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Abstract 

A simple perturbation term is presented for the Camahan-Starling (CS) hard

,sphere reference equation of state (EOS). This perturbed CS EOS is compared with 

seven other two-parameter equations of state; it represents the critical isotherms of 

·eight fluids with the lowest deviations in density and pressure. After a generalized 

temperature dependence is introduced for parameters a and b, the perturbed CS EOS is 

compared to the well-known Peng-Robinson equation. For nine nonpolar pure fluids, 

the perturbed CS EOS represents liquid densities significantly better, but it is not 

superior for vapor pressures. For mixtures, the CS reference term is given by the 

Boublik-Mansoori hard-sphere mixture EOS. Some calculations for binary mixtures 

are given, using conventional mixing rules for parameters a and b in the simple 

perturbation term. 
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Intt'oduction 

Following the Ornstein-Zernike formulation for describing the equilibrium 

properties of fluids, much attention has been given toward developing a theoretical 

equation of state. For standard chemical engineering purposes, the most significant 

result of that attention is the Camahan-Starling equation of state for hard spheres 

(Carnahan and Starling, 1969) and its extension to mixtures by Boublik (1971) and 

Mansoori (Mansoori et al., 1971). 

For application to real fluids, it is necessary to add a perturbation term to the 

equation of Carnahan and Starling. Nearly 20 years ago, Carnahan and Starling 

(1972) suggested two perturbation terms: first, the perturbation term used by van der 

Waals in 1873 and second, the perturbation term used by Redlich and Kwong in 1949. 

These were obvious choices only because · they were readily available; little effort was 

made to test their significance or applicability. 

Following Carnahan and Starling's 1972 paper, perturbations were proposed by 

several chemical-engineering-oriented authors (Beret and Prausnitz 1975, Chen and· 

Kreglewski 1977, Donohue and Prausnitz 1978, Oellrich et al. 1978, Johnston and 

Eckert 1981, Brandani and Prausnitz 1981, Johnston et al. 1982, Wong and Prausnitz 

1985, Lee et al. 1985, Cotterman et al. 1986, Grenzheuser and Gmehling 1986, Nezbeda 

and Aim 1987, Wogatzki 1988, Pfennig 1989, Mulia and Yesavage 1989). In this work, 

we present a perturbation term which has a simple density dependence and does not 

introduce any new adjustable parameters beyond those commonly used in typical 

chemical-engineering calculations. 

Our motivation for finding a simple but reasonable perturbation term follows 

from our belief that, despite its limited empirical success so far, the Carnahan-
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Starling equation provides a better basis for development of a broadly applicable 

equation of state than does the popular hard-sphere reference equation used by van 

der Waals, Redlich-Kwong, Peng-Robinson and many others. These common 

equations have been remarkably successful for numerous (mostly hydrocarbon) 

vapor-liquid equilibrium calculations required in the natural-gas and petroleum 

industries but their extension to more complex systems has encountered severe 

difficulties. 

Our particular interest is directed at developing an equation of state that may be 

used for three-phase (LL V) equilibria in asymmetric systems containing one highly 

polar component (e.g. water), one or more highly volatile components (e.g. 

hydrogen) and one or more heavy hydrocarbons (Dohm and Brunner, 1987 and 

1988). Toward that end, we make use of the hard-sphere-with-dipole reference EOS, 

proposed by Bryan (1987); we shall report on that work elsewhere (Dohm and 

Prausnitz, 1990). As part of that work, however, we require a useful perturbation 

term for the CS reference EOS as described here. 

Following van der Waals, it is useful to divide compressibility factor Z into a 

reference term and a perturbation term: 

(1) 

For relatively simple fluids, Zref is a function of (v/b), where v is the molar 

volume and b is a molar molecular-size parameter which may depend on 

temperature. Nearly 120 years ago, van der Waals 

vdW 
Zref 

v 

v - b 

proposed that 

(2) 

and that proposal has dominated most equation-of-state work in the chemical-

engineering community. Equation (2) has theoretical validity only at low densities, 
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as pointed out by van der Waals many years ago. For application to higher densities, 

attempts to correct Equation (2) were reponed already early in this century. 

Following the theoretical work of Percus and Yevick. who solved the Ornstein-

Zernike equation for hard spheres. Carnahan and Starling (1969) proposed that 

2 3 
cs 1 +11 +11 - 11 
~ e f = _ __..;_ __ 

3
-.- (3) 

( 1- 11) 

where 11 = bp/4 and molar density p = 1/v. 

For many practical purposes; Equation (2) is satisfactory; because: of its 

algebraic simplicity.. Equation (2) is used extensiv.ely. From. a theoretical point of 

view. Equation (3) is far superior. 

Calculation of critical isotherms 

To describe the properties of a real fluid, it is necessa~ to add a perturbation to 

Equation (3). To find a simple but reasonable penurbation term. we used 

experimental data for the critical isotherms of several fluids (methane. ethane, 

propane. n-butane. carbon dioxide and argon) for pressures to 35 MPa. 

A general form for the perturbation is 

4 a Zvert =- --11 '¥ 
RTb 

(4) 

where a is a molecular parameter reflecting intermolecular attractive forces and ~ is 

a correction function that depends on reduced density 11 such that 'I'~~ as 11 ~. We 

find that a fair representation of the critical isotherm is obtained with 
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2 
\fl = 1 - 1.4111 + 5.0711 (5) 

Unlike the 'I' proposed by Wogatzki (1988), Equation (5) first falls with rising ll 

and then rises monotonically. For nonpolar fluids, our proposed equation of state is 

2 3 
z = 1 +11 +11 - 11 

3 
( 1 - 11) 

4 a 2 
- --11 (1 -1.4111 +5.0711) 

RTb 

where, however, parameters a and b may depend on temperature. 

Using the well-known criteria of the critical point, 

(aP) = o 
av T (;/~) = 0 

ov T 

we obtain parameters ac and be at the critical temperature 
2 2 

(6) 

(7) 

ac=ilaR TciPc (8) 

b c = nb R T c I P c ( 9) 

where n a and n b are constants, specific for each equation of state, as shown in Table 

1. n a and n b have a strong influence on the critical compressibility Zc, so that the 

number of significant figures for Oa and nb can lead to a significant change of Zc . 

Table. 1 shows Equation (6) and several other two-parameter equations of state . 

The reference terms are either the Carnahan-Starling zCS or the van der Waals zv d W 

[Equations (3) or (2)]. The perturbation terms are expressed by correction function 'I' 

in Equation (4). Critical compressibilities Zc were calculated with constants Oa and nb 

as given in Table 1. Equation (6) and the Carnahan-Starling(CS)-Peng-Robinson 

equation have the smallest critical comprcssibilitics Zc. Many equations of state with 
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a Carnahan-Starling reference term have values of Zc that lie between 0.34 and 0.36. 

For most fluid~. experimental critical compressibilities are smaller than 0.3. 

To illustrate the performances of different EOS, Fiqure 1 shows calculated and 

observed critical isotherms for n-butane; the experimental data are by Haynes and 

Goodwin (1982). The experimental data are not well-rep resented by any of the 

equations of state but best by Equation (6). At high pressure, the CS-van der Waals 

equation predicts densities that are much too small, while the CS-Peng-Robinson 

equation predicts densities that are much too high. 

Since small differences in the critical temperature and the critical pressure can 

have a significant influence on calculated critical isotherms, Table 2 presents . the 

values of T c and Pc used in this study. Table 3 gives relative deviations between 

calculated and experimental molar densities. Experimental data were taken from 

Angus et al. (1971, 1976, 1978, 1979, 1980), Goodwin et al. (1976 and 1982) and Haynes 

and Goodwin (1982). For all fluids shown, Equation (6) gives the smallest deviations; 

the Peng-Robinson equation is second best. It is surprising that newer equations, 

like the Mulia-Yesavage equation, do not perform better than the CS-Redlich-Kwong

Soave equation. Due to large deviations at higher pressures, the CS-Peng-Robinson 

equation is worse than the CS-van der Waals equation. Close to the critical point, 

where isotherms in a pressure-density diagram are very flat, density deviations 

provide a sensitive means to detect deviations from experiment. In this region, 

pressure deviations are small for all equations of state, since they were forced to 

reproduce the critical pressure. However, in steep parts of the critical isotherms, i.e. 

at high densities. pressure deviations provide a good way to describe the 

performance of an EOS. Table 4 gives press'ure deviations for eight' fluids and seven-
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EOS. Equation (6) shows the smallest deviations; the CS-van der Waals equation shows 

the largest deviations . 

.• 

-..1 Temperature dependence of parameters a and b 

Using experimental density and vapor-pressure data, the effect of temperature 

on a and on b is given by 

a (1) { (2)1 I 0.7} -=a tanh a TR- 1 + 1 
ac 

b (1) ( (2) 0.8) 
-=b tanh b IInTRI +1 
be 

where TR = Tffc· The coefficients are related to acentric factor ro by 

a (1) = 0.367845 +0.055966 ro 

a (
2

) = {- 1)m(0.604 709- 0.0084 77 ro) 

b (1) = 0.356983- 0.190003 (1) 

b (
2

) =(-I}m(1.37- 1.898981 ro) 

m =0 forTR<1 and m = 1 

(10) 

(11) 

(12) 

(13) 

( 14) 

( 15) 

(16) 

The acentric factors used in this work are given in Table 2. Equations (10) and 

(11) show no discontinuities in their derivatives with respect to TR when TR = 1. The 

coefficients in Equations (12) - (15) were determined with an optimization routine 

(Pfennig, 1989) by fitting vapor pressures and densities of 13 fluids (more than 2500 

data points). For nine fluids, Table 5 shows deviations for molar densities and vapor 

pressures calculated with the new equation of state and with the Peng-Robinson 

equation. Equation (6) reduces the liquid-density deviations by a factor of three to 

four. However, the Peng-Robinson equation gives slightly better vapor pressures for 

most of the fluids. 
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Figure 2 shows the temperature dependence of parameters a and b for methane 

and for n-octane. At low and high temperatures, parameter a does not change 

significantly with rising or falling temperature. The steepest slope of the curve is at 

the critical point (TR =1). For parameter a, the curves for methane and for n-octane 

lie close together, while for parameter b, the curves differ significantly from each 

other. The large effect of acentric factor on the temperature dependence of b follows 

from our objective function which gives emphasis to liquid-density data. Liquid 

densities are highly sensitive to b. 

Figure 3 presents experimental and calculated liquid densities for propane at 

140, 240 and 340 K. The deviations of Equation, (6) [coupled with Eqs. (10) - (16)] are 

much smaller than those for the Peng-Robinson equation. 

Mixtures 

For the reference term of a mixture, we use the Boublik-Mansoori equation (Boublik, 

1971, Mansoori et al. 1971) as discussed by Dimitrelis (1986). For a mixture of N 

components 

(17) 

with 

(18) 

a ri'd 
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(19) 

where NA is Avogadro's number and ~i is the mole fraction of component i. The 

perturbation term of the compressibility factor for mixtures is 

4aM 2 
Zpert =- 11 ( 1 - 1.4111 + 5.0711 ) 

RTbM (20) 

where aM and bM are parameters a and b for the mixture. For mixtures of nonpolar 

fluids, we use the conventional one-fluid mixing rules: 

NN 
b M = LL ~i ~j b ij 

i j 

,---.Jb· b· 
a · · - 1 a·· a·· 1 J (1 - k · .\ 

IJ-'V 11 JJ b·· IJ} 
IJ 

(21) 

(22) 

where kij is a binary interaction parameter. When bij=0.5(bi+bj). bM in the 

perturbation term is linear in mole fraction; in that event, 11 has the same value for 

the reference term and the perturbation term [Equation (19)]. It is important to note 

that the one-fluid assumption has been made here only for the perturbation term. 

The reference term is not based on a one-fluid assumption. 

To illustrate the applicability of Equations (17) - (22), using bij=0.5(bi+bj). we 

present some results for the system hydrogen - n-hexane. This system is of interest to 

us here because of its high asymmetry and because data are available for both phase 

compositions and densities (Nichols et al., 1957). To determine the pure-component 

parameters for hydrogen, "classical" values for Tc. andro were used (Tc= 43.6 K, Pc= 

2.05 MPa, and ro = 0) (Prausnitz et al., 1986). The properties of pure hydrogen are well 

described by Equations (6) and (10) - (16) for temperatures higher than 100 K. 
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Figure 4 shows a pressure-composition diagram for the hydrogen - n-hexane 

system at 277.59 K (k12 = 0.355), 377.59 K (k12 = 0.349) and 477.59 K (k12 = 0.444). For 

277.59 and 377.59 K, agreement with experiment is very good; for 477.59 K, agreement 

is only fair, but better than that for the other equations of state. Table 6 compares 

results using the Peng•Robinson equation, the Redlich-Kwong-Soave equation and 

Equations (17) - (22). The interaction parameters of the new equation are smaller and 

the temperature dependence of k 12 for Equations (17) - (22) is weaker than those for 

the other EOS. -The phase compositions as well as molar densities are best represented 

by Equation (6). 

Phase:.compostion and density data are also availabe for the carbon dioxide - n

butane s~stem (Kalra et al., 1976; Hsu et at, 1985). Figure 5 shows a pressure

composition diagram for 255.98 K (kt2 = 0.197), 319.26 K (kt2 = 0.195) and 377.59 K 

(k 12 = 0.211). Agreement with experiment is good. Results using .the Peng-Robinson 

EOS, the Redlich-Kwong-Soave EOS and Equations (17) - (22) are compared in Table 7. 

For all EOS, agreement with experimental data is good; for this system, the proposed 

perturbed CS equation is better only for liquid densities. For both systems, used in 

this study, the deviations of the liquid-phase densities of the Redlich-Kwong-Soave 

equation are more than four times larger than those of the proposed perturbed CS 

equation. 

Phase-equilibrium calculations were performed with a flash program developed 

at the Technische Universitlit Hamburg-Harburg (Dohrn and Brunner, 1989). An 

efficient density-finding routine, developed at the University of California, Berkeley, 

(Topliss, 1985) was integrated into the main program. 
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Conclusions 

A simple perturbation term is proposed for the Carnahan-Starling reference 

EOS. When applied to pure nonpolar fluids using only conventional parameters, the· 

perturbed CS EOS provides improved liquid densities, but calculated vapor pressures 

"') are no better than those from the Peng-Robinson EOS. For mixtures of nonpolar 

fluids, it appears that the perturbed CS EOS provides better description of densities; 

however, calculated phase compositions are not necessarily better than those 

provided by conventional equations of state. Nevertheless, a perturbed CS EOS is of 

potential interest in chemical engineering because, unlike its essentially empirical 

competitors, it provides a good basis for extension to more complex mixtures where 

essentially empirical EOS are unsatisfactory . 
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List of Symbols 

Symbol 

a 

a<O 

b 

b(l) 

D 

E 

F 

kij 

m 

N 

NA 

p 

R 

T 

TR 

v 

z 

Greek letters 

Symbol 

ll 

'I' 

p 

<1i 

Dimension 

kJ m3 /kmol2 

m3/kmol 

m 

m 

m 

Pa 

J/(mol K) 

K 

m3/kmol 

Dimension 

kmol/m3 

m 

equation of state parameter 

constant in Eqs. (10), (12) and (13) 

equation of state parameter 

constant in Eqs. (11), (14) and (15) 

molecular size parameter, Eqs. (17) 

molecular size parameter, Eqs. (17) 

and (18) 

and (18) 

molecular size parameter, Eqs. (17) - (19) 

binary mixture interaction parameter 

exponent, Eqs. (13), (14) and (16) 

number of components 

Avogadro's number 

pressure 

gas constant, 8314.39 J/(mol K) 

temperature 

reduced temperature 

molar volume 

compressibility factor 

reduced density 

correction function, defined in Eqs. (4) and (5) 

molar density 

molecular diameter of component 
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.. 

~i 

ro 

na 

.Qb 

Subscripts 

M 

c 

j 

pert 

·ref 

Superscripts 

c:s 

vdW 

mole fraction in either the liquid or the vapor 

phase 

acentric factor 

constant in Eq. (8) 

constant in Eq. (9) 

mixture 

critical 

component 

component J 

perturbation term 

reference term 

Carnahan-S tarl ing 

van der Waals 
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Table 1. Properties of Some Two-Parameter Equations of State at the Critical 

Temperature 

Equation ( 6) 

CS-van derWaa1s 

CS-Redlich-Kwong 

·wong-Prausnitz 

CS -Peng-Robinson 

Mulia- Yesavage 

Redlich-Kwong 

Peng-Robinson 

Zref 

Eqs. (1 )-(3) 

cs 
z 

cs 
z 

cs 
z 

cs 
z 

cs z 

cs 
z 

vdW 
z 

vdW 
z 

'I' 

Eq. (5) 

1-1.4111+5.0711 

1 

1 
1+411 

1 
1 + 0.8 11 

1 
2 

1 + 811- 1611 

1 
2 

1 + 0.8 11 - 1.6 11 

1+411 

1 
2 

1 + 8 11- 1611 

Zc 

Eq. (8) 

2 
0.298 0.550408 

0.366 0.496388 

0.324 0.461883 

0.336 0.480554 

0.273 0.511598 

0.350 0.498966 

0.327 0.42748 

0.321 0.45724 

nb 
Eq. (9) 

0.187276 

0.187295 

0.105000 

0.157866 

0.097750 

0.170911 

0.08664 

0.07780 

19 

[:.~~ ~j 

o,-< 

.~ \\· 



20 

Table 2. Pure Component Data 

Ar H2 H2"') N2 Cf4 C2H6 C3H6 

Tc 150.86 33.19 43.60 126.2 304.21 190.56 305.33 365.37 

Pc 48.98 13.15 20.50 34. 73.83 45.95 48.71 46.65 

(J) 0.001 -0.216 0.0 0.039 0.225 0.008 0.099 0.144 

C3Hg C4H10 CsH12 C6H6 C7H8 CsH1s C16H34 

Tc 369.85 425.16 469.65 562.2 540.3 568.8 722. 

Pc 42.48 37.96 33.69 48.9 27.4 24.9 14.1 

(J) 0.153 0.199 0.251 0.212 0.349 0.398 0.742 

*) "Classical" values. used in Equation (6). 

Table 3. Average absolute deviations (%) between experimental and calculated 

densities of critical isotherms for different equations of state. 

P = 0 to 35 MPa 

Total Cf4 C2H6 C3H6 C3Hg C4H10 C02 Ar N2 

Equation (6) 3.92 3.58 4.16 3.25 4.40 5.36 3.91 2.40 4.29 

Peng-Robinson 4.59 4.41 4.91 3.66 4.99 5.93 4.53 3.13 5.17 

CS-Redlich-Kwong 5.60 5.30 5.96 4.72 6.16 7.40 4.68 3.77 6.79 ~. 

Redlich-Kwong 6.12 5.07 7.22 6.36 7.60 9.06 7.16 1.88 4.61 

Mulia- Yesavage 8.79 7.43 10.71 8.57 10.86 12.29 10.31 3.17 6.99 

Wong-Prausnitz 9.11 7.73 11.08 8.87 11.21 12.61 10.71 3.36 7.32 

CS-van der Waals 12.38 11.40 14.66 11.78 14.80 16.23 13.38 5.71 11.06 

CS-Pcng~Robinson 13.79 17.35 13.66 11.94 13.77 13.37 8.78 12.60 18.84 
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Table 4. Average absolute deviations (%) between experimental and calculated 

pressures of critical isotherms for different equations of state. P = 0 to .35 

MPa 

Total Cf4 C2H6 C3H6 C3Hs C4H10 C'02 Ar N2 

Equation (6) 6.48 7.32 5.55 5.16 6.38 7.10 4.41 6.38 9.54 

Peng-Robinson 7.37 8.79 6.51 5.87 7.29 7.96 4.36 7.31 10.84 

CS-Redlich-Kwong 8.94 10.70 8.33 7.42 9.26 10.13 4.62 8.25 12.79 

Redlich-Kwong. 15.42 14.65 17.06 14.68 20.92 23.81 17.77 4.79 9.71 

CS-Peng-Robinson 16.05 20.59 15.68 14.09 16.49 16.65 8.39 14.93 21.58 

Wong-Prausnitz 22.86 23.51 25.20 21.94 29.59 32.29 24.79 9.15 16.41 

Mulia- Yesavage 22.89 23.50 25.24 21.88 29.78 32.68 24.65 9.16 16.20 

CS-van der Waals 47.94 51.95 51.84 44.55 59.85 64.88 45.64 24.35 40.47 

Table 5. Average absolute deviations (%) between experimental and calculated 

vapor pressures and molar densities for the new equation and the Peng

Robinson (PR) equation; 215 data points, T R = 0.5 to 1. P = 0 to 35 MPa 

(%) 

carbon dioxide 

benzene 

methane 

propane 

n-butane 

n-pentane 

n-heptane 

n-octane 

n-hexadccanc 

Total 

Vapor Pressure 

Eq. (6) 

0.57 

0.28 

2.98 

2.68 

2.34 

0.67 

0.72 

0.86 

2.79 

1.54 

PR 

0.66 

0.60 

1.08 

0.38 

0.66 

0.54 

0.70 

0.40 

3.02 

0.89 

Deviations 

Saturated Densities 

Eq. (6) 

2.32 

1.99 

3.39 

1.48 

2.01 

1.01 

0.68 

1.84 

PR 

2.75 

1.77 

4.81 

2.46 

2.79 

1.40 

0.57 

2.36 

Liquid Density 

Eq. (6) 

1.43 

0.87 

0.71 

1.28 

1.20 

1.41 

1.05 

0.88 

0.56 

1.04 

PR 

3.64 

3.14 

10.63 

6.18 

5.27 

3.17 

1.82 

2.33 

11.68 

5.36 
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Table 6. Root mean square deviations of phase compositions and average 

absolute deviations of molar densities for the hydrogen - n-hexane 

system. T = 277.59 to 477.59 K, P = 0 to 42 MPa (Nichols et al., 1957) 

Interaction Parameter 

Equation (6) 0.349 ... 0.444 

Peng-Robinson 0.406 ... 0.653 

Redlich-Kwong-Soave 0.348 ... 0.684 

Deviations 

Phase composition, mol% Density, % 

liquid vapor liquid vapor 

1.873 0.948 0.755 

1.452 

1.773 

1.029 

1.026 

1.656 

2.318 2.497 

8.027 1.362 

Table 7. Root mean square deviations of phase compositions and average 

Equation (6) 

absolute deviations of molar densities for the carbon dioxide - n-butane 

system. T = 319.26 K, 344.26 K and 377.59 K for densities (Hsu et al., 1985) 

plus 255.98 K (Kalra et al., 1976) for phase compositions; P = 0 to 7 MPa. 

Interaction Parameter Deviations 

Phase· composition, mol% Density, % 

liquid vapor liquid vapor 

0.195 ... 0.211 2.791 3.969 

Pcng-Robinson 0.219 ... 0.235 

0.958 

0.714 

0.729 

1.127 

0.870 

0.624 

3.453 2.754 

Redlich-Kwong-Soave 0.222 ... 0.252 12.935 2.823 
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Captions 

Fig. 1: Critical isotherm of n-butane, T = 425.16 K. + experimental (Haynes and 

Goodwin, 1982). Calculated results: (1) -- ·-- · CS-van der Waals EOS; (2) - ·- · 

Mulia-Yesavage EOS; (3) .......... Wong-Prausnitz EOS; (4) ----Redlich-Kwong EOS; 

(5) - - - - Peng-Robinson EOS; (6) ---- Equation (6); 7) - ·· - ·· CS-Redlich-Kwong 

EOS; (8) -- ·· -- ·· CS-Peng-Robinson EOS. 

Fig. 2: Temperature dependence of parameters a and b for methane and n-octane. 

Calculated with Eqs. (11), (14) and (15): --- methane; - ·- · n-octane 

~:Fig. 3: Reduced liquid densities of propane as a function of reduced temperature. 

e experimental (Goodwin and Haynes, 1982); (1) 140 K; (2) 240 K; (3) 340 K; 

--- calculated with Equation (6); - - - - calculated with the Peng-Robinson EOS. 

Fig. 4: Pressure-composition diagram for the system hydrogen n-hexane. 

• experimental (Nichols et al., 1957); (1) 277.59 K; (2) 377.59 K; (3) 477.59 K; 

--- calculated -with the new equation [Eqs. (17) - (22)]. 

Fig. 5: Pressure-composition diagram for the system carbon dioxide - n-butane. 

• experimental (Kalra et al., 1976: (1); Hsu et al., 1985: (2) and (3)); (1) 255.98 K; 

(2) 319:26 K; (3) 377.59 K; -~~ calculated with the new equation [Eqs. (17) - (22)]. 
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