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Emittance Change due to a Wire Grid 

William M. Fawley and Edward P. Lee 

HIFAN-454 
LBL-28686 

Recently there has been interest [1] in degrading the emittance of the MBE-4 beam 
by passing it through a grid of conducting wires just in front of the ground plane that 
serves as the effective anode. The strong transverse electric fields, due to image charge 
induced on the wires by the anode-cathode voltage difference, lead to a change in v 1.. that 
is highly position dependent. A calculation of this process was made by M. Tiefenbach 
in his thesis[2]' but his (correct) results are are obscured by his assumption that the 
longitudinal electric field goes to zero far above the grid as opposed to the more probable 
boundary condition that the grid is held at a fixed potential. In this note, we reconsider 
this calculation and determine .6.(62) as a function of grid position and spacing by several 
different methods. 

I. "Handwaving" Analysis 

Let us assume that the wire grid lies a distance d downstream of the anode which 
itself is spaced a distance D from the effective cathode plane with d < D (see Fig. 1). 
Let us further assume that the grid wire spacing w is quite small compared with either d 
or d - D. This assumption allows us the treat the electric field near either the anode or 
cathode plane as being independent of transverse position and in the longitudinal direction 
y only. We adopt Vo as the accelerating potential between the anode and cathode. The 
wire grid, anode, and cathode are all assumed to extend infinitely in the transverse plane. 

We first do a "hand-waving" analysis of the emittance growth based on suggestions by 
A. Faltens [3]. For convenience, the anode plane is taken to have ¢> = o. In the absence of 
the wire grid, the potential at y = d is simply ¢> = Vo x d/D. Thus, if the grid were held at 
this potential, there will be no net induced image charge on the grid (apart from that due 
to the beam's own space charge) and, ignoring collisions between the beam ions and the 
wire atoms, essentially no emittance growth as the beam goes past. We then exploit the 
principle of superposition in potential theory and let ¢>(y) = Vo x y/D + .6.V(y). For the 
standard case of the grid being held at the cathode potential (i.e. ¢>(d = y) = ¢>g = Vo), 
we have on the wires themselves 

.6. V (d) = V. = Vo (1 - d / D) (1) 

and .6. V = 0 at y = 0, D. The actual potential is thus the sum of the following: 

1. An A-K gap field with a total voltage drop of Vo and the intervening grid at y = d 
held at potential Vo x d/ D which produces no emittance growth. 

1 



2. A field due to the grid held at potential V. = </>g - Vodl D between two ground planes. 
For V. #- 0 there will be emittance growth. It is this second problem that we will now 
"solve" . 

At positions y where Iy - dl ~ w, the electric field produced by the wires is almost 
purely in the y direction with 

Ey = -V.ld 

= V./(D - d) 

y<d 

y>d 

At all positions not on the grid or electrodes, V . E = 0 holds and we have 

aEx aEz BEy -+-=--ax az ay 

(2) 

(3) 

If we now examine the case of a grid with wires extending in only one direction (z), 
one sees from (3) that 

aiD lD aE - dyEx = - dy-
y = Ey(O) - Ey(D) = 

ax 0 0 ay 

V.D 
d(D - d) 

(4) 

The above result is identical to M. Tiefenbach's and the remainder of our derivation in 
this section is parallel to his. Adopting a coordinate system in x such that the wires are 
at positions x = 0, ±w, ±2w, ... , we have 

J (W) V.D 
dy Ex = '2 - ~x d( D _ d) where ~x = x - w . integer (5) 

Since ~vxlvy = J dy eEx Imv; (presuming Vy R:: constant and Vx ~ Vy wherever Ex is 
large), averaging in x gives 

12 ( eV.D )2 2 fW/2 ( W)2 ( eV.D )2 w2 

< ~x >= 2T d(D _ d) ;; Jo dx x - '2 = Td(D - d) . 48 (6) 

where T is the kinetic energy of an ion (presumed constant during its interaction with the 
grid). For the case with the grid at the anode potential, 

V. = Vo(1 - dID) and 

12 ( eVo)2 (W)2 1 < ~x >= T d x 48 (7) 

Expression (4) is equivalent to saying the total impulse in x felt by a given ion is 
proportional to the number of longitudinal field lines "cut" by the ion over its trajectory 
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from the anode to cathode. Similar arguments can be given for the case of a bi-directional 
wire grid (i. e. like a window screen rather than an egg slicer) to show 

ev' w 2 1 
( )

2 

< t:::..fP >=< t:::..x,2 > + < t:::..y,2 >~ TO (d) x 96 (8) 

The reduction in average scattering angle in each transverse plane by a factor of two is due 
to the reduction in the average line image charge density held on each wire (or equivalently, 
only half as many field lines are terminated on each wire as before). 

II. A more detailed solution based upon Fourier series expansion 

It is possible to obtain a more exact solution to the local electric fields by exploiting 
their periodic nature (in x). Let us again assume that the wires are spaced uniformly in 
x with a separation wand that the wires extend an infinite distance in z. The potential 
responsible for the emittance degradation may then be expressed in general as 

00 

t:::..V(y) = Vw ' ~ + L am 
m=l 

D-y ~ 
= Vw ' D-d + ~ 

m=l 

sinhkmy 
coskmx . hk d 

SIn m 

sinh km(D - y) 
bm cos kmx sinh km(D _ d) 

(9) 

where Vw , the am and bm must be determined. Here km = 27rm/w and we have chosen 
a cosine series due to the eveness of t:::..V(y) around x = nw. The potential t:::..V(y) must 
satisfy three conditions: 

1. It be continuous at y = d for all x. 

2. Its y-derivative must be continuous at y = d except on the actual wires for which 
\72(t:::.. V) =1= o. 

3. Its value on the actual wires must be equal to V •. The first condition forces am = bm . 

The second condition is a little bit trickier to implement in order to determine the 
am's uniquely. 

Evaluating the y-derivative at y = d, we find 

t:::..V'(y = d) = ; + Lamkm coskmx cothkmd 

= - D
V

:::, d - L amkm cos kmx coth km(D - d) (10) 

Let us presume that the wire spacing w is much less than both d and D - d in order 
to approximate the argument of the hyperbolic cotangent as 1. If 8</> / 8y were strictly 
continuous, we could combine the two expressions from (10) and obtain 

VwD 
d(D - d) 
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However, note that we are attempting to represent a constant function by a discrete Fourier 
series starting at m = 1. This is clearly impossible and leads to a more careful examination 
of the jump condition on E y • If we let >../ot be the surface charge density on ribbon wires 
of width ot( ~ w), then 

Inserting expression (10) gives 

= {+e;.t} 
A veraging over x, we see 

{ 
< ot/2 

for Ix - w . integer I 
> ot/2 

{ 
< Ot/2 

for Ix - w . integer I 
> ot/2 

D 
Vw d(D - d) -

and find 

(12) 

(13) 

(14) 

{ 
< ot/2 

for Ix - w . integer I (15) 
> Ot/2 

Integrating (15) with cos kmx results in 

D 1 2 . kmot 
am = Vw (D _ d) kmd kmot sm -2- (16) 

In the limit Ot ~ 0, 

and 

(17) 

The summation term diverges logarithmically which is a consequence of placing a finite 
potential on an infinitely thin wire. If, instead, we take 0 < ot ~ w, the summation can 
approximated by taking (2/kmot)(sin(kmot/2)) ~ 1 for m < w/2ot and zero elsewhere. 
One then has 

V. ~ Vw x (1 + 2~ ~ (D~d) (0.577+ln 2~t) ) 
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Reasonable choices of bt, w j d, and dj D make the logarithmic term small and we will take 
V* ~ Vw , 

We then evaluate the y-integrated transverse field and find for w ~ d, (D - d) that 

(19) 

The expression within the sum is identical to the Fourier sine series for (~ - x) on the 
interval [0, w] and thus expressions (5) and (19) are equivalent. 

III. Solution by Complex Potential Method 

In this approach we slightly modify the geometry of the last two sections. Once again 
that the wires are at a distance d above a ground plane but, rather than a cathode plane, 
we presume there is a specified asymptotic potential <1>(00) = Vo as y -+ 00. There is 
also a potential (undetermined) on the wires that depends on their line charge density .x, 
their spacing w and radius a, and their separation d from the anode. An unscaled plot of 
field lines in shown in Fig. 2. To solve for the potential for y ~ 0 note that the real and 
imaginary parts of an analytical function satisfy \,72 <I> = O. We need a function of z = x + iy 
periodic in x, with logarithmic singularities at the wires (and their images below the anode 
plane). Try 

(20) 

and 
2>' 

<I> = -- ReJ(z) 
47rfo 

(21) 

The branch cuts may be taken to run off to ±ioo, but they only appear in the imaginary 
part of J(z) and are thus no problem. Note that 

I
· (7r(Z-id))12 . h2 (7r(d- y )) 2 (7rX) h2 (7r(d- y )) SIn = SIn cos - + cos 

w w w w 
• 2 (7rX) SIn -

w 

= ~ [COSh 211'( d - y) _ cos 27rx 1 
2 w w 

(22) 

We then have 

<I> = - 4:f
o 

(In [COSh 211'( ~ - y) - cos 2:X 1 - In [COSh 211'( ~ + y) - cos 2:X 1 ) 

and 

(23) 
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which relates the line charge A to the asymptotic potential. To determine the potential on 
the wire let .6.x = x - W· integer, D.y = y - d and r2 = (.6.X)2 + (D.y)2. Then, assuming 
r/w, w/d ~ 1, we find 

~---
47l' f o 

Consequently, 

as expected. 

(In [1+ ~ c~Yr -1+ ~ e~:xr] -ill [e '~'l ) 
(In [2~;2j _ 4:d) (24) 

(25) 

Inasmuch as the wires are assumed to be close together relative to their separation d 
from the anode, the transverse deflections only occur close to the wires (within r ~ wI2). 
We take Vy constant and integrate aong a vertical line of given coordinate x to find 

.6.vx ~ _ qe 2 100 

dy a¢ 
Vy mvy 0 ax 

= (m~~) (47l'~o) : sm (2:X) 100 

dy (COSh 271'(d-y~ _ cos ~ 
w w 

Replacing v; by its approximate value 

V 2 
-y ,..., 

cosh 271'(d+y~ - cos ~) 
w w 

2qe A 47l'd ------
we find the last expression is equivalent to 

(26) 

(27) 

.6.vx = _~ (tan-1 [e
2

71'd/W - cos 27l'xlwj 
Vy 47l'd sin 27l'x I w [

e-271'd/W. - cos 27l'xlwj ) - tan-1 

sm 27l'x/w 

In the limit wid ~ 1, we obtain in the interval 0 < x < w, 

D.vx = _~ (1 2X) 
Vy 4d w 

The RMS average over a wire spacing is then 

«~x'?) = (( ~:x ) ') = 1:~ fl' 
w2 

48d2 

6 

2dx 
w 

(28) 

(29) 

(30) 
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as was obtained from the other methods (eq. (7)). 

IV. Application to MBE-4 

Proposed experiments with MBE-4 [1] require an emittance increase by a factor of 
about 2 from its present "natural" value. Equivalently, 

(31) 

If we presume an initial K-V distribution, then 

16 < x 2 > 
(32) 

where a is the beam edge radius (~ 6mm) and Co is the unnormalized, RMS emittance 
(~ 12mm-mrad for Vo=200 kV.) Thus, for a bi-directional wire mesh, expression (8) applies 
and 

glvmg 

_ 3 x (12 X 10-
6

)2 = 3 X 10-6 rad2 _ 21 (Wd) 2 916 
4 x (6 X 10-3 )2 

W 
- = 24 X 10-3 

d 

(33) 

(34) 

for a wire mesh. For a cathode-anode spacing of 4 inches, the mesh wire spacing should 
be about 96 mils (=2.44mm). 

It may be important to note that this form of scattering, in the limit W <t:: d and 
W :5 O(3a), produces a nearly uniform spread of scattered angles over the entire beam 
with the consequence that the beam's phase space no longer is remotely described by 
a K-V distribution. Whether this effect will present difficulties in comparing post-mesh 
behavior of the MBE-4 beam with that of the unscattered beam remains to be seen. 

References 

[1] T. Fessenden, private communication. 

[2] M. G. Tiefenbach, Ph.D. Thesis, Univ. of Calif. at Berkeley, issued as LBL-22465, 1986. 

[3] A. Faltens, private communication. 

7 



w 

• • • • • • ., • • • • 
t o y 

d 

........... _----------------:---------_ ......... 
x 

Figure 1. The geometry of §I and §II showing the anode plane (y = 0), the cathode 
plane (y = D), and the wires located at y = d spaced with a separation of w in x. The 
anode, cathode, and wires extend infinitely in x and z. 
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Figure 2. An artist's representation of the electric field lines near the wire grid reproduced 
from [2]. In this case, it was assumed that Ey -+ 0 for large y (as opposed to the condition 
that V = Vo at the cathode plane adopted in our analysis). 

9 



... 

LA~NCEBERKELEYLABORATORY 
UNIVERSITY OF CALIFORNIA 

INFORMATION RESOURCES DEPARTMENT 
1 CYCL01RON ROAD 

BERKELEY, CALIFORNIA 94720 

~--


