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ABSTRACf 

The mechanical stiffness and hydraulic conductivity of simulated fractures are 

studied as a function of normal stress. Simulated fractures are created by discretizing 

the fracture plane into a square array, and randomly assigning an aperture to each 

square according to some statistical law. The mechanical deformation of the fracture 

is computed with a three-dimensional elastostatic boundary element method, while the 

fluid flow problem is reduced to a two-dimensional Laplace equation, which is also 

solved with a boundary element method. This method allows a study of the effect of 

various statistical parameters of the aperture distribution on the hydromechanical pro-

Ii perties of fractures. 

To be presented at the ISRM International Conference on Rock Joints, Loen, Norway, 

4-6 June 1990 
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1. INTRODUCTION 

The hydraulic and mechanical behavior of a rock fracture or joint is strongly 

dependent on the geometry of the void space. Although fractures are usually con

sidered to be nominally planar features, they actually consist of isolated asperity 

regions where the two rock surfaces are in contact, surrounded by regions where the 

two surfaces are separated by an aperture, h. Although they are sometimes modeled as 

being circular (Walsh 1981) or elliptical (Chen et al. 1989), the asperity regions of real 

fractures are usually irregular in shape (Hopkins et al. 1987). And while the aperture 

is often assumed to be constant from point to point, it in fact typically varies in an 

irregular manner. We can consider a rock fracture to be composed of two irregular 

surfaces in partial contact (Brown & Scholz 1985). 

When fluid flows through such a fracture, it flows through those channels that 

have the largest apertures, and around the contact areas. Hydraulic conductance is 

locally proportional to the cube of the aperture (Brown 1987), so the permeability 

depends on the amount of contact area, the spatial distribution of the contact areas, as 

well as the aperture height (Chen et al. 1989). All of these parameters are, in turn, 

functions of the stress to which the fracture is subjected. As the normal stress acting 

on a fracture increases, the apertures will decrease. In some parts of the fracture, this 

deformation will be large enough that new contact areas are created (Tsang & Wither

spoon 1981). Both of these effects, the decrease of the aperture and the creation of 

new contact area, will cause the permeability to decrease. 

The mechanical stiffness of a fracture also depends on the geometry of the frac

ture, as well as on the mechanical properties of the intact rock. It is to be expected 

that the stiffness will increase as the area of contact increases, since a fracture without 

any contact regions would possess no stiffness whatsoever. It is also true, although it is 

perhaps not obvious, that the stiffness will depend on the size and shape of the contact 

areas, aside from its dependence on the amount of contact area (Hopkins et al. 1987). 

For any given distribution of contact areas, the stiffness does not depend explicitly on 

the aperture; this is analogous to the fact that, to a very high approximation, the 

increase in the compressibility of a rock due to a penny-shaped crack is independent of 

the aperture of the crack (Zimmerman et al. 1986). However, the aperture does deter

mine the rate at which new contact area is created under the application of a normal 
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load. Hence, the stress-dependence of stiffness will be strongly influenced by the dis

tribution of apertures. 

We have attempted to model the phenomena described above, using boundary ele

ment methods (Brebbia 1978; Crouch & Starfield 1983). These are a class of numeri

cal methods in which numerical discretization and calculation is needed only along the 

boundary of the region of interest. This reduces the dimensionality of the problem by 

one, thereby allowing a great reduction in the size of the matrix equations that must be 

solved. The stiffness of the fracture is modeled in terms of the deformation of a half-

space that is subjected to normal loads across the "contact areas". This necessitates 

the solution of the full three-dimensional equations of elasticity for the infinite half

space. The flow problem should in principle be modeled by the three-dimensional 

Navier-Stokes equations for incompressible viscous flow. However, since the full 

Navier-Stokes equations are difficult and time-consuming to solve, we have modeled 

the fluid flow problem in the fractures with the lower-order Laplace equation, which 

neglects velocity components normal to the fracture plane. (This replacement pro

cedure will be described in more detail below.) The advantage of our approach is that 

both the mechanical deformation and permeability of a fracture can be studied using 

the same fracture geometry for both problems. In this way we are able to study the 

effect of the aperture distribution, and the distribution of contact areas, on both 

stiffness and permeability (cf., Barton et al. 1985; Pyrak-Nolte et al. 1987). 

2. FORMULATION OF THE STIFFNESS PROBLEM 

For the purposes of finding the normal stiffness of the fracture, we assume that 

the fracture is composed of two symmetric rough surfaces in contact. Because of sym

metry, we need only to solve the equations of elastic equilibrium in one of the semi

infinite half-spaces that are bounded by the fracture. If the amplitude of the roughness 

is small enough, the boundary conditions on the half-space can be ass.umed to act 

along the nominally flat "plane" of the fracture. In the absence of body forces, the 

equations of elastic equilibrium are (Sokolnikoff 1956) 

(1- 2v)V211(x,y,z) + V:Vll(x,y,z) = 0 , (1) 
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where the plane z = 0 is the fracture plane, and v is Poisson's ratio. The stresses and 

displacements are assumed to vanish as x2 + y2 ~ 00. Along the z = 0 boundary, the 

proper boundary conditions depend on whether or not the point (x,y,O) is a region of 

contact between the two faces of the fracture. If the faces are in contact, we use the 

conditions that 

O'zx = O'zy = 0, uz=O. (2) 

The no-shear boundary conditions assume that the rock faces are frictionless; the cal

culations can also be carried out under the "opposite" assumption, which is that no 

shear displacements are allowed, i.e., Ux = uy = O. At points where the faces are not in 

contact, the boundary conditions are 

(3) 

where T zz is the normal traction. 

The basic ingredient in the boundary element method that we use to solve eqs. 

(1-3) is the "displacement discontinuity" source. This is a "point source" that 

represents a discontinuity Di in the displacements, across the plane z = 0, i.e., 

(4) 

The components of the fundamental solution that corresponds to displacement discon

tinuities in the three orthogonal directions have been found by Rongved (1957), but are 

too lengthy to be reprinted here. These solutions give the displacements and stresses at 

an arbitrary point (~,",~), due to a displacement discontinuity at a point (x,y,z). 

In order to solve the elasticity equations using the boundary element method, we 

first discretize the z = 0 plane into a rectangular grid of M x N square elements. Each 

element is assumed to be small enough so that the normal stress O'zz can be assumed 

constant across it. A point source of displacement discontinuity, with unknown magni

tude, is then assumed to act at the center of each element. If we write down the 

.... 
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displacements and stresses at each element along the boundary, in tenns of the unk

nown magnitudes of these point sources, we arrive at a set of 3 x M x N linear equa

tions, which can be solved numerically. Once the magnitudes of the sources are 

found, we can calculate the displacement of the fracture walls . 

3. FORMULATION OF THE FLOW PROBLEM 

The flow of a Newtonian fluid through a rock fracture is governed by the 

Navier-Stokes equations of fluid mechanics (Batchelor 1967). Exact solutions to these 

equations can be obtained for very simple geometries, such as the "parallel plate" 

model of a fracture (Tsang & Witherspoon 1981). For somewhat more realistic 

geometries, such as two smooth, parallel fracture walls propped open by circular 

columns that are intended to represent the asperities, approximate solutions of the 

Navier-Stokes equations are feasible (Kumar et °al. 1989). For models that take into 

account the irregularity of real fracture surfaces, however, analytic solutions are not 

obtainable. Unfortunately, numerical solution of the full three-dimensional Navier

Stokes equations is far from trivial. 

In order to circumvent this difficulty, we have only perfonned flow simulations 

under the assumption that the aperture, in those regions not obstructed by asperities, is 

equal to a constant, h. We therefore sacrifice some of the effect of aperture variation, 

while still accounting for the effect of contact area and of the effect of the mean aper

ture, which still varies with stress. For this model, subject to a few other conditions, 

the Navier-Stokes equations can be reduced to a Laplace equation. One necessary 

condition for this simplification is that the flow rate must be sufficiently low, as meas

ured by the reduced Reynolds' number. Specifically, this requires that (Schlichting 

1968) 

pUh2 
Re* = < 1 , 

J.1L 
(5) 

where p is the fluid density, U is the mean velocity, I..l is the fluid viscosity, and L is 

the typical distance between asperities. Furthennore, the fracture must be "thin", in 

the sense that the aperture is small relative to other characteristic length scales in the 
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problem, such as the distance between asperities: 

h 
-<e:: 1 L . (6) 

The first condition (5) holds in most situations of geological importance, although con

dition (6) may not always be true. An analysis of the effect of a finite value of hlL, 

which leads to the consideration of viscous drag along the sides of the asperities, has 

been given by Kumar et al. (1989). 

If there were no asperities to obstruct the flow, the velocity profile for flow 

between smooth parallel walls would be parabolic. The velocity vector would be paral

lel to the pressure gradient, although pointing in the opposite direction, since fluid 

flows in the direction of decreasing pressure. This situation leads to the well-known 

result Q = h3 1VPI112J.L (Schlichting 1968), often known as the "cubic law". The pres

ence of the asperities, however, causes the fluid to follow a tortuous path, and the 

above-discussed solution will not hold. If conditions (5) and (6) are met, we then 

make the assumption that the the velocity profile is still parabolic and proportional to 

the pressure gradient, but that the magnitude and direction of the pressure gradient 

may vary from point to point: 

-VP u= ~z(z-h), (7) 

where z is measured from the bottom face of the fracture. If this velocity distribution 

is integrated across the thickness of the flow channel, we find that the cubic law 

Q = h3 1VPI/12J.L holds locally at each point. 

Both the pressure gradient and the velocity vector will vary from point to point in 

the plane of the fracture, the x-y plane. If the velocity profile (7) is plugged into the 

full Navier-Stokes equations, and use is made of conditions (5) and (6), the result is 

that the pressure field must satisfy Laplace's equation (Schlichting 1968): 

(8) 
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This equation must be satisfied throughout those portions of the x-y plane that are not 

occupied by contact area. Boundary conditions must be prescribed along the entire 

boundary of the flow field, which includes the outer boundaries as well as the boun

daries of the contact areas. The outer boundary will typically consist of a combination 

of regions of constant pressure, and impermeable regions, along which the normal 

component of the velocity must vanish. Since the velocity is proportional to the gra

dient of the pressure, the normal derivative of the pressure must vanish along these 

portions of the boundary,' i.e., aP/an = 0, where n is the outward unit normal to the 

boundary, in the x-y plane. Since fluid cannot penetrate into the contact areas, the 

boundaries of the contact areas are also no-flow boundaries. 

The boundary element solution to the flow problem utilizes the fundamental solu

tion to Laplace's equation in two dimensions, which is (Brebbia 1978) 

(9) 

where G(x,y;~;rl) is the potential at (x,y) due to a point source at (~,Tt). The principal 

idea behind the boundary element method is that the solution throughout the flow 

region can be written in terms of point sources of variable magnitUde, distributed along 

the boundary of the flow region. If the boundary is discretized into a finite number of 

elements, and the potential is assumed to be constant over each element, this leads to a 

finite number of algebraic equations for the magnitudes of the point sources. A 

schematic diagram of a typical flow region, containing two contact regions, is shown 

in Fig. 1. Both the external and internal boundaries are discretized. In our calcula

tions, we take the fracture to occupy a square region in the x-y plane, with two oppos-

ing faces being boundaries of constant pressure. The pressure difference between 

,-.I these two faces can be taken as being of unit magnitude. The two other opposing 

faces are taken to be no-flow boundaries. After solving for the pressure field 

throughout the flow region, the flux out of the flow region is found by calculating 

aP/an along one of the constant-pressure boundaries, and summing the contribution 

from each element. Note that while the elasticity equations were solved in the three

dimensional region bounded by the fracture "plane", the flow equations are solved in 

the two-dimensional region of the fracture plane; hence different discretizations must 
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. be used for the two problems. 

4. METHOD OF ANALYSIS 

We start our analysis by first generating an aperture distribution, which represents 

the fracture under zero normal load. These distributions can be quantified by c, the 

amount of contact area, h, the mean aperture, cr, the standard deviation of the distribu

tions of apertures, and A, which measures the correlation between contact area and 

open area (Coakley 1989). Larger values of A. correspond to more "dispersed" con

tact areas, while smaller values of A. correspond to contact areas that are more "com

pact" . The hydraulic conductivity of the fracture is computed by the boundary ele

ment method, assuming that the aperture is everywhere equal to h. An increment of 

normal stress is then applied to the fracture, and its deformation is calculated by the 

elastostatic boundary element method. In those regions where the fracture is open, the 

two faces of the fracture move closer together, in some locations the aperture merely 

decreases, while at other points the deformation may be large enough to create new 

contact area. After this deformation is found, the contact area and the average aperture 

are recalculated. The permeability of the new fracture geometry is then calculated, and 

the process is continued. We thereby generate a relationship between normal stress, 

the amount of contact area, the average aperture, the normal stiffness, and the permea

bility. Since each calculation with specified statistical parameters represents one reali

. zation of a stochastic process, the procedure is repeated for a number of realizations, in 

order to arrive at statistically meaningful properties. 

s. RESULTS 

To illustrate the sort of results that we find with our method, we will examine in 

detail the stiffness and permeability found for two particular realizations of a simulated 

fracture. Two such sets of results will be sufficient to illustrate which properties 

display a strong "sample-to-sample" variance, and which do not. The initial contact 

area of these two fractures at zero load is 5%, their mean aperture is 10 Jlm, and the 

standard deviation of their apertures is 4.756 Jlm. The A. parameter is taken to be 0.75. 

At zero stress, the contact area for one of the realizations appears as in Fig. 2, which 

is to say as a few isolated, slightly irregular patches. As the normal load on the frac

ture is increased, the percentage of contact area increases at a nearly linear rate (see 
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Figs. 2 and 3). As is typical of a real fracture, the average joint closure increases with 

stress, but at a continually decreasing rate (Fig. 4). In other words, the fracture 

becomes stiffer as the stress increases. This is shown in Fig. 5, where the fracture 

stiffness is plotted as a function of the normal stress. 

As mentioned above, the flow calculations are carried out using the simplification 

that the aperture is everywhere equal to its average value, ii. This assumption creates 

an error whose magnitude is difficult to estimate; simulations aimed at bounding this 

error are currently underway. Since the flow rate, under a fixed pressure gradient, is 

proportional to the cube of ii, and since ii decreases rapidly with stress (Fig. 4), we 

expect that the flow rate will drop off rapidly with stress. This is verified in Fig. 6, 

which shows the flow rate initially dropping off at a rate roughly proportional to the 

3rd power of the stress, and then dropping off more rapidly after the stress reaches 

some "critical" value. This rapid falloff may correspond to the percolation limit, at 

which a connected open pathway for fluid flow no longer exists. Another instructive 

way to look at the results is as in Fig. 7, which shows the flow rate, normalized to its 

zero":stress value, plotted as a function of the average aperture. Note that as the stress 

increases, the flowrate falls below that which would be predicted by the cubic law. 

This reflects the "tortuosity" effect, in which the fluid is forced to flow around the 

closed-off asperity regions. As described by the models of Walsh (1981) and Chen et 

al. (1989), the tortuosity is an increasing function of contact area, hence it is to be 

expected that the tortuosity will increase as the stress increases. 

For the same set of statistical parameters, there is of course some variation in the 

calculated properties of the fracture, between different realizations. Fractures with 

different initial aperture distributions, but the same mean, standard deviation, and ini

tial contact area, tend to have very nearly the same mechanical behavior (see Figs. 3-

5). The hydraulic properties, on the other hand, show much more variability (Figs. 

;,\ 6,7). At stresses below about 30 MPa, the permeability-pressure curves for the 

different realizations lie close together. However, the pressure above which the per

meability drops off rapidly to zero varies from about 40 MPa to 70 MPa between the 

different fracture realizations. 

The hydromechanical behavior of the fractures also depends on the statistical 

parameter A.. Recall that larger values of A. correspond to contact areas that are more 
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dispersed, while smaller values of A correspond to more compact regions of contact. 

For a given amount of contact area, the stiffness is an increasing function of A, 

reflecting the fact that, for example, two separate contact areas of 1 mm2 will be 

"stiffer" than one contact region of 2 mm2, which is certainly plausible. The effect of 

A on the flow properties is more complicated, and implicit, since the distribution of 

aperture directly affects the mechanical closure of the fracture, which in tum explicitly 

determines the permeability. Detailed examples of the effect of A on the 

hydromechanical properties can be found in the thesis by Chen (1990). 

6. CONCLUSIONS 

Boundary element methods have been used to study the deformation and permea

bility of simulated fractures as a function of normal stress. The fractures are statisti

cally characterized by their initial mean aperture, aperture standard deviation, and a 

parameter that quantifies the compactness of the contact regions. Many of the observed 

features of real rock fracture behavior are reproduced by these simulations. The 

stiffness of the fractures drops off asymptotically as the stress is increased, while the 

contact area increases at a nearly linear rate. At low stresses, the permeability drops 

off at a rate proportional to the third power of the normal stress (cf., Walsh 1981). At 

some critical stress, typically on the order of 30-70 MPa, the percolation limit is 

reached, at which a connected pathway for fluid flow no longer exists, and the permea

bility drops precipitously. For given values of the statistical parameters that character

ize the fracture, the critical stress is the only property that exhibits a strong sample-to

sample variation. The possibility now exists of simulating the mechanical and 

hydraulic behavior of real fractures, based on measured aperture distributions. and 

comparing the predictions with experimental results. 
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No Flow No Flow 

v2p=o 

,) Fig. 1. Schematic diagram of flow region, showing two asperities, the constant

pressure and no-flow boundary conditions, and the boundary discretization. 
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Fig. 2. Contact area (in black) as a function of nonna! stress. Note the lack of a con

nected (top-to-bottom) flow path at 60 MPa. 
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Fig. 3. Percent contact area as a function of nonnal stress, for two different realiza
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Fig. 4. Joint closure as a function of nonnal stress, for two different realizations. 
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Fig. 6. Flow rate under a unit pressure gradient, as a function of normal stress, 
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Fig. 7. Permeability as a function of mean aperture for two realizations, and com

parison with the "cubic law". 
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