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by Y. -S. Wu, K. Pruess and P. A. Witherspoon, Lawrence Berkeley Laboratories 

Abstract 

There is considerable evidence that the flow of heavy oil in 
some reservoirs is non-Newtonian and that this behavior can be 
approximated by a Bingham type fluid. Investigations in the 
Laboratory and in a few field tests have shown a behavior that 
is characteristic of a Bingham fluid; the flow of the heavy oil 
takes place only after the applied pressure gradient exceeds a 
cenain minimum value. Despite the research that has been car­
ried out over the past 20 years on the flow of non-Newtonian 
fluids in porous media, very little work has been done on 
single- and multiple-phase flow of Bingham fluids. At present, 
there is no reliable method of analyzing pressure buildup data 
from well tests where the reservoir contains a Bingham oil. 

This work presents a theoretical study of the flow and displace­
ment of a Bingham type fluid in porous media. An integral 
method of analyzing the single phase flow of this type of fluid 
has been developed. An approximate analytical solution has 
been obtained for transient flow problems, and its accuracy is 
confinned by comparison with numerical solutions. The flow 
behavior of a slightly-compressible Bingham fluid is discussed, 
and a new method of well test analysis has been developed by 
using the integral solution. 

To obtain some understanding of the physics of immiscible 
displacement with Bingham fluids, a Buckley-Leverett type 
analytical solution with a practical graphic evaluation method 
has been developed and applied to the problem of displacing a 
Bingham-type fluid by water. The results reveal how the 
saturation profile and the displacement efficiency are con­
trolled not only by the relative permeabilities, as in the case of 
Newtonian fluids, but also by the inherent complexities of 
Bingham non-Newtonian behavior. In particular, we find that 
in the displacement process with a Bingham fluid, there exists 
a limiting maximum saturation, beyond which no further dis­
placement can be achieved . 

1. Introduction 

Flow of non-Newtonian fluids through porous media is 
encountered in many subsurface systems involving under­
ground natural resource recovery or storage projects. In the 
past three decades, a tremendous effon has been expended in 
developing quantitative analysis of flow of non-Newtonian 
fluids through porous media. Considerable progress has been 
reponed and much information is available in the chemical 
engineering, rheology and petroleum engineering literature 
regarding non-Newtonian fluid flow through porous media 
(Savins, 1969; Gogany, 1967; van Poollen, 1969; Ikoku and 
Ramey, 1979; Odeh and Yang, 1979). The theoretical investi­
gations carried out in this field have mainly concentrated on 
single-phase power-law non-Newtonian fluid flow, while the 
experimental studies have intended to provide rheological 
models for non-Newtonian fluids and porous materials of 
interesL 

There is considerable evidence from laboratory experiments 
and field tests that cenain fluids in porous media exhibit a 
Bingham-type non-Newtonian behavior (Bear 1972; Barenblan 
et al., 1984). In these cases, flow takes place only after the 
applied pressure gradient exceeds a cenain minimum value, 
referred to as the threshold pressure gradient. The flow of oil in 
many heavy oil reservoirs does not follow Darcy's law, but it 
may be approximated by a Bingham fluid (Mirzadjanzade et 
al., 1971). 

For groundwater flow in certain clayey soils, or in strongly 
argillized rocks, the existence of a threshold hydraulic gradient 
has also been observed. When the applied hydraulic gradient is 
below a cenain minimum gradient, there is very little flow. 
This phenomenon was attributed by some authors to clay-water 
interactions (Bear, 1972; Mitchell, 1976). 

The flow of foam in porous media is a focus of current research 
in many fields. Foam has been shown to be one of the most 
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promising fluids for mobility control in underground energy 
recovery or storage projects. On a macroscopic scale, flow 
behavior of foam in porous media is non-Newtonian. The 
"power-law" is generally used to correlate the apparent viscosi­
ties of foam with other flow properties for a given porous 
medium and a given surfactant (Patton et al. 1983; Hirasaki 
and Lawson, 1985). It has also been observed experimentally 
that foam will stan to flow in a porous medium only after the 
applied pressure gradient exceeds a certain threshold value 
(Albrecht and Marsden, 1970; Witherspoon et al., 1989). 

Drilling and hydraulic-fracturing fluids used in the oil industry 
are usually non-Newtonian liquids. Therefore, during well dril­
ling or hydraulic-fracturing operations, the non-Newtonian 
drilling muds or hydraulic fluids will filtrate into penneable 
formations surrounding the wellbore, which may seriously 
damage the formation. The rheological behavior of drilling 
muds, cement slurries and hydraulic-fracturing fluids is often .. 
described by a Bingham plastic model (Robertson et al., 1976, 
Cloud and Clark, 1985). However, very little quantitative 
analysis has been reported on the formation response near the 
wellbore to non-Newtonian fluids. 

At present, there is no standard approach in the petroleum 
engineering or groundwater literature for analyzing well test 
data for Bingham-type fluid production or injection. Interpreta­
tion of transient pressure responses of Bingham flow in porous 
media will be very important for heavy oil development, for 
groundwater flow evaluation in certain clayey formations, and 
for flow analysis of foam in porous media. The immiscible dis­
placement of Non-Newtonian and Newtonian fluid occurs in 
many EOR processes, involving the injection of non­
Newtonian fluids, such as polymer and foam solutions, or 
heavy oil production by waterflooding. However, very little 
research has been published on multiple phase flow of both 
non-Newtonian and Newtonian fluids through porous media. 
Even using numerical methods, very few studies have been 
performed to examine the physics of displacement (Gencer and 
Ikoku, 1984). Therefore, the mechanisms of immiscible dis­
placement involving non-Newtonian fluids in porous media are 
still not well understood. 

This paper presents a new methodology for analysis of the 
transient flow of Bingham fluids through porous media, includ­
ing an integral analysis method for single phase flow and and a 
Buckley-Leverett type analytical solution for two-phase 
immiscible displacement with Bingham non-Newtonian fluids. 
In order to apply the theory to field problems, a new well test 
analysis method has been developed. and its application is 
demonstrated by analyzing two simulated pressure drawdown 
and buildup tests of a Bingham fluid. The displacement of a 
Bingham fluid by a Newtonian fluid is shown to proceed with 
rather limited efficiency due to the presence of an ultimate 
(limited) displacement saturation, which is a characteristic of 
two-phase Bingham flow. Once the saturation in the two-phase 
flow system reaches the ultimate saturation, no further 
improvement of displacement efficiency can be obtained, 
regardless of how long the displacement operation continues 
under the same flow conditions. 

We have also developed a numerical model for single- and 
multi-phase Bingham fluid flow through porous media, by suit­
ably modifying a general-purpose multiphase reservoir simula-

tor. The model has been used to test our analytical solutions 
and the proposed well test analysis for Bingham fluids. 

2. Bingham Fluid and Rheological Model 

As a special kind of non-Newtonian fluids, Bingham fluids (or 
plastics) exhibit a finite yield stress at zero shear rate. The phy­
sical behavior of fluids with a yield stress is usually explained 
in terms of an internal structure in three dimensions which is 
capable of preventing movement for values of shear stress less 
than the yield value, ty. For shear stress 't larger than ty. the 
internal structure collapses completely, allowing shearing 
movement to occur. The characteristics of these fluids are 
defined by two constants: the yield stress 'ty which is the stress 
that must be exceeded for flow to begin, and the Bingham plas­
tic coefficient J.Lt,. The rheological equation for a Bingham 
plastic is (Bird et al., 1960) 

't = 'ty- V.b 'Y (1) 

where y is the shear rate. The Bingham plastic concept has 
been found to closely approximate many real fluids existing in 
porous media, such as tarry and paraffin oils (Mirzadjanzade et 
al. 1971; Barenblan et al., 1984), and drilling muds and frac­
turing fluids (Hughes and Brighton, 1967), which are suspen­
sions of finely-divided solids in liquids. 

For a phenomenological description of flow in porous media, 
some equivalent or apparent viscosities for non-Newtonian 
fluid flow are needed in Darcy's equation. Therefore, many 
experimental and theoretical investigations have been con­
ducted to find rheological models, or correlations of apparent 
viscosities and flow properties for a given non-Newtonian fluid 
as well as a given porous material. For flow problems in porous 
media involving non-Newtonian Bingham fluids, the formula­
tion of Darcy's law has been modified (Bear, 1972; 
Scheidegger, 1974; Barenblan et al., 1984) to, 

lt=- ..!_ [1- _Q_] VP (2a) 
V.b IVPI 

for IVPI>G, 

lt=O (2b) 

for IVPI S G. Where K is formation permeability, P is pres­
sure, and G is the minimum pressure gradient. The physical 
meaning of G can be elucidated by considering flow of a Bing­
ham fluid through a capillary with radius R. The Bingham 
flow equation was solved by Buckingham (Skelland, 1967) to 
give the average flow velocity over the cross-section of the 
tube. By comparing this velocity with Darcy's law, we obtain 

(3) 

where d is a characteristic pore size of a porous medium, d = 
3R/8. Therefore, physically, the minimum pressure gradient G 
is the pressure gradient corresponding to the yield stress 'ty in a 
porous medium. 

The two Bingham fluid parameters G and V.b should be deter­
mined by laboratory experiments or well tests for a porous 
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media flow problem. The range of values for the minimum 
potential gradient G is quite large for different reservoirs. A 
reasonable value of G is on the order of Hf Palm for heavy oil 
(Mirzadjanzade et al., 1971), and it may exceed 3.0xloS Palm 
for groundwater flow in cenain clayey soils (Bear, 1972). 

3. Integral Analysis or Single-Phase Bingham Flow 

The "integral method" has been widely used in the study of . 
unsteady heat transfer problems (Ozisik, 1980). It is applied 
here to obtain an approximate analytical solution for Bingham 
fluid flow in porous media. The integral approach to heat con­
duction utilizes a simple parametric representation of the tem· 
perature profile, e.g. by means of a polynomial, which is based 
on physical concepts such as a time-dependent thennal pene­
tration distance. An approximate solution of the heat transfer 
problem is then obtained from simple principles of heat flux 
continuity and energy conservation. This solution satisfies the 
governing partial differential equation only in an average, 
integral sense. However, it is encouraging to note that many 
integral solutions to heat transfer and fluid mechanics problems 
have an accuracy that is generally acceptable for engineering 
applications (Ozisik, 1980). When applied to fluid flow prob­
lems in porous media, the integral method consists of assuming 
a pressure profile in the pressure disturbance zone and deter­
mining the coefficients of the profile by making use of the 
integral mass balance equation (Wu, 1990). 

In analogy to the heat conduction problem ( Lardner and Pohle, 
1961; Ozisik, 1980 ), we first assumed a pressure profile of the 
form 

P(r, t)- Pi= [Pn(r)) ln(r) (r~..,+O(t)) (4) 

where Pn(r) is an nth-degree polynomial in r, and the time 
dependence is implicitly included in the coefficients of the 
polynomial, which is dependent on the pressure penetration 
distance ~t) <Pn(~) = 0). However, we found that solutions in 
terms of profiles as given by Equation (4) are not accurate 
when compared tO the Theis solution for the limiting case of a 
Newtonian fluid (G = 0), and always introduce 5-10 % errors. 
More accurate solutions were obtained for radial flow in a 
porous medium using pressure profiles of the form: 

P(r, t)- Pi= constant x ln[P n<r)) (5) 

3.1 Mathematical Formulation and Integral Solution 

The problem considered here involves production of a Bing­
ham fluid from a fully penetrating well in an infinite horizontal 
reservoir of constant thickness, and the formation is saturated 
only with the Bingham fluid. The basic assumptions are as fol­
lows: 

1) isothennal, isotropic and homogeneous formation; 

2) single phase horizontal flow without gravity effects; 

3)Darcy's law, Equation (2), applies; and 

4) constant fluid properties and formation permeability. 

The governing flow equation can be derived by combining the 
modified Darcy's law- with the continuity equation, and is 

expressed in a radial coordinate system as 

~_0~r[~J}=.£..[ (P~(P)) (6) r~~ C1r otp 

The density, p(P), of the Bingham fluid, and the porosity, 
cji(P) , of the formation, are functions of pressure only. 

The initial condition is 

P(r, t=O) =Pi (Constant) (r ~ r..,) (7) 

At the inner boundary at the well bore, r = r.., , the fluid is pro­
duced at a given mass production rate 0m(t) ; i.e. 

2m..,Khp(P0) [oP ] 
--..;..._~ --G = 0m(t) 

1-Lb C1r r=r. 
(8) 

where P0 = P0(t) = P(r..,, t), the wellbore pressure. 

The integral solution for radial flow into a well under a 
specified mass production rate 0m(t) has been obtained, using 
the pressure profile of Equation (5) with an added inhomogene-

' ous term, as (Wu, 1990) 

P(r, t) =Pi+ (r-r..,11)G 

0m(t)J.lb 1 [ 1 + U{t)/r..,]x 
2JtKh p(Po) ~(t)/r.., 

ln[ 2r:.., - [ r~.., J1 (9) 

where 11 = 1+-0(t)/r..,. The unknowns, P0o wellbore pressure, 
and ~(t), pressure penetration distance, are determined by 
simultaneously solving Equation (9) and the following integral 
equation, 

r.~t) 

J 27thrp(P~(P)dr 
r. 

l 

=- jOm(t)dt+JthPiclli[(r..,+~(t))2 -r..,2] (10) 
0 

where Pi= p(Pi), and clli = cji(Pi) . Equation (10) is simply a 
mass balance equation in the pressure disturbance region. 

For slightly compressible flow, we obtain the following expli­
cit expression of the integral mass balance equation 

l 

[o.n<t)dt + PiclliC,r.., 12Jthr..,G[-! 11
3 

+ ~ 11- !] 
+ 0m(t)J.Lb [ 1+2~(t)/r..,J [-.! 2 + +.!. + 

Kp(P0) 2S(t)/r.., 2 11 TJ 2 

211ln(11}- ~ [1- 4TJ
2
)ln[ 

2~~ 1 
]]}= 0 (11) 

3.2 Verification or Integral Solutions 

The solution from the integral method is approximate and 
needs to be checked by comparison with an exact solution or 
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with numerical results. In this section, the accuracy of the 
integral solution obtained in Section 3.1 is examined and 
confirmed by comparison with an exact solution in a special 
case and with numerical calculations. 

a) Comparison with Exact Solution 

For the special case of minimum pressure gradient G = 0, a 
Bingham fluid becomes Newtonian. Then, the Theis solution 
can be used to check the integral solution, given by Equations 
(9) and ( 11 ). A comparison of the exact Theis solution and the 
integral solution using parameters as given in Table 1, with G 
= 0, is presented in Figures 1 and 2. Essentially, no differences 
can be observed between the wellbore pressures calculated 
from the two solutions in Figure 1. There are only minor em>rS 
near the pressure penetration front of the pressure profile after 
1,000 seconds of injection (Figure 2). Many additional com· 
parisons using different fluid and formation properties have 
been performed between the integrru and Theis solutions, and 
excellent agreement has been obtained in all cases. 

b) Comparison with Numerical Solution 

For the radial flow problem of Bingham fluid production with 
G > 0, the results from the integral solution have been exam· 
ined by comparison with numerical simulations. The wellbore 
flowing pressures calculated from the integral and numerical 
solutions are shown in Figure 3. It is interesting to note that 
the agreement between the approximate integral and numerical 
results is excellent for the entire transient flow period. The 
pressure distribution in the formation after 1,000 seconds, as 
shown in Figure 4, also matches the numerical predictions 
extremely well. 

By comparison of the integral solutions with both the exact 
Theis solution and the numerical simulation, it is concluded 
that the pressure profile, Equation (5), can accurately represent 
ramal flow of both Newtonian and Bingham fluids. 

3.3 Effects of Minimum Pressure Gradient 

For the problem specified in Table I, we have u~ the 
integral solution to examine flow behavior for a range of rheo­
logical parameters. The pressure drawdown at the wellbore for 
constant mass production rate is shown in Figure 5. The flow 
resistance increases with an increase in the minimum pressure 
gradient G in a reservoir. Therefore, in order to maintain the 
same production rate, the wellbore pressure decreases more 
rapidly with increasing G, as indicated in Figure 5. The 
pressure profiles after continuous production of 10 hours at dif. 
ferent values of G are shown in Figure 6. As the minimum 
pressure gradient increases, the pressure drops penetrate less 
deeply into the formation because of larger flow resistance. 

3.4 Well Testing Analysis of Bingham Fluid Flow 

An analysis method for transient pressure tests during Bingham 
fluid production or injection into a well can be developed, 

based on the integral and numerical solutions of this work. The 
most important parameters for Bingham fluid flow through 
porous media are the two characteristic rheological parameters, 
the minimum pressure gradient, G, and the coefficient, Jlt,. It is 
always possible to obtain these parameters by trial and error, 
using the integral and numerical solutions to match the 
observed pressure data. However, the following approach is 
more accurate and convenient to use, and is recommended for 
field applications. 

Let us consider the pressure buildup behavior in an infinite hor­
izontal formation with a production well. After some period of 
production, the well is shut in. The pressure in the system will 
build up until a new equilibrium is achieved at a long enough 
shut-in period, theoretically infinite time. The pressure gradient 
everywhere in the pressure penetration zone is expected to be 
equal to the minimum pressure gradient. This is confirmed by a 
numerical study of the pressure buildup, as shown in Figure 7, 
after 1p = 1,000 seconds of Bingham fluid production from a 
well. If the cumulative mass production rate (4 before the well 
is shut in is known, the minimum pressure gradient of the sys· 
tem can be calculated from. the observed stabilized wellbore 
pressure P ... (Wu, 1990) by 

G = ~ xhrwPi'i<;(AP)2 + 

[l xhrwP~ic;CAPt12 + 4nhpi'i<;(AP)3 /3 t'2 
(12) 

where !JJ' =Pi- P... . It is interesting to note that the minimum 
pressure gradient determined by the preSS\lfC buildup method, 
as given in Equation (12), is independent of the flow proper· 
ties, such as permeability K, and the coefficient J.lb , since it 
pertains to equilibrium in the system. 

To illustrate the procedure of calculating the value of G, a test 
example was created by numerical simulation. A Bingham 
fluid is produced at a mass rate Q, = 0.1 kg/s until the produc­
tion time 1p = 1,000 seconds, and then the well is shut in. The 
stable well bore pressure is found to be P w = .97474x107 Pa, at 
a long shut-in time. Thus, the minimum pressure gradient can 
be calculated by Equation (12) 

o = 2~ ( u737xtoS + (t.377x1oB + 3.953xw12r'J 
= 10,000.14 (Palm) (13) 

This is very accurate compared with the input value, G = 
10,000 Palm, in the numerical calculation. The pressure pene· 
tration distance at equilibrium is, 

5(t) = AP = 2.526x1oS = 25.26 (m) (14) 
G 10,000.14 \ 

The pressure distribution after a long shut-in time calculated 
from the mass balance is also shown in Figure 7. The analyti· 
cal and numerical results are essentially identical to each other. 

The apparent mobility, (K/Ilt,), is a flow property of the system, 
and may be determined by transient flow tests, when the 
minimum pressure gradient, G, is not very large. Figure S 
shows that semi-log straight lines occur in the pressure draw· 
down curves during the early transient period; they are almost 
parallel to the straight line from the Theis solution (G = 0). 
Therefore, if the semi-log straight line is developed during the 
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early flow time in the transient pressure drawdown, the con­
ventional analysis technique (Earlougher, 1977; Matthews and 
Russell, 1967) can be used to estimate the value of {K/Jlb) for a 
Bingham fluid. For example, the slope m of the semi-log 
straight line part of the curve G = 100 Palm. in Figure 5, is 
measured as 9.23574x10" Pa/log10-<:ycle. Then, K/f.Lt, can be 
estimated as 

_K = __ ..;;;2..;;;.3"""03;;_x...;;.o..;;;.5:....;;/I"""OOO;....;;.;.;;.o_~ 
llb 4x3.1415926xl.Ox9.23574x10" 

= 9.92xi0-10 (m2/Pa·s) (15) 

In the simulated test, the actual input is 

..!.. = 0.9869xlo-t2 = 9.87xlo-to(m2/Pa·s) (16) 
Jlb l.Oxi0-3 

so that the relative error is only 0.5 %. 

For a large value of the minimum pressure gradient G, there 
hardly exist semi-log straight lines in the pressure drawdowns. 
However, the pressure buildup curves, as shown in Figures 8, 
do result in a long straight line even for a large minimum pres­
sure gradient of G = 10,000 Palm. This pressure buildup test is 
conducted by the numerical code. The top curve in Figure 8 is 
the prediction from the integral solution, based on the superpo­
sition principle. As expected, the superposition technique can­
not be used for this non-linear problem. The slope of the 
semi-log straight line of Figure 8 is measured as 
m=9.169043x104 log10-<:ycle . Then, we have 

K 2.303XO.l/975.9 

llb = 4x3.1415926xl.Ox9.169043x10" 

= 2.05xlo-10 (m2/Pa·s) (17) 

This value differs only by 3.8 % from the input value, 
K/Jlb = 1.97xlo-10 m2/Pa·s. 

If no straight lines are developed in either pressure drawdown 
or pressure buildup curves, then the apparent mobility can be 
obtained by using the integral solution to match the observed 
transient pressure data. The minimum pressure gradient G 
should always be calculated first from the mass balance, Equa­
tion (12), which is always applicable. The only remaining 
unknown is then the apparent mobility (K/Jlb), which can be 
easily determined by trial and error using the integral solution. 

4. Immiscible Displacement of a Bingham Non-Newtonian 
Fluid by a Newtonian Fluid 

In an effort to obtain some insight into the physics behind 
two-phase immiscible displacement with non-Newtonian 
fluids, we have developed a Buckley-Leverett type analytical 
solution for one-dimensional flow in porous media (Wu, Pruess 
and Witherspoon, 1989). Here, this analytical solution is used 
to study the displacement of a Bingham-type non-Newtonian 
fluid by a Newtonian fluid. One possible application of this 
study is the production of heavy oil by waterflooding. Note that 
because of the one-dimensional approximation in our analysis 
we cannot address issues of viscous or gravitational instabili­
ties. 

4.1 Analytical Solution for Bingham Fluid Displacement 

The analytical solution obtained for immiscible non­
Newtonian fluid displacement (Wu et al., 1989) is in the same 
form as the Buckley-Leverett frontal advance equation (1942). 
The crucial difference is in the fractional flow function which 
now depends not only on relative permeability data, but also, 
through apparent or effective viscosities, on the rheological 
properties of the non-Newtonian fluid. This feature introduces 
a strong rate-dependence into the displacement process, as will 
be seen below. The fractional flow function of the displacing 
Newtonian fluid is defined as the ratio of flow rate of the 
Newtonian fluid and the total rate, and is given by (Willhite, 
1986): 

+ (18) 

where Sne is saturation of the displacing Newtonian fluid, 
kme and kmn are relative penneabilities to Newtonian and 
non-Newtonian phases, respectively, Jlne is the viscosity of the 
Newtonian fluid, and~ is the apparent viscosity of the non­
Newtonian fluid, which is a function of saturation and flow 
potential gradient: 

~=~(Vel», SnJ (19) 

Introducing coordinates such that flow takes place in the x 
direction, the potential gradient component in the x direction is 

: = : + PM g sina (20) 

where a is the angle between the horizontal plane and the flow 
direction. 

Equations (18) and (19) indicate that the fractional flow t"ne of 
the displacing Newtonian phase is generally a function of both 
saturation and potential gradient However, under the usual 
simplifications made in the Buckley-Leverett problem 
(incompressible, one-dimensional linear flow, uniform fluid 
and formation properties), the potential gradient is uniquely 
related to saturation as follows (Wu et al., 1989) 

q(t) +A K [ kme(SIUI) + lcmn<Snn) ] oP 
Jlne ~(Ocll(c)x, Snn) ox 

[ 
pnJcme(S1111) pnJcmn(S1111) ] • 

+ K Jlne + ~(Ocll(c)x, Snn) g sma = 0 (21) 

Therefore, the fractional flow function in Equation (18) ends 
up being a function of saturation only, and the Welge (1952) 
graphic method can be applied for evaluation of non­
Newtonian fluid displacement (Wu et al., 1989). The rheologi­
cal model for the apparent viscosity of a Bingham plastic fluid 
can be obtained from Equation (2), 
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for l~(c)x I > G , and 

~b 
~=--~­

G 
1 - ..,.,.,()$_;:{0x;,..-...,..l 

J.1nn =-

(22a) 

(22b) 

for I~ /Ox I S G . For a particular saturation Sne of the 
Newtonian phase, the corresponding flow potential gradient for 
the non-Newtonian phase can be derived by inuoducing Equa­
tion (22a) into Equation (21) as follows: 

-[: ]s. =-pm g sin«+ 

~ lcme(Sne) Prd sintt+ icmn(Sne) [pmg sina+G] 
AK llne ~ 
--~;;;__-~-~=--=---- (23) 

krne(Sne) icmn<SnJ ---+---
llne ~ 

The apparent viscosity for the Birigham fluid is determined by 
using Equation (23) in (22), and then the fractional flow curve 
is calculated from Equation ( 18). 

4.2 Displacement of a Bingham Non-Newtonian Fluid 
by a Newtonian Fluid 

Initially, the system is assumed to be saturated with only a 
Bingham fluid, and a Newtonian fluid is injected at a constant 
volumetric rate at the inlet, x = 0, starting from t = 0. The rela­
tive permeabilities are given as functions of saturation of the 
displacing Newtonian fluid in Figure 9, calculated from the 
analytical correlation by Willhite (1986). The fluid and rock 
propenies are summarized in Table 2. Some fundamental 
behavior of Bingham type non-Newtonian fluid displacement 
will now be discussed. 

a) Effects of Non-Newtonian Rheological Properties 

A basic feature of the displacement process of a Bingham fluid 
in porous media is the existence of an ultimate or maximum 
displacement saturation, Smax , for the displacing Newtonian 
phase (see Figures 10 and 11). The maximum displacement 
saturation occurs at the point of the fractional flow curve where 
fne = 1.0. For this particular displacement system, initially 
saturated only with the Bingham fluid, the displacing saturation 
cannot exceed the maximum value smax. The resulting satura­
tion distributions are given in Figure 11 for different minimum 
pressure gradients G. It is obvious that the sweep efficiency 

- decreases rapidly as G increases. In contrast, for Newtonian 
displacement, the ultimate saturation of the displacing fluid is 
equal to the total mobile saturation of the displaced fluid, as 
shown by the curve for G = 0 in Figure 11. 

Physically, the phenomenon of ultimate displacement satura­
tion occurs as the flow potential gradient approaches the 
minimum threshold pressure gradient G, at which the apparent 
viscosity is infinite. Then the only flowing phase is the displac­
ing Newtonian fluid. Cpnsequently, once the maximum satura­
tion has been reached for a flow system, no improvement of 

sweep efficiency can be obtained no matter how long the dis­
placement process continues, as shown in Figure 11. The flow 
condition in reservoirs is more complicated than in this linear : 
semi-infinite system. Since oil wells are usually drilled accord- · 
ing to certain patterns, there always exist some regions with. 
low potential gradients between production and injection wells. 
The presence of the ultimate displacement saturation for a • 
Bingham fluid indicates that no oil can be driven out of these . 
regions. Therefore , the ultimate displacement saturation · 
phenomenon will contribute to the low oil recovery observed ' 
in heavy oil reservoirs developed by water-flooding, in addi­
tion to effects from the high oil viscosity. 

The effects of the other rheological parameter, the Bingham · 
plastic coefficient ~, are shown in Figure 12. It is interesting 
to note that the ultimate displacement saturations change little 
with ~b • However, the average saturations in the swept zones · 
are quite different for different values of ~b- The ultimate dis­
placement saturation is essentially determined by the minimum 
pressure gradient G. Changes in ~ have little effect on the 
ultimate displacement saturation since the flow potential gra- • 
dient in Equation (23), hardly varies with ~b asaP/Ox -+ G . 

1 

b) Comparison with Numerical Simulation 

Numerical simulation of two-phase immiscible displacement • 
of a Bingham fluid is difficult because of discontinuities in . 
saturation profiles and pressure gradients. There is the familiar 
Buckley-Leverett saturation shock front, and in addition there 
is a discontinuity in saturation (and pressure) derivatives at the 
leading edge where the ultimate displacement saturation has 
been reached (see Figure 11 ). The latter is associated with the 
extremely strong nonlinearity of apparent Bingham fluid 
viscosities becoming infinite. A finite-difference simulation of 
this process is subject to numerical dispersion effects. 

A comparison of the saturation profiles from the numerical and 
analytical calculations after 10 hours of Newtonian fluid injec­
tion is given in Figure 13. Overall, the numerical results are in 
good agreement with the analytical solution. It is particularly 
significant that the ultimate displacement saturation is 
extremely well predicted. Only near the discontinuities in · 
saturation and saturation gradient does the numerical solution 
inttoduce certain errors because of numerical dispersion. The 
numerical difficulties are largely due to the (unphysical) 

. assumption of incompressible fluids and formation, and neglect 
of capillary pressures, which are essential to the Buckley­
Leverett type solution. The finite-difference simulation 
requires a finite, albeit small compressibility. 

c) Effects of Injection Rate 

In this problem, a Bingham fluid in a horizontal porous 
medium is displaced by water. If water injection rate at the 
inlet is increased, the pressure gradient in the system will 
increase, and the apparent viscosity for the displaced Bingham 
fluid will be reduced. Therefore, a better sweep efficiency will 
result. Figure 14 presents the saturation profiles after injection 
of 10 hours with the different rates. It is interesting to note that 
both the sweep efficiency and the ultimate displacement satura­
tion can be greatly increased by increasing the injection rate. 
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d) Effects of Gravity 

The effects of gravity on Bingham fluid displacement by a 
Newtonian fluid can be examined by considering the following 
example. A heavier Newtonian fluid with density 
Pne = 1 ,000 kglm is used to displace a Bingham fluid with den­
sity Pnn = 850 kg/m . The flow directions axe upwards 
(a= 'IC/2), horizontal (a= 0), and downwards (a= -'IC/2). The 
saturation distributions after 10 hours of displacement axe 
shown in Figure 15. The difference in density of the two fluids 
is small, so the influence of gravity on displacement efficiency 
near the front is not very significant However, gravity does 
change the ultimate displacement saturation. The best dis­
placement performance is obtained by upwards flow. Since 
gravity resists the upwards flow of the heavier displacing 
phase, the flow potential gradient must be larger in order to 
maintain the same flow rate. Consequently, the apparent 
viscosity of the Bingham fluid is decreased for upwards flow 
resulting in the bener sweep efficiency. 

5. Conclusions 

An approximate integral solution has been obtained for the 
problem of Bingham flow through porous media. Its accuracy 
haS been confinned by comparison with exact and numerical 
solutions. Our analytical and numerical studies show that the 
transient flow behavior of slightly compressible Bingham 
fluids is essentially controlled by the non-Newtonian proper­
ties, namely, the minimum pressure gradient G, and the Bing­
ham plastic coefficient llt, • Therefore, transient pressure data 
can provide important information related to. ·the non­
Newtonian fluid and formation properties. A well test analysis 
technique developed in this study uses flow test data to esti­
mate non-Newtonian flow properties. 

The integral method with a new pressure profile developed in 
this work is applicable to more general radial flow problems in 
porous media. It is especially useful when the flow equation is 
nonlinear and other analytical approaches cannot apply. 

The fundamental feature of immiscible displacement involving 
a Bingham plastic fluid is that there exists an ultimate displace­
ment saturation, which is essentially determined by the 
minimum pressure gradient G. This saturation can be consider­
able larger than residual saturations from relative permeability 
effects. Once the saturation approaches the ultimate saturation 
in the formation, no funher displacement can be obtained 
regardless of how long the displacement lasts for a given 
operating condition. A simple way to gain a bener sweep 
efficiency is to increase injection rates, thereby reducing the 
apparent viscosity of the displaced Bingham fluid. A better 

displacement can also be obtained by using gravity to increase 
the flow potential gradient in the flow direction for a given 
flow rate. 

Nomenclature 

A 

Cr 
Cross-sectional area, m2 

Fluid compressibility, Pa-1 

c; 
c; 
fne 
fnn 
g 
G 
h 
K 
~ 
.lcmn 
m 
NK. 
NPH 
p 
pi 
Pn(r) 
P., 
VP 
q(t) 
Q 
<4 
~(t) 
r 
R 
r., 
s 
Smax 
Sne 
Snn 
~ 
Sne 
t 
u 
tt 
X 

Formation compressibility, Pa-1 

Total compressibility, Pa-1 

Fractional flow of Newtonian phase 
Fractional flow of non-Newtonian phase 
Magnitude of the gravitational acceleration, m/s2 

Minimum pressure gradient, Palm 
Formation thickness, m 
Absolute permeability, m2 

Relative permeability to Newtonian phase 
Relative permeability to non-Newtonian phase 
Slope of semi-log curves, Pa/log-cycle 
Number of fluid components 
Number of fluid phases 
Pressure, Pa 
Initial formation pressure, Pa 
nth-degree polynomial in r 
Wellbore flowing pressure, Pa 
Pressure gradient, Palm 
Volumetric injection rate, m3/s 
Volumetric production/injection rate, m3/s 
Cumulative mass production, kg 
Mass injection/production rate, kg/s 
Radial distance, coordinate, m 
Radius of a tube, m 
Wellbore radius, m 
Saturation 
Ultimate displacement saturation 
Newtonian phase saturation 
Non-Newtonian phase saturation 
Irreducible Non-Newtonian phase saturation 
Average Newtonian phase saturation 
Time,s 
Darcy velocity, m/s 
Darcy velocity vector, m/s 
Distance from inlet, coordinate, m 

Greek Symbols 

~ 
'Y 
o(t) 

llt, 

J1ne 
~ , 
Pi 
Pne 
Pnn 
't 

'ty 

• Cl> 

41i 
Vel> 
Vel>e 

Angle between flow direction and horizontal plane 
Shear Rate, s-1 

Pressure penetration distance, m 

Bingham plastic coefficient, Pa·s 
Newtonian viscosity, Pa·s 
Non-Newtonian apparent viscosity, Pa·s 
11 = 1 + o(t)/r,.. 
Initial fluid density, kg!m3 

Density of Newtoni~ fluid, kg!m3 

Density of non-Newtonian fluid, kg/m3 

Shear stress, Pa 
Yield stress, Pa 
Porosity 
Flow potential, Pa 
Initial formation porosity 
Flow potential gradient, Palm 
Effective flow potential gradient, Palm 

Subscripts 

b 
e 

Bingham fluid · 
Equivalent 
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i Initial 
m Mass 
n nth degree 
ne Newtonian fluid 
nn Non-Newtonian fluid 
me Relative to Newtonian fluid 
mn Relative to non-Newtonian fluid 
t Total 
w Wellbore 
y Yield 
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Appendix A. 
Numerical Model 

The numerical simulations reponed in this paper were per­
fanned with a modified and enhanced version of the general­
purpose multiphase simulator MULKOM (Pruess, 1983; 1988). 
MULKOM uses an "integral finite difference" method 
(Narasimhan and Witherspoon, 1976) to solve discretized mass 
balance equations for NK fluid components disttibuted among 
NPH phases. Time is discretized as a first order finite differ­
ence, and all flow terms are fonnulated fully implicitly for 
numerical robusmess and stability. Discretization results in a 
set of nonlinear algebraic equations which are solved by means 
of Newton-Raphson iteration. The linear algebra is performed 
with a sparse version of Gaussian elimination (Duff, 1977). A 
more detailed description of the code is available in laboratory 
reports (Pruess, 1988; Pruess and Wu, 1988). 

The apparent viscosity functions for non-Newtonian fluids in 
porous media depend on the pore velocity, or the potential gra­
dient, in a complex way. The rheological correlations for vari· 
ous non-Newtonian fluids are quite different Therefore, it is 
impossible to develop a general numerical scheme which is 
universally applicable to all non-Newtonian fluids. Instead, a 
special treatment for a particular fluid of interest has to be 
worked out 

The flow of Bingham fluids is treated in the code by introduc­
ing an effective potential gradient VcJ>e , whose scalar com· 
ponent in the flow direction, assumed to be the x direction, is 
defined as 

{

(VcJ>)x-G 

[vcJ>eJx = (Vel>)~+ G 
(VcJ>)x >G 

(VcJ>)x <-G 
- G ~ (VcJ>)x ~ G 

(A.1) 

Darcy's law for a Bingham fluid is used in the code in the fonn 

it=- ~Vel> (A.2) 
J.Lt, e 

This treatment is much more efficient for simulation of Bing­
ham fluid flow in porous media than the direct use of a highly 
nonlinear apparent viscosity as in Equation (22a). 
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Table 1 
Parameters for Single Phase Bingham Fluid Flow 

Initial pressure 
Initial Porosity 
Initial Fluid Density 
Formation Thickness 
Fluid Viscosity 
Bingham Coefficient 
Fluid Compressibility 
Rock Compressibility 
Mass Injection Rate 
Permeability 
Wellbore Radius 
Minimum Pressure Gradient 

P·=107Pa 1 

cpr{>.20 
Pi=975.9kg/m3 

h=1m 
Jlne=.35132x 1 o-3Pa.s 

Jlb=5x 10-3Pa.s 
c;=4.557xJ0-10pa-1 

<;.=5x10-9Pa-1 

~=1kg/s 
K=9.869x10-13m2 

rw=O.lm 
G=0,1 02.1 oJ .1 04Pa/m 
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Table 2 
Parameters for Linear Bingham Fluid Displacement 

Porosity 
Permeability 
Cross-Sectional Area 
Injection Rate 
Injection Time 
Displacing Newtonian ViscositY 
Irreducible Saturation 
Bingham Plastic Coefficient 
Minimum Pressure Gradient 

cj)=0.20 
K=1 darcy 

1m2 

q= 1.0x 10-6m3 /s 
T=lOhrs 
J.lne=1 cp 

Snnir=0.20 
Jlb= 4.0cp 

G= 10,000 Palm 
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Figure 1 Comparison of Injection Pressures during Newtonian Fluid Injection, Cal­
culated from the Exact Theis and Integral Solutions. 
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Figure 2 Comparison of Pressure Distributions of Newtonian Fluid Injection, Calcu­
lated from the Exact Theis and Integral Solutions. 
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Figure 3 Comparison of Wellbore Pressures during Bingham Fluid Production, Cal­
culated by the Numerical Simulation and from the Integral Solutions 
(Ct = 3x1Q-9pa-1, Qm = lkgls). 
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Figure 4 Comparison of Pressure Distributions of Bingham Fluid Production, Cal­
culated by the Numerical Simulation and from the Integral Solution 
(Ct = 3xl0-9Pa-1 , Qm = lkg/s). 
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Pressure Distributions during Bingham Fluid Production, for Different 
Values of the Minimum Pressure Gradient (Pi= 1000kg/m3, 

~ = 6.56xlo-10Pa-1, Qm = .5kg/s). 
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Figure 7 Pressure Distribution at Long Shut-in Time, Following 1000 Seconds of 
Bingham Fluid Production (JJ.b = 5x10-3Pa·s, C1 = 9.0x10-9Pa-1• 

Qm = .lkg/s). 
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Seconds of Bingham Fluid Production (J.lb = 5x10-3Pa·s , 
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Figure 10 Fractional Flow Curves for a Bingham Fluid Displaced by a Newtonian 
Fluid, for Different Minimum Pressure Gradients. 
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Figure 11 Newtonian Phase Saturation Distributions, for Different Values of the 
Minimum Pressure Gradient of a Bingham Fluid. 
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Figure 12 Newtonian Phase Saturation Distributions, for Different Values of the 
Bingham Coefficient J.ib· 
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Figure 13 Comparison of Numerical and Analytical Solutions for Two-Phase Immis­
cible Displacement of a Bingham Fluid by a Newtonian Fluid. 
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Figure 14 Newtonian Phase Saturation Distributions, for Different Injection Rates of 
a Newtonian Fluid, Displacing a Bingham Fluid. 
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Figure 15 Newtonian Phase Saturation Distributions for Bingham Fluid Displace­
ment b) a Newtonian Fluid with Gravity Effects. 
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