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A NEW FORMULATION FOR ONE-DIMENSIONAL HORIZONTAL 
IMBmITION IN UNSATURATED POROUS MEDIA 

Z.-X. Chen*, R. W. Zimmerman, G. S. Bodvarsson 
and P. A. Witherspoon 

Earth Sciences Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, CA 94720 

ABSTRACT 

A formulation for one-dimensional horizontal imbibition in unsaturated porous 

media is developed using a new concept of a relative imbibition rate function. An 

exact semi-analytical solution is obtained and analyzed in the Buckley-Leverett style 

but with the effect of capillary pressure included. In the formulation, the problem is 

reduced to an integral equation that is easily solved by a rapidly-converging iteration 

process. This method has some distinct advantages over the existing methods in its 

generality and simplicity. Examples for the horizontal imbibition of water are dis

cussed using the van Genuchten equations for relative permeability and capillary pres-

sure. 

tpennanent pesitia! 81 the Research Institute of Petroleum Exploration and Development, Beijing. OUna 
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1. INTRODUCTION 

Infiltration of water into an unsaturated porous medium has traditionally been 

described by Richards' equation. Richards [1931] developed this equation by assuming 

that, as infiltration takes place, pressure in the air phase remains constant. For the 

one-dimensional, horizontal case, the Richards equation reduces to a nonlinear 

diffusion equation. This equation is also applicable to the early stages of vertical 

infiltration where the gravitational forces are negligible compared to the capillary 

forces. As Philip [1969] has pointed out, solutions for horizontal imbibition are also 

important because they provide a basis for developing a solution to the more general 

problem of infiltration under the influence of gravity. 

The nonlinear diffusion equation that describes the process of horizontal imbibi

tion c3f1 be solved using the Boltzmann [1894] transformation to obtain a self-similar 

solution. Klute [1952a, 1952b] has used this approach to obtain numerical solutions, 

and Philip [1955, 1957a] has extended this process somewhat by converting the result

ing ordinary differential equation to obtain an integro-differential equation that can be 

solved iteratively and numerically. Philip's method is more rapid and yields more 

accurate answers. In analyzing the mechanism of capillary imbibition in porous media, 

Rizhik [1959; in Barenblatt et al., 1972] solved the same self-similar problem semi

analytically and numerically. An important contribution of their work was the obser

vation that if the initial saturation of the wetting phase is less than or equal to the 

irreducible saturation for this phase, then there will be a clearly defined wetting front 
• 

that travels at a finite velocity. An analytical solution has been proposed by Philip 

[1960a, 1960b] but with the limitation that the characteristic curves for the imbibition 

process must be represented by a series of inverse error functions. 

In this paper, a new formulation and a semi-analytic exact solution for one

dimensional, horizontal imbibition of water into unsaturated media is obtained by 

means of an adaptation of a procedure that was first proposed by McWhorter [1971]. 
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This new solution is valid for any uniform initial water saturation and any shape for 

the characteristic curves. The computational effort only requires numerical integration 

of definite integrals and some iteration procedures . 

2. SELF·SIMILAR PROBLEM OF HORIZONTAL IMBmITION 

Consider a linear porous medium of length L that initially is only partially 

saturated with water. Water is placed in contact with the porous medium at its inlet, 

x=O. Under the action of the capillary forces, water will start to imbibe into the unsa

turated porous medium, displacing air. 

Isothermal flow of water can be described by the generalized Darcy's law 

[Muskat and Meres, 1936]: 

(1) 

in which Sw is the water saturation, Uw is the water velocity, and ~w is the relative 

permeability of the medium to water. The continuity equation for water is 

(2) 

where <I> is the porosity. At the interface between water and air, there exists a capillary 

pressure difference that can be expressed as a function of water saturation, Sw, i.e., 

(3) 

Assuming that the air viscosity is vanishingly small, the pressure in the air phase 

remains constant and equals Po, which is the pressure at the inlet where x = O. Then: 
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(4) 

Substitution of Equation (4) into Equation (1) gives: 

(5) 

where, 

Substituting Equation (5) into Equation (2), we obtain: 

(6) 

which is the Richards equation traditionally used to describe the process of imbibition 

into a one-dimensional, horizontal porous medium. 

Equation (6) is a nonlinear diffusion-type equation, and in general, is very 

difficult to solve in closed-form. However, under certain conditions, some self-similar 

solutions are obtainable. To develop a self-similar problem, let the length of the flow 

column L extend to infinity and consider the case where the system is initially . 
saturated with a uniform water saturation, Swi. This initial saturation may be above or 

below the irreducible water saturation, Siw. Then the initial and boundary conditions 

become: 

(7a) 
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where S; satisfies the condition Pc(S;) = O. 

We now introduce the Boltzmann transformation: 

x 
~=-

1t 

(7b) 

(7c) 

(8) 

In terms of this new variable, the partial differential equation (6), is transformed into 

the following ordinary differential equation: 

(9) 

and the initial and boundary conditions in Equations (7a, 7b, 7c) transform to: 

(lOa) 

(lOb) 

The self-similar problem given by Equations (9), (lOa), and (lOb) has been solved 

by Klute [1952a, 1952b], Philip [1955, 1960], Rizhik [1959; in Barenblatt et al., 1972]. 

In particular, Rizhik solved this problem semi-analytically for the case of Sw~Siw using 

an important finding by Barenblatt [1952]. He showed that for such nonlinear ordinary 

differential equations, the velocity of the propagating front is finite when Sw ~ Siw' 
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This implies that the self-similar solution for the case of SwSSiw not only applies to a 

system of infinite length but also to a finite length system as long as the front has not 

reached the end, x = L. 

In the next section, we shall formulate the self-similar problem using an integral 

equation and develop an exact semi-analytical solution in the Buckley-Leverett [1942] 

style but with capillary pressure effect included. The new formulation and solution are 

obtained using an adaptation of a procedure that was first proposed by McWhorter 

[1971]. 

3. INTEGRAL EQUATION FORMULATION AND EXACT SEMI-ANALYTIC 

SOLUTION 

We shall introduce a relative imbibition rate function, f(Sw)' defined by: 

(11) 

where UwO is the expected water imbibition rate into the porous medium at x = O. Many 

workers have shown that the imbibition rate is inversely proportional to "l, and there

fore, we can define UwO as: 

(12) 

where Uo is some constant to be determined. The function f(Sw) represents the ratio of 

the water imbibition rate at any given cross-section with saturation Sw to the imbibi

tion rate at the inlet. Combining Equations (5), (11) and (12), we obtain: 

(13) 
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If we use us the Boltzmann transfonnation gtven by Equation' (8) to change the 

independent variable from x to ~, we arrive at 

(14) 

Equation (6) can now be rewritten in tenns of the relative imbibition rate, f(Sw), 

as: 

which can also be written in the fonn as: 

(15) 

Equation (15) gives us an important relationship 

(16) 

If f(Sw), subject to appropriate boundary conditions, and 110 can be found, Equation 

(l6) provides the solution to the self-similar problem for Sw given by Equations (9), 

(lOa) and (lOb). 

Let us now investigate f(Sw) and uo. Differentiating Equation (16) with respect to 

Sw gives: 
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(17) 

Substituting dSwld~ from Equation (14) into (17), we obtain a non-linear ordinary 

differential equation of second order for the relative imbibition rate function: f(Sw): 

pk ~(Sw)Pc'(Sw) = 0 

2~uJ f(Sw) 
(18) 

Since Equation (18) is a second-order differential equation, two boundary conditions 

are needed. From Equation (10b), Sw~Swi when ~~oo. Since dSw/d~~O when ~~oo, 

Equation (14) then shows that: 

(19) 

The second boundary condition can be obtained by noting from Equation (11) that 

f(Sw)=1 at the inlet. Then, in view of boundary condition (10a): 

f(Sw) I . = 1 s .. =s. 
(20) 

A closed-form solution of Equation (18) subject to (19) and (20) is extremely difficult 

to obtain because of its nonlinearity. However, this problem can be transformed into 

an integral equation and then solved numerically by an iterative process. 

Direct integration of Equation (18) gives: 

= (21) 
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Integrating once again, and reversing the order of the two integrations, results in the 

following equation for f(Sw): 

s 
t:(S)= <j>k f"(Sw-a)~(a)Pc'(a)d C(S -S·) r'_ 

w 2Jlwu6 s; f( a) a + 1 w w + '-2 (22) 

C1 and ~ are arbitrary constants of integration that can be determined from boundary 

conditions (19) and (20) as: 

C
1 

= - 1. [ <j>k 2 Sr (Swi - a)~w(a)pc'(a) da + 1] 
S . - S 2J.l. Uo s· f(a) WI w w • 

(23) 

~= 1 (24) 

Next, the value of Uo can be determined if we recognize that in the case of imbi-

bition, there is the fundamental condition that dPc(Sw)ldX I cannot equal zero. 
x=o 

Then, according to Equation (16): 

(25) 

must be true in order to satisfy boundary condition (lOa) because Sw = S: can only 

occur at x = O. In addition, we see from Equation (21) that when Sw= S:: 

(26) 
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Comparison of Equations (25) and (26) shows that C1=O, so that Equation (23) leads 

to the following expression for the imbibition constant Uo: 

= ~ JW (Swi - a)~(a)pc'(a) da 
[ 

s. ]1h. 
Uo 2Jlw Swi f(a) 

Now, Equations (16) and (22) can be written as: 

S; Ir(S ) '(S ) 
J: = _ ~u J "Tw w Pc w dS 
" II 0 f(S ) w r-w S. w 

S· 

J
w (Sw - a)~(a)pc'(a) 
--------------da 

Sw f(a) 
f(Sw) = 1 - -s.".... ----------------

J
• (Swi - a)~(a)Pc'(a) 
---------------da 

S.I f(a) 

(27) 

(28) 

(29) 

Integral equation (29) can easily be solved using the following numerical iteration 

process. An initial "guess" for f(Sw) is used used on the rightside of Equation (29), and 

the integration yields a new estimate of f(Sw). The process can be repeated until the 

difference between "new" and "old" values for f(Sw) is less than some acceptable 

value. An obvious choice for the initial guess is t<O)(Sw)=(Sw-Swi)/(S;-Swi)' since this 

function satisfies the boundary conditions (19) and (20). 

The cumulative volume of imbibed water, V W' can be determined from: 

Xr 
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or 

tUo 
V = Af-dt 

w o...ft 

It is easy to verify that both expressions give the same result: 

(30) 

Philip [1957b] introduced the concept of sorptivity, S, which he described as, "a meas

ure of the capillary uptake or removal of water." From this work, we can develop the 

following exact expression for S as: 

S = 1.
u 

= ~ fW (Swi-a)~(a)pc'(a) da 
[ 

S. ]lh 
<I> 0 <l>Jlw S.i f(a) 

(31) 

Several important features for this self-similar problem have been clarified by 

Rizhik [1959; in Barenblatt et al., 1972]. He has shown that the velocity of propaga

tion for the imbibition front is finite when Swi ~ Siw, and infinite when Swi > Siw. The 

water saturation decreases monotonically from S; at the inlet to Siw at the front, xc' 

and then: (1) if Swi = Siw, the saturation remains at the value of Siw for Xc < x < 00, or 

(2) if Swi < Siw, the saturation jumps from Siw to Swi at Xc and then remains at the ini

tial saturation for all x > xc. When Swi > Siw, Sw only reaches Swi at 00. All these 

important features of imbibition are inherent, implicitly or explicitly, in the solution 

that has been developed here. In fact, the integral: 
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is divergent if SWi> Siw and is convergent if Swi ~ Siw' In the fonner case, Equation 

(28) shows that Sw = Swi only when ~ = 00; in other words, the location of the front is 

finite. In the latter case, one recognizes that ~(Sw) = 0 when Sw ~ Siw and no contribu

tion to the integral can exist within the interval Swi < Sw < Siw' Equation (28) then 

shows that ~ will have the same finite value over the range Swi ~ Sw ~ Siw' For the 

case where SwiS Siw, there is no disturbance ahead of the finite front, and therefore this 

self-similar solution can also be used for a system of finite length as long as the front 

has not reached the end, x=L. 

4. GRAPHICAL METHOD FOR DETERMINING AVERAGE SATURATION 

BETWEEN ANY TWO CROSS-SECTIONS 

In addition to imbibition rate, saturation profile and location of the front, all of 

which have been discussed above, the average saturation within any sub-region of the 

system is also of interest It can be seen from the results given earlier for the satura

tion profile, that Equation (16) has the same fonn as the well known solution for the 

fluid displacement problem of Buckeley and Leverett [1942]. Therefore, the general

ized Welge graphical procedure [Chen and Song, 1963] of determining average satura

tion between any two cross-sections, where saturation varies from Swl to Sw2' also 

applies to the imbibition case. A typical example for the relative imbibition rate func

tion, f(Sw), is shown in Figure 1. Tangents have been drawn at two given points, 

[Swl' f(Swl)] and [Sw2' f(Sw2)]' The intersection of these two tangent lines gives the 

average saturation, Swl.2, between the particular cross-sections with saturations Swl and 

Sw2 (see Figure 1). If Swl = Swi and Sw2 = S;, this procedure gives the average 

saturation, Sw. for the entire zone of imbibition. The cumulative water that has 

invaded the porous medium is then readily calculated from 

(32) 

where ~f is the value of ~ at the imbibition front. 
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5. CALCULATION OF HORIZONTAL IMBIBITION 

We now present some examples of horizontal imbibition in which the viscosity of 

air is assumed to be vanishingly small. To illustrate the nature of imbibition under the 

assumed conditions, we shall solve Equation (29) for different values of the initial 

water saturation. The relative permeability to water and capillary pressure functions 

are taken as: 

~(Sw) = 1 - 1 _ : lW : lW 
{ [ [ 

S - S· ] 1.49]0.671}2 [S - S'j0.5 

Sw - Siw Sw - Siw 
(33) 

[[

S - S. ]-1.49 ]0.329 
Pc(Sw) = 0.872 : _ ~w - 1 bar 

Sw SlW 
(34) 

These equations are of the form proposed by van Genuchten [1980]. The parameter 

values are those believed to be appropriate for the Topopah Spring welded tuff from 

Yucca Mountain, Nevada, a potential site for an underground radioactive waste reposi

tory [Rulon et al., 1986]. The maximum value for the water saturation is 0.984, while 

the irreducible water saturation, Siw' is 0.318. The porosity of the Topopah Spring 

welded tuff is 0.14, and its absolute permeability is 3.9xlO-18m2. For the water viscos

ity, we used a value of J..lw=O.OOI Pa's, which corresponds to a temperature of 20° C. 

The results are shown in Figures 2 through 5. An independent check on the pro

posed method was obtained for an initial saturation of 0.6765 at an elapsed time of 

lx107 s (116 days). The saturation profile for Swi =0.6765 is shown in Figure 4 where 

the open circles are results found by Zimmerman and Bodvarsson [1989]. They essen

tially numerically solved Equation (9) as a two-point boundary-value problem for Sw 

as a function of~. The excellent agreement verifies the correctness of the present for

mulation and solution. The present formulation has the advantage of requiring only the 

calculation of definite integrals, as opposed to the integration of a differential equation 

that is required in other methods. The iteration process was found to converge in about 
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five or six iterations with six-digit accuracy. 

6. DISCUSSION OF RESULTS 

The curves of the relative imbibition rate function f(Sw), which are plotted in 

terms of initial saturations on Figure 2, are very similar to those of the well-known 

fractional flow function, fw(Sw), from two phase flow theory. Both the physical mean

ing and the shape of the curves are much the same. In fact, both the relative imbibi

tion rate function and the fractional flow function can be considered as the ratio of the 

water flow rate at any cross-section with a known Sw to the water flow rate at the 

inlet. When capillary pressure effects are included, both f(Sw) from this formulation 

and fw(Sw) from fractional flow theory are convex upward curves, whereas, in the trad

itional Buck;eley-Leverett treatment in which capillary pressure is ignored, the curves 

are· S-shaped. Inasmuch as df(Sw)/dSw is a monotonically decreasing function of 

saturation, the solution is continuous over the whole interval of saturation [Swi' S;l. 

As the initial saturation increases, the f(Sw) curve becomes steeper and in the case 

where Swi > Siw, f(Sw) has an infinite slope at the initial saturation, i.e. where f(Sw) = 

O. This is difficult to discern in the figure, because the slope becomes large in an 

extremely small neighborhood near Sw = Swj. When Swi ~ Siw, the slope is finite at the 

initial saturation, in addition, when Swj < Siw, the slope of the curve is constant over 

the interval Swj ~ Sw ~ Siw' As discussed above in Section 4, the plot of the relative 

imbibition rate function can be used to determine the average water saturation between 

any two cross-sections in that part of the system where imbibition has occurred, and 

the cumulative imbibed water volume can then be calculated using Equation (32). 

The saturation profiles for various values of initial saturation are shown in Figure 

3. The water saturation decreases monotonically from Sw = S; at the inlet to Sw = Swi 

at the front. When Swj ~ Siw, the saturation reaches Swi at a finite value of ;, whereas 

in the case where Swj> Siw, the saturation reaches Swj only at infinity. However, in 

either case, one can still speak of a "front" beyond which the saturation is effectively 

at its initial value. Note that when Swi < Siw, the range of saturations Swi ~ Sw ~ Siw 
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collapses into a single value of ~, fonning an infinitely sharp front. The saturation 

profile becomes more and more extended as Swi increases, and each saturation pro

pagates with a velocity equal to ~(Sw)/(2vt). 

From Equation (12), the water imbibition rate is inversely proportional to vt and 

directly proportional to uo, which depends on various parameters of the system as indi

cated by Equation (27). The imbibition constant, uo, is related to the sorptivity S by 

S = 2uolcp. The effect of the initial saturation on the sorptivity is shown in Figure 5. 

The imbibition rate reaches its maximum value when Swi= 0, and then decreases mono

tonically with increasing initial water saturation, reaching zero when Swi= S;. The 

imbibition rate is 'a continuous function of Swi over the range 05 Swi 5 S;. 

The exact solution presented here has some advantages over other solutions in the 

literature. Only numerical integration of definite integrals combined with an iterative 

procedure is required, and the solution is applicable to systems with arbitrary charac

teristic curves, as well as any value of the initial water saturation. Most of the existing 

exact solutions require numerical integration of ordinary differential equations of first 

order [Philip, 1955] or of second order [Klute, 1952; Rizhik, 1959; Rizhik, in Baren

blatt et al., 1972] and an iterative or trial and error procedure. Philip's [1960a, 1960b] 

analytical solution is in closed form but requires that the characteristic curves be 

developed in terms of inverse error functions requiring considerable computational 

effort, and is not especially well adapted to fitting empirical data on the characteristic 

curves. It should be noted that the solutions of Rizhik [1959; in Barenblatt et al., 

1972] have a special theoretical significance because they describe the finite nature of 

the velocity of propagation of the imbibition front. Since the function that is calculated 

in the solution procedure, f(Sw), is fairly well-behaved, the integrations are easy to 

carry out numerically. This is in contrast to methods which directly calculate Sw(~). 

These methods typically run into numerical difficulties when Swi is near Siw, due to the 

increasingly sharp saturation front. Finally, this solution provides a direct method of 

calculating the cumulative volume of water that has imbibed into the system, whereas, 

this is usually estimated from the area beneath the saturation profile with other 
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methods. 

7. CONCLUSIONS 

1. By introducing the relative imbibition rate function, a new formulation and an 

exact semi-analytical, self-similar solution for the case of linear horizontal imbibi

tion is obtained which has the same form as the well-known solution for the 

Buckeley-Leverett problem, but with the effects of capillary pressure included. 

The solution applies to any system with an initially uniform water saturation. 

Evaluation of the solution requires only numerical integration of definite integrals, 

and a rapidly-converging iterative process. This new method offers some distinct 

advantages over existing exact solutions for the imbibition problem. 

2. The saturation profile propagates with a speed of C)(2..ft) for each saturation. The 

velocity of the imbibition front is finite for the case where Swi ~ Siw, whereas it is 

infinite when Swi > Siw. This agrees with the important results that were 

developed by Rizhik [1959; in Barenblatt et al., 1972]. Since the velocity of the 

imbibition front is finite, and there is no disturbance ahead of the front when 

Swi ~ Siw' this self-similar solution is also valid for a system of finite length as 

long as the front has not reached the end of the system. 

3. The water imbibition rate, that is initially infinite and then varies at a rate 

inversely proportional to ..ft, depends on various parameters of the system in a 

complex way. The rate decreases with increasing initial water saturation in the 

porous medium. 

4. A graphical technique, patterned after the Welge method, can be applied to curves 

of the relative imbibition rate function to determine the average water saturation 

within any sub-region of imbibition zone, as well as the average value over the 

total zone of imbibition. 

5. The solution has been used to investigate the behavior of the unsaturated zone in 

the vicinity of a potential high-level radioactive waste repository at Yucca Moun

tain. Saturation profiles determined by the procedures developed in this work are 
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in excellent agreement with those obtained numerically by Zimmennan and Bod

varsson [1989], demonstrating the validity of this new approach. 
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NOMENCLATURE 

A 

f 

fw 

g 

k 

lcr 
p 

Pc 

S 

Sw 

Siw 

S . 
WI 

S· w 

Sw 

Swl,2 

t 

u 

llo 

V 

x 

Greek 

ex = 

J.1. = 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

= 
= 
= 
= 
= 

cross-sectional area [L 2] 

relative water infiltration rate function, defined in Equation (37) 

fractional flow function in two-phase flow problem 

gravitational constant [IJT2] 

absolute penneability [L 2] 

relative penneability 

pressure [FIL 2] 

capillary pressure [FIL2] 

sorptivity [ Lrrh] 

water saturation 

irreducible water saturation 

initial water saturation 

maximum obtainable water saturation 

average water saturation within the entire imbibed region 

average water saturation between two cross-sectional areas 

with water saturations Swl and Sw2' respectively. 

time [T] 

flow rate [L!I1 

imbibition constant introduced in Equation (12) [IJT'h] 

cumulative imbibed volume [L3] 

distance [L] 

dummy (saturation) variable of integration 

viscosity [F-TIL 2] 

~ 



Subscripts 

f 

w 

o 

= 

= 

= 

= 

= 
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similarity variable, defined in Equation (8) [L{flh] . 

porosity 

front 

water 

inlet 
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Figure Captions 

Fig. 1. Graphical method for determining average water saturation between two cross

sections with Swl and Sw2' 

Fig. 2. Relative imbibition rate function for imbibition into Topopah Spring welded 

tuff, for different initial water saturations. 

Fig. 3. Saturation profiles for imbibition into Topopah Spring welded tuff, for different 

initial water saturations. 

Fig. 4. Comparison of predicted saturation profiles for imbibition into Topopah Spring 

welded tuff; Solid lines are from the present work, dots are from numerical solution of 

Zimmerman and Bodvarsson [1989]. 

Fig. S. Sorptivity of Topopah Spring welded tuff, as a function of the initial water 

saturation. 
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