we 
then look at two very simple integration methods, Euler's implicit and 
explicit methods, for clues as to how we can extend the system de
scription language to admit dynamics. With the extensions to SPANK 
called for by looking at Euler's methods, we show that Runge-Kutta 
and predictor-corrector methods can also be specified. From this, we 
argue that the extensions proposed herein are suitable for specifying 
arbitrary finite difference integration methods. We conclude with a 
brief discussion of further extensions that we believe would make the 
SPANK system more useful for dynamic simulations. 

*This work was supported by the Assistant Secretary for Conservation and Renewable 
Energy, Office of Buildings and Community Systems, Building Systems Division of the 
U.S. Dept. of Energy under contract No. DE-AC03-76SF00098, and by the National 
Science Foundation under grant MSM-8614974. 
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1 Introduction 

The Simulation Problem Analysis Kernel (SPANK) [SBEW86, SB89] demon
strates an object-oriented method of constructing models of large static prob
lems that closely mimics methods of constructing physical systems. Namely, 
models are built from (models of) simple components by specifying how the 
components are connected. Simple components are modeled by systems of 
algebraic equations. Large systems are modeled by a collection of simple com
ponent models together with descriptions of how the individual components 
are related. The promise of this approach is that the resulting description of 
a large system is essentially a schematic of the corresponding physical sys
tem, and is constructed in similar manner to the physical system. Thus for 
example, verification of the correctness of the model is vastly simpler than 
verification that a single monolithic system of equations is correct - we sim
ply verify that the model was constructed to faithfully mimic the cqnstruction 
of the physical system. Similarly motivated simulation environments are de
scribed in [Cla88b, Mat88, Mat89b, Mat89a, And89a, And89b, Sah88, SS89]. 
Also, see [Cla87, Cla88a, Hir88] for further discussions of the motivations for 
the Energy Kernel System (EKS) of which SPANK can be seen as a proto
type. 

In a later paper [SB88], it is shown that this same method can be ex
tended to dynamic behavior modeled by systems of differential equations. 
The method proposed there, however, assumed a specific set of predictor
corrector integration formulas. In this paper, we show how the SPANK 
method can be extended to permit a wide range of integration methods, in
cluding user defined methods. The extension involves solving two separate, 
but related problems. First, SPANK uses the Newton-Raphson method for 
finding solutions to the algebraic systems, but for systems of differential equa
tions there is no obvious choice for a single method of integration. Hence, we 
must be able to support many different methods, preferably in such a way 
as to allow new methods to be added. Second, specification of a system of 
differential equations ought to follow in the spirit of the earlier system. That 
is, small processes, e.g., the dynamic behaviors of small components, ought 
to be modeled by small systems of equations that can be linked together to 
model larger complicated behaviors. We show that these two problems can 
be solved together in a very uniform way that allows both components and 
integration methods to be described in the same formalism. 
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Figure 1: A system of three air collectors 

2 Overview of SPANK: Static Models 

Suppose we are asked to construct a model of the static behavior of 
a certain configuration of three air collectors, represented schematically in 
Figure 1. For the sake of simplicity, let us assume that we are only interested 
in modeling the rate of flow of dry air through the various ducts, given rates 
at the ducts numbered 1 through 4. Let us further assume that differences 
in pressure are not of interest. We can model this by the following system of 
equations. 

0 - M1 +M2 -Ms 
0 M3+M4-M6 
0 - Ms+M6-M7 

(1) 

where M1 through M4 are given, and M5 through M7 are unknown mass 
flows to be found. 

Looking at a typical text on numerical analysis, one might get the impres
sion that such a system of equations springs forth complete from the mind 
of the designer like Pallas Athena from the mind of Zeus. But of course it 
does not. Rather it is arrived at, more mundanely, in stages with each stage 
ensuring that some aspect of the physical system is faithfully represented. 
In SPANK, these stages are reflected in the system description language, so 
that a description not only accurately specifies a system of equations, but 
also specifies the design steps taken to arrive at the system. Thus, in or
der to understand the system description language used in SPANK, we must 
understand these design steps. 

Consider the configuration of air collectors given in Figure 1 again, under 
the same assumptions. We know that conservation laws require that the 
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behavior at each collector be modeled by an equation of the form 

(2) 

where 1nJ is the rate of flow of the outgoing stream of air and m1 and ~ 
are the rates of flow of the two incoming streams of air. Clearly, the actual 
equations of our system must involve problem variables corresponding to the 
flow rates at the various ducts, rather than the abstract quantities mi. So we 
refer to Equation 2 as an equation schema to distinguish it from particular 
instances where problem variables have been substituted for the mi. 

As the first stage in the design, we chose three instances of the equation 
schema 2, corresponding to the three components of the physical system.1 

For convenience, we give these three instances the names c~, c2 and c3 • Then, 
we can refer to the variables in equation c1 as c1 .m~, c 1.m2 and c1.m3, and 
likewise for the variables in the other equations. Thus, as the result of the 
first step in the design, we have the following three instances of 2. 

• Equation c1 is 0 = c 1.mt + Ct.m2- Ct.m3 

Next, we identify the given problem variables with certain variables in the 
equations. Namely, we make the following identifications: 

• Identify c1 .m1 with Mt. 

• Identify Ct.m2 with M2. 

• Identify c2 • m1 with M3 • 

• Identify c2.m2 with M4. 

Finally, we identify the three unknown problem variables (in general, as 
many variables as there are equations) with other variables in the equations. 
Namely, we specify 

1 We assume that the ducts do not contribute any non-trivial behavior to the system. 
So they are not considered components. If, for example, pressure were taken into account, 
we might need to consider each duct to be a separate component. 
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• Identify c1 .m3 and c3 .m1 with Ms. 

• Identify c2.m3 and c3.ffi2 with M6 . 

• Identify c3 • m3 with M1. 

So the steps involved in constructing the system in Figure 1 are (1) instan
tiate equations corresponding to system components, (2) identify equation 
variables with problem variables, and (3) specify which problem variables 
are to be solved for. Taken together, these three steps completely specify the 
desired system of three equations in three unknowns. Correspondingly, the 
SPANK language supports all three of these steps. First, the language has a 
construct called declare, an example of which is 

declare Ct, c2 , c3 collector; 

The effect of this is to form three instances of the equation schema collector 
and call them Ct, c2 and c3 •

2 

For given problem variables, the language has a construct called input, 
examples of which are 

input Mt(Ct.mt); 
input M2(ct.ffi2)i 
input M3(c2.mt); 
input M4( c2. ffi2); 

The first of these specifies that M 1 is a parameter to the system identified 
with the equation variable c1 • m1 . And again, the others read similarly. For 
the unknowns, the language has a construct called link, examples of which 
are 

link Ms(ct.m3,c3.mt)i 
link M6( c2. m3, c3. m2); 
link M1( c3. m3); 

The first of these specifies that M5 is an unknown identified with the equation 
variables c1.m3 and c3 .m1 • The other two read similarly. Thus, in SPANK 
the whole system modeling the collectors is specified as in Figure 2. A brief 
look at this specification shows that certain well-formedness conditions must 

2The language also supports introduction of new equation schemata such as collector. 
For our purposes, though, we assume that these are already defined in a library of 
schemata, corresponding to a catalogue of standard components. 
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declare Ct, c2 , c3 collector; 
input Mt(Ct.mt)i 
input M2(ct.~); 
input Ma(c2.mt)i 
input M4(c2.~); 
link Ms(Ct.ma, ca.mt)i 
link M6 (c2.m3, ca.~); 
link M7(ca.ma); 

Figure 2: SPANK specification of Figure 1 

hold in order to completely specify a system of n equations in n unknowns. 
Namely, (1) there must be exactly the same number of link statements as 
there are equations declared in any declare statements; and (2) each equa
tion variable must occur in exactly one link or input statement. These are 
trivial syntactic conditions, which, of course, SPANK checks automatically. 

Digression. An important technical innovation in SPANK, but one that is 
not directly relevant to this discussion, is that a system of equations as spec
ified above is subjected to certain graph-theoretic algorithms that attempt 
to minimize the number of unknowns that must be solved for simultaneously. 
The benefit of this is that, in general, a solution to a non-linear system of 
n equations in n unknowns requires on the order of n 3 operations for each 
iteration of Newton-Raphson's method. Hence, reduction of the number of 
variables involved yields significant gains in efficiency. In fact, because prac
tical systems may involve hundreds of equations, this reduction can easily 
spell the difference between a tractable and an intractable simulation prob
lem. See [SBEW86, SB89] for more discussion of this. 

3 Dynamic models 

Currently, SPANK supports algebraic equations. But in order to simulate 
dynamic behavior, we must be able to describe differential equations as well. 
Of course, the field of differential equations is very large. We cannot hope 
to deal with all of it. Nevertheless, for the purpose of simulating dynamic 
behavior, we can make three simplifying assumptions. First, we concern our-
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selves only with ordinary differential equations. This corresponds roughly to 
the assumption that our models involve only one independent variable (pre
sumably, this is time) and are suitably discretized. From the point of view of 
practical dynamic models, this makes sense. Second, we deal only with ini
tial value problems. There is nothing radical in this either - most dynamic 
simulations are cast as initial value problems, and most well-understood so
lution methods for differential equations solve initial value problems (see for 
example [Gea71]). 

Consider the problem of numerically solving an initial value problem for 
a specific ordinary differential equation 

y' = J(t,y) (3) 

e.g., y' = ky +a: sin t, with initial value y(t0 ) = c on an interval [t0 , s]. 3 

The reader will recall that an exact solution to this initial value problem is 
a function y(t) such that y(t0 ) = c and 

dy(t)jdt = f(t, y(t)) 

for all t in (t0 , s]. A numerical solution is, in spirit, a function y(t) that 
approximates y(t). In practice, though, a numerical solution method gives 
values of the approximation y(t) at a series of points. That is, a numerical 
solution is actually just two sequences to, ... , tn = s and c = flo, ... , Yn so 
that for every k ~ n, Yk approximates y(tk)· We will restrict our attention 
to the problem of how to specify dynamic models for which such numerical 
solutions are obtained. 

To start, we will consider how to specify a numerical solution to the above 
initial value problem using two very simple solution methods known as Euler's 
methods. From this, we propose extensions to the SPANK system definition 
language which support specification of Euler's methods. Then, having the 
extensions in place, we consider how to use them to specify other more com
plicated solution methods: Runge-Kutta methods and predictor-corrector 
methods. These considerations lead us further to refine our proposed exten
sions. 

3 Actually, the equation may also involve variables other than y', t and y. But for clarity 
of exposition, we will use equations of this form. 
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3.1 Euler's methods 

For Euler's methods, we make the observation that in the neighborhood of 
any particular value t, the exact solution y(t) is approximated by the function 

u(x) = y(t) + (x- t)f(t,y(t)) 

So we can approximate y numerically with values Yk at points tk = t0 + kh 
as follows 

Yo = c 
Yk+t = Yk + hf(tk, Yk) 

(4) 

This is the explicit Euler's method. The implicit version uses the ( approxi
mate) derivative at tk+1 instead of at tk. That is, 

Yo - c 
Yk+t Yk + hf(tk+t, Yk+t) 

(5) 

For now, let us concentrate on the explicit method. Notice that this 
method involves solving an algebraic system at each time step tk+I· Given 
that SPANK already supports specifications of algebraic systems, it behooves 
us to write out the algebraic part of the method in SPANK's language. 

Suppose we have an equation schema named ODE given by equation 3 
and another schema named Euler given by 

Ynext = Y + hy'. (6) 

Then, we can specify the algebraic part of the explicit Euler's method by 
Figure 3. 

Although this seems to capture the relationships between variables needed 
to solve the problem, there are some issues not dealt with. Consider the 
input statements declaring h and t. Although formally they look essentially 
the same, the two variables serve very different purposes in the solution. In 
particular, t varies at each step, whereas h is held constant. The variable y 

likewise varies at each step, taking its initial value from c, and subsequent 
values from Ynext· So we must specify, for example, 

• y initially gets the value c. 

e y subsequently gets Ynext· 
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declare Eqn ODE; 
declare Eu Euler; 
link y'(Eqn.y', Eu.y'); 
link Ynext(Eu.ynext)i 
input h(Eu.h); 
input t(Eqn.t); 
input y(Eqn.y, Eu.y); 
input t 0 (); 

input c(); 

Figure 3: Algebra of Euler's method 

What remains is to explain how the intended independent variable t is 
incremented. For this, we can just require that t increment by a constant 
value h at each step. So, we presume that a schema named Timestep is 
available of the form 

tnext = t + h 

and specify that 

• t initially gets the value of t0 • 

• t subsequently gets tnext· 

Putting these together, we extend SPANK with a construct that allow us 
(1) to declare an input to be one that takes its value from previous steps and 
(2) to specify how to obtain the values of those inputs. We add a statement 
feedback, an example of which is 

feedback y(Eqn.y, Eu.y) 
initially c update-by Ynexti 

which means that the variable y is identified with equation variables Eqn.y 
and Eu.y. Also, y is initially set to c, and at each time step, y gets its 
value from the latest value of Ynext· The time variable t would be declared 
similarly with the additional declaration of a Timestep object having its 
variables suitably identified. 

Notice that we have not eliminated the original input statement. It 
still has its use for true problem parameters, i.e., values that do not change 
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declare Eqn ODE; 
declare Eu Euler; 
declare T S Timestep; 
feedback t(Eqn.t, TS.t) 

initially to update-by tnexti 
feedback y(Eqn.y, Eu.y) 

initially c update-by Ynexti 
link y'(Eqn.y', Eu.y'); 
link Ynext(Eu.ynext)i 
link tnext(TS.tnext)i 
input h(Eu.h, TS.h); 
input to(); 
input c(); 

Figure 4: Euler's explicit method 

through the course of the simulation. For example, the values of h, t0 and c 
might be taken as problem parameters. Thus, the solution of the initial value 
problem by Euler's explicit method can be specified as in Figure 4 in the new 
syntax. Similarly, Euler's implicit method can be specified as in Figure 5. 
To convince oneself that the latter specifies Euler's implicit method, consider 
the algebraic systems that are solved at each step. Namely, this description· 
specifies that the following system of equations be solved at each time step. 

y' = f(t,y) 
Y = Yprev + Hy' 

(7) 

Now, for the first time step, we have t = t0 , Yprev = c and H = 0, so this 
reduces to 

Yb = !(to, c) 
Yo = c 

(8) 

This gives us the correct first value of flo = c. For the k + 1 step, we have 
t = tk + h = tk+b Yprev = Yk and H = h. So this reduces to 

Yk+t = f(tk+ll Yk+d 
Yk+t = Yk + hyk+t 

Again, this gives us the correct value of Yk+t· 

10 
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declare Eqn ODE; 
declare Eu Euler; 
declare T S Timestep; 
feedback t(Eqn.t, TS.t) 

initially to update-by tnexti 
feedback Yprev(Eu.y) 

initially c update-by y; 
feedback H(Eu.h) 

initially 0 update-by h; 
link y'(Eqn.y', Eu.y'); 
link y(Eqn.y, Eu.ynext)i 
link tnext(TS.tnext)i 
input h(T S.h ); 
input t 0 (); 

input c(); 

Figure 5: Euler's implicit method 

Digression. A word about our choice of the indicator feedback is in order. 
Consider the algebraic part of Euler's explicit method again (Figure 3). We 
can think of this as specifying a function from values for the input variables 
(and initial estimates for the link variables) to values for the link variables 
that solve the system of equations. Now, the feedback in the system is 
clear. Namely, the feedback statements indicate how outputs returned by 
the solving function are to be fed back to the function as inputs for the next 
iteration. 

3.2 Runge-Kutta methods 

Here we show that the proposed extensions to SPANK, called for by a careful 
look at Euler's methods, actually suffice to permit us to specify Runge-Kutta 
solution methods as well. We demonstrate the idea by considering a Runge
Kutta method of order 2. The technique easily generalizes to other Runge
Kutta methods. 

Essentially, Runge-Kutta methods workby finding some fixed number of 
approximations of y( tk+I) and then taking a weighted average of these as the 
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value of Yk+I· There are many different Runge-Kutta methods, but they all 
use this general strategy. 

Without discussing the theoretical justification any further, one Runge
Kutta method of order 2 is given by the following. 

Yo c 
Uk+I Yk + hf(tk, Yk) 
Vk+I - Yk + hf(tk+I, Uk+i) 
Yk+I - !( Uk+I + VHI)· 

(10) 

That is, uk+I and vk+1 are approximations of y(tk+I), and Yk+I is taken as the 
simple average of the two. Notice that this method uses equations already 
found in Euler's method together with an equation that specifies the average 
of the two approximations. So suppose along with the schemata ODE and 
Euler, we have a schema named Avg2 as follows 

(11) 

Then we can specify the method as in Figure 6. Although this specification 
is significantly more complicated than those for Euler's methods, it certainly 
does accurately describe the desired method. Also, the basic technique of 
specifying complicated interactions amongst the problem variables is clearly 
general enough to support higher order Runge-Kutta methods. As an aside, 
the method described here is an explicit one- implicit Runge-Kutta meth
ods can be developed in the same spirit as the implicit Euler's method. 
Although implicit methods are more difficult to solve (they require solving 
implicit algebraic equations), they can be specified in our language with no 
additional constructs. 

3.3 Predictor-corrector methods 

So far, we have considered only solution methods that use the value Yk to 
obtain the next value Yk+I· These are called single step methods. More 
accurate approximations can be obtained by using information about several 
previous values instead of just one. To demonstrate how such multiple step 
methods can be specified in SPANK, we consider a class of very common 
methods called predictor-corrector methods. In essence, a predictor-corrector 
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declare Eqnb Eqn2 ODE; 
declare Eu1 , Eu2 Euler; 
declare T S Timestep; 
declare A Avg2; 
link u(Eut·Ynext' Eqn2.y, A.xt); 
link v(Eu2·Ynext' A.x2); 
link y~(Eqnt·Y',Eut·Y'); 
link y~(Eqn2.y'.Eu2.y'); 
link Ynext(A.avg); 
link tnext(T S.tnexb Eqn2.t); 
feedback t(Eqn1.t) 

initially t0 update-by tnexti 
feedback y(Eqnt·Y) 

initially c update-by Ynexti 
input h(Eu1 .h, Eu2.h, TS.h); 
input c(); 

Figure 6: 2nd order Runge-Kutta method 

method involves finding the next value Yk+I by solving an implicit equation 
in Yk+I - this equation is the corrector. Because this equation is implicit 
it must be solved by some iterative method (Newton-Raphson). Because of 
the expense of this iteration, it is in our interest to start the iteration with 
an estimate of Yk+I which is as close as possible to the solution. This initial 
estimate is given by an explicit equation, the predictor. 

As an example, consider the implicit Euler's method again as given in 
Figure 5. The corresponding equation is implicit in the unknown y. Newton
Raphson's method requires that we give an estimate of y to begin the iter
ation. Hence, the above specification leaves out an important datum: the 
initial estimate of y. We could simply assume that the initial estimates are 
carried over from values at the previous step. But, we would obtain a better 
initial estimate of y by using the explicit Euler's rule to predict the value of 
y. Thus, the link statements ought to be modified to permit us to specify 
an initial estimate. An example of the extended link statement is 

link y(Eqn.y, Eu.ynext' Eupredict·Y) 
initially c predict-by Ynexti 
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declare Eqn ODE; 
declare Eu, Eupredict Euler; 
declare T S Timestep; 
feedback t( Eqn.t, T S.t) 

initially to update-by tnexti 
feedback Yprev( Eu.y) 

initially c update-by y; 
feedback H(Eu.h) 

initially 0 update-by h; 
link y'(Eqn.y', Eu.y', Eupredict·Y'); 

link y(Eqn.y, Eu.ynext' Eupredict·Y) 
initially c predict-by Ynexti 

link Ynext(Eupredict·Ynext)i 
link tnext(TS.tnext)i 
input h( Eupredict·h, T S.h ); 
input to(); 
input c(); 

Figure 7: Euler's implicit method with predictor 

This statement is taken to mean the same thing as the original version with 
the additional information that Newton-Raphson iteration ought to begin 
with y set to c for the first time step, and to the current value of Ynext 
thereafter. Now, a more complete description of the implicit method, using 
the explicit method to give us the initial estimates of y is given by Figure 7. 

The effect of this change is simply to calculate in Ynext the value that the 
explicit method would give as the next value of y, and then use that value as 
the prediction of y in the iterative solution to the implicit method. Notice 
also that the Ynext link does not have an initial value and prediction. The 
reason for this is simple. The equations are explicit in Ynext so the number of 
iterations of Newton-Raphson are not affected by the initial value of Ynext· 
Thus we take a link statement such as 

link Ynext(Eupredict·Ynext)i 
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to be an abbreviation of 

link Ynext(Eupredict·Ynext) 
initially 0 predict-by Ynexti 

In that case, the above correctly specifies the desired method. 
This revision of the implicit Euler's method demonstrates a very simple 

predictor-corrector method (in this case, a single-step method). That is, we 
use an explicit rule to predict a value for y and then use an implicit rule to 
correct that prediction. 

Multi-step predictor-corrector methods involve keeping track of values fJk, 
Yk-ll ... , Yk-m at each step, for some fixed m. A well-known example of this 
is Milne's method. To obtain a value of Yk+b this method requires values of 
Yk-3 and Yk-t, together with values of the derivatives f(tk, Yk), f(tk-b Yk-l) 
and f(tk-2, Yk-2)· Let us refer to f(ti, Yi) as the value fi· Then Milne's 
method predicts the value of Yk+l by the following explicit equation schema 

. (call it Milne-pred). 

Yk+l = Yk-3 + 43h (2fk- ik-l + 2fk-2) (12) 

And then corrects by the following implicit equation schema (call it Milne-corr). 

(13) 

Putting this into the system description language of SPANK we have 
Figure 8. As with the methods already discussed, we can verify that this 
correctly specifies Milne's method. 

4 Systems of equations 

In the preceding section, we concentrated on specifications of solution meth
ods for single equation problems. But our language can easily be used to 
describe solution methods for systems of ordinary differential equations as 
well. Namely, we have only to observe that all of the common solution 
techniques generalize in a very simple way, by applying the method to each 
equation separately. We can demonstrate the idea using the explicit Euler's 
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declare Eqn ODE; 
declare P Milne-pred; 
declare C Milne-corr; 
declare T S Timestep; 
feedback t(Eqn.t, TS.t) 

initially to update-by tnexti 
link Yk+1(C.yk+~, Eqn.y) 

initially y3 predict-by Ynexti 
feedback Yk() 

initially Y2 update-by Yk+1i 
feedback Yk-1 ( C.yk-1) 

initially y1 update-by Yki 
feedback Yk-2(P.yk-3) 

initially y0 update-by Yk-1; 
link fk+1(C.fk+b Eqn.y', P.fk) 

initially 0 predict-by f; 
feedback fk(P.fk-b C.fk) 

initially y~ update-by fk+1i 
feedback fk-1(P.fk-2, C.fk-1) 

initially y~ update-by fki 
link Ynext(P.yk+1)i 
link tnext(TS.tnext)i 
input h(P.h, C.h, TS.h); 
input y0 (); 

input Y10; 
input y2(); 
input y3(); 
input y~ (); 
input y~(); 

Figure 8: 4th order Milne's method 

16 

v' 



u 
method. Suppose we want to solve the initial value problem for the following 
system of ordinary differential equations. 

Y~ - ft(t,yb · · • 'Yn) 
(14) 

Y~ - fn(t,yl,••• ,yn) 

together with initial values for they functions: Yt(to) = Ct, ... , Yn(t 0 ) =en. 
Furthermore, suppose we have equation schemata ODEt, ... , ODEn corre-
sponding to the equations y~ = ft(t,Yb···,Yn), ... , Y~ = fn(t,yt, ... ,yn)· 
Then we can specify the solution as in Figure 9. 

Of course, similar techniques allow us to specify other solution meth
ods for systems of equations. Moreover, by the standard technique we can 
describe higher-order systems by factoring into larger systems of first-order 
systems. 

5 Further Extensions 

One clear omission in our proposed extensions is the ability to specify so
lution methods in such a way as to be independent of the particular ODE 
being solved. That is, for example each of the methods discussed above in
volves declaring one or more instances of an ODE. We do not need to know 
anything about the ODE schemata except that it have variables t, y and y' 
which are interpreted in the obvious way. So far as the solution method is 
concerned, the requirements are purely formal, having only to do with the 
form of the equation schema. It is reasonable to expect that we should be 
able to encapsulate the description of a solution method in a similar way to 
the encapsulation of a physical law in an equation schemata. One difference, 
however, is that the resulting description would have to be parametric with 
respect to the ODE. Thus, a reasonable further extension to SPANK would 
be a means of encapsulating systems of equations such as the explicit Euler's 
method above. 

Namely, we would like to be able to declare a new parametric schema, 
say explicit-Euler in such a way that for any particular schema ODE (with 
schematic variables t, y, and y') the statement 

declareS explicit-Euler(ODE); 
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declare Eqn1 ODEt; 
declare Eqn2 OD~; 

declare Eqnn ODEn; 
declare Eu1 , ••• , EUn Euler; 
feedback Yt(Eqn1 .y~, ... , Eqnn·Yb Eut·Y) 

initially c1 update-by yn1 ; 

feedback Y2(Eqn1 .y2, ... , Eqnn·Y2, Eu2.y) 
initially c2 update-by yn2; 

feedback Yn(Eqn1 .yn, ... , Eqnn·Yn, Eun·Y) 
initially en update-by ynn; 

independent t(Eqn1 .t, ... , Eqnn.t) 
initially t0 increment-by h; 

link y~(Eqn1 .y', Eut·Y'); 
link y~(Eqn2 .y', E~.y'); 

link y~(Eqnn·Y', Eun·Y'); 
link ynt(Eut·Ynext)i 
link yn2(Eu2·Ynext); 

link ynn(Eun·Ynext)i 
input h(Eut.h, ... ,Eun.h); 

Figure 9: A system of differential equations 
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would introduce a new set of equations to the system with interface :~ariables 
S.y, S.y', etc. which solves the ordinary differential equation ODE by Euler's 
explicit method. In this way, we would be able to build up a library of solution 
methods, and thus keep the parts of a system that are due to the choice of 
solution method separate from the parts that are due to the physical system 
being modeled. 

We expect this notion of parametric schemata to be of particular utility 
when specifying systems of ODEs, though we have not worked out the details 
sufficiently to say how these systems would be expressed. 

6 Conclusion 

We have shown that the approach to modeling static behavior in the Sim
ulation Problem Analysis Kernel can be extended in a principled way to 
modeling dynamic behavior by adding to the description language constructs 
that specify how time advances and how values for time dependent variables 
are carried from one time step to the next. In particular, in this paper we 
have shown that with our simple extensions one can specify a wide variety of 
solution methods for solving initial value problems for ordinary differential 
equations. 

Some of the important attributes of static SPANK preserved with these 
extensions are the following. One, the underlying system of algebraic equa
tions involved in a differential equation solution is given explicitly. Thus, the 
implementation can easily take advantage of existing code for static SPANK. 
Two, the basic intuition that a system can be built up component-wise by 
specifying how the various components relate is preserved in the extensions. 
Thus, even complicated models involving complicated solution methods can 
be verified in a modular way. Three, the description language is essentially 
declarative, i.e., neutral with respect to the particular algorithms used to 
implement SPANK. This is important in that it allows a model designer to 
concentrate on the already difficult task of accurately describing the physical 
system without also having to deal with the task of implementing a partic
ular solution algorithm. In light of these observations, we expect that the 
extensions proposed here will form the basis for a very general simulation 
system suitable for modeling large and otherwise unwieldy dynamic systems. 
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