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Abstract 

We formulate a Thomas-Fermi model of average nuclear proper­

ties (i.e. of nuclear masses, deformation energies, density distribu­

tions, optical model potentials, etc.) by generalizing the momen­

tum dependent Seyler-Blanchard effective nucleon-nucleon inter­

action. In addition to reproducing the binding energy, density, 

symmetry energy and surface energy of nuclear matter, the gen­

eralized model can be adjusted to reproduce the diffuseness of 

the nuclear density distribution, as well as theoretical estimates 

of the binding properties of neutron matter. The depth of the 

nuclear optical potential, including its energy and isospin depen­

dences, can also be reproduced. The above properties of nuclei 

and of neutron matter determine quite firmly the seven adjustable 

parameters of the theory, yielding a model that, apart from shell 

effects and the discreteness of nucleons, is expected to be accurate 

for very small or very deformed systems, and to be reliable for 

extrapolating to extremely large hypothetical nuclei, including 

systems with arbitrary neutron excess and arbitrary geometries, 
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such as those that sometimes arise in astrophysical applications. 

A preliminary set of the model's parameters has been determined, 

and one of the predictions of the theory is that the measured val­

ues of the nuclear surface energy and surface diffuseness, taken 

together, place a significant constraint on the value of the com­

pressibility coefficient of standard nuclear matter. This constraint 

will provide a useful estimate of this quantity once the final set of 

parameters has been determined. The present paper is the first 

part in a comprehensive application of the model to conventional 

as well as exotic aspects of nuclear physics. 
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1 Introduction 

A two-part, macroscopic-microscopic treatment of the nuclear many-body 

proble~ has been widely exploited in the past 25 years. (For a review of this 

approach see, for example, Ref.[l].) The macroscopic part of such theories 

deals with smooth, statistical properties, to which estimates of microscopic 

shell effects are then added. The simplest macroscopic model is the four-

parameter Liquid Drop approximation to a nucleus, according to which the 

specifically nuclear energy of N neutrons and Z protons, with A = N + Z, 
, 

is a sum of volume and surface energies. For a given shape of the drop these 

energies are proportional to A and A2
/
3

, respectively, and they are assumed to 

be quadratic functions of the relative neutron excess 1= (N - Z)j(N + Z). 

An improved version of the Liquid Drop model, the Droplet Model [2,3], 

includes higher-order terms in an expansion in the small quantities A -1/3 

and I. This improvement is achieved at the price of additional adjustable 

parameters, the otherwise undetermined expansion coefficients. The Droplet 

Model has been quite useful in a variety of applications, but its limitations are 
,.' 

also evident: The expansion in A -1/3 fails for small or very deformed systems, 

and the expansion in I becomes progressively less reliable with increasing I, 
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for example for nuclei'near the neutron drip line. Moreover, the number of 

adjustable parameters (nine in place of the original four) is both inconvenient 

and can lead to ambiguities, since the experimental data are insufficient to 

establish a firm parameter set. 

It has been clear for some time that a statistical Thomas-Fermi model 

with an adjustable effective nucleon-nucleon interaction is a more nearly ideal 

macroscopic model [4-7]. It does not rely on expansions in A-1/ 3 and I, and 

it is more efficient in its use of adjustable parameters. In its simplest form 

(the Seyler-Blanchard version with four parameters [2,8]), it can be adjusted 

to give a good account of the smooth trends of nuclear masses and sizes [9]. 

However, after this adjustment, no freedom is left to reproduce other known 

properties (such as the nuclear surface diffuseness or the nuclear optical po­

tential) or to estimate unknown ones, such as the nuclear compressibility or 

the properties of neutron matter. 

In the present paper we formulate a Thomas-Fermi model with a more 

flexible effective interaction and explore a specific version with six or, for some 

purposes, seven parameters [10]. This model should be capable of giving a 

very adequate description of average properties of all nuclei, including very 

light and very deformed systems, as well as nuclei near the drip lines. In 
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particular, the model can be used to estimate the nuclear compressibility 

and to throw light on the properties of neutron matter. 
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2 The Effective Nucleon-Nucleon Interaction 

The nuclear Thomas-Fermi model is patterned on the atomic Thomas-Fermi 

approximation [5]. The total energy of the system is taken to be an in­

tegral over all space of a sum of kinetic and interaction energy densities. 

In the simplest approximation the former is proportional to the five-thirds 

power of the local particle density. The latter is the interaction energy den­

sity generated at a point by the surrounding particles through the agency of 

an appropriate law of force: the electrostatic interaction in the atomic case 

and an effective short-range interaction in the nuclear case. It is important 

to stress that the effective nuclear interaction must be able to reproduce, 

within the Thomas-Fermi approximation of dynamically uncorrelated parti­

cle motions, the saturating character of nuclear matter. This means that, in 

general, it must be velocity and/or density dependent. Thus, in contrast to 

the atomic case, one does not expect a correspondence between the effective 

interaction and the true particle-particle interaction in empty space. The ef­

fective interaction is, in fact, meant to mimic features of the nucleon-nucleon 

potential that cannot be treated in the Thomas-Fermi approximation (e.g. 

the anti-correlations due to a hard repulsive core) as well as the influence 
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of the nuclear medium on the binding properties of nucleons. As a result, 

the velocity dependence of the effective interaction does not bear any simple 

relation to the velocity dependence of nucleon-nucleon forces. As regards the 

density dependence of the effective interaction, such a concept cannot even 

be defined for particles interacting in empty space. 

In what follows we shall take the effective nucleon-nucleon interactions to 

be both velocity and density dependent, and to have the following appear-

ance: 

(1) 

. where f(rl2/a), a function of range a, specifies the dependence of the in-

. teraction on the distance r12 between the particles. (Thomas-Fermi models 

generalized to include a density dependent interaction have been considered 

before. See especially Re£.[5,U].) The interaction strength C consists of a 

constant modified by momentum-dependent and density-dependent terms, 

which we write as follows: 

1 ( 1 ( [2 -1 -2/3] C = 2" 1 =f e) CO/ - 2" 1 =f () C{3 P12 - C"( P12 + CuP (2) 

Here P12 stands for the magnitude of the relative momentum of the interacting 
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particles and p is a mean density defined by 

-2/3 _ ~ ( 2/3 + 2/3) P - 2 PI P2 , (3) 

where PI and P2 are the relevant neutron or proton densities at points I and 

2. Because of the proportionality of the Fermi energy to the two-thirds power 

of the density, p2/3 is proportional to a mean Fermi energy T defined by 

(4) 

where TI and T2 are the relevant Fermi energies at the points I and 2. 

The factors HI =F e) and HI =F () in Eq.(2) allow the interaction to 

be different for like and unlike pairs of particles. The minus sign refers to 

like (neutron-neutron or proton-proton) interactions, the plus sign to unlike 

(neutron-proton interactions). Altogether there are thus seven adjustable 

parameters: a, Cen C{3, C-y, Cu , e and (. As will be seen in detail later, 

they play the following roles. The standard four-parameter Seyler-Blanchard 

model corresponds to eliminating three parameters by setting C-y ~ Cu = 0 

and e = (. The remaining four parameters can be used to fit four nuclear 

properties: the binding energy and density of nuclear matter, the nuclear 

symmetry energy coefficient and either the nuclear surface energy coefficient 

or the nuclear surface diffuseness. If the surface energy is fitted, the surface 
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diffuseness is fixed and comes out somewhat too small compared to measured 

values. The nuclear compressibility coefficient K is also fixed (at about 300 

Mev), and there is no possibility of estimating its value by optimizing a fit 

to nuclear properties with respect to an adjustable parameter. The role of 

the fifth parameter C-y is to provide such flexibility. As will be seen below, 

there is essentially a one-to-one relation between K and C-y, and this allows 

an estimate of K to be made either by a fit of C-y to nuclear masses or, 

even more directly, by fitting the nuclear surface diffuseness in addition to 

the surface energy. At this stage one has a flexible five-parameter model 

of nuclear binding energies and density distributions. A sixth parameter, 

associated with making e different from (, can be introduced in order to 

acq~ire the flexibility of varying the binding properties of neutron matter, 

while keeping the properties of familiar nuclear matter essentially fixed (and 

thus not affecting the fit to the bulk of measured nuclear masses). 

The situation is still not quite satisfactory, however, if an additional body 

of data is brought into the discussion. Thus it turns out that in the above 

model the predicted velocity dependence of the potential felt by a nucleon 

moving in nuclear matter is intrinsically too strong to be consistent with 

data on neutron or proton scattering by nuclei, as interpreted by means of 
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an optical model potential [2,11]. In particular, the Thomas-Fermi model 

prediction would be that the optical potential should turn repulsive beyond 

about 70 Me V incident nucleon energy, in clear disagreement with measure­

ments. This is a direct indication of the need for a density dependence of the 

effective interaction, which can then take over some of the burden of nuclear 

saturation from the velocity-dependent terms. With the seventh parameter 

Cu added, the disagreement with the scattering data can be removed, and 

a seven-parameter Thomas-Fermi model in close correspondence with many 

nuclear properties is then available. As something of a bonus it will actually 

turn out that, for the discussion of binding energies and density distributions, 

the parameters C{3 and Cu always occur only in a particular combination CB , 

say (see below), so that in describing masses and density distributions one 

is still dealing with a model with only six adjustable parameters: a, Ca , CB , 

C-y, e, and C. That is three fewer than in the standard Droplet Model and 

only two more than in the Liquid Drop Model. 

As regards the particular choice of the momentum and density depen­

dences given by Eq. (2), the following remarks are relevant. The term C{3 P~2' 

familiar from Refs.[2,S], leads to a potential depth in nuclear matter which 

decreases parabolically with the momentum p of the particle in question. 
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Such a momentum-dependent repulsive effect provides a mechanism for nu­

clear saturation but, as pointed out above, a too rapid unbounded increase 

of the repulsion with p2 can be an embarrassment when comparisons with 

scattering data are brought into the discussion. From this point of view the 

term -C-y pt'lleads to a more desirable dependence of the potential on the 

nucleon momentum p. Thus it turns out that for P < P, where P is the Fermi 

momentum of the surrounding medium, the decrease of the potential depth 

is also exactly parabolic, but for P > P this changes to a p-1 dependence, 

the contribution of the C-y-term thus tending to zero rather than infinity for 

large values of p. (The dependence on p parallels the dependence on distance 

of an electric potential that would be generated by a negative uniform charge 

density inside a sphere of radius P: parabolic inside, inverse-distance outside 

the sphere). 

As mentioned earlier, the justification of a term like C-y ptl is not to be 

sought in the properties of the nucleon-nucleon force in empty space but in 

the implied binding properties in nuclear matter (discussed later on and illus­

trated in Fig. 7). From a pragmatic point of view, the combination of C{3 P~2 

and C-y ptl is simply a more flexible parameterization of the momentum- de­

pendent saturating effects than the conventional term C{3 P~2 alone. As will 
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be seen presently, the particular choice C",! Pll results in a useful simplifica-

tion of the algebraic structure of the equations governing the model. This is 

also true of the particular choice of the density dependence associated with 

the term CO' p2/3. 

It proves convenient to re-write the interaction strength C by introducing 

natural units of energy, density and momentum. Thus, given a set of force 

parameters, imagine the equilibrium particle density of standard nuclear mat-

ter, po, to be calculated. This defines a nuclear matter radius constant ro, a 

nuclear matter Fermi momentum Po and a nuclear matter Fermi energy To, 

inter-related as follows: 

po (
4 )-1 
"37rr! , (5) 

(6) 

(7) 

where for m we have taken the average nucleon mass, equal to 938.926 

MeV /c2
• Using po, Po and To as convenient units we shall write 

VI' = -2Top~1 f(rl,/a) {~(I 'fOa 
,II 

- ~ (I 'f () [.B (P12/ Po)' -1 (Pl'/ Po)-1 + <T (2p/ Po)'!3] } , (8) 
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where a, (3, " u are now dimensionless parameters proportional to Ceo C{3, 

C",!, Cu , respectively. 

We shall consider the function f(rl2/a) to be normalized so that 

(9) 

This makes the product p;;l f(r12/a) dimensionless. We shall eventually as-

sume f to be a normalized Yukawa interaction 

1 e-r / a 

f(r/a) = -4 3-/-' 
7ra r a 

(10) 

but much of the development that follows is independent of this assumption. 

The overall optimization and fine tuning of the seven parameters a, a, {3, 

" u, e and ( by comparisons with a full range of diverse data is a problem 

for the future. The following preliminary set (explained in Section 9) will be 

used through most of this paper: 

a 0.59542 fm, 

a 3.60928, {3 0.37597, , 0.21329, (11) 

1.33677, 0.44003, ( 0.59778. 
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These values correspond to the following nuclear properties: 

radius constant of nuclear matter, ro 1.13fm, 

'" Fermi energy of nuclear matter, To 37.679 MeV, 

density of nuclear matter, p - 0.16545 fm- 3 , 

volume energy coefficient, at 16.527 MeV, 
(12) 

symmetry energy coefficient, J 31.375 MeV, 

surface energy coefficient, a2 20.268 MeV, 

curvature correction coefficient, a3 10.996 MeV, 

compressibility coefficient, K 301.27 MeV. 
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3 The Thomas-Fermi Energy 

In the Thomas-Fermi approximation the phase-space density of states for 

neutrons or protons is (2/h3 ),where h is Planck's constant. This makes the 

particle density in configuration space equal to p = (471'/3) p 3 (2/ h3
), where 

P is the local Fermi momentum of the particles in question. When P equals 

Po (the Fermi momentum of standard nuclear matter) the neutron and proton 

densities are Po/2 each. We may thus write the neutron and proton density 

distributions in the form 

(13) 

where 

(14) 

with Pn , Pp the position-dependent local neutron and proton Fermi momenta. 

The kinetic energy density of neutrons or protons with density p is ~ (P2 /2m) p, 

a quantity proportional to p5/3. It follows that, after factoring out !Po To as 

the natural unit, the kinetic energy density associated with the neutron and 

proton distributions may be writtenas 0 po To) ~ (<1>5 + '11 5 ). The total ki-

18 
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netic energy, K.E., is then the following integral over all space: 

(15) 

where <P1, \lI1 stand for the values of <P, \lI at the point rt. 

The interaction energy, W, is an integral over all pairs of nucleons of the 

interaction energy Vt2. It involves integrations over the relevant Fermi spheres 

at points 1 and 2, as well as over all spacial positions of these points. The 

momentum integrations are described in Appendix A, and the final result for 

the total energy, E = K.E. + W, may be written as an integral over all space 

of an energy density £(rt), viz: 

(16) 

where 

19 



In the above 

ai = ! (1 - e) a = 1.01055, 

(3t = ! (1 - 0 (3 = 0.07561, 

,t = ! (1 - 0 I = 0.04289, 

Ut = ! (1 - () U = 0.26884, 

Bt = (3t + ~ Ut = 0.29965, 

au = ! (1 + e) 0: = 2.59873, 

(3u = ! (1 + 0 (3 = 0.30036, 

lU =! (1 + 0, = 0.17039, 

U u = ! (1 + 0 U = 1.06793, 

Bu = (3u + ~ Uu = 1.19030. 

(18) 

The five lines in Eq.(17) are, in order, the kinetic energy density, and the 

neutron-neutron, proton-proton, neutron-proton and electrostatic interaction 

energy densities. (The proton charge density is epp = e(po/2)'iJ!3.) The 

notations <PI, <P2, 'iJ!I, 'iJ!2 refer to the values of <P and 'iJ! at the points rl and 

r2. The symbols <P>, <P < stand for "the greater" or "the lesser" of <PI and 

<P2, and similarly for 'iJ!>, 'iJ!<. The symbols X>, X< stand for "the greater" 

or "the lesser" of <PI, and 'iJ!2. The reason for making these distinctions is 

that different algebraic forms apply to the potential felt by a particle with 

a momentum less than or greater than the Fermi momentum characterizing 

the particles with which it is interacting (see Appendix A). 

Eqs.(16,17) are the defining equations of our model, specifying the energy 

E(<p, 'iJ!) as a functional of the relevant degrees of freedom, which are the 

functions <P(r) and 'iJ!(r) determining the neutron and proton densities. Note 
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that the parameters j3f.,u and af.,u appear only in the combination Bf.,u = 

j3f.,u + ~af.,u, so that all the results following from Eq.{16}, i.e. all energies 

and density distributions, depend on only six rather than seven parameters. 

In certain nuclear Thomas-Fermi studies attempts are sometimes made to 

improve the approximation to the kinetic energy density beyond the leading 

term proportional to p5/3. This is often in the form of corrections associated 

with the gradient of the density or, more generally, in terms of power expan­

sions in n. Such corrections are not overwhelmingly important for most of 

the diffuse nuclear surface region-in a rough way of speaking they are less 

than some 10% down to a point in the surface where the density is about 

one-sixth of its bulk value [2,12,13]. The corrections do become qualitatively 

important at low densities, in particular in the quantal tail of the distribu­

tions. But by then a gradient expansion is not valid. Neither is a power 

expansion in n of a quantal tail governed by the non-analytic dependence on 

n typified by a wave function ¢ I'V exp(-Sjn), where S is the action func­

tion. We believe that a physically well-founded and yet reasonably simple 

statistical treatment of the tail of nuclear and atomic density distributions 

is still a somewhat open problem. 

Attempts to include corrections to the Thomas-Fermi kinetic energy are 
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often motivated by the wish to make the theory reproduce as accurately as 

possible, and without the readjustment of any parameters, a corresponding 

quantal, microscopic Hartree-Fock treatment. Our view of the role of a phe­

nomenological Thomas-Fermi model with an adjustable effective interaction 

is somewhat different. Rather than regarding it as a (poor) approximation 

to a Hartree-Fock treatment, we consider it is a spectacular improvement of 

the Liquid Drop Model of average nuclear properties. 
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4 Standard Nuclear Matter (Pn == pp) 

When CP and 'II are constants independent of position, say CP = 'II = 0, the 
." 

integrals in Eq.(17) are trivial, and the following formula is readily found for 

the energy per particle, E I A, of standard nuclear matter (without Coulomb 

energy): 

_ EIA 3 2 1 3 3 5 
7] - - = -(1-1')0 - -aO + -BO - ~ 5 25· (19) 

It will be seen that the introduction of the new parameters l' and u does 

not affect the functional form of Eq.(19), which remains the same as in the 

original Seyler-Blanchard model [2]! The coefficients of 0 2 and 0 5 merely 

change their values from 1 to 1 - l' and from f3 to B, respectively. 

The saturation requirement that 7](0) should be a minimum for 0 = 1, 

with value 7](1) = 7]0 = -aI/To, leads to the equations: 

7]0 
3 1 3 
-(1 - 'V) - -a + -B 
5 I 2 5' (20) 

o 6 3 
5(1-1') - 2"a+3B. (21) 

The second derivative of 7](0) evaluated at 0 = 1 is the dimensionless com-

pressibility coefficient /\', equal to f{ ITo, where f{ is the conventional nuclear 
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compressibility coefficient. Thus 

6 
K = S(1- ,) - 3a + 12B. (22) 

Solving equations (20), (21), (22) for a, B" in terms of "10 and K we find 

a 10"10 + K 

B 
5 5 

(23) "3"10 + 18 II: 

25 5 , - 1- -"I --K 3 0 9 . 

These equations specify explicitly the interaction parameters a, B, , needed 

to produce nuclear matter with the binding energy and compressibility de-

scribed by "10 and K. Note that through Eqs.(23) the compressibility coeffi-

cient I< is related to , by 

9 9 
I< = STo + 15a l - STo, = 315.73 - 67.828, MeV. (24) 

Thus, without the, term, I< has the unique value 315.73 MeV (with our 

choice of interaction parameters). More generally, II: is a (decreasing) linear 

function of ,only. It does not depend on the other parameters of the in-

teraction, in particular not on the density-dependence parameter u. For the 

value of, used in this paper, I< is equal to 301.27 MeV. 
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Fig. 1 The binding energy per particle of standard nuclear matter (in units of To) as 

a function of n, the Fermi momentum in units of Po. (The relative density pi Po is equal to 

n3.) The compressibility J{ = 300 MeV is approximately the value we have deduced from 

experiment. The value J{ = 10,000 illustrates the approach of our model to the limiting 

case of an incompressible liquid drop. 
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Fig. 1 shows the appearance of 7](0) for different values of, or, equiva­

lently, of K. By making, tend to minus infinity (i.e., K ~ 00) one obtains 

the incompressible liquid drop, which is thus automatically included in our 

model as a limiting case: Conversely, by increasing, to the limiting value 

(1 - 2;7]0) = 4.6552, one arrives at the (unphysical) situation where K has 

vanished, and the minimum at 0 = 1 has become a point of inflection. 

This is associated with the fact that ~ B, the coefficient of the 0 5 term in 

Eq.(19), has become negative, and this causes a collapse of the system to 

infinite density with infinite binding. For intermediate values of" such that 

1 - 57]0 < , < 1 - 2;7]0 (i.e. 3.1932 < , < 4.6552) nuclear matter in our 

model is metastable, separated from the collapsed configuration at infinite 

density, by an energy barrier of finite height. At, = 1 - 57]0 the barrier 

becomes infinite and for, < 1 - 57]0 nuclear matter at 0 = 1 is the absolute 

minimum. Very large values of, are presumably unphysical, but intermedi­

ate values might be useful for parameterizing situations where the equation 

of state becomes relatively soft at high densities. 
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5 Uniform Nuclear Matter (Pn i- pz) 

In the case <I> # w the energy per particle of uniform nuclear matter is given 

by: 

(25) 

where X>, X< stand for "the greater" or "the lesser" of <I>, w. 

." 
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Fig. 2 The energy per particle of uniform nuclear matter (in units of To) for different 

values of the relative neutron excess {j = (Pn - Pp)/(Pn + pp). The parameter r is related 

. to the relative density by r 3 == p/ Po. Neutron matter corresponds to {j = 1 and is given by 

the upper solid curve; Neutron matter at a density equal to the neutron density prevailing .. 
in equilibrium standard nuclear matter (i.e. Pn = Po/2) corresponds to r = (1/2)1/3 ~ 

0.7937. Up to such a density the solid curve agrees closely with the theoretical estimate 

of Ref.[14]' given by the squares. 
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Fig. 2 illustrates the appearance of 7](<p, w) for various values of the rel-

ative neutron excess 8, defined by 

(26) 

Neutron matter corresponds to 8 = 1. Our interaction parameters were 

chosen so that for this limiting case the binding energy curve would agree 

approximately with the calculations of Ref.[14]. Figure 3 shows how, in our 

model, properties of neutron matter may be varied while keeping the binding 

properties of familiar nuclei essentially unchanged (by demanding that the 

nuclear symmetry energy coefficient remain fixed). In fact, by increasing the 

relative strength of the binding force between like particles, one could make 

neutron matter metastable with respect to density changes (i.e. to exhibit a 

minimum in Fig. 3), or even absolutely stable (i.e. bringing the minimum 

below the abscissa). One does not expect this to correspond to physical 

reality, but our model is flexible enough to describe situations approaching 

to a varying degree such a hypothetical case. Equation (25) may be used to 

derive closed expressions for the compressibility of nuclear matter with an 

arbitrary value of the neutron excess, a subject we hope to treat in a future 

publication. (For a study of this problem see Ref.[15].) 
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Fig. 3 The energy per particle of neutron matter (in units of To), for various values 

of the parameter e, which is a measure of the relative strength of interactions between 

like and unlike particles. The cube of the parameter <I> is the neutron matter density in 

units of Po/2. For each value of e the other interaction parameters were readjusted so as 

to keep the binding, density and symmetry energy coefficient of standard nuclear matter 

fixed. For a value of e equal to about 0.44 the Thomas-Fermi calculation agrees closely 

(up to <I> ~ 1) with the estimates of Ref.[14], given by the squares. For e less than about 

0.2, the energy plot develops a metastable minimum, which becomes stable for e less than 

about -0.1. 
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6 The Euler Equations 

By demanding that the total energy, Eqs.(16,17), be stationary with re-

spect to arbitrary infinitesimal particle-conserving variations oPn, oPp (or, 

equivalently, 8<1>, ow) we obtain the Euler equations defining the equilib-

rium distributions of the neutron and proton densities. Recalling that 0Pn = 

associated energy changes, we thus have to satisfy the following conditions: 

(27) 

Instead of grinding through the algebra of taking the variations of W in 

Eq.(27), we make use of a short-cut based on the definitions of the neutron 

and proton potentials, Un and Up, in terms of the variations On Wand op W, 

viz. : 

(28) 

where explicit expressions for Un and Up have been derived in Appendix 

A, Eqs.(78) and (79), as an intermediate step in evaluating the interaction 
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energy W. If the Eqs.(27) are to be satisfied for arbitrary particle preserving 

variations, the integrands in those equations must be constants, (equal to 

the chemical potentials of the neutrons and protons). 

Hence, 

and 

(29) 

In the above equations An, Ap are the chemical potentials of the neutrons 

and protons in units of To. In the terms multiplying I the upper line is to 

be used if the symbol with suffix 1 is greater than the symbol with suffix 2, 

otherwise the lower line. Eqs.(29) are cubic expressions in <PI and WI, and 
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may be written in the form: 

where 

(31) 

with 

An 1 + Jd3r2 f [Bl<1>~ + ~'l0 (<1>2 - <1>1) + Buw~ + ~'l0 (W2 - <Pd] , 

f 3 [ 3 3 5 3 2 ( Bn - An + d r2 f D:l<P2 - S Bl<P2 + 2,l<P2 0 <P2 - <1>d 

3 3 5 3 2 ] + D:uW2 - SBu W2 + 2,uW2 e (W2 - <PI) , 

en Jd3r2 f [,l<p~e (<1>1 - <P2) + ,u w~0 (<PI - W2)] , 

In the above, e(x) is the step function 0(x) = 1 for x > 0, 0(x) = 0 for 

x < O. (This is an alternative way of writing the non-analytic ,-terms.) 

The Euler equations may be used to determine <P(r) and w(r) by numerical 
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iteration. (See Appendix B.) Fig. 4 shows, as an example, calculated (and 

measured) density distributions for three nuclei. This comparison suggests 

that a better fit could have been obtained by an increase in the calculated 

surface diffuseness. This can be achieved by reducing the compressibility 

coefficient K below 301.27 MeV, which means an increase of the coefficient 

, over its illustrative value of 0.21329. (See next section.) 
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Fig. 4 The calculated Thomas-Fermi charge distribution of three nuclei (after folding 

in the proton size) are compared with experimental distributions represented by a so-called 

3-parameter Gaussian fit. The RMS radii of the calculated and measured distributions are 

about equal. A better fit could have been obtained by increasing the calculated surface 

diffuseness (resulting in a reduction of the compressibility coefficient). 
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7 Semi-Infinite Distributions 

In order to study the surface properties of nuclear matter, the Euler equations 

above may be adapted for treating semi-infinite distributions bounded by a 

plane surface. This is achieved by the simple replacement [2]: 

(33) 

where x is a coordinate along the inward normal to the surface and 

(34) 

The solid curve in Fig. 5 shows the surface profile in the case of standard, 

semi-infinite matter, resulting from solving the modified Euler equations. 

The dashed curve is the result of folding into this profile a Yukawa nucleon 

form factor with an RMS size of 0.85 fm, corresponding to the measured 

proton charge distribution [16]. 
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Fig. 5 The calculated Thomas-Fermi density profile of standard, semi-infinite nuclear 

matter is shown by the solid curve. The dashed line is the result of folding in a Yukawa 

nucleon form factor with an RMS size of 0.85 fm, corresponding to the measured charge 

distribution of a proton. The distance along the abscissa is measured from the location of 

the effective sharp surface. 

37 



The surface energy per unit area, s, is given by the following integral 

along the normal to the surface [2]: 

s = £00 100 
dx (~ - L) , 

-00 £00 poo 
(35) 

where £ is the energy density function obtained from Eq.(17) by making the 

replacements given by Eqs.(33,34), and by omitting the Coulomb energy. The 

quantities poo and £00 are, respectively, the asymptotic density and energy 

density values that hold in the interior, far from the surface. The surface 

energy coefficient a2 is related to s by a2 = 41l'T~S. With the binding energy 

and density of nuclear matter held fixed, a2 in our model depends only on 

the range a of the Yukawa interaction and on the parameter,. Since, is in 

a one to one relationship with the compressibility K, one may plot a2 as a 

function of K for a fixed range a or, preferably, for a fixed surface width b. 

A very interesting property of such plots is illustrated in Fig. 6. We see that 

if the surface width (diffuseness) is fixed, the relation between a2 and K is 

linear to an astonishing degree, even though the linearity is not algebraically 

exact. Furthermore, to the extent that band a2 are quite well determined 

experimentally, our model provides a way of translating the measurements 

of band a2 into a fairly reliable estimate of K. If the value b ~ 1 fm is 
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taken as representative for the surface diffuseness and a2 ~ 20 MeV for the 

surface energy coefficient, the compressibility predicted on the basis of Fig. 

6 is about 300 MeV. If, following the comparison in Fig. 4, the slightly larger 

value b ~ 1.1 fm were adopted, K would be reduced to about 250 MeV. 

On the other hand, a recent comparison of the measured giant monopole 

resonance energies with the predictions of the present Thomas-Fermi model 

[10] shows good agreement when the baseline value K = 301.27 MeV is 

used. A more definitive prediction of K will have to await the simultaneous 

optimization of the model parameters using all relevant data. These will 

include, in particular, the heights of the nuclear fission barriers, a problem 

that we shall report on in a future publication. 
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Fig. 6 Each set of symbols represents the result of calculating the surface energy 

of semi-infinite nuclear matter using interaction parameters chosen so as to give the same 

volume energy per particle, the same equilibrium density and the same surface width b, 

but different compressibility coefficients J(. The value of b deduced from measured charge 

distributions (b ~ 1 fm), together with the value of a2 deduced from fits to measured 

binding energies (a2 ~ 20 MeV), leads to an estimated value for J( of about 300 MeV. 

(Some evidence for a value of b greater than 1 fm is suggested by Fig.4.) Note the 

astonishingly linear appearance of the graph resulting from plotting a2 vs. J( at fixed 

b. (The lines are straight line fits to the calculated points.) 
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8 Optical Model Potentials 

The potential Un(rl,p) felt by a neutron traversing a region of space where 

the neutron and proton densities are specified by ~(r) and W(r) is given 

by Eq.(76) in Appendix A. It is a function of position and of the neutron's 

momentum p at the point in question. The corresponding expression for 

the proton potential Up(rl,p) is Eq.(77). A comparison of the potential 

wells represented by Eqs.(76,77) with experimental data on nucleon-nucleus 

scattering would require the solution of the scattering problem in the above 

momentum dependent potentials. In the absence of such an analysis we 

can make some progress by comparing the central depths of optical-model 

potentials fitted to scattering data with the depths predicted by our model 

for uniform nuclear matter. But it should be borne in mind that such a 

comparison is not unambiguous, since the optical-model fits are made, at 

each bombarding energy, with a static, momentum-independent potential, 

rather than with a potential of the form of Eqs.(76,77). 
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Fig. 7 The calculated momentum dependence of the potential felt by a neutron trav-

eling through standard nuclear matter. (The potential is in units of To and the momentum 

is in units of Po). The total potential (solid curve) is made up of a negative constant (long 

dashes), plus the parabolic term (34)2 (medium dashes) and the ,-term proportional to 4>2 

for, < 1, and to 4>-1 for, > 1 (short dashes). 
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Let us consider then the case of a neutron with momentum p = ¢>Po 

traveling through standard uniform nuclear matter, specified by 4.> = w = 1. 

Using the notation u = U ITo, we find for the neutron potential u the simple 

expression (illustrated in Fig. 7): 

for ¢> > 1 
(36) 

for ¢> < 1 . 

For momenta p < Po (i.e. ¢> < 1) we may write the result as: 

9 - 217]0 - 50" 3 - 157]0 - 50" 
u< = - + c:, 

9 - 157]0 - 50" 9 - 157]0 - 50" 
(37) 

. 
where c:, equal to u + ¢>2, is the neutron's total energy (kinetic plus potential) 

in units of To. (We have used Eqs.(23) to eliminate a and (3 in favor of 7]0 

and 0".) Eq.(37) states that, for p < Po, the potential u< is independent of 

" the only parameter in Eq.(37) being the density-dependence coefficient 0". 

(The value of 7]0 is essentially fixed by measured nuclear binding energies and 

sizes.) Moreover, the potential is strictly linear in the energy c: and may be 

further re-written as 

(38) 

In a plot of u< vs. c: this is a straight line with slope (3 - 157]0 - 50") I (9 - 157]0 - 50"), 

pivoted at the point u< = 7]0 - 1, c: = 7]0, (i.e. U< = -54.206 MeV, 
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E = -16.527 MeV) independen:tly of the value of u. This fixed pivoting 

point will be recognized as the depth of the potential experienced by a parti-

cle with binding energy 'f/o, i.e. a particle at the top of the Fermi sphere. On 

the other hand, the potential felt by a particle with zero kinetic energy (at 

the bottom of the potential well) is obtained by setting C - u< = 0, which 

gIves 

(39) 

I.e. 

UdO) = -72.39 MeV ( 40) 

For the potential u> felt by a particle with p > Po (<p > 1) we find 

( 41) 

For, = 0 this reduces to the same straight line as Eq.(37). In that case, 

the energy Co at which the potential would turn repulsive is given by setting 

u> = 0 in Eq.(37), which leads to 

9 - 21'f/o - 5u 
Co = . 

3 - 15'f/o - 5u 
(42) 
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Without the density-dependent term in the effective interaction (0' = 0) this 

would give Co = 1.9011 i.e. an energy of 71.63 MeV. 

An explicit solution of Eq.( 41) for u> as a function of c involves the 

solution of a cubic, but a parametric plot of u> vs. c is even more elementary: 

pick a value of c - u> (equal to T, say, the neutron's dimensionless kinetic 

energy), calculate u> from Eq.(41) and then calculate c from c = u> + 

T. Fig. 8 shows a comparison of Eq.( 41) with a summary of optical model 

potential depths taken from Ref.[17]. It is clear that for, = 0 a fit to the 

potential depths would be impossible using 0' = o. (The potential would 

turn repulsive at an incident energy of about 72 MeV.) With 0' included, 

an approximate fit can be obtained even without the ,term. Including a 

small value of " as suggested by evidence from nuclear surface properties 

(see Section 7) makes possible a fair representation of the energy dependence 

of the optical model potential depths in the range of energies from -70 Me V. 

to about 200 MeV. 
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lIBL 103-109] 

Fig. 8 A compilation of the measurements of the depth of the optical model potential 

taken from Ref.[17] is compared with the Thomas-Fermi calculations. The short-dashed 

line would be the result of using the original Seyler-Blanchard model [8] with 'Y = 0 and 

(J' = O. Increasing (J' to 1.33677 gives the dotted line (and the same compressibility). Taking 

'Y to have the value which reproduces approximately the measured surface diffuseness 

('Y = 0.21329) bends the curve up away from the abscissa to give the solid curve. (The 

compressibility is now f{ = 301.27 MeV.) All the curves pass through the fixed point at 

U = -54.206 MeV, E = -16.527 MeV and are strictly linear and independent of'Y for 

E < -16.527 MeV. The long-dashed line results from increasing the value of'Y to 0.45305, 

which corresponds to J{ = 285 MeV. 
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It is worth stressing the simplicity of the dependence of u on the pa­

rameters of our model. Thus, the overall scale of the potential depth is 

proportional to the energy unit To, which scales inversely with the square of 

the radius constant ro (known to within a percent or so). The overall slope 

of the plot of U vs. energy is governed by the parameter a. The plot is 

strictly linear for energies below the Fermi energy. For energies above the 

Fermi energy the plot would continue to be linear if I were zero. A finite 

value of I introduces a bending of the plot, away from the abscissa for I > 0, 

towards it for I < o. According to Fig. 8 there is thus some evidence from 

the optical potential depths for a small positive value of I, confirming the 

independent evidence from the nuclear surface properties. Both sets of data 

thus suggest a compressibility coefficient somewhat smaller than the baseline 

value of 315.73 MeV resulting from taking I = 0 in Eq.(24). 

In the case of uniform nuclear matter with pn =I- PP' the neutron and 

proton potentials are found from Eqs.(76,77) by replacing f<Fr2 f by unity. 

In particular, for a neutron or proton at the top of its respective Fermi sphere, 

the potentials are obtained by putting <p = <1), 'ljJ = W. The difference between 
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these potentials (in the case that Pn > pp) is then given by, 

-aA cp3 - q,3) + ~ Bt( cps _ q,S) _ f't( cp2 _ q,2) 
5 

O:u(q,3 - cp3) + ~ Bu(q,s - cpS) + Bu(q,3cp2 _ cp3q,2) (43) 

f'u ( q,3cp-I - ~cp2 + ~q,2) . 

Writing (cp3 - q,3)/(cp3 + q,3) = h and expanding to first order in h we find: 

(44) 

U sing the expression for the dimensionless symmetry energy coefficient WI, 

given by J ITo, (Appendix C, Eq.(92)) we find 

or 

By recalling the definition 

and using 

Un - Up = 4Wl _ ~ 
h 3' 

J = ! 82(EIA) 
2 8h2 

8(Un - Uz) = 28Un 
8h 8h 
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we find, 

(49) 

Since ~To is readily verified to be the second derivative of the kinetic energy 

per particle with respect to 8, we may write: 

8Un 82(WjA) 
88 = 882 (50) 

where W j A is the interaction energy per particle. Hence the theorem: "The 

first derivative with respect to the relative neutron excess of the potential 

felt by a neutron at the top of its Fermi sphere, and the second derivative 

of the interaction energy per particle with respect to the same variable, are 

equal." 

The above equations enable one to predict the isospin dependence of the 

optical potential (for particles of the top of the Fermi sphere) in terms of the 

known symmetry energy coefficient. For example, using Eq.(46), one esti-

mates that the difference in the depths of the neutron and proton potentials 

in 208Pb should be about 75.38 or 11 MeV if 8 is taken to be about 0.15, 

Ref.[18]. According to Ref.[19], p.239, the measured difference is about 14 

MeV. Thus we are assured that our model reproduces, at least approximately, 

not only the energy dependence of the optical potential but also its isospin 
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dependence. 
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9 Determination of a Preliminary Set of In-

teraction Parameters 

A fast computer program was developed to calculate the Thomas-Fermi 

masses of spherically symmetric nuclei. These masses were compared with 

"corrected" measured masses of a sample of 336 isotopes of 20 elements 

with atomic numbers between Z=8 and Z=100. The measured masses were 

corrected for shell effects (including deformations, Ref. [20]) , even-odd mass 

differences and the Wigner or "congruence" energy. Our interpretation of 

the latter (called the "Matching Energy" in Ref. [3]) is in terms of a rela­

tively stronger interaction energy between pairs of nucleons in essentially 

congruent quantized orbits (i.e. orbits with essentially identical spatial den­

sity distributions 1~12, whose nodes and antinodes are everywhere matched). 

In addition to an even-odd term, this congruence leads to an extra binding 

whose estimated functional dependence on Nand Z is of the form, 

ECON ~ -ao + W(III + ~), (51) 

where ~ = A-I for odd-odd nuclei with N = Z, and zero otherwise. The 

parameter W is known from previous studies to be about 30 MeV, and was 
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fixed at that value. The parameter ao was considered as adjustable. (The 

congruence energy, like the even-odd correction, is absent in a statistical, 

continuum treatment of the Thomas-Fermi type, and must be allowed for by 

an additional semi-empirical term.) 

A fit to the corrected experimental masses (characterized by an rms de­

viation of 1.05 MeV) was obtained [20] by varying the six interaction pa­

rameters a, CY, B, " ~, (, as well as ao (which turned out to have the value 

-19.267 MeV). The fit was constrained by the demand that the density dis­

tributions for the protons should roughly reproduce measurements, and that 

the neutron-matter binding energy curve in the region of moderate densities 

should be close to the estimate in Ref. [14], as illustrated in Fig. 2. The charge 

distribution constraint was expressed by the condition that the nuclear mat­

ter radius constant should be 1.13 fm and that the (Siissmann) width b [21] of 

the charge distribution should be 1 fm after folding-in a proton charge form 

factor with an RMS size (r2)1/2 = 0.85 fm [16]. Because of the additivity of 

the Siissmann widths under the folding operation, we may write, 

(52) 

where bTF is the width of the Thomas-Fermi surface before folding, and bproton 
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is related to (r2) by 

(53) 

Hence the condition on the Thomas-Fermi density distributions is that bTF 

should be equal to )1 - b;roton = 0.871 fm. No systematic attempt was made 

to optimize the fit to experimental charge distributions, such as those shown 

in Fig. 4, which thus remains quite rough at this stage. The optimization 

of all the model parameters awaits the inclusion in the discussion of fission 

barrier heights, a problem that we will consider in a future publication. 

The parameter (j, which shows up only in the energy dependence of the 

optical potential, and is thus conveniently decoupled from the other param­

eters, was determined by demanding approximate agreement with the trend 

of the data in Fig. 8. 
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10 The Truncated Thomas-Fermi Model 
.. 

Since it is likely that the optimum value of I will turn out to be moderate, 

it may be sufficient for a less refined analysis to set it to zero exactly. The 

result is a considerable simplification in the energy equations and the Euler 

equations. Similarly, the potential felt by a nucleon in standard nuclear 

matter could then be simply expressed as 

(54) 

This implies a constant effective mass m* for the nucleon, given by m* 1m = 

(1 + (3)-1. The older (Seyler-Blanchard) model without a density dependent 

term (i.e. with a = 0) would require f3 to be about 1.6, leading to the 

unacceptable value m* 1m = 0.38. With the a term included, f3 is close to 

0.4, which gives m* 1m = 0.71. This value reproduces adequately the trend 

of the experimental data in Fig. 8 concerning the depths of the optical model 

potentials. Thus, using the saturation equations (20,21) with I put equal to 

zero, and writing ¢>2 = C - u, we find for the potential u the simple expression 

1]0 f3 
u = -1+ 1 + f3 + 1 + f3 c , (55) 
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or, equivalently (after restoring the units), 

at f3 
U(E)=-T. --+-E. 

o 1+f3 1+f3 (56) 

With, set equal to zero a preliminary fit of the remaining parameters 

to nuclear masses (and to the theoretical estimate of neutron matter [14]) 

results in the following slightly modified illustrative parameter set: 

a 0.58820 fm, 

a: 3.99474, f3 0.38096, , 0.0, (57) 

1.45969, 0.44308, ( 0.57047. 

These values correspond to the following nuclear properties: 

radius constant of nuclear matter, ro 1.13fm, 

Fermi energy of nuclear matter, To 37.679 MeV, 

density of nuclear matter, p 0.16545 fm-3 , 

volume energy coefficient, at 16.539 MeV, 
(58) 

symmetry energy coefficient, J 31.633 MeV, 

surface energy coefficient, a2 20.237 MeV, 

curvature correction coefficient, a3 10.432 MeV, 
'e' 

compressibility coefficient, f{ - 315.91 MeV. 

The depth of the optical model potential in Fig. 8 is now strictly linear in 

the energy E and changes sign at E = 180 MeV. 
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The actual expression used for the nuclear mass excess in the determina­

tion of this preliminary (and truncated) parameter set, was 

M(N,Z) = MNN + MHZ + TF+ ao + Will + EO + SH, (59) 

where N is the number of neutrons, Z the number of protons and I = (N - Z) / (N + Z). 

The coefficients are: 

mass excess of the neutron, MN 

mass excess of the hydrogen atom, MH 

constant term, 

Wigner term coefficient, W 

8.071431 MeV, 

7.289034 MeV, 

-16.7710 MeV, 

30.0 MeV. 

(60) 

and T F is the Thomas-Fermi calculation of the binding energy (a negative 

number). The even-odd correction EO has the form: 

o for even-even nuclei, 

EO = 12/v'A for odd nuclei, (61) 

24/v'A - 20/A for odd-odd nuclei. 

The fit was performed by Peter Moller [22] using 335 masses and the shell 

corrections SH from Ref. [23]. The rmsdeviation of the measured and calcu­

lated masses for the nuclei used in the fit was 0.958 MeV. 
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11 Summary and Outlook 

We have presented a model of average nuclear properties based on a Thomas­

Fermi theory with an effective interaction that contains seven parameters. 

These consist of the usual four basic parameters determined by nuclear sizes 

and by the nuclear volume, surface and symmetry energies, plus a fifth pa­

rameter I determined by the nuclear surface diffuseness, plus a sixth pa­

rameter that can be adjusted to (theoretical) estimates of the properties of 

neutron matter, plus a seventh parameter 0', determined by the energy de­

pendence of the nuclear optical potential. The number of parameters is in a 

very healthy relation to the amount of data used to fit them, and this results 

in a phenomenological model for the most part firmly anchored in observable 

properties of nuclei. The formal structure of the model is such that, apart 

only from shell effects and the discreteness of nucleons, there are no reasons 

to doubt its validity for small nuclei, or its powers of extrapolation to very 

large, or very deformed, or very neutron or proton rich systems. Thus we 

picture ourselves in possession of a reliable approximation to the average 

properties of the matter of which nuclei are composed. In order to exploit 

this situation fully, we are planning, in addition to a large number of conven-
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tional applications, to subject droplets of our Thomas-Fermi nuclear matter 

to a range of extreme conditions. These will include large centrifugal forces, 

extreme electric forces (associated with huge atomic numbers), as well as 

stresses produced by extreme isospin imbalance and high temperatures [24]. 

It is known that under such extreme conditions nuclei have a tendency to 

assume unusual shapes such as dumbbells, bubbles, or tori, not to mention 

the "spaghetti", "lasagna" etc. configurations contemplated in astrophysical 

applications [25,26]. The availability of a reliable statistical model of the 

nuclear material is essential for extrapolating into those exotic regimes of 

nuclear physics. 
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12 Appendix A. The Interaction Energy 

The interaction energy W is the sum of neutron-neutron, neutron-proton and 

proton-proton interaction energies: W = Wnn + W np + W pp, where 

In the above, the first two integrations are over all space, and the momen-

tum integrations are over the Fermi spheres of radius PI and P2 associated 

with the interacting particles (neutrons or protons) at points 1 and 2. The 

factor 2/ h3 is the density of neutron or proton states in phase space and C.e 

and Cu stand for the interaction strengths between like and unlike particles. 

Using the dimensionless quantities defined in Sec. 2 we find for W nn , say, the 

expressIOn 

... 

where the 1's are the following momentum integrals: 
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(~1r p;) -2 tld3P1 t2d3p2 (P12/ po? 

(~1r p;) -2 tld3P1 t2d3p2(PO/P12) 

(~1r P; ) -2 ~ (<p~ + <p~) tld3P1 t2d3P2 

= ~ ( <p~ + <pn <p~<p~ 

(64) 

Analogous expressions hold for Wnp and Wpp , with 1i(<Pl, <P2 ) replaced by 

~ (<p2 + \(12) <p3\[13 2 1 2 1 2 (65) 

~ (\[I~ + \[In \[I~\[I~ . 

We shall presently return to evaluating 12 and 13 , but first consider the 

contribution Wq to the energy W, arising from the density dependent (j-

term in the interaction: 

Wu ~ T,(p,/2) j £lr, j £lrd [U,I.(<I>" <1>,) + u,J.( w" w,) + 2u .I. ( <1>" w,) 1 

~T'(P,/2) j£lr, jd'r,! [~Ul (<I>l<l>~ + <I>~<I>~ + wlw~ + w~w~) 

+ u, (<I>:w~ H~w;) ]. (66) 
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Since the indices 1 and 2 in the integration variables may be interchanged at 

will, the above reduces to 

(67) 

We shall also need an expression for the contribution from the a-term to 

the potential felt by a neutron (or proton). This is obtained by imagining 

the neutron density Pn changed to Pn + 8pn, calculating the resulting change 

8Wu , and casting it in the form 

(68) 

so that Uu(rt) is the desired potential. Carrying out the variations <I>1 ~ <I>1 + 8<I>1 

and <I>2 ~ <I>2 + 8<I>2 in Eq.(76), interchanging indices 1 and 2 where neces-

sary in order to convert 8cI>2 into 8<I>1, and using 8pn(1) = (Po/2)3<I>~ 8<I>1, we 

find 

The corresponding expression for the potential felt by a proton is obtained 

by interchanging <I> and \If. 
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The potential produced by the density-independent part of the interaction 

can be obtained more directly by integrating over contributions from the 

particles surrounding a given "test particle", or "test density" hp. (This 

cannot be done for the density-dependent part because the introduction of 

the test density affects the interactions between all the particles already:' 

present, and this contributes to the energy change and thus to the effective 

potential. This is why we had to deduce Uu by first calculating Wu, and then 

evaluating the variation hWu . If this subtle point is disregarded, an incorrect 

expression for Uu is obtained.) 

The total potential felt by a neutron at the point rI and with momentum 

P can now be written as, 

To Jd3r2! (QliI - f3li2 + Ili3) 

- To Jd3r2! (QuiI - f3u i2 + lui3) , (70) 

where, for neutron-neutron interactions, the i's are the following momentum 

integrals: 

iI(~2) (~1l"P:) -1 k2d3P2 = ~~ 

i2(~2'P) _ (~1l"P:) -1 k2d3p2(PI2/Po)2 (71) 
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• 

In the case of neutron-proton interactions cP is replaced by W. 

The integral i2 is evaluated by writing 

,. 2 2 ( )2 PI2 = Px + Py + pz - P , (72) 

where Px, Py, pz are the cartesian components of P2' and by choosing the 

vector PI' whose magnitude is p, to lie along the pz axis. Thus, 

(73) 

The integration over pz vanishes by symmetry, and we find 

(74) 

where </J, equal to pi Po, is the neutron's momentum in units of the Fermi 

momentum Po. 

In the case of i3 we make use of the fact that Jp2d3pdpI2 may be regarded 

as a fictitious electric potential (in momentum space) at a distance P from the 

origin, due to a uniform distribution of charge inside the sphere P2 • Using 
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standard formulae of electrostatics, we have 

(75) 

The contributions to Un from the protons are obtained by replacing q, by W. 

The total potential felt by a neutron is given by: 

(76) 

} 

} 
In the factors multiplying " the lower line is to be used when <p < q,2 or W2 

respectively, and the upper line otherwise. The proton potential Up ( 1"1, "p) is 

obtained by interchanging q, and W, and adding the electric potential: 

Up(rt,,,p) = (77) 

-ToJd3r2fw~{ae-(3e(~w~+"p2) -ue(~w~+~w~)+,e( "p-l } 
W;1 [~- !("pjW2)2] 

-To Jd3r2 f q,~ {au - (3u (~q,~ + "p2) - Uu (~w~ + ~q,~) + ,U ( "p-l } 
q,;1 [~ _ l("p jq,2)2] .22 
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In the above, 'Ij; is the proton's momentum in units of Po. 

Note that for a neutron "at the top of its Fermi sphere", i.e. for </> = <I>1 

the neutron potential becomes, 

Un(rt, <I>1) = (78) 

-To Jd3r2 f [<I>~ {af. - Bf. (~<I>~ + <I>~) + If. ( <I>11 } 
<I>21 [~ - H<I>d<I>2)2] 

+w~ {au - Bu (~W~ + <I>~) + IU ( <I>11 '}] 
W21 [~ - ~(<I>dW2)2] 

Similarly, for a proton with 'Ij; = Wt, we have (apart from the electric pot en-

tial), 

(79) 

} 

+<I>~ {au - Bu G<I>~ Hi) + ,. ('1
1

. }]. 

<I>21 [~ - HWd<I>2)2] 

The noteworthy feature of Eqs.(80) and (81) is that only the combinations 

of f3 and a denoted by B are in evidence. 
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Returning now to the calculation of the interaction energy Win Eqs.(62,63), 

Pl. Since the average of <jJ2 over this sphere if ~~f, we find at once that, 

(80) 

Finally, h( ~b ~2) involves an integration of i3 over the sphere Pl. Here we 

have to make a distinction between the case when ~l > ~2 and ~l < ~2' In 

the latter case <jJ, which is less than ~b is always less than ~2' and the lower 

line in Eq.(75)is to be used. As before, the average of <jJ2 over the sphere PI 

is ~~f and we find 

When ~l > ~2, <jJ is sometimes less and sometimes greater than ~2' Hence 

the somewhat more complicated integral: 

(82) 
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Both final results for 13 are nevertheless symmetric in cJ>1, cJ>2 and may be 

summarized by writing 

(83) 

where cJ><, cJ» is the lesser or greater of cJ>1 and cJ>2. Similarly, 

(84) 

and 

(85) 

where X <, X> is the lesser or greater of cJ>1 and \lI2' 

Collecting together all contributions we find, 

(86) 
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... 

13 Appendix B. Numerical Solution of the 

Euler Equations . 

The Euler Equations consist of a pair of coupled integral equations for <I> and 

\f!, viz.: 

0, (87) 

where the coefficients Care functionals of <I> and \f! given by Eqs.(32). 

The following procedure was found to lead to convergent iterative numer­

ical solutions. Assuming starting estimates for <I> and \f! .and for the chemical 

potentials An and Ap , the coefficients C~'P, C~'P are calculated by numeri­

cally integrating Eqs.(32). The cubic equations (87) are then solved for <I> 

and \f!. The associated density distributions are integrated to determine the 

number of neutrons and protons, and the chemical potentials are adjusted 

until the neutron and proton numbers agree with those implied by the initial 

choice of <I> and \f!. The new functions <I> and \f! thus obtained constitute the 

next approximation to the desired solutions. The integrations in Eqs.(32) are 

performed again and the whole procedure is iterated to convergence, usually 
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in about 8 to 10 steps. 

In solving the cubic equations, the following formulae were found appro-

priate (X stands for ~ or Wand C stands for cn orCP): 

If the discriminant b = ~C5 - 2
1
7 ct > 0 , then 

(88) 

If b < 0, then 

X = 2JCt/3 cos [~COS-l Jl + 27b/Cr] . (89) 
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14 Appendix C. Relation to Droplet Model 

Coefficients 
.. 

The energy per particle of uniform nuclear matter, Eq.(25), has the following 

expansion around its equilibrium value, 

Here 5 is the Droplet Model dilatation variable, defined by 

p/Po = 1-35, (91) 

where P is the total density, Pn + PP' and b is the relative neutron excess 

variable defined by b = (Pn + pp)/ p. The expansion coefficients Wi are found 

to be the following functions of the interaction parameters a, (J etc.: 

3 1 3 3 
'fJo 5 - 2a + 5B - 5" 

6 3 6 
Wo -5 + 2a - 3B + 5" 

1 1 1 4 2 1 2 
WI 3 - 2ai + 2au + 3 Bi - 3Bu - 3,i + 3'u , 

6 6 
5 - 3a + 12B - 5' (92) 

2 3 3 20 10 2 4 
W3 3 - 2ai + 2au + 3" Bi - 3" Bu - 3,i + 3'u , 

2 4 8 2 10 
W4 81 - 81 Bi + 81 Bu - 81,i + 81 ,u , 
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1 
Ws g'U, 

14 
W6 405'u' 

The Droplet Model coefficients at, J, I<, L, M are related to the w's by the 

expreSSIOns, 

The terms in wslb'31, w61b'5 1, absent in the Droplet Model, are the result of 

the non-analytic behavior associated with the term ,ill in the effective in-

teraction. 
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Figure Captions 

Fig. 1 The binding energy per particle of standard nuclear matter (in 

units of To) as a function of n, the Fermi momentum in units of Po. (The 

relative density p/ po is equal to n3.) The compressibility K = 300 MeV 

is approximately the value we have deduced from experiment. The value 

K = 10,000 illustrates the approach of our model to the limiting case of an 

incompressible liquid drop. 

Fig. 2 The energy per particle of uniform nuclear matter (in units of 

To) for different values of the relative neutron excess 8 = (Pn - Pp)/(Pn + pp). 

The parameter r is related to the relative density by r3 - p/ Po. Neutron 

matter corresponds to 8 = 1 and is given by the upper solid curve. Neutron 

matter at a density equal to the neutron density prevailing in equilibrium 

standard nuclear matter (i.e. Pn = Po/2) corresponds to r = (1/2)1/3 = 

0.7937. Up to such a density the solid curve agrees closely with the theoretical 

estimate of Ref.[14]' given by the squares. 

Fig. 3 The energy per particle of neutron matter (in units of To), for 

various values of the parameter e, which is a measure of the relative strength 

of interactions between like and unlike particles. The cube of the parameter 
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<I> is the neutron matter density in units of Po/2. For each value of e the other 

interaction parameters were readjusted so as to keep the binding, density and 

symmetry energy coefficient of standard nuclear matter fixed. For a value 

of e equal to about 0.44 the Thomas-Fermi calculation agrees closely (up to 

<I> ~ 1) with the estimates of Ref.[14], given by the squares. For e less than 

about 0.2, the energy plot develops a metastable minimum, which becomes 

stable for e less than about -O.l. 

Fig. 4 The calculated Thomas-Fermi charge distribution of three nuclei 

(after folding in the proton size) are compared with experimental distribu­

tions represented by a so-called 3-parameter Gaussian fit [16]. The RMS 

radii of the calculated and measured distributions are about equal. A better 

fit could have been obtained by increasing the calculated surface diffuseness 

(resulting in a reduction of the compressibility coefficient). 

Fig. 5 The calculated Thomas-Fermi density profile of standard, semi­

infinite nuclear matter is shown by the solid curve. The dashed line is the 

result of folding in a Yukawa nucleon form factor with an RMS size of 0.85 

fm, corresponding to the measured charge distribution of a proton. The 

distance along the abscissa is measured from the location of the effective 

sharp surface. 
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Fig. 6 Each set of symbols represents the result of calculating the surface 

energy of semi-infinite nuclear matter using interaction parameters chosen so 

as to give the same volume energy per particle, the same equilibrium density 

and the same surface width b, but different compressibility coefficients I<. 

The value of b deduced from measured charge distributions (b ~ 1 fm), 

together with the value of a2 deduced from fits to measured binding energies 

(a2 ~ 20 MeV), leads to an estimated value for I< of about 300 MeV. (Some 

evidence for a value of b greater than 1 fm is suggested by Fig. 4.) Note the 

astonishingly linear appearance of the graph resulting from plotting a2 vs. 

I< at fixed b. (The lines are straight line fits to the calculated points.) 

Fig. 7 The calculated momentum dependence of the potential felt by 

a neutron traveling through standard nuclear matter. (The potential is in 

units of To and the momentum is in units of Po). The total potential (solid 

curve) is made up of a negative constant (long dashes), plus the parabolic 

term /3<P (medium dashes) and the ,-term proportional to cP2 for, < 1, and 

to cP-1 for, > 1 (short dashes). 

Fig. 8 A compilation of the measurements of the depth of the optical 

model potential, taken from Ref.[17]' is compared with the Thomas-Fermi 

calculations. The short-dashed line would be the result of using the original 
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Seyler-Blanchard model [8] with I = 0 and (j = o. Increasing (j to 1.33677 

gives the dotted line (and the same compressibility). Taking I to have the 

value which reproduces approximately the measured surface diffuseness (, = 

0.21329) bends the curve up away from the abscissa to give the solid curve. 

(The compressibility is now [{ = 301.27 MeV.) All the curves pass through 

the fixed point at U = -54.206 MeV, E = -16.527 MeV and are strictly 

linear and independent of I for E < -16.527 MeV. The long-dashed line 

results from increasing the value of I to 0.45305, which corresponds to [{ = 

285 
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