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EXOTIC CONTAINERS FOR CAPILLARY SURFACES 

Abstract 

In this paper we discuss "exotic" rotationally-symmetric containers that admit an 
entire continuum of distinct equilibrium capillary free surfaces. The paper extends earlier 
work to a larger class of parameters and clarifies and simplifies the governing differential 
equations, while expressing them in a parametric form appropriate for numerical integra
tion. A unified presentation suitable for both zero and non-zero gravity is given. Solutions 
for the container shapes are depicted graphically along with members of the free-surface 
continuum, and comments are given concerning possible physical experiments. 

L Introduction 

The free surface of a liquid that partly fills a container under the action of surface and 

gravitational forces may assume, in general, one of several possible equilibrium configura

tions. An example for which only one configuration is possible is a vertical homogeneous 

cylindrical container of general cross-section, with gravity either absent or directed down

ward into the liquid; if the boundary of the free surface lies entirely on the cylindrical 

walls, then the surface is determined uniquely by its contact angle and the liquid volume 

[6]. Examples of other containers can be given for which there exist two or more distinct 

equilibrium configurations. Our interest here is in certain container shapes having the 

striking property that there is an entire continuum of equilibrium liquid configurations. 

In [4], [5] it is shown that there exist rotationally symmetric containers that permit 

a continuum of distinct, rotationally-symmetric equilibrium free surfaces, all enclosing the 

same liquid volume and having the same mechanical energy and contact angle. The special 

case of zero gravity and contact angle 1r /2 is studied in [5], where the authors derive a 

closed-form solution; the general case is studied in [4]. It is shown further in [2], [4] 

that the families of symmetric solution surfaces are unstable, in that certain asymmetric 

deformations yield surfaces with lower energy. In fact, it is possible for such "exotic" 

rotationally-symmetric containers to have energy-minimizing liquid configurations that 

are not symmetric. 

In the present study we extend to a larger range of parameters, and in a form suit

able for numerical integration, the equations given in [4] describing the containers. Con-
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currently, the equations are clarified and simplified, and a unified presentation is given 

suitable for both zero and non-zero gravity. The containers are depicted graphically for a 

range of gravity accelerations and contact angles of physical interest, along with members 

of the families of symmetric equilibrium free surfaces. 

2. Rotationally symmetric capillary surfaces 

Consider a rotationally symmetric container, partly filled with liquid, oriented with 

its axis of symmetry parallel to a uniform downward-acting gravitational field. A rotation

ally symmetric equilibrium free-surface of the liquid (or interface between two immiscible 

liquids) satisfies 

~ dd ( r sin 1/J) = Bu + A, 
r r 

(1) 

where r is the radial coordinate, u is the height of the surface, 1/J is the angle between the 

horizontal and a meridian of the surface, B is the Bond number, and A is a parameter that 

is determined by the geometry and volume constraint [3, Chaps. 2,3). Here we have taken 

the spatial variables to be normalized with respect to a characteristic dimension R of the 

container, so that Rr and Ru are the physical lengths. The nondimensional parameter B 

is given by B = pg£2 /a, where p is the density of the liquid (less the density of the vapor 

or of the other liquid phase adjoining the free surface), g is the gravitational acceleration 

(positive downward), and a is the interfacial surface tension. The free surface is to meet 

the container in a prescribed contact angle 7, 0 < 1 < 1r, measured within the liquid (see 

Fig. 1). We consider the case B 2: 0. 

As discussed in [3), [4), the totality of solutions of (1) defined in a deleted neighborhood 

of r = 0 is described by a one-parameter family of curves. For convenience in subsequent 

numerical integration of (1), we take u = 0 as the initial height at r = 0 (where also 

1/J = 0), corresponding to which the parameter A is twice the curvature of the meridian at 

the initial umbilical point r = 0, u = 0. We include here, as well as the values 11/JI ~ 7r /2, 

the values 1rj2 < 11/JI < 1r, which were not considered in [4). 

If A = 0, then the solution curve is u = 0. As shown in [3), if A > 0, then on 

any solution curve the curvature k = f~(sin 1/J) remains positive, increasing monotonically 
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with ¢; correspondingly, u increases monotonically as 1/J varies from 0 to 1r. Similarly, if 

.A < 0, then the curvature k remains negative, decreasing monotonically, along with u, as 

¢ decreases from 0 to -1r. 

If r = R > 0 and 1/J =Ware prescribed terminal values of rand¢, then the parameter 

.A is determined uniquely by these values. We may denote the unique solution surface as 

described parametrically in terms of¢ in the region of interest 1¢1 < 7r by 

r = p(¢;R, w) 

z = u(¢; R, \ll). 

The corresponding parametric representation of ( 1) is 

dp 1 
d¢ = k cos¢, 

where 

du 1 . . t. 
d¢ = ksm'f', 

k 
_ B sin¢ , 
- u---+A 

p 

is the curvature of the solution curve. The initial and terminal conditions become 

p = u = 0 , at ¢ = 0 

p = R, at 1/J = W. 

(2) 

(3) 

(4) 

(5) 

If W = 0, then the solution of (1) satisfying the prescribed terminal conditions is 

u 0, for which k- 0, and the parametric representation (3) is unsuitable. Otherwise, as 

discussed above, k cannot vanish and the representation (3) is appropriate. 

The terminal values R and \lJ for our numerical integration will be those at which the 

solution curve meets the container. So that the curve corresponds to the coordinates in 

which the container is expressed, we shall in what follows displace it vertically, adding a 

constant h to u, by specifying the value of the displaced surface height u + h at the end 

point r = R,¢ = \ll. The displaced height remains a solution to (3) (or (1)), with .A- Bh 

replacing .A, and the condition ¢ = \lJ at r = R is unchanged. 

3. Determination of the containers 

As in [4] we seek a rotationally symmetric container given by r = f(z) (which it will 

be convenient later to describe also in parametric form). The container is to be such that 
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a family of rotationally symmetric interfaces obtained from solutions to (1 ), all having the 

same contact angle, enclose with it the same liquid volume. Let (R = f(Z), Z) denote a 

point on the container meridian, and at (R, Z) let the value of 'ljJ for the interface solution 

meridian intersecting the container there be 'ljJ = '11. Then the volume V enclosed between 

the free surface and the container is given by 

21r [ R2 ] jz V = B -(Bu + .\)"2 + Rsin '11 + 1r R 2dz, (6) 

as derived in [4, Eqs.(9) and (10)] using integration of the Bu term in (1) to obtain the 

volume below the free surface. The equations in [4] were derived with reference only to 

the case 1'111::; 7r/2; however, it can be shown that the expression (6) for V holds over the 

entire range -7r < '11 < 1r. By using the asymptotic representation for A near B = 0, 

>. = ! sin '11 + O(B) , B ---7 0, 

one obtains from the results in [1] that the expression (6) for V has the limit at B = 0 (for 

which value u is a circular arc of radius si:: II'), 

I [ 
1 - cos '11 2 ] jz 

V = -1rR
3 

. '11 -esc '11 +- csc3 '11(1- cos3 '11) + 1r R 2 dz. 
B=O sm 3 

This expression can be rearranged and simplified to 

(7) 

This connects the general expression (6) with the expression derived explicitly for B = 0 

as (7) in [4] and [5]. 

We turn now to a parametric representation of the container given by r = R( <P ), z = 
Z( <P ), where <Pis the angle between the horizontal and a meridian of the container, cot <P = 

df / dr. The condition that a solution surface meridian meet the container with prescribed 

contact angle 1 is that 

(8) 

at the point of intersection, see Fig. 2. 

5 



z 

Free surface 

r 

' Container . 

Figure 2 

6 

ol 

.. 



·'.. 

•• 

'd 

The solution surface p( '1/J; R, w), u( '1/J; R, w), which attains the values p = R, 'ljJ = w at 

the end point, must be displaced vertically upward a distance h = Z- u(W"; R, w) to pass 

through the point (R, Z) ( cf., the last paragraph of Sec. 2). Thus the displaced free-surface 

solution intersecting the container at (R, Z) with angle W is given by 

u('lj;; R, w) + Z- u('ll; R, w). 

As the condition for constant enclosed volume, we set ~~ = 0, obtained by differenti

ation of (6). Let 

U(R, w) = u('ll; R, w) 

denote the value of u at the container intersection and >.(R, w) the corresponding value of 

the parameter >.. We shall denote partial differentiation of U or >. with respect to R or W 

by the corresponding subscript. Finally, let 

}_,. B sin W , 
i= U---+"' .R 

denote the value at the container intersection of the meridional curvature k of the solution 

surface, cf. ( 4). Then, using ~! = 1, we obtain for the condition of constant enclosed 

volume 

2 [ R ] dR dZ Q +- --(BUR+ AR)- ]{ - + R- = 0 
B 2 · d</J d<P ' 

(9) 

where 

Q = 2 cos w - B ~( BU 'll + >. 'll) . (10) 

The use of a parametric form in terms of the parameter <P for deriving (9), (10), and 

subsequent equations from (6) and (8) simplifies the corresponding derivation required in 

[4] for the non-parametric form with r as independent variable . 

The partial derivatives of U with respect to R and W are related, since ~~ = tan 'ljJ 

along a solution curve. One has 

which yields, using (3), 

(11) 
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Similarly, 

ARcos w + K A'lf = 0. (12) 

Using these relationships, one obtains from (9) the equation 

. dR dZ 
Qcos w- (KQ + Rsm w) d<P + Rcos<P d<P = 0. (13) 

Finally, one can write the above equation in parametric form as 

dR cos <P 

d<P ---;;;-' 
dZ sin<P 

(14) 

d<P- ~, 

where kc, the meridional curvature of the container, is given by 

kc = K Q cos <P - R sin 1. 
Qcos'l! 

(15) 

The system of equations (14) is the one that we wish to solve to determine the desired 

container shapes. 

4. Properties of container equations 

For small values of B, one can use the asymptotic properties of the free surface merid

ian given in [1, Sec. 3] to obtain from (10) the asymptotic relationship 

Rz . 
Q = - ( 1 + cos w )2 + O( B)' B -+ O. 

Thus Q has a limit at B = 0 (for all 'll, -1r < W < rr). The resulting limit of (13) can be 

shown to correspond to the governing equations derived separately for the B = 0 case in 

[4] and [5], thus unifying the cases for zero and non-zero B. 

The suggestion of singular behavior at 'l! = 1r /2, occasioned by the explicit appearance 

of cos 'l! in the denominator of (15), is illusory and can be removed by using (8), (10), (11), 

and (12). One obtains 

1 ( 2K sin W ( ). R) ) . kc = K cos 1 - Q B + R cos W + R sin W U R + B sm I· 
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This form is more suitable for computation near W = 1r /2 than is (15). 

In the numerical integration of (14), which is discussed in the following section, we 

shall take the initial point to lie on the planar solution surface u = 0 of (1), corresponding 

to w = 0, for which I< = 0. From (15) one obtains that kc = 1l, sin 1 > 0 at the initial 

point, since 0 < 1 < 1r. Thus the system (14) is well-behaved at the initial point. Nearby, 

for I'll I small, one obtains, using the asymptotic representation of the free surface meridian 

[1], that 

and that 

One can show easily, using computer representations for the modified Bessel functions Io 

and 11 , that kc remains positive away from the initial point. The computed solutions 

of (14) for the examples we considered indicate that kc is positive over the entire range 

0 :::; ¢> :::; 1r, increasing with ¢>, and hence that integration of the parametric form (14) can 

be carried out. 

It is shown in [4] that for the case I'll! :::; 1r /2 there holds Q < 0. Our numerical 

solutions for the cases we have considered indicate that Q remains negative and decreases 

as W increases through the range -1r < W < Tr. 

5. Numerical solution 

Numerical solutions of (14) were calculated for several values of contact angle 1 and 

Bond number B. The initial values for the integration were R = 1, Z = 0, ¢> = 1, corre

sponding to the solution surface u 0 of (1), for which 'ljJ = 0. Eq. (14) was integrated 

forward in ¢> to obtain the upper portion of the container 1 :::; ¢> :::; 1r and backward in ¢> 

for the lower portion 0 :::; ¢> < 1. The integration was accomplished by a variable-order 

variable-step Adams method using subroutine D02CBF of the NAG program library. To 

evaluate the coefficients at each integration step, a boundary value problem (3), (5) for 
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the liquid free surface was solved by a shooting method using NAG library subroutine 

D02HBF. 

The necessary quantities in (15) at each integration step were obtained by solving 

numerically the system 

:. [ ~] [ ~~~~] (16) 

where k is given by (4). At the initial point s = 0, at which p = u = 1/J = 0, k has the 

limiting value (Bu + >..)/2. The system (16) is equivalent to the system (3), where now 

arclength s is the independent variable instead of 1/J. In return for the extra complication of 

treating a system of three equations rather than two, more robust behavior was obtained 

in calculating solutions near the planar one u - 0, k = 0, with better error control using 

the automatic procedure built into the integration subroutine. Appended to the system 

(16) were the equations for the partial derivatives with respect to R, with 1/J and W fixed, 

sin 1/J 
kR =BuR+ - 2-pR + AR. 

p 

The boundary conditions for the integration for the complete system are 

at s = 0: p = u = 1/J = PR = UR = 0 

at s = S: p = R, 1/J = W, PR = 1. 

At the initial point s = 0, kR has the limiting -value (BuR + >.R)/2. These equations 

determine the four quantities U = u(S), UR = uR(S), >., and AR required in (15). The 

unknown parameter S, the total arclength of the interface, is obtained as part of the 

numerical integration. 

To start the integration from the initial planar interface u - 0, the asymptotic form 

for small'!/J given in [1] was used to provide initial values for the Newton iterates for AR 

and uR(S), based on the W derivatives 

11 (~) 'if K =/=- 0, 
Aw= ~ } 

uw(S) = ~; (Io(.JK) -1) 

10 
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Subsequently the values at the most recent previous integration point of¢> were used as 

the initial ones. 

In Figs. 3, 4, 5 the solutions calculated for 1 = 30°,60°,90° and B = 0, 1, 10,100 are 

depicted. (The solutions for the supplementary non-wetting cases 1 = 120° and 1 = 150° 

can be obtained by reflecting, respectively, the 1 = 60° and 1 = 30° ones about z = 0.) 

The container meridians are shown as solid curves. For each figure the dashed curves depict 

meridians of members of the family of symmetric equilibrium free surfaces, all enclosing 

the same volume, having the same mechanical energy, and meeting the container with the 

same contact angle. The plotted free-surface curves include the horizontal, planar member 

of the family and are given for increments of 30° in "Ill. For 1 = 0° the free surfaces and 

container would coincide. For some cases, as depicted for the 30° contact-angle curves, only 

an appropriate portion of the container should be used consistent with the implicit physical 

requirement that the free surfaces lie interior to the container, intersecting it only at the 

final integration point. In all cases a top and bottom of the container could be connected 

to the symmetry axis as desired (provided the connecting portions do not encroach on the 

free surfaces). Fig. 6 illustrates a container consisting of the entire computed solution for 

B = 0 shown in Fig. 4 connected to circular cylindrical extensions above and below, with 

disk ends. By joining only a small portion near ¢> = 1r /2 of a computed container shape to 

circular cylindrical extensions, one obtains a container that is as close as desired to being 

a circular cylinder. It would still admit an entire continuum of equilibrium free surfaces, 

whereas for prescribed contact angle and liquid volume the circular cylinder admits only 

the unique, symmetric equilibrium surface of minimizing energy if the boundary of the free 

surface lies entirely on the cylindrical walls. 

In the figures the containers are scaled to have maximum radius of unity. Since the 

Bond number B for the numerical integration is based on a characteristic length f equal 

to the radius of the flat interface (i.e., R = 1 ), the scaling in the figures corresponds to a 

scaling of Bond number as well. The scaling factor a is given on each figure. The Bond 

number based on the maximum-radius characteristic length is Ba2
• 

Generally, the figures indicate that as B increases, the containers become more ec

centric, and the corresponding solution surface family more compressed. A low-gravity 
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Figure 3. Meridian of container (solid curve) for contact angle 30° and several 
Bond numbers showing meridians of some symmetric equilibrium solution surfaces (dashed 
curves), all having the same contact angle and energy, and enclosing the same volume of 
liquid. 
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Figure 4. Meridian of container (solid curve) for contact angle 60° and several 
Bond numbers showing meridians of some symmetric equilibrium solution surfaces (dashed 
curves), all having the same contact angle and energy, and enclosing the same volume of 
liquid. 
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Figure 5. Meridian of container (solid curve) for contact angle 90° and several 
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Figure 6. Container for contact angle 60° and B = 0 with top and bottom right 
circular cylindrical extensions and disk ends. The dashed line indicates the fill level corre
sponding to a planar equilibrium interface. 
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environment would have substantial advantages for carrying out related physical experi

ments, since an adequately large length scale for accurate observation and measurement 

would thereby be permitted. 

An initial step in visualizing the physical behavior of liquid in these containers was 

taken by M. Weislogel at the NASA Lewis Research Center Zero Gravity Facility. Of 

particular interest for physical experiments is the property shown in [2], [4], that a con

figuration of lower mechanical energy can be obtained by a non-rotationally-symmetric 

perturbation of the planar member of the family of solution surfaces. Thus, under the 

idealized Young-Laplace equilibrium contact-angle conditions embodied by (8), if surface 

friction effects were absent, the symmetric equilibrium free surfaces, as depicted here, 

would not be observed physically in the containers. 

We wish to thank M. Montgomery for programming some of the computer g~aphics 

and M. Miranda for his hospitality while the authors were visiting at Universita di Trento, 

where portions of the manuscript were written. 
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