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Numerical Solution of the Steady Stokes Equations 

Abstract 

In this paper we present a fast numerical technique for finding solutions 

of the steady-state Stokes equations on both two and three dimensional 

domains. We implement the method on a special staggered grid for a rect­

angular (cubic) domain, and obtain a solution in an order of O(NlogN) 

operations for both two and three dimensional cases, where N is the num-

her of grid points in the domain. The main idea is to derive from the Stokes 

equations an equation for the pressure p, Ap = b, where the matrix A is semi-

positive definite and very well conditioned on the orthogonal complement of 

its null space . 
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1 Introduction 

For simplicity, we.describe the problem in the two dimensional case. The 

Stokes equations have the following form: 

--~Llu + \lp = f 
R 

(1) 

(2) 

where u = ( u, v) is the velocity field, p is the pressure, f = Ux,Jy) is the 

body force and R is the Reynolds number. Let n be a rectangular domain. 

We assume the following boundary condition on u: 

u(x,y) = ub(x,y), (x, y) E an. (3) 

U.b must satisfy 

f ub · ndS = 0, 
len 

(4) 

where n is the outer unit normal to an. It is well known that we need not 

prescribe the boundary condition on p. 

Most of the work done before on this problem begins with replacing Eqs. 

(1) and (2) by the system 

1 
--Llu + \lp = f 

R 

Llp = \1. f 
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and then trying to solve the Laplace equation for p. The lack of boundary 

condition on p causes soine difficulty. Much work has been done to determine 

the correct boundary condition for p ( see, e.g., discussion in Strikwerda 

(1984) ). Work using the original system (1) and (2) has also been done, but 

it still requires some additional conditions for p near the boundary ( Harlow 

and Welch (1965), Strikwerda (1984) ). 

Chorin (1968) proposed a projection method for the more general N avier­

Stokes equations that determines p without any artificial conditions on p. 

The method is based on the use of the equation \7 · u = 0 instead of !1p = \7 .f 

to find p. Here we present a method based on the evaluation of p for the 

Stokes equations that requires no artificial conditions on p either. The idea 

is to use consistent finite difference operators to discretize Eqs. (1) and (2). 

It will be shown later in this section that the resulting system of equations 

is semi-definite if the difference operators satisfy a discrete analogue of the 

condition (u, \7p) = -(\7·u,p) ( see Chorin (1969) for the discrete form of 

this condition ). We eliminate u to form an equation Ap = b which uniquely 

determines p (up to a constant, of course). Since it is computationally 

inefficient to express u in terms of p explicitly, we shall only have to evaluate 

Ap, i.e. given a p, we can find Ap, where A is not written out ( as in the 

iterative implementation of Chorin's projection method (1968) ). It turns 

out that for some properly chosen operators the matrix A is semi-positive 

definite and very well conditioned on the orthogonal complement of its null 

space, so we can use the conjugate-gradient method to get the solution for 

p. 
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Assume the domain n is covered by some uniform grid of mesh size h. 

Following the notations of Anderson (1989), we approximate Eqs. (1) and 

(2) by finite difference equations, 

(5) 

(6) 

where l:::!.h is an approximation to the Laplacian, V'~ and V'~ to the derivatives 

in the gradient operator, D~ and D~ to the derivatives in the divergence 

operator. Notice that near the boundary t:l.hu and D~u + n;v contain 

velocity values on the boundary which are known. If we move those known 

terms to the right hand side of equations, we can rewrite Eqs. (5) and (6) 

as 

(7) 

(8) 

where 

and 

In other words, the operators with tilde's differ from the original oper-

ators only near the boundary, and they are the parts of the operators 
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tlh, D~, D~ that operate only on unknown values of the velocity. We will 

show how to calculate them once tlh, D~, and D~ are defined in section 

(2) (see also Anderson (1989) ). 

Put Eqs. (7) and (8) in block matrix form. We have 

1 -
0 'Vh fx+9x(ub) -R.tlh X u 

0 1 - \lh /y + gy( ub) (9) -R.tlh y v 

-h jjh 0 h(ub) Dx , Y, 
p 

Consider the quadratic form 

1 - 0 'Vh --ntlh X u 

(u,v,p) 0 1 - 'Vh -R.tlh y v 

-h 
Dx 

-h 
Dy 0 p 

It is positive semi-definite provided 

(10) 

and 

(11) 

Conditions (11) are satisfied for most reasonable difference approxima­

tions to the Laplacian while condition (10) is just a discrete analogue of the 

condition (u, 'Vp) = -('V·u,p). 
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We can formally eliminate u and v in Eq. (9) to form a equation for p 

as follows: 

From Eq. (7) we obtain 

and 

Substitution of these expressions into Eq. (8) gives 

or simply 

Ap = p1 + p2 (12) 

where (12a) 

1 - h - -1 - h - -1 
F = Dx!:l.h Ux + 9x(ub)) + Dy!:l.h (fy + 9y(ub)) 

F 2 = -flh( Ub) 

If we can solve Eq. (12) for p, then we can use Eq. (7) to obtain solutions 

for u and v. 

Of course we do not have to find Lih1 explicitly, but rather given a 

p ( and Ub ), we can solve Eq. (7) for u and v then use Eq. (8) to form Ap. 

It turns out that for some properly chosen operators !:l.h, D~, n;, V~ 
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and \7~ the matrix A is semi-positive definite, so we can use the conjugate-

gradient method to solve Eq. (12). 

Recall that fih, D~, .D; are different from b.h, D~, n; only near the 

boundary, so if we choose 

(13) 

which is just a discrete analogue of the definition of Laplacian. We will have 

on all grid points except those near the boundary. By looking at the struc­

ture of matrix A in (12a), it is reasonable to believe that A is close to the 

identity matrix, and that the conjugate-gradient method will converge in a 

few steps. We shall see that this is indeed the case by numerical examples. 

2 Discretization of the Domain and Choice of 
Dh' '\lh' !J.h 

We now implement the method for a special case of a staggered grid. 

Assume n is a unit square. Let h = 1/n. Define meshes (see Fig. 1) 

u = {(ih,(j +~)h) 1 i = o, ... ,n;i = o, ... ,n- 1} 

v = {((i + ~)h,jh) 1 i = o, ... ,n -1;j = o, ... ,n} 

P = {((i + ~)h,(j +~)h) I i,j = 0, ... ,n- 1} 
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Figure 1: Discretization of Domain 

U0 = u- u nan V 0 = v- v nan 

and define u on U, von V and p on P. 

The operators are defined as follows: 

and we define i':l.hu on Uo, i':l.hv on Vo by the standard five point approx- u 

imation to Laplacian except near the boundary where we use a first order 

approximation, for instance, we put 
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at j = · 1 . Similarly for j = n With those choices of the 

operators, it can be checked that relation (13) is satisfied on all grid points 

except those near the boundary. 

Now the operators Dh etc. are defined. We can obtain the corresponding 

iJh as follows: if D~u doesn't involve ub, put D~u = D~u; if it does, just 

put all Ub = 0 in D~u to get D~u. For instance 

If we define the inner product on U0 , V 0 and P by 

n-1 n 

(<P,'I/J)uo = LL<Pi,i-t'I/Ji,i-t 
i=l j=l 

n n-l 

( <P, '1/J )vo = L L <Pi-t,i'lj;i-t,i 
i=l j=l 

and 

then it is easy to check that 

Moreover, since 
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5 -1 -1 0 -1 
-1 4 -1 -1 0 -1 

-1 0 -1 -1 5 

we have by Gerschgorin 's theorem 

and 

Thus the matrix in Eq. (9) is indeed semi-positive definite and our numerical 

experiment shows that the matrix A is also semi-positive definite. 

With the discretization and the choice of operators made here, Eq. (12) 

has a non-trivial null space which is a constant pressure field. For the 

equation to have a solution the right hand side must be orthogonal to the 

null space. In this case, this condition turns out to be 

i,j 

The terms denoted by Flj are obtained by multiplying the reduced discrete 

divergence operator by a known vector. It can be verified that 

"'pl.=O L..J •,J 
i,j 
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The second part of the sum, Li,j Fi:j, is just a midpoint rule approximation 

to the condition fan ub · ndS = 0 ( see Anderson (1989) ). 

The above description can be naturally extended to the three dimen-

sional case and all the conclusions remain true. 

3 Solution of the Equations 

In this section, we specify the routines we used in our numerical exam-

ples. The goal is to solve Eq. (7) for u quickly with a given p. In the 

two dimensional case there is a fast solver for this equation, namely, the 

subroutine BLKTRI from the NCAR set of routines FISHPACK. In the 

three dimensional case, however, there is no fast solver available. We can 

apply the fast fourier transform (FFT) technique to reduce the problem to 

a two dimensional problem ( see, e.g., Swarztrauber (1977) ). For instance, 

consider the equation for u, 

The grid is defined by x = ( i- l)h, y = (j- 0.5)h, z = (k- 0.5)h . We 

use FFT in the x-direction to reduce the problem to (n-1) two dimensional 

systems on the staggered grid y = (j- 0.5)h, z = (k - 0.5)h. Since u is 

specified on the boundary, only sine functions are needed in the FFT. For 

the resulting two dimensional systems, we use the subroutine HSTCRT from 

the NCAR set of routines FISHPACK. 

To solve equation Ap = b, we use the standard conjugate-gradient method. 

Since there is a iwn-trivial null space, care must be taken to eliminate com-

ponents in the null space. Let c denote the null vector of the matrix (which 
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is a. constant vector in this case ) a.nd (·, ·) the inner product on p defined 

in section (2). The conjugate-gradient method algorithm is a.s follows: 

p0 initial guess 

For k = 0, 1, 2, ... 

k k (rk' c) 
r = r - --c 

(c,c) 

The computational work in each iteration step of the conjugate-gradient 

method is done mostly to form Ap, everything else is just some vector prod­

ucts which requires labor of order O(N) (where N is the number of points in 

the domain). The formation of Ap requires solutions to two Laplace equa.-

tions in the two dimensional case or three Laplace equations in the three 
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dimensional case which cost O(N log N). Our solution to the steady Stokes 

equations thus requires work of order 2M N log N or 3M N log N where M 

is the number of iterations in the conjugate-gradient method. We will see 

from our numerical examples that M is very small even for very large N in 

the three dimensional case. 

We first give an example in the two dimensional case. As a test problem, 
! -

we takef = (3cos(x)sin(y),-sin(x)cos(y)), R = 1, ub = cos(x)sin(y), 

Vb = -sin(x)cos(y) and n = {x,yiO ~X~ 27r,O ~ y ~ 7r}. In this case the 

exact solution is known to be 

u=cos(x)sin(y), v=-sin(x)cos(y), 

~: = cos(x)sin(y), ~~ = sin(x)cos(y). 

In table 1 we display the results of the calculation. We use the residual r 

of the pressure equation (12) as our computation criterion, i.e., the iteration 

stops when max(ri,j) is less than 1x1o-7 • We should mention that by our 

construction this residual is exactly the divergence of the velocity field, i.e., 

we have 

We denote by e(u),e(v),e(px) and e(py) the errors of u,v,px and py, i.e., 

the absolute value of the differences between the exact solutions and our 

numerical solutions, respectively. All the errors are measured in the L 00 

norm. 

For the case of three dimensions, we choose the test problem to be: 

ub = sin( x) cos(y) cos(2z) 

13 
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Table 1: Numerical results in 2-D case 

Grid size 20x10 40x20 80x40 160x80 
Iterations 8 10 10 11 

L 00 norm of r 9.50x1o-~ 8.84x10-~ 7.71x 10-~ 9.06x1o-~ 

e( u) 1.21 X 10 -;j 2.92x10 -4 7.23x 10 ·5 1.80x10 -5 

e(v) 5.06x 10 -4 1.17x 10 -4 2.87x10 -::. 7.13x10 -o 

e(px) 2.07x 10-2 5.68x w-cs 1.48x1o-cs 3.77x10 -4 

. e(py) 1.49x 10 ·" 4.58x10 -;j 1.26x10 -;j 3.30x10 -4 

Vb = cos(x)sin(y)cos(2z) 

Wb = -cos(x)cos(y)sin(2z) 

f = (0,0, -18 cos(x) cos(y) sin(2z)) 

R = 1, and n = {x,y,ziO ~X~ 1!",0 ~ y ~ 1!",0 ~ z ~ 7r/2}. 

We also have the exact solution as: 

u = sin(x)cos(y)cos(2z) 

v = cos(x)sin(y)cos(2z) 

w = -cos( x) cos(y) sin(2z) 

p = 6 cos( x) cos(y) cos(2z ). 

Table 2 shows our numerical results for this problem. 

We can see from the numerical results that we achieved second order 

accuracy for the velocity in both cases despite the fact that we used a first 

order approximation for the Laplacian operator near the boundary. The 

calculation for the pressure is less accurate, which is expected. The number 

of iterations grows very slightly as the mesh size increases both in the two 

14 



IJ 

Table 2: Numerical results in 3-D case 

Grid size 20x20x10 40x40x20 80x80x40 160x 160x80 
Iterations 13 16 18 19 

L 00 norm of r 9.82x10-lJ 1.48xl0-8 5.18x 10-8 8.47x 10-8 

e(u) 9.47x1o-3 2.66x10-3 7.07x 10-4 1.83x 10-4 

e(v) 9.47x10 -3 2.66x 10 -3 7.07x 10 -4 1.83x 10 -4 

e(w) l.02x1o-:.~ 2.64x1o-3 6.66xl0-4 1.67x 10-4 

e(px) 0.105 5.54x10 ·:.! 2.81x 10 -:1, 1.41x1o-:l, 

e(py) 0.105 5.54x10-:.~ 3.72x10-:.~ 1.41x1o-:.~ 

e(pz) 0.202 0.100 6.71x10 -:1, 2.52 X 10 -:t, 

and three dimensional cases. There is no substantial increase of the number 

of iterations from two dimensions to three dimensions. This makes our 

method particularly suitable for three dimensional calculations. 

One should note that for the conjugate-gradient method to converge 

in a few iterations, it is very important that relation (13) in section (2) 

be satisfied. To show the importance of this, we make another calculation 

with a different discretization of the domain and different choices of the 

operators. We take the same test problem in two dimensions. This time the 

two components of the velocity are defined on the same set of grid points 

defined by x, y = ih, i = 0, ... , n. The pressure pis defined on the same grid 

as befor~. The operators are defined as: 

h 1 
(Dxu)i+t.i+t = 2h[(ui+I,i+I- Ui,j+t) + (ui+l,j- Ui,j)] 

h 1 
(Dyv)i+t.J+t = 

2
h[(vi+I,i+I- Vi+t,j) + (vi,j+I- Vi,j)] 

h 1 
(Y' xP)i,j = 2h [(pi+!.i+! - Pi-!,i+!) + (Pi+!.i-! - Pi-!,i-! )] 

h 1 . 
(V' p) = -[(P· I . I - P· I . I)+ (P· I . I - P· I . I)] 

y i,j 2h t+2,J+2 t+2·J-2 t-2.J+2 t-2·J-2 

15 



Table 3: Iterations needed for a different discretization 

Grid size 20x10 40x20 80x40 160x80 
Iterations 31 45 48 49 

L 00 norm of r 7.98x10 -~ 9.49x1o-~ 9.12x1o-~ 9.25x10 -~ 

and !:lh by the standard five point approximation to Laplacian. These 

definitions satisfy (10) (see Stephens et al. (1984) ) and (11) but not (13). 

Table (3) shows the results of this calculation. We see that it requires 

about four times the iterations needed for the previous one. 

4 Conclusions 

We have presented a fast numerical technique for solving the steady-state 

Stokes equations which requires no artificial conditions for the pressure near 

the boundary. Our numerical experiments show that the method is of sec­

ond order accuracy for the velocity. The key idea of the method is to use 

some consistent difference operators to approximate the Stokes equations 

and then derive a. equation Ap = b for the pressure such that the matrix A 

is semi-positive definite and very well conditioned on the orthogonal com­

plement of its null space. Therefore it is very efficient to use the standard 

conjugate-gradient method to solve the pressure equation. We implemented 

our method on a staggered grid for rectangular (cubic) domains and showed 

that the conjugate-gradient method converged in a very few iterations even 

for a very large number of grid points in the three dimensional case. The 

method is certainly applicable to more general domains as long as we can 

solve the Laplace equations on those domains. 
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