
LBL-28566

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Information and Computing
Sciences Division

To be presented at SIGMOD 1990, Atlantic City,
NJ, May 23-25, 1990, and to be published
in the Proceedings

Random Sampling from Hash Files

F. Olken, D. Rotem, andP. Xu

December 1989 '

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

-flO
o 1-'. r
:; ;; 0

f") D
f(. ~ Z

I-'

~ !It 0
ro<+O
ro !U 1)
;C-!II-<
!II

fJj
I-'

0..
10 .
en
1St

r
1-'.

ef l.l
-(0 .'
!It 1J "< ,
'< . rr:,

r
IJ:!
r-
J

fl)
CD
U!
'J>
OJ'

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

..

LBL-28566

RANDOM SAMPLING FROM HASH FILES

Frank Olken & Doron Rotent

Computing Science Research & Development
Information & Computing Sciences Division

Lawrence Berkeley Laboratory
1 Cyclotron Road

Berkeley, California 94720

and

Ping Xu

Computer Science Department
San Francisco State University

San Francisco, CA

December 1989

This work was supported by the Office of Health and Environmental Research Program and the
Director, Office of Energy Research, Applied Mathematical Sciences Research Program, of the
US. Department of Energy under Contract No. DE-AC03-76SF00098.

....

Random Sampling from Hash Files *

Frank Oiken and Doron Rotem
Computer Science Research & Development Dept.

Information and Computing Sciences Div.
Lawrence Berkeley Laboratory

1 Cyclotron Road, Berkeley, CA 94720

Ping Xu
Computer Science Dept.

San Francisco State University
San Francisco, CA

December 1989

Abstract

In this paper we discuss simple random sampling from hash files on secondary storage. We
consider both iterative and batch sampling algorithms from both static and dynamic hashing
methods. The static methods considered are open addressing hash files and hash files with
sepaBte overflow chains. The dynamic hashing methods considered are Linear Hash files [Lit801
and Extendible Hash files [FNPSi91. We give the cost of sampling in terms of the cost of
successfully searching a. hash file and show how to exploit fea.tures of the dynamic hashing
methods to improve sampling efficiency.

1 Introduction

In this paper we discuss simple random sampling from hash files on secondary storage. We

consider both iterative and batch sampling algorithms from static and dynamic hash files. This is

a continuation of our research on sampling from databases [0R86, 0R89].

The main contribution of this paper is to show that one can introduce simple random sampling

of hash files without substantial modification to the data structures or substantial increase in

normal costs of accessing or updating the hash files. We provide detailed cost formulae, supporting

simulations, and we show the relationship of sampling costs to the cost of ~earching the same data

structures.

• Thia work was partially supported by the Director, Office of Energy Research, Office of Basic Energy Sciences,
Applied Ma.thema.tical Sciences Division of the U.S. Department of Energy under Contract DE-AC03-76SF00098.
Authors electronic mail addresses: oiken@lbl.gov, rotem@csam.lbl.gov

1

We first consider static hash files of two types: open addressing (any method which rehashes

bucket overflow into the primary area) and separate overflow chaining (in which each primary

bucket has'~a separate chain of overflow pages). See (Knu73] for a deta.iled exposition and analysis

of these hashing methods.

The many dynamic hashing methods can be classified according to whether or not they employ

some sort of directory. We consider one method from each class: Linear Hashing by Litwin [LitSO]

(no directory) and Extendible Hashing by Fagin [FNPS79] (directory).

For each hash file we consider iterative methods, which repeatedly extract a. sa.mple of size one

until they accumulate a sa.mple of the requisite size. We then consider batch sa.mpling methods,

which are modelled on batch retrieval methods, trea.ting ba.tch sa.mpling of open addressing hash

files in detail. Batch sampling a.voids rereading of the sa.me page twice, which can occur in iterative

sampling. We also discuss the use of sequential scan sa.mpling methods.

For both of the dynamic hashing methods we consider both naive sampling methods and more

sophisticated methods which exploit the structure of the dynamic hash file, Le., two-file method for

Linear Hashing and double acceptance/rejection sa.mpling for Extendible Hashing. We show that

the more sophisticated methods have better performance.

We commence with a. discussion of the motivation for this work.

1.1 Why sample?

Obtaining information, whether from a. database or the real world requires time and effort.

Often, we do not need exact answers to our questions. In some cases we can obtain the a.pproxima.te

answer we need from a. random sample of a. popula.tion, in lieu of examining the entire population.

This may provide substantial savings in time and expense. In a. database context, the savings may

arise not just in terms of the cost of retrieving the records from the database, but also from sa.mple

"post-processing" costs.

For large a.dministrative and scientific da.ta.bases retrieval costs can be significant. For exa.mple,

social security and tax: record databases contain tens of millions of records. High energy physics

experimental datasets often contain hundreds of giga.bytes of da.ta.. Even if the datasets are smaller,

real-time computing systems may impose harsh time constraints which preclude extensive retrievals

(see [HOT89]).

Even if retrieval costs were negligible, sa.mpling would still be important in order to reduce

sample post-processing costs. Some of these costs ma.y arise from extensive computations on each

2

.•

record (e.g., in physics an event record may contain 100KB of data, and require 100M instructions

to process).

Yet even if computing were free, sampling would still be important for those applications which

require physical inspection of the real world objects which correspond to the sampled database

records. The most ubiquitous application concerns the use of sampling to audit financial databases

[Ark84, LTA 79], which must be done a.nnua.lly for most such databases. Other common applications

include inspection and/or testing of components for quality control [Mon85, LWW84], and medical

examinations of sampled patients for epidemiological studies.

Random sampling is typica.lly used to support statistical analysis of a dataset, either to estimate

parameters of interest [HOT88, HOT89] or for hypothesis testing. Cochran [Coc77] provides a

classic treatment of the statistical methodology. Applications include control systems, scientific

investigations, product quality control, and policy analyses. For example, one might want a sample

of bank interest records to check against tax records to estimate tax fraud rates.

We should note that the accuracy of estimates from samples is typica.lly a function of size of

the sample, with little dependence on the population size. Hence sampling is most advantageous

when sampling from large populations, as would be found in very large wmjnjstra.tive and scientific

databases.

1.2 Why put sampling in DBMS?

The fact that users want to sample data from databases does not necessarily imply that it

should be included in the DBMS. Conceivably, sampling could be performed outside the database

on the results of a query, as it is now done.

However, we expect that putting sampling operators within the DBMS can yield major gains

in efficiency for many sampling queries, at negligible cost to normal operations. The efficiency

gains arise from the reduction in the amount of data data to be retrieved for sampling queries, and

by exploiting indices and access methods used in the DBMS. Instead of completely processing a

database query and then sampling the result, we can, in effect, interchange the sampling and query

operators, so that we sample prior to query evaluation. In one earlier paper (OR86] we discussed

query processing algorithms which permit sampling the results of single relational operators. In

a second paper (0R89] we discussed the sampling from base relations organized as B+ trees (the

most common access method in use). In this paper we tum to sampling from hash files, probably

the second most common type of access method.

3

Sampling can also be used in the DBMS to provide estimates of the answers of aggregate

queries, in applications where such estimates may be adequate (e.g. policy analysis), and where

the cost in time or money to fully evaluate the query may be excessive. In his dissertation [Mor80],

Morgenstein discussed this issue of estimation procedures for various aggrega.te queries (e.g., count)

while mentioning sampling procedures only briefly. More recently, Hou [HOT88] has discussed the

construction of statistical estimators for arbitrary relational expressions for COUNT aggregates.

He also envisions their application to real-time applications [HOT89].

Sampling may also be used to estimate database paramet-ers used by the query optimizer to

choose query evaluation plans. In [Wtl84], Willard discusses the determination of the asymptotica.ily

optimal sample size for estimating the selectivity of a selection query. In [LN89], Lipton and

Naughton discuss the use of sampling to estimate the size of transitive closures.

Fma.ily, sampling has been proposed [Den80] as a means of providing security for individual

data., while permitting access to statistical aggregates.

1.3 Why sample hash files?

Given that we have decided to put sampling operators into our DBMS, why should we concern

ourselves with sampling from hash files? The answer is that sampling is akin to a selection operator,

in that the query optimizer will attempt to move down in the query evaluation plan graph toward

the base relations [0R86]. Hence we will often find ourselves applying sampling to base relations.

Hash files are very common primary access methods for base relations in administrative and

transaction processing database systems, e.g. bank records may hashed on account number, payroll

records hashed on social security number. Second, hash files are used as join indices to support

join processing and transitive closure computations [LuS7), etc.

1.4 Organization of Paper

The remainder of the paper is organized as follows. In Section 2 we review acceptance/rejection

sampling. In Section 3 we discuss sampling from open addressing hash files, In Section 4 we treat

sampling from separately chained overflow hash files, In Section 5 we examine sampling from Linear

Hash [LitSO] files. In Section 6 we present sampling from Extendible Hash [FNPS79] files. Batch

and sequential scan sampling methods are discussed in Section 7. We present our experimental

results (simulations) in Section 8. Fina.ily, Section 9 contains our conclusions.

4

..

~.

'.

2 Basic Sampling Techniques

2.1 Simple Random Sampling

In this paper we shall be concerned with fized size simple random samples. Fixed size indicates

that the target sample size has been specified by the user. Simple random sample indicates that

we want uniform. inclusion probabilities for each record.

We shall assume that the sample size is small compared to the number of records in the file and

ignore the costs of removing duplicates (and increasing the sample size) to convert from samples

without replacement to samples with replacement. Unless otherwise noted, whenever we refer to a

sample we mean a simple random sample with replacement.

Throughout the paper, we measure the cost of algorithms in terms of the number of disk blocks

read •

. 2.2 Acceptance/Rejection Sampling

Acceptance/rejection (A/R) sampling forms the basic sampling strategy used throughout this

paper. In this paper we will use it to compensate for algorithm or data structure induced variations

in sample inclusion probabilities so as to finally obtain a simple random sample, Le., one with

uniform. inclusion probabilities. We briefly describe this classic sampling technique here for those

in the database community who may be unfamiliar with it.

Suppose that we wish to draw a weighted random sample of size 1 from a file of n records,

with inclusion probability for record ri proportiona.l to the weight 'Wi- The maximum of the Wi is

denoted by 'W •.

We can do this by generating a uniformly distributed random integer, j, between 1 and n, and

then accepting the sampled record ri with probability Pi:

W·
P· - ,]--w· (1)

The acceptance test is performed by generating another uniform random variate, ui' between 0

and 1 and accepting ri if ui < Pi' IT ri is rejected, we repeat the process until some ri is accepted.

The reason for dividing Wj by w· is to assure that we have a proper probability (Le., pj 5 1). IT

we do not know w· we can use instead a bound n such that Vj, n > Wj. It is well known that the

number of iterations required to accept a record ri will be geometrically distributed with a mean

of (E(Pj])-l. Hence using n in lieu of w· results in a less efficient a.lgorithm.

5

at acceptance probability of record i ,

a = E(ak) = expected acceptance probability of record

b, bucket occupancy for bucket i

b = n/m = average hash bucket occupancy (records)

b* maximum hash bucket occupancy (records)

Ci occupancy (records) of i1th directory cell (EXH)

d, occupancy (records) of i1th data page (EXH)

ht chain length for bucket i (pages)

h average chain length (pages)

h* maximum chain length (pages)

Cmethod(S) expected cost of retrieving sample of size s, via specified method

m number of buckets in the file

n number of records in file

PI: probability of inclusion of record k

s number of records desired in sample

sf inflated sample size (to compensate for acceptance/rejection)

Table 1: Notation used in the paper.

We rely heavily on Acceptance/rejection sampling because it is well-suited to situations where

the weights are frequently updated (since it does not require any auxiliary indices).

2.3 Notation·

Throughout the paper, for a variable x, we will use x to denote the average of x and x· to

denote the maximum of x, for any quantity x.

3 Open Addressing Hash Files

In this section we discuss how to sample from open addressing hash files [Knu 73], i.e., those hash·

files in which overflow records are rehashed into the primary file. We discuss iterative methods,

which repeatedly extract a sample of size one until they have accumulated sufficient size sample.

6

..

OA Open addressing [Knu73]

SO Separate Overflow Chaining [Knu73]

U Linear Hash files [Lit80]

EX Extendible Hash files [FNPS79]

Table 2: Hash File a.b breviations

Batch methods, which are based on batch retrieval, are discussed later, in Section 7.

For our analysis we adopt the uniform hashing model [Knu73, pp. 527-528], which assumes that

the hashing functions randomize the placement of records in buckets.

For the purpose of sampling, an open addressing hash file may be viewed simply as a variably

blocked file, irrespective of the particular hash function used to place the records into pages. Thus

these sampling methods are genera.lly a.pplicable to a.ny type of file for which the number of records

per page varies. This may arise either because the individual record sizes vary (with a fixed block

size), or because updates to the file have resulted in variable numbers of records/block, or because

hashing has been used to place records in blocks.

3.1 Iterative Algorithm

Given a hash (variably blocked) file, which contains n records, stored in m contiguous buckets

on disk, where the i'th bucket contains bi records. We denote by b- the maximum of the bi'S. In

Figure 1 we describe an acceptance/rejection a.lgorithm, ARHASH, for obtaining a. single random

sample from such a file. This procedure must be repeated s times to obtain a sample of size s.

The next lemma shows that a.lgorithm ARHASH gives every record the same inclusion proba

bility.

Lemma 1 Each record has an equal probability of ~ of being chosen into the sample by algorithm

ARHASH.

Proof: A specific record will be a.ccepted during a. single iteration of the while loop if its bucket

has been chosen and it is selected within tha.t bucket. This event occurs with probability p where:

1 1
p=-

mb*

7

(2)

procedure ARHASH ;
/* This procedure samples one record
from a variably blocked file * /

comment accepted is a boolean variable which
indicates when a sample was accepted.

Set accepted to false;
while accepted=faJ.se do

/* generate a random no. between 1 and m * /
r := RAND{l,m)j
1* generate a random no. between 1 and bmaz * /
i := RAN D{1,b*)j
Read bucket rj
if i ~ b,. then

endwhile.

accept the j'th record of bucket r into the sample
and set accepted to true j

Figure 1: Algorithm. for sampling from a hash file (variably blocked)

Since this probability is the same for all records in the file we conclude that the proba.bility P of

accepting some record in the first execution of the loop is:

(3)

We denote by Q the probability of rejecting a bucket in this iteration, Le., Q = 1 - P . A specific

record, will be accepted during the i'th execution of the loop if no record is accepted for the first

i - 1 executions of the loop followed by an acceptance on the i'th execution. The probability of

this event is Qi-lp . Summing for i between 1 and infinity we get

1 P 1
p--'=-=-
I-Q P n

as required. 0

Lemma 2 The expected number of disk accesses to obtain one random sample is

m x b*
--=b*/5

n,

(4)

(5)

Proof: As was shown in the previous lemma, the probability of accepting some record in ea.ch

execution of the loop is P. Therefore the number of reads until a record is accepted is a random

variable with geometric distribution with parameter P. The expected value for this random variable
. 1 m x b- . d
IS P = n as reqwre . 0

8

-,

..

4 Separate Overflow Chain Hash Files

In this section we consider sampling from hash files which have separate overflow chains for

each bucket in the primary file area [Knu73, pp. 535]. We use bucket to refer to the hash partition

function, and primary (overflow) pagers} to refer to the primary (overflow chain) page(s) of a.

bucket.

4.1 Iterative Algorithm

The iterative algorithm selects a. bucket a.t random, then does a.cceptance/rejection test with

a.cceptance probability, ai = bi/b- as in the open addressing hash file. If the bucket is a.ccepted we

must then sample one record from the bucket, this may require reading some of the overflow pages.

We repeat this until we obtain the desired sample size.

Let cr = the maximum number of records per page and b- = the maximum number of records

per hash bucket.

Theorem 1 Consider a hash file with chained overflow {separate or common}, which stores a count

of the records in a bucket in the primary page for the bucket, Let SeE, 1) = the ezpected cost of a

successful search of hash file E for a single record. The ezpected cost of a simple random sample of

size one from hash table E_is C(E, 1):

b-
C(E, 1) = (;; -1) + S(E,l) (6)

ProoC: The first term, (T - 1) is the cost of the rejected buckets. It is the expectation of a.

geometric distribution with success probability equal to the average acceptance probability, b/b

minus the cost of the first page read in a successful search.

Once we have a.ccepted the bucket, S(H, 1) gives us the expected search cost within the bucket.

It is equal to the expected cost of a. successful search because a.ccepted records have been chosen

,-s a.t random (uniformly) from the entire file. 0

Corollary 1 The expected cost of iterative sampling of size 1 from separate overflow hash files is:

- b-
Csol(E,1) = (;; -1) + Ssol(E, 1) (7)

9

where Ssor(H, 1) is the expected cost a successful search of a hash file with separate overflow chain

ing:
_ 00 d· (k _ 1)d* _

Ssor(H,1)=1+(1/b)I:k?: 2 +jP(kcI"+j,b)
k=1 1=1

(8)

where P(i, A) is the Poisson distribution:

(9)

Proof: Result follows from Theorem 1 and from the derivation of S(H) given by (Lar82]. Note

that our notation differs from Larson. 0

5 Linear Hashing

In this section we consider sampling from Linear Hash files [Lit80]. We first give a brief overview

of the method. Linear hash files are based on static separately chained overflow hash files. Initially

the file has m buckets in the primary area numbered from 0 to m - 1. For simplicity, assume that

a key k is hashed into a bucket using the hashing function hiCk) = k mod m. As the loading of the

file increases we gradually split buckets in order from bucket 0 to m - 1. The decision whether to

perform. a split is based on a split criterion set by the designer which is evaluated after each key

insertion. Splitting of buckets continues as long as the split criterion is true. An example of such

a split criterion is "maximum length of an overftow chain exceeds 3 pages".

Now we describe a single split operation. The split pointer P initially points to bucket 0 and is

incremented by 1 after every split so that it always points at the next bucket to be split. The split

operation of bucket i consists of creating a new bucket numbered i + m (appending it to the end of

the file) and rehashing all the records in the original bucket i into either bucket i or i + m using a

new hash function h'l(k) = k mod (2m). When ill the original buckets have been split, the file has

doubled in size. After each doubling of the file, the pointer P is reset to point at bucket 0 and the,

two hashing functions used are set to: hiCk) = k mod (2j m) and h2(k) = k mod (2j +im), where j

is the number of file doublings which have occurred.

This naturally leads us to model a Linear Hash file as two distinct separate overflow chain

hash files, H~ and Hu where H~ is comprised of the split buckets, and Hu comprised of the unsplit

buckets. These two hash files differ in the number of buckets, and the average bucket loading. Let

m. and mu denote the number of buckets in H~ and Hu respectively and let n~ and nu denote the

number of records in these two files. See Figure 2.

10

..

H
~ _-s-
012 3

p
H

_~ ... -U-

6000

o
••

H
_ ~~ So- - - - - ~
m-l I m m+ 1 m+2 m+3

6:6000

I

A linear hash file. with in which the first 4 buckets have been split
The dashed arrows ind1cate the bucket region of each subfile

Figure 2: Drawing of Linear Hash File

We have two ways of sampling from the linear hash file. In the l-file method we treat the entire

hash file as a single variably blocked file. In the 2-file method we sample from the two subfiles, H.

and Hu separately, taking a.dvantage of their different structure.

5.1 One-file Method

The l-file method is essentially ARHASH algorithm for variably blocked files applied to hash

buckets. Upon accepting a bucket, we must select a single record from the bucket a.t random. This

may entail a.dditional accesses to overflow pages. As for ARHASH, the 1-file method requires that

we maintain b*, the maximum bucket occupancy.

Theorem 2 The expected cost of iterati~e sampling a sample of size 1 from a Linear Hash file

using the one-file method is:

b* flu n
CLHl1 (H, 1) = (-b - 1) + (-)SsoI(Hu , 1) + (...!.)Ssor(Hs, 1)

n n
(10)

where Ssor(H,l) is the expected cost of a successful search of a hash file with separate overflow

chains, given in Equation 8.

11

Proof: The first term (1' - 1) is simply the expected number of rejected buckets. The second

and third terms are the weighted a.verage of the cost of searching in the split and unsplit hash files

for accepted records. 0

5.2 Two-file Method

The 2-file method requires that we maintain the counters n. and nu , m the number of buckets,

b • • , the maximum bucket occupancy of split buckets, bu • , the maximum bucket occupancy of unsplit

buckets, and finally the pointer P whose value partitions the split and unsplit buckets and hence

determines m. and mu •

To obtain a sample of size 1 with the iterative 2-file method we randomly choose one of the files

H. or Hu with probability z;:. and ~ respectively, and then proceed to sample from that file.

Theorem 3 The ezpected cost of iterative sampling a sample of size 1, from a Linear Hash file

using the two-file method is:

(11)

Proof: The cost is a weighted average of the cost of sampling from the split and unsplit sub-files,

where the weights are the probability of choosing the corresponding subfile. Thus, the first term is

the probability of selecting the sub-file of unsplit buckets times the cost of iteratively sampling from

a separate overflow chained hash file with corresponding number of blocks equal to the number of

unsplit buckets, and population equal to the number of records in the unsplit portion of the file.

The second term accounts for the sub-file of unsplit buckets. 0

Substituting for CSOI from Corollary 1 yields:

(12)

(13)

Theorem 4 The expected cost of iterative sampling a linear hash file with the 2-file method is

always less than or equal to the expected cost of sampling with the l-file method.

CLHI1 (H, 1) ?! CLHI,(H, 1) (14)

Proof: Subtracting the two cost formulae gives:

CLHI
1

_ CLHh = (~) _ (nu bu· +.!:! b ••)
b n bu n b.

(15)

12

..

,.

..,
I

,~'

Substituting bu = nu/mv., r. = n./m., b = n/m,

C (
m (mubu* m.b.*)) *

CLHI - LH] = -- --+-- b
1 2 n nb* nb*

Since bu */b* ~ 1 and b. */b· ~ 1 we have the following bound:

Q.E.D. 0,

C C (mn - (mu +n,m lJ») b· LH!l - LH!, ~

~ (min - mln)b*

~ 0

(16)

(17)

(18)

(19)

(20)

As we have seen, the difference in performance of the 1-file and 2-file methods arises from

excessive rejections by the 1-file method due to large difference in the bucket occupancy between

the two files.

6 Extendible Hashing

In. this section we consider Extendible Hash (EX) tables as described by Fagin, et al. in

[FNPS79]. In order to make this presentation self-contained we provide here a brief overview of the

method while introducing our notation for the parameters which are relevant for sampling.

An Extendible Hash file consists of data pages in which the records are stored, and a directory

D which is an array of pointers such that each entry Dfj] contains a pointer to a data page, which

we denote as Pi' Since more than one directory entry may point to a data page, the data page may

have multiple names in our notation. Depending on its size, the directory may be either memory or

disk resident. The size of D is con trolled by a parameter called directory depth denoted by dd which

is set initially by the designer to some value and is incremented (or decremented) dynamically as

the file grows or shrinks. The number of entries in the directory D is set to 2dd. A record is inserted

(and searched) by applying a hash function h to its key k such that h(k) is a number between 0

and 2dd - 1 and then following the pointer in D(h(k)] to the required page.

Each da.ta page Pi (Le., page pointed at by directory entry D[i]) contains in addition to its

records two counters, di and pdi. The first counts how ma.ny records reside on the page and the

13

second is called page depth and its significance will be explained below. Initially when the file is

empty, all directory entries point to a single empty page in which both these counters are set to O.

When page Pi becomes full it is split by moving some of its keys to a newly created page called

its twin page. The idea is to always keep on the same page all the records with keys k which agree

on their first (most significant) pel; binary digits in h(k). For this reason, each time a page Pi is

split, the value of IJdt is incremented by 1 and this new value is also a.ssigned a.s the page depth of

the twin page. The records moved to the twin page are exactly those whose key k has a 1 in the

IJdt'th most significant binary digit of h(k).

This movement of records must also be refiected in the directory D so that exactly half of the

directory entries containing pointers to page Pi a.re set to point to the twin page. These are all D[%]

pointing to page Pi (D[%] = D[iD such that the pdlth binary digit of % is equal. to l.

As the file become more hea.vily loaded the data. pages a.re repeatedly split so that eventually

da.ta. pages are pointed at by a. single directory entry. When such a page overflows, we are forced

to double the size of the directory. This is done by incrementing dd (directory depth) a.n.d splitting

each previous entry into two entries by copying the pointer in it to both copies.

For the purpose of sa.mpling we a.re interested in one additional qua.n.tity, namely, the number

of entries which point at page Pi. We denote this quantity by gi. The value of gi can be ea.sily

computed from the previously defined counters as follows:

(21)

The reason for this is that initially gi = 2dd , and each time a page is split its page depth is increased

by 1 and the number of entries pointing at it is reduced by a half.

When we sa.mple from Extendible Hash files we need to access data. pages via the directory D

and therefore always start by picking a random directory entry DU]. For simplicity we will assume

here that the directory is in memory, otherwise our costs have to be adjusted for disk accesses to

the directory.

We now examine two ways of proceeding with acceptance/rejection sampling: double A/R page

sampling, a.n.d A/R cell sampling.

6.1 Double AIR page sampling

As mentioned above, we start by picking a random directory entry Dfj]. As usual, we want to

sample from a page Pi with probability proportional. to the number of records on it, dj. However,

14

-,

-,

as we noted earlier, a single page may be pointed at by many directory entries so that we would

oversample from pages which are pointed at by many entries. For that reason we accept a page Pi

with probability proportional to dj but inversely proportional to 9i (the number of directory cells

which point at it). We therefore accept page Pi with probability Ctj:

(do /go) Ct°- , ,
, - (dj/9ir

(22)

The denominator is the maximum. of the ratio in the numerator taken over all pages, it appears

in this expression to assure that Cti is a probability, Le., Ctj ~ 1. If the page Pj is accepted, then

sample ANY record on that page at random.

Lemma 3 Let CEXTIDP(H, 1) = ezpected cost 0/ sampling one record from ane%tensible hash file

with double AIR page sampling.

CEXTIDP(H,1) = (E[Ctj])-l (23)

Proof: This result follows from Lemma 1. Note that to determine dj we must retrieve the data

page, since we assume no modification to directory. 0 Note that we take the expectation with

respect to j, the directory entry index,i.e., this expectation is the sum. of the quantities Ctj each

weighted by the fraction of the directory entries pointing at page Pj.

6.2 AIR cell sampling

Here we view the directory D as an open addressing hash table with 2d4 buckets. Each bucket

corresponds to an directory entry. Let us denote by Cj the number of records which hash into

directory entry D(j]. As before, we randomly pick a directory entry D(j] and accept the page it is

pointing at with probability Pj:

(24)

If the page is accepted, then sample at random one record on the data page which hashed into

D(j]. This is easily determined from the binary representation of the keys on the page.

Lemma 4 Let CEXTICS(H, 1) = ezpected cost 0/ sampling one record from an extensible hash file

with AIR cell sampling.

CEXTICS(H, 1) = (E[/3j])-1 (25)

15

D
dd-:S

P%- 2 " 0 17 ~"

- 1 5

2 5

:s 21

4 4

5 20

6 5

7 15

Extendible hashing with maximum page capacity 26.

Dashed arrows snow the cell and page selected In the example

Figure 3: Drawing of Extendible HaSh File

. Proof: This result follows from Lemma 1. Note again that to determine Cj we must retrieve the

data page, since we assume no modification to directory. 0

As an e.-cample, consider Figure 3. The numbers in the directory entries indicate the number

of records hashed into them. The diS can be computed as the sum of the numbers in the entries

pointing at them. In. this case c· = 21 and (c4/ 9it is 13. If entry 1 is randomly selected, its page

will be accepted with probability 11/13 according to double A/R page sampling but only with

probability 5/21 according to the cell A/R method.

Theorem 5 The cost of double AIR page sampling is always 1e38 than or equal to the cost of AIR

sampling.

Proof: Observe that

CEXTIDP(H, 1) ~ CEXTICS(H, 1)

di = I: Cj

vi,D[ll=D(]l

d'" = m~di
J

Note that: Vj,(di/9i) ~ C., hence (di/9i)* ~ C·, Thus:

E[a.] _ E[(di/9i)]
J - (di/9ir

16

(26)

(27)

(28)

(29)

~ E[(di/gi)]
c-

E[a)'] > E[Evi,D(tl=JJ;[Ci]] = E[cil
- c· c-

ELBil = E[ci1lc·

Hence:

E[ail ~ ELBil

From the two lemmas we have:

CEXTIDP(H,l) ~ CEXTICS(H,l)

Q.E.D. 0

(30)

(31)

(32)

(33)

(34)

(35)

It follows from the above analysis (and also from our simulations) that Double A/R sampling of

Extendible Hash files will be most advantageous when the file is lightly loaded and many directory

entries point to the same page. This will occur every time the directory size doubles. As the file

becomes heavily loaded, so that each directory entry points to a distinct page both methods will

yield identical performance.

7 Batch and Sequential Algorithms

j.l Batch Algorithms

In. this subsection we consider batch sampling from hash files. Our work is based on batch

retrieval. algorithms. The basic premise is to batch accesses to secondary storage so as to avoid

rereading disk pages, as might occur with the iterative algorithms. Batch sampling can be applied

to any of the hash files discussed above. However, for expository purposes we will present batch

," sampling for open addressing hash files.

We begin our discussion by observing that because of rejections in A/R sampling, we will need

an in:fl.ated gross sample size, 8', so that after acceptance/rejection we are left with a desired net

sample size 8. We recall from our discussion of acceptance/rejection sampling, and sampling from

open addressing hash files, that the expected size of the gross sample required for a sample of size

8 is:

17

b
s' = -=-8

b
(36)

For one-pa88 batch sampling, we will see that the net sample size will be a binomial. random

variable, t '" B(s', a) where a = E[acceptance probability]. Since the resulting net sample size may

be less than the target sample size, additional. passes may be needed to increase the sample size to

the target level. For open addressing hash files, we have: a = b/b-. Hence simple batch sampling is

binomial sampling, returning a variable size sample, rather than a fixed size sample. For a simple

random sample, the sample size can be readily adjusted by either randomly discarding records,

or by augmenting the sample via additional. iterative or batch sampling (called multi-pass batch

sampling). Since we assume that the sample fits in memory, discarding excess records requires no

additional I/O. However, it is often more efficient to simply further inflate the gross sample size to

reduce the chance that the net sample size is inadequate.

Batch methods are typica.lly useful when the gross sample size 8' is a signfica.nt fraction of the

number of blocks of the file m. If 8' <: m, then there is little likelihood of rereading a page while

sampling, so there is no point in employing a batch. algorithm (it could actually be inferior).

Reca.1l that A/R sampling of open addressing hash files has 3 phases: selection of a bucket at

random, followed by an acceptance/rejection test, and finally retrieval of a sample record from the

accepted bucket. The batch algorithm has 3 similar phases:

1. Instead of selecting the buckets one at a time we do them all at once. We note that if we

randomly toss balls into urns repeatedly, the resulting occupancy distribution for the urns is

multinomial. Thus we generate a multinomial random vector x' '" M(8', m) which determines

how the gross sample is allocated among the buckets. The gross sample allocated to bucket

i is denoted as X'i.

2_ Now, instead of performing acceptance/rejection tests one at at a time, we do all of the A/R

tests for a single bucket at once. Since each. A/R test prodcues a Bernoulli random variable,

with parameter b;jb-, the sum of X'i tests will he a binomial. random variable, the number

of records accepted from bucket i. Thus for each. bucket i, we generate a binomial random

variable Yi '" B (x~, bd b-).

3. If Yi > 0 then we sample Yi records from the page, otherwise we do not read the page.

The expected cost of this sampling method is simply the expected number of elements of the

multinomial. vector x' which. are nonzero.

18

I'~

1 ~J

E(CoAB(s', m) = m(l- (1- -)))
m

(37)

Proof: This is a classical result on occupancy statistics, see [JK77, pg. 144]. This result is also

well known in the database literature [Car75] as the expected number of blocks retrieved from a

file to retrieve s' records. Note that we are sampling with replacement here. 0

We conclude our discussion of batch sampling by noting that its regime of utility for hash file

sampling is smaller that it was for B+ tree sampling [0R89], because in B+ trees we often need to

reread. pages near the root, even if data pages are being read only once for iterative sampling.

7'.2 Sequential Scan Sampling

Basically, batch sampling saves us from rereading pages while extracting the sample. In order

for it to be useful, there must be a significant probability of rereading pages, i.e., allocating more

than one element of the gross sample to the same page (bucket). However, if this probability is

substantial, then we expect to read nearly all the pages of the file.

Hence, an alternative to the batch sampling described above is to sequentially scan the file and

use a sequential sampling methods such as Vitter's [Vit85] (see below) to extract a random sample.

In this application, sequential scan sampling requires that we read every page (bucket) of the file,

in order to determine the number of records on it (and perhaps sample from them).

Simple batch sampling will typica.lly outperform sequential scan sampling. However, if our

purpose is to obtain a sample of records from a hash file which satisify some predicate of unknown

selectivity, then we may be unable to reliably estimate the gross sample size required. At this point

sequential scan (reservoir [Vit85]) sampling becomes the method of choice. Reservoir sequential

sampling methods are used for sampling from files of unknown size (here because of the unknown

predicate selectivity). They construct a reservoir of candidate elements of the sample (initially the

first elements of the file), which they randomly replace as they sequentially read the file. At all

times the reservoir contains a simple random sample without replacement. If necessary, this can

easily be converted to a simple random sample with replacement.

8 Experimental Results

In this section we present experimental results (from simulations) concerning the performance

of the various hash file sampling methods discussed above. More extensive results can be found in

19

[Xu89].

We present here simulation results concerning the sampling methods for Linear Hashing, both

iterative and batch sampling methods. We also report results for iterative sampling from Extendible

Hash files. Throughout this section we report sampling cost per element of the sample.

These results were obtained by constructing memory resident versions of the hash files, loading

them with keys having a uniform random distribution, and then randomly sampling from the data

structures. Additional records were then loaded into the data structures and the sampling repeated

with higher load factors. Thus results for various load factors were not independent experiments.

As expected the load factor for the hash files is a key performance parameter.

8.1 Linear Hashing

In Figure 4 we show the performance of iterative sampling methods from Linear Hash files. In

this experiment the we split pages whenever the bucket chain length exceeds 3 pages (counting the

primary page of the bucket as 1). The page capacity is 50 records and we have 97 pages initially in

the file. The reader can clearly see that the 2-file method provides consistent performance, and for

some file loadings substantially outperforms the I-file sampling method. Note the cyclical nature of

the I-file method performance, which reftects the cyclic variation in the fraction of the disk pages

which have been split.

In Figure 5 we show a similar experiment in which the page splitting criterion is to split pages

whenever the load factor of the primary storage area e.'{ceeds 3. This criterion produces higher

sampling costs and more variance, because it does not constrain the maximum chain length as

tightly as the first criterion. The 2-file method continues to outperform the I-file method.

8.2 Batch Sampling from Linear Hash Files

In Figures 6 and 1 we compare iterative and batch sampling from Linear Hash files via the I-file

method for the same splitting criteria shown in Figures 4 and 5. The sample size is either 3,000

or 5,000. The reader can see that batch sampling outperforms iterative sampling consistently, and

that the unit sampling cost decreases with larger sample sizes.'"

8.3 Iterative Sampling from Extendible Hash Files

In Figure 8 we compare the two methods of iteratively sampling from Extendible Hash Files:

double acceptance/rejection sampling of data pages vs. cell A/R sampling, The reader can see that

20

double A/R sampling outperforms cell A/R sampling for lightly loaded files. For heavily loaded

files, the two methods present identical performance. The loading at issue here is the loading of

cells relative to capacity of data pages.

21

4

I!J 1.file
I

• 2·fiIe

3

!!1 en

8
2

1+-----~----~--~~--~----~----~----~--~----~----~
o 100000 200000 300000 400000 500000

Number of Keys

Figure 4. The comparison of the costs of the NR sampling from I-file and. from 2-file method!
(Criterion is "chain length ~ 3, m = 97, page capacity = 50)

4~----------r---------~----------~--------~----------~

2~~--------~--------~---=~----+---------~----------~

l+---------~----~----~--------_+----~----~--~----~
o 100000 200000 300000 400000 500000

Number of Keys

Figure 5. The comparison of the costs of the NR sampling from I-fIle and from 2-file methods
(Criterion is "total number of records / capacity of primary area ~ 3", m = 97, page capacity = 50)

22

.,..

4~------------~~------------~------------~------------~

34-------------~------------~------------~----------~

1~------::~:;~~;;;;;;~::~~~::~~::::===f=r.~:m~~i:~::.~o=1
* b.u:h3K
.. b.u:hSK.

o~~--------~----------~----------~~==~=====;
o 100000 300000 400000

Number of Keys

Figum 6. The comparison of the costs of the iterative and batch AIR sampling methods
(Crirerion is "chain length ~ 3~ m = 97. page capacity = 50)

4~--------------~--------------~------------~--------------~

I!I ite:r.nve

* batch3K
.. bau:h5K

o
o 100000 200000 300000 400000

Number of Keys

Figure 7. The comparison of the costs of the iterative and the batch AIR sampling methods
(Criterion is "total number of records / capacity of primary area? 3", m = 97, page capacity = 50)

23

9 Conclusions

We have shown how to to retrieve simple random samples from various types of hash tables with

out substantially altering the underlying hash table access methods or their normal performance.

These methods are based on acceptance/rejection sampling, and provide a simple, inexpensive way

to add sampling to relational database management systems. These methods are especially suited

to systems which are only infrequently sampled, e.g., for auditing. For systems subject to heavy

sampling query loads, adding auxiliary information to existing data structures or additional indices

could improve sampling performance.

We have shown that sampling methods which exploit the structure of dynamic hash files have

better performance than naive sampling algorithms. Thus the 2-file sampling method dominates

I-file sampling method for Linear Hashing, and double A/R sampling of data pages dominates cell

A/R. sampling for Extendible Hashing. These more sophisticated sampling methods are especially

useful for lightly loaded hash files.

Batch sampling methods (which a.void rerea.ding pages) will dominate iterative methods when

the sampling fraction (of buckets) is large (~ 1), i.e., gross sample size approximates (or exceeds)

the number of buckets.

In such circumstances, sequential scan sampling (reservoir methods) will be preferred. to batch

sampling if we must also evaluate a predicate of unknown selectivity, because the predicate selec

tivity is necessary to determine the gross sample size for batch sampling.

Acknowledgements

The authors would like to thank Tekin and Meral Ozsoyoglu for their continuing encouragement.

Jack Morgenstein first introduced us to the problem.

24

6~------r-----~------~--~==~====~
.. Double AIR
• Ce11AIR

5~------~~+-----------~---------T----------~--------~

4~--------~~----------r----------+----------~--------~

34-----------~----~~--r_~------_+----------~--------~

2~--------~~------~~----------+--=~~~-4--~~~~~

14-----~----~----~----~--~~--~----~----~----------~
o 2000 4000 6000 8000 10000

Number of Keys

Figure 8. Extendible hashing (node capacity = 20. directory size = 1024)

25

References

[Ark84] Herbert Arkin. Handbook of Sampling for Auditing and Accounting. McGraw-Hill,1984.

[Car75] A.F. Cardenas. Ana.l.ysis a.nd performance of inverted database structures. Communica

tions of the ACM, 18(5):253-263, May 1975.

[Coc77] William G. Cochran. Sampling Techniques. Wuey, 1977.

[Den80] Dorothy E. Denning. Secure statistica.l. databases· with random sample queries. A CM

Transactions on Database Systems, 5(3):291-35, Sept. 1980.

[FNPS79] R. Fagin, J. Nievergelt, N. Pippenger, and H.R. Strong. Extendible hashing - a fast

access method for dynamic files. ACM Transa~ions on Database Systems, 4(3):315-

344, Sept. 1979.

[HOT88] Wen-Chi Hou, Gultekin Ozsoyoglu, and Ba.l.deo K. Taneja. Statistica.l. estimators for rela.

tional a.l.gebra expressions. In Proceedings of the Seventh ACM Conference on Principles

of Database Systems, pages 288-293, March 1988.

[HOT89] Wen-Chi Hou, Gultekin Ozsoyoglu, and Baldeo K. Taneja. Processing aggregate rela

tional queries with hard time constraints. In ACM SIGMOn International Conference

on the Management of Data, pages 68-77, June 1989.

[JK77] Norman L. Johnson a.nd Samuel Kotz. Urn Models and Their Application. John Wuey

and Sons, 1977.

(Knu73] Donald Ervin Knuth. The Art of Computer Programming: Vol. 3, Sorting and Searching.

Addison-·Wesley, 1973.

[Lar82] Per-Ake Larson. Performance ana.l.ysis of linear hashing with partia.l. expansions. ACM

Transactions on Database Systems, 7(4):566-587, Dec. 1982.

[LitSO]

[LN89]

W. Litwin. Linear hashing: a new tool for file and table addr~sing. In Proceedings of

the Sixth International Conference on Very Large Databases (VLDB), pages 212-223,

1980.

Richard J. Lipton and Jeffrey F. Naughton. Estimating the size of genera.l.ized transitive

closures. In Proceedings of the 15th International Conference on Very Large Databases

(VLDB), pages 165-171, August 1989.

26

[LTA79] Donald A. Leslie, Albert D. Teitlebaum, and Rodney J. Anderson. Dollar Unit Sampling.

Copp Clark Pitmanan, 1979.

[Lu871 Hongjun Lu. New strategies forcomputing the transitive closure of a database relation.

In Proceedings of the 13th International Conference on Very Large Databases (VLDB),

pages 267-274, September 1981.

[LWW841 H.-J. Lenz, G.B. Wetherill, and P.-Th. Wilrich, editors. Frontiers in Statistical Quality

Control 2. Physic~ Verlag, Wurzburg, Germany, 1984.

[Mon85] Douglas C. Montogmery. Introduction to Statistical Quality ControL WIley, 1985.

[Mor80] Jacob Morgenstein. Computer Based Management Information Systems Embodying An

stoer Accuracy as a User Parameter. PhD thesis, U niv. of California, Berkeley, December

1980.

[0R.86] Frank OIken and Doron Rotem. Simple random sampling from relational databases. In

Proceedings of the Twelfth International Conference on Very Large Databases (VLDB),

pages 160-169, August 1986.

[0R.891 Frank OIken and Doron Rotem. Random sampling from b+ trees. In Proceedings of the

15th International Conference on Very Large Databases (VLDB), August 1989.

[Vit851 Jeffrey Scott Vitter. Random sampling with a reservoir. AG.,\;f Transactions on Mathe

matical Software, 11(1):37-57, March 1985.

[WIl841 Dan Willard. Sampling algorithms for differential batch retrieval problems (extended

abstract). In Proceedings ICALP-84. Springer-Verlag, 1984.

[Xu89] Ping Xu. Sampling from b+ trees and hash files. M.s. thesis, San Francisco State Univ.,

1989.

27

.~~

LA~NCEBERKELEYLABORATORY

UNIVERSITY OF CALIFORNIA
INFORMATION RESOURCES DEPARTMENT

BERKELEY, CALIFORNIA 94720

-~----;:..

