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DYNAMICAL ELECTRON SCATTERING APPROXIMATIONS

AND THEIR VALIDITY DOMAINS IN ELECTRON MICROSCOPY

Bing K. Jap
Donner Laboratory
Lawrence Berkeley Laboratory .

University of California
Berkeley, California 94720

ABSTRACT

The kinematic approximation, the phase object approximation and the
multislice dynamical approximation have been derived following Feynman's
path integral formulation of quantum mechanics. The higher order phase
object appfoximation was, for the first time, developed in order to
extend the validity domain of the phase object approximation. The
validity domains of the kinematic approximation, the phase object approx-
imation and the‘higher phase object approximation were evaluated. In |
this evaluation, the multislice dynamical approximation was considered
to be exact and used also as standards of reference. It was shown that
the validity of the diffracted beam in;ensities in the kinematic approx-
imation at 100 keV, is limited to a small crystal thickness and remains
approximately unchanged as electron accelerating voltage increases. On
the other hand, the validity of the diffracted beam intensities in the
phase object approximation at 100 keV is limited to a slightly smaller
crystal thickness but increases as electron energy increases. The
validity domains for the retrieval of the projected potential in the

phase object approximation were determined for various electron



accelerating voltages. The validity domain for the higher order phase
object approximation was also evaluated.
The effect of high voltage to the contrast of organic crystal -
images under "optimum defocus condition” was also studied. It was shown
that the contrast increases with increasing electron -energy. This
increase in coﬂtrast is beneficial for the reduction of radiation damagé.
It was concludgd, that high voltage electron microscopy not only gives
the beneficial iﬁcrease in contrast, but also gives a larger domain for

the retrieval of the projected potential by the phase object approximation.



I. INTROﬁUCTION AND REMARKS

'The discovery in 1927 of the diffraction of electrons by periodic
arrays of atoms in crystals proved the wave nature of electron beams
(Davisson, C.J;‘and Germer, L.H., 1927). It was then élear that electron
diffraction gould be used, in principle, for structural analysis of
crystalline materials. The rigorous attempts to use electron diffraction
for structural investigation of crystals did not come, however, until
much later (Vainshstein, B.K. and Pinsker, Z.G., 1949; Vainshstein, B.K.
et al, 1958; Imamov, R.M. and Pinsker, Z.G., 1965). Not until recently
has electron diffraction been appliéd-in the investigation of biological
structures (see, for example, Parsons, D.F., 1968; Glaeser, R.M. and
Thomaé, G., 1969). Electron diffraction is therefore far behind x-ray
diffraction as a tool for the structural study of crystals. The reason
1iés mainly in the difficulty in the interpretation of electron diffraction
data. Unlike_ih.x—ray diffraction, the multiple scattering effects appear
to be'ﬁore important in electron diffraction. The simplé linear approx-
imation, also called the Born approximation, is inadequate to explain
the observed diffraction pattern intensities. A greater complication
of interaction of the diffracted beams involved within the crystals
occurs in electron diffraction.

Electron microscopy and electron diffraction have been widely used
for many structural investigations in biological as Qéll as materials
science. Unlike x-ray diffraction and neutron diffraction techniques,
electron microscopy can provide not only the crystallographical data from

the diffraction pattern, but also the direct morphological information



from the imagé. With the selected area diffraction technique, an image
and a diffractiéh pattern from the same area of the specimen can be
easily obtained. 1Indeed, electron microscopy is able to record the -
amﬁlitude and phase of the diffracted beams whereas the ''phase problem'
imposes the greétest task in x-ray diffraction studies. In comparison
with x-rays, electrons interact strongly with each atom of the crystéls;
Electron microscopy, therefore, requires a much smallef sbecimen size.
This is advantageous to the structural investigation of biological
specimens such as viruses and macromolecules because of their'inherently
small specimen size which limits study by x-ray technique. Electron
microscopy has been successfully used to reconstruct the three-dimensional
structures of biological specimens with resolution poorer than "~ 20 X.
A review describing the application of electron microscopical technique
for three-dimensional reconstruction of biological structures has already
been given (Léke, J.A., 1972). Another example which is suitable for
electron microsco;ical investigation but not for x-ray studies is the
study of the formation of defects and phases in organic crystals which
has been especially well exploited in metallurgical research. |

The very large scattering power of electrons can be a disadvantage
in that multiple scattering effect occurs even in gés molecules of high
atomic number (Schomaker, V. and Glauber, R., 1952; Glauber, R. and -
Schomaker, V.,Ii953). The dynamical scattering effect severely confounds
then, the interpretation of the electron diffraction and elecfron image
data. Erickson and Klug (1971) and others (Dorset, D. and Parsoms, D.F.,

1974) have claimed, however, the validity of the kinematic approximation

for interpretation of the electron scattering by biological, periodic
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objects. The basis of their claim is based mainly on the fact that, for
relatively tﬁin objects, the total intensity of the scattered electrons
‘is much smaller than the intensity of the forward-sgattered electrons
together with the unscattered ones.” An attempt has been made in this
laboratory (Quon, W.K., 1970) to investigate the signifiéance of the
dynamical effect in the determination of biological structure. It has
been shown that the kinematic approximation, used in x-ray structural
defermination, was inadequate to be usgd for electrbn»diffraction stédies,
Use of the relatively simple two beam dynamical theory did not give,
however, any significant improvement in the determiﬁation. It was
concluded that a more accurate dynamical approximation is needed to
determine the crystallographic structure of biological crystals.

The use of electron microscopy as a tool for biological structural
investigation is.also limited by factors such as specimen hydration and
radiation damage. Biological specimens which are associated with water
in their natural state are normally maintained in a dehydrated condition
"in the high vacuum of the electron microscope. They may, thérefore,
become disordered during the dehydration process. Normally, dried specimens
do not retain their native structure at the level of.molecular and atomic
detail.

Although the specimen.dehydration problem is méinly technical in

nature, it is only very recently that it has been partially overcome by

approaches such as:

* N .
The validity of the argument is discussed in detail in Appendix A.



a) the differentially pumped hydration stages (Matricardi, V.R.
et al, 1972; Hui, S.W. and Parsons, D;F., 1974)

b) the closed, thin window environmental chambers (Joy, R.T., 1973) -

c) the frozen specimen hydration tcchnique.(Taylor, K.A. and

Glaeser, R.M., 1974).

Radiation damage due to the electron beams may impose a limiting
factor for high resolution electron microscopical investigation of
‘biologicalvmaterials. Studies have shown that many'bidlogical specimens
exposed to the electron beam are disordered before-sufficient irradiation
dose is attained for detection of the high resolution information (Glaeser,
R.M., 1971, 1975). Although many remarkable methods such as staining,
shadowing, replication and minimum exposure techique have been developed
to overcome radiation damage, yet these methods arevuseful only to
preserve medium resolution (v 20X) information. There is, therefore,
still a desperate need to resolve the biological structure down to the
1eye1 of atomic detail without destroying the native object structure.

The use of high voltage electron microscopy may contribute a smali
amount to the reduction of radiation damage to the specimen under electron
microscopical_invéstigation. Experiments in high voltage electron micro- : r
scopy have shown that the "critical exposure' which giﬁes a measure of
the electron dose beyond which meaningful results cannot be obtained,
increases with electron accelerating voltage. For orgaﬂic materials,
the improvement in critical exposure at 1.0 MeV can be 2.5 to 3.0 times
greater than at 100 keV (Glaeser, R.M.,'1974). In principle, radiation
damage can be overcome in the case of crystalline or periodic objects.

The electron exposure can be substantially reduced by taking advantage



of the redundancy of the periodicity of the image. This technique is
referred to as Statistically Noisy Averaged Pictures (Glaeser, R.M. et al,
1971), and has been successfully tested for-the case where the specimen
is a carbon replica of an optical diffraction grating (Kuo, I.M., 1975).
With the use of hydrated specimens and reduction in irradiation dose
technique, electron microscopy can be the most direct method for structural
investigation of biological crystals or periodic specimens at the level
of atomic dimensions.

Although the electron microscope was first developed as early as
1931 (Knoll, M. and Ruska, E., 1932), the use of electron microscopyAfor
investigation of high fesolution crystal structure became possible only
in the last few years. It is only recently that the electron microscope
.has achieved sufficient resolving power to show crystal images at the
level of atomic dimensions. Images of non-periodic and periodic structural
features at resolution down to‘% 3% have been reported (Iijima, S., 1971;
Yada, K. and Hibi, T., 1969; Hashimoto H. et al, 1973; Ottensmeyer, R.P.
et al, 1973). By detailed comparison between the observed crystal image
at a resolution of about 64 and the images computed by thé multislice
dynamical formulation, Allpress et al (1969) were able to derive useful
information>regarding the nature of crystal defects. The image was
calculated from the crystal structure determined by‘x—ray crystallographical
technique. It is noteworthy that, in the multislice dynamical approximaﬁion,
there is no invertible relationship between the objéct structure and the
scattered electron wave. The object potential cannot, therefore, be
retrieved from the image and the diffraction intensities. It is clear

that the multislice dynamical formulation is useful only for a study of



electron scattering by crystals for the cases where the object structure

is preﬁiously kﬁown. The main interest of electron microscopy and electron
diffraction lies, however, 1n‘a structure determinatibn of the object from
the observed image and diffraction intensities. Tﬁere'is need, then, to
have other dynamcial approximations which can be used to determine the
structure of the object from electron microscopicai data.

The objective of this research is to find a pragtical solution to
the problem of dynamical scattering effécts, which have been known to play
an important role in the interpretation of the diffraction intensities and
the high resolution image. The 1ong term goal will be to retrieve the
object structure from the high resolution object image and diffractioﬁ
intensities. The method will be used for correction of the dynamical
effect on electron micrograph images of biological specimens such as gap
junction membranes, catalase and tobacco mosaic virus. The three-dimen-
sional reconsfruction of these objects at high resolution will be the
ultimate goal.'

The phase object approximation seeﬁs to be the simplest dynamical -
formulation for retrieving the projected potential of the object. It
gives an invertible relationship between the projected.potential and the
transmitted wave: the transmitted wave from the object is directly proportional
to the complex exponential of the projected potential. This approximation
is derived on tﬁe basis that the scattering angle is sufficiently small.
It can be obtained by summing the infinite Born seriés after approximating
each term by the method of the stationary phase (Schiff, L.I., 1956), by
the use of the partial wave method (Olsen, H. et al, 1957), by the

application of WKB approximation (Moliere, G., 1947; Zeitler, E. and



Olsen, H., 1967; Schiff, L.I., 1968), by a physical optics approach
(Cowley, J.M. and Moodie, A;F., 1957) and by imposihg a small angle
approximation to the scattering integral equation (Parzen, G., 1951;
Berry, M.V., 1971). Because of the nature of the phase object apprbxima-
tion, its validity is limited to small angle scattering, depending in
addition on the object thickness and on the electron accelerating energy;
the thicker the object and the smaller the électron energy, the smaller
will be the angular domain of validity. There is a limited domain in
terms of resolution, specimen thickness and electron acceleratiﬁg voltage
beyond which the phase object approximation becomes invalid. Our concern
here is, in part, to set up some criteria for the validity of the phase
object approximation, and to determine its domain of validity.

In this manuscript, the phase object approximation is derived for
the first time by Feynman's path integral formﬁlatioh of quantum mechanics,
which has a kind of simplicity that is often lost in the complex formula-
tions of quantﬁm ﬁechanics. In the derivation, it is clear that the
phase object approximation is valid only to a very small angle since
the approximation assumes that high energy electrons, when passing through
object potential, follow the classical straight line path. This assumption,.
therefore, becomes invalid as the object thickness increases.

It appéars that the limitation of the phase object approximation
can be overcome by considering that high energy electrons have a significant
probability to be scattered at small angles. These electrons have to be
considered in the derivation of the scattered wave function in order to
get a more accurate description of the electron scaptering. Results from

this consideration lead to the multislice dynamical theory of Cowley and
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Moodie (1957). Mulﬁislice dynamical theory does not give, however, a
simple invertibie relationship between the projected potential. and the
scattered wave. We develop, in this thesis, a new dynamical theory which
takes into consideration that the electrons can be scattered at small
angles and yet preserves the invertible characteristic of the phase object
approximation. Ihis we call the higher order phase objéct approximation
(HOPO). Compared to the phase object approximation, this approximation
is superior in accuracy, and‘has, therefore, a larger domain of validity.
In order to retrieve the projected potential over a unit cell from the
transmitted wave, this approximation requires, however, that the object
thickness be known. For biological specimens such as membranes and
viruses, this new approximation is particularly useful since the thickness
of these objects can be determined by other electron microscopical
techniques such as thin section technique.

In Chapter 2, the kinematic approximation as well as various
dynamical approximations, the phase object approximation, the higher
ordef phase dbject approximation, and the multislice dynamical approxi-
mation, are derived following Feynman's path integral formulation of
quantum mechanics. The higher order phase object approximatioﬁ is, for
the first time, déveloped. Compared to the phase iject approximation,
this newly developed approximation is not only superior in accuracy but
also preserves the invertible relationship of the phase object approximation.

Chapter 3 and 4 describe respectively the validity of the phase
object approximation and of the highgr order phase object approximation
for structual studies of organic crystals. The domains of validity for

both approximations are also evaluated. In this evaluation, the multi-
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slice dynamical épproximation is used as our standard of reference.

A measure of validity of these approximations is based on the reliability
factor of the projected potential fhat is retrieved by the approximation
under consideration.

In Chapfer 5, the voltage dependence of contrast is theoretically
investigated for calculated images of crystals. The images were computed
for various crystal thicknesses at the "optimum defocus condition". in
biological specimens, a change in image contrast is related to ﬁhe dose
of irradiation for the interpretable image data. It is known that the
higher the contrast, the smaller the dose of irradiation can be used and
still have sﬁfficient statistics of measurement to give the same amount
of structural information. An increase in image contrast in high voltage
microscopy means that the complication of data proceésing to reduce the

dose of irradiation needed can be significantly reduced.
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II. THEORY OF ELECTRON SCATTERING BY ATOMS AND CRYSTALS

The motion of electrons under the.influence of a potential field
can be described by the Schrodinger equatior. The solution in terms of
the Bofn series, however, either converges too slowly 6r else leads to
results which are not easily interpreted. Bethe's dynamical theory of
electron diffraction by crystals, for instance, gives a solution which is
highly complicated and also tedious to be applied to cases where more
than two scattered beams are considered. The first Born approximation,
which is commonly used in x-ray diffraction study, appears to be inadequate
to be applied in electron diffraction cases. The Bofn series, where the

dynamical scattering effect is taken into account, seems to converge too

slowly in the region where the first Born approximation fails significantly.

There is need, therefore, for simple, interpretable formulations which
give adequate account of the electron scattering processes.

The path integral formulation of quantum mechanics developed by
Feynman (1948, 1965) appears to be a logical as well as an intuitive way
of describing the electron scattering problem. It can associate the wave
and particle duality in a natural manner. Furthermore, the classic limit
arises naturally as a special case of quantum mechanics Qhen the dimensions,
masses, velocity, etc., are so large that the Planck constant can be
considered infinitesimal when compared to the momentum of the particles.
The path integral formulation has been shown to be consistent with the
Schrodinger equafion (Nelson, E., 1964).

In this chapter, the kinematic approximation as well as various

dynamical approximations will be derived following the path integral
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approach. A new dynamical approximation, the higher order phase object

approximation,; will also be developed.

A. Kinematic Approximation

The kinematic approximation or the first Born approximation (Scott,
W.T.,vl963; Schiff, L.I., 1955) was first derived by‘a first order pertur-
bation treatment of scattering (Born, M., 1926). It assumes that the
scattered waves are weak compared to the initial wéve. The far field,
Fraunhofer scattered wave can be shown to be a spherical wave with an
amplitude proportional to the Fourier transform integral of the potential
field. The dérivation gives, however, no clear physical meaning of the
approximatioﬁ. Here the kinematic approximation will be obtained following
the path integral formulation. With this approach, the kinematic approx-
imation can be clearly interpreted as a single scattering proceés.

The wave function of the electron, w(¥), under ﬁhe influence of
the potential field of an atom or a crystal can be déscribed by the

following integral equation
-»> -+ -+ > - ‘
Y(r) = ]wo(ro)P(r,ro)dro | (1)

where P(;,;g) is the propagator of the electron wave and wo(;é) is»the
initial wave'fﬁnction (Feyﬁman, R.P. and Hibbs, A.R., 1965).

The prépagator depends on the strength of the potential field and
on the wavelength of the electron. It can be written as the path integral
in going from.the initial point ;o to the observation point T of the

object, as follows (Feynman, R.P. and Hibbs, A.R., 1965)
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+
o t
5 5
P(r,t;¥0,to) = exp<-—§—jL(r',¥',c')dt'>.<9§" (2)
-)
rO tO
and,
: L(?',?',t') = -]2—'111;'2 + V(r',t")

where m, V and ‘' h are the electrbn mass, object potential and Planck's
constant respectively; J9¥' denotes the continuous éum of -integrals over
all possible p#ths. |

. For high energy electrons and weak object potential, such that
I%:[ V(r',t')dt'l << 1, the exponential function which depends on the
object potential can be expanded in a power series. The propagator

function can thus be written as

_) .
r .t . .t
s _ JifL S g0 . i u cryge
P(r,t,ro,to) o= [exp( hfZ mr. (t)dt) [1 +th(r ,t')dt' +
-
‘ To % o

higher order terms] ﬂ;'_
' (3)

In the case where the sum of the higher terms in the potential is much
* .
smaller than the first order term, the propagator can be simplified to

the following form (Feynman, R. P. and Hibbs, A. R., 1965):

*In crystalline objects, the contribution from the sum of many higher
order terms in the potential to the large angle reflections may be
quite significant because the amplitudes of these first-order reflections
are also very small. '
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+
r t
-+ -+ 3
P(r',t;ro,to) = exp(— hi[% ;"zdt">¢9r"
3 %
T t' t
+ fjl:‘[ exp(— %—]—;’—m;"zdt')([V(;',t')dt)
To t to
t _
exp(— hlf% m;"zdt">43¥" _ ‘ (4)

t'

where t' is the time at t0< t'<t. ,8';" includes the notion of integra-
tion for all paths between position and time Go’to) to (?',t') as well
as betveeﬁ (;',t') to (;,t), and also the integration over all possible
values ;'. To avoid confusion in the integration'of V(_r.t' ,t') over t',
we replace variable t' by s. The order of integration over the variable

o N
s and that over »&r" can be interchanged, and equation (4) becomes

. . |
> > '- ‘ i 1 - >
P(r,t;ro,to) = fexp (— ﬁ-fi- mr"zdt"> Hr"

. - J ;

=4

exp (- -:l—'[% m;"zdt"> oe—;"jl ds (5)

The first term is the propagator for the free electron. The second term

is associated_ﬁith the scattering by the potential field, and can be
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' >
interpreted as an electron starting from the incoming position T moving

. e d
as a free particle to the point r', and then being scattered by the

potential field of the object, after which it moves as a free particle

to the point ';. It should be noted that the electron which is scattered

+
at point r' has the possibility to be scattered in any direction (Fig. 1).
By substituting the propagator to equation (1), the wave function

for the outgoing electron can be written as

lp(;,t) fw (r , )[jexp( f;- '+||2dtu> ﬁ-‘;njl d;o
7
: (o] 0
t T . |
+ %]q) (r ,t ) [[[exp ( -;-;L-‘[% m.;.'lzdtn> V(;',S)
. t T t
o o

t

: iJ1
exp\-g |73

m;l!Zdtll> &-{. u] ds d;o

(6)

]

R .

where wo(ro) is the initial wave function of the electron.
. _ N
The wave function for the incoming electron having momentum hko

: > > i
and energy Eo can be described by exp(iko-r - (ﬁ-)Eot). In equation (6),
' >
the propagator for an electron going from the interaction point r' to

the point ;F can be represented by the following equation (Feynman, R.P.

and Hibbs, A.R., 1965)

(N

3/2 > o0
+ > m im|r-—r |
P(r,t';r',0) = [EFgng] exp(} )

2ht!

where t' is the time required for the electron to travel the distance



Incident

———————q'.' h —p. . nlpt soupis tetum,

electron L i VO,

(x".y",zp)

XBL 7412-8183

Figure 1. Schematic electron paths for the kinematic approximation: single
scattering events can occur anywhere in the potential field with -
subsequent straight-line propagation at any angle.
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> > '
|t -r'|. 1In this equation, we have assumed that the propagation is in
the forward direction. The wave function for the outgoing electron can

then be rewritten as

12

t
i
lp(r t) = exp( ik °r+(h)Et +gf exp ik-r +(h)Et)V(;',t')
07y
%o
m im —;—?' 2\
. [m‘g,—] exp \ - he' dr' dt’ (8)

where t 1is the ‘time needed for electron to go from the initial position
_;0 to the final point ; We have assumed here that the wave function at
the initial pbsition ;0=0 and at the time to=0, can be described by

> > i s .
exp(—iko . ro+(-ﬁ)Eoto)= 1. The first term in equation (8) is the wave
function of the free electron which passed through the poténtial field
without being scattered. The second term is the scattered wave function.

The outgoing wave function of the electron, for the far field

. > . ‘
region, can be obtained by setting |r| > o, After performing the integration

over t' in equation (8), this wave function, for the case where the
potential V(-{',t) is independent of t, can be expressed by the following

relation (Appendix B)

N _ > >4  m L Teyg ey exp(- —ik|T-1' ])
v (r,t) = exp(—iko r+(h)Eot> 2m‘izjrexp( iko r)v(z')

z-1'
(9
- ‘
Noting that the wave function y_(r) is for the far field region, we can

simplify this wave function by using the following approximation

'
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exp(-ikl;.-;{l) exp(ii";') exp (-ikr) ©(10)
r

Iz 12|+

Thus we can write the wave function as

> > > -+ -
b0y = exp(HikoT + (2 B e) - B ¢y SXRELD) (11)
o} 21m2 r
> -> -+ ->
where ¢(s) is the Fourier transform of the potential and s = ko-k.

Elastic scattering requires that Iﬁo! = IE| 80 that the Fourier transform
integral should be evaluated only on the Ewald sphere.

The amplitude of the scatteted.wave is, therefore, proportional to
the Fourier(integral over the potential of the object.v For a crystalline
object, the effective potential is limited to the object dimensions. The
form of the crystal can be described by a shape fupction, s(?), which is
equal to zero outside the crystal and unity within it. A finite crystal
of a given form is thus described by multiplicatioﬁ of the infinite
periodic distribution with the shape function. The‘scattering amplitude
of a finite crystal can be written as the convolution of the infinite

crystal amplitude and the shape transform, Z(g).

+> > m - -»> '
Fiok) = Ss[e@®] (12)

where F(ﬁ,io) is the scattering amplitude, * sign denotes a convolution

and prime indicates that only those values that lie on the Ewald sphere

are used.

This feature of the diffracted beams can be conveniently described

by means of the Ewald sphere construction in reciprocal space. The
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diffracted beams occur when the Ewald sphere intersects the reciprocal
lattice points. For a finite crystal, each reciprocal point is spread
out by the shape transform. The Ewald sphere may intersect the shape
transform near to the reciprocal lattice point and'give a difffacted beam.
The kinematic appro#imatién can describe the pattern of the
diffracted beams, but fails in most cases to give qorrect amplitudes,
and especially phases of these beams. The fact that the kinematic
approximation.is inadequate even for heavy atom gas molecules was realized
first by Schomaker and Glauber (1952, 1953), who tfied to explain the
anomalies in thg gas diffraction pattern from UF6 ﬁoiecules. Recent
results in a test study with the crystalline structure of 8 glycine have
also shown that the kinematic approximation is insufficient for the
descriptioh of the scattering of electrons by organic crystals (Quon,'w.K.,
. 1970). The dynamical effect, therefore, plays an important role in both

electron diffraction and electron imaging of biologiCal material.

B. Phase Object Approximation

Since the wavelength of an electron in the high voltage microscope
is very small and since the object potential, at resolution comparable
with atomic dimensions, varies slowly over a single electron wavelength,
the electron can be considered to propagate through the object following
the classical path. The classical approach may therefore be quite
sufficient to describe electron diffraction by crystals for the high
voltage microscope.

In the classical approximation, the single classical path is the

only one which contributes to the path integral instead of a continuous
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sum of integrals over all paths. For this case, the propagator from

> -> '
(ro,to) to (r,t) can be written as the single path integral:

. t : t
- -+ i 1 > N i >
P(r,t;ro,,to) = exp(— 5[7 mr'%ge' - g—[V(r')dt'> (13)
to to
classical classical
'~ path path

where the first term is the propagator for the free electron. For a path

length much greater than the electron wavelength, this term can be described
s S i

by the plane wave exp(—lk' (r-—ro) +-(H—)Eo(t-to)). In the second term,

the integral over the time t' can be converted to an integral over the

electron trajectory by the use of the following relation between the

electron velocity, ;, and the position and time

-
rl

-> o '
v = e (14)
The propagator can then be written as
>
. t _ T
> > N _if1 2., i >0,
P(r,t,ro,to) exp( h/Z mr' dt hv/ V(r )dr) (15)
—-)
t, 7,
classical classical
path path

where the integral is taken along the classical path tfajectory.

For high energy electrons, the scattering is confined to a small
angle. Thus, we can assume that the classical line path can be approxi-
mated by a straight line path parallel to the incident beam direction
(Fig. 2). With such an approximation, the propagator yithout the time

factor, exp ((-;%) Eo(t - to)) , can be written as
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Figure 2. Schematic electron paths for the phase object approximation:
multiple scattering processes occur along the straight-line
path without any change in the direction of propagation.
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where 8 is the Dirac delta function,‘g = (;,;). In eéuation (16), we
have assumed that the incident beam direction is aloﬁg the z-axis. The
straight-line path approximation is valid only when both the integral of
the potentiél as well as the kinetic energy over the classical line path
at a small angle from the incident beam direction can be approximated by
the integral over the straight line pafh parallel to the incident béam
direction. 1In 6ther words, the straight line path approximation is
justified if and only if the following two conditions are satisfied.
First, the difference in path length between the classical line path at
a small angle.and the straight 1ine path parallel to the incident beam

direction is much smaller than the electron wavelength, i.e.,

Az6?
2 < A (17)

In equation (17), 0 is the scattering angle, AZ 1is the 6bject thickness
and A 1is the electron wavelength; Equation (17) ié.alsq referred tovas
the stationary‘phase approximation (Schiff, L.I., 1956). Second, the
potential does‘not change appreciably within the coiumn diameter, d,
assoclated with the angle of the stationary phase apﬁroximation (i.e.,
d = AZO).

The transmitted wave function, for a slab of a potential field of
thickness AZ, can be obtained by substituting the propagator into

equation (1). Noting the Dirac delta function in the propagator, we can
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write the transmitted wave function as
ZO+AZ
-> ->
V() = exp(-ikAZ) exx><- f—‘%f V(p.g')df-'> (18)

YA
(o]

where w(g),is the transmitted wave function at the exit face of the
slab, and 3 = (;,;).

Equation (18) is, of course, the transmitted wave function of the
phase object approximation. The validity of this approximation depends
on the electron wave length, the strength of the potential, the thickness
of the object and the scattering angle.

Unlike the first Born approximation, the phase object approximation
takes multiple scattering processes into account. The scattered wave in
the phase object approximation is assumed to propagate in the same
direction as the incoming electron wave.. To the first order in potential,
the phase object approximation is therefore not exactly the same as the
first Born approximation. For a crystalline object, the phase object
approximation can be loosely described by saying that its Ewald sphere
is approximated as a plane, although it is known that the Ewald sphere
construction cannot ordinarily be used to predict the amplitude of the

diffracted beam intensity in the dynamical electron scattering approximation.

C. Higher Order Phase Object Approximation

The phase object approkimation was derived under the condition
that the electron propagates through the object following a straight line
path. The vaiidity of this approximation is limited to a very small

angle and to a very thin object. For an object of sufficient thickness,
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' the phase objeét approximation fails to describe thg electron scattering
process. The need for an approximation which can be used for larger
object thickness is therefore in demand. The expected approximation
must, however, give an invertible relationship between the transmitted
wave function and the object potential so that it can be used for correction
of the dynamical scattering effect on the electroﬁ micrograph image. We
develop here‘the higher order phase object approximation which has the
required improvement in behavior.

The propagator for an electron influenced by the potentiél field
V(;) can be written as the separate sum of path integréls over the straight

line and nonéstréight line paths. The propagator can then be described by

>
-+ .+ - l __j; +' +'_‘—>.+_+ l
P(r,t,ro,O) _N{exp< h’va(r )de' ik - (r ro) +(h) eq)
-
To
r
1 4
§(x-%x)8G-3) +f exp(— %fvé')d}"
S r
)

t
i j%m—;'zdt) Hr | (19)
. .
where the prime in the integral sign indicates that the integral is taken
over all possiblevnon—straight line paths and N is a normalizing factor.
In the prévious chapter, the propagator for the.phase object

approximation was derived under the assumption that the contribution
from the integral over all possible line paths but the straight line path,

which is parallel to .the incident beam direction, is negligible. For thin
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objects and a ﬁeak potential field, this as#umption can be expécted to
be valid. As the object thickness increases, howevér; the number of
electrons tﬁat are scattered at larger angles becomes appreciable. The
contributio§ from the 1ntegr;1 over the sfraight line‘path as well as -
over the non-straight line paths to the propagators has to'be'cqnsidered
therefore. |

Let us assume that only'those'paths which fbllpw ﬁhg incident beam
direction in é»straight line path and then caécade‘ﬁldng'this péth wifh
subsequeﬁt straight line propaga;ion, give significaﬁﬁ.contribution to
the ﬁropagators'of electrons passing through a laminar volume of poténtial
field of thickness Eo (Fig. 3). The transmitted wavé_fuﬁétion derived by
inéluding thesevpaths in the evaluation of the propagagors can be expecte&
to be suéerior in accuracy in comparison to that of the phase object’
approximatidn;f Let us further assume that fhe scaftetiﬂg is 1imitéd_t§
a small angle; For electron microséopy at high enéﬁgy, this aséuﬁption
ié-justified forvreasonably'thick objects because thé electron moménfumv
used is much Iarger than the momentum change due to interaction with the
object potential field. However, as objeét thicknesg‘becomes very-large;
the number of électrons which undergo multiple scattéring increases; and-'
a large numbér'of electrons are scattered at a large éngle; In this |
case, the assumption breaks down. For a potential which is weak'compared
to the kinetic ehergy ofvthe electron, the integral'of the potential‘alongf'
any one of thése non-straight line paths can be appfoximated by the
integral along the straight line path parallel to the incident beam
direction. The path integral of the kinetic energy‘éan, however, be

quite different for these two different path lines.;'The difference in
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Schematic electron paths for the higher order phase object approximation:
multiple scattering events occur along the straight line path and a change
in direction of propagation can take place anywhere along the straight
line path with subsequent propagation at small angle.
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path length between the straight line and non-straight line path can be

approximately described by

= e . i
Sy R(p,p') + 5
and o (20)
-, .
g = Rp'
i = -~
(Zo—Zi)

> > ~
where R(p,p') = \/Zx--x')2 + (y--y')2 and Zo is object thickness.
With this approximation, the propagator from r, to r, without the time

factor, exp((%)Eot), can then be written as
yA .
_]_' — _L - L} r _ 3 -
N exp( hv[v(p,z )dz 1.k20>
Z
o

] lim % exp (—ikR(B,g') '——2—> (21)

]

P(r,ro)

where N is the’normalizing factor and n is the total number of paths.

The sum oﬁer the angle 61 should be'restricted.to some maximum
value, in order tp be consistent with the earlier assumption that the
scattering angle is small. However, as Z approaches the object thickness,
ei approaches a maximum value m/2. We know that the scattering of high
energy electrons is confined mostly to a cone of a very small angle,
and we are then left with the_dilemma of how to specify this maximum angle.

In the case of the phase object approximation, wé have assumed that
the contribution of these non-straight line paths are negligible. The
non-straight line path is insigﬁficant for a object'thicknéss where the

phase object approximation is valid. With this idea in mind, we can set
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the maximum angle as

6 _ R(p,p")
max ZPOA
and . (22)
R(_‘;’S') =

Vx-x)2% + (y-y')?2

where ZPoA is the object thickness for which the phése object approximation

is valid up to the resolution, say 1 4.

The sum of the series, depending on Gi, in equation (21) can be

expressed as an integral over 6 as follows:

0
max
n S exp (-0 3,81 2) a0
1 > > ei 61 v
lim Py exp|-1ikR( ,p')_ir =

- o
n-—+oo io1 f ax a6
1

After performing this integration, we can substitute the result into

equation (21). We have then
Z
> > - l_ _ _i_ > >, v o ~
P(r,ro) = ¥ exp( hvaq:,z )dz ikozo>
7 .
(¢

) 6
+> > > >
exp(-ikR(D,p') —ﬁ"f-’—g) - exp(-ikR(p,p') —2-1- )

~1kR(3,3") (B, - 6;)

&> >
\ ]
where 61 = R(E ) .
Z
Substituting the propagator into equation (1) and also using

+
equation (22) for emax, the transmitted wave function Y(p) can be described
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by the following integral, which is carried out over the initial plane,

Z

v - / exo (- i [ VG A0 - )

Z
o

> -+ ~ > >
exp(-ikR* (0,0')/22,) - exp(~ikR*(3,8') /22, , )
+> > 1 1
-ikR2(p,p')(—:- -
Z, POA

dp!

(24)

for 2 > 2 In this equation, we have assumed that the wave function

POA’ A
at the initial piane Zo==0 can be described by exp(—ii -26) = 1. quation
(24) is the transmitted wave function for the high order phase object
approximation. In order to be consistent with fhe small angle approkimation,
the integral in equation (24) should be limited to.values corresponding to
a small angle; However, we have assumed that the ihtegral of the potential
energy along.noh—straight line paths can be approximated as an integral
along the straight line path parallel to the incidenf.beam direction.
This means that the assumption is valid when the amplitudes of the diffracted
waves at large angles are very small. In this case, the integration in
equation (24) can be performed over all values without making a significant
error to the transmitted wave function. |

The complex wave amplitude of the diffracted electrons can be

written as the Fourier transform of the object's transmitted wave

function. We then have

F(k, k) = exp(-ikz O % < ;}- V( 0,2 )dz>

[o]
exp{-ik — | - exp ' s
( > ( POA) for Z,>Zpgp

, (25)
~ikp?[ L _ i 1 1
- \z, “poa |
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where * sign denotes a convolution, EF is a Fourier transform operator,
and N 1is the nérmalizing factor. This is the diffracted wave‘for

the higher érder phase object approximation. Its validity can be
expected to depend on the strength of the potential, the object thickness

and the scattering angle.

D. Multislice Dynamical Approximation

The multislice dynamical approximation was first developed by
Cowley and Moodie (1957) on the basis of the theory of physical optics.
In their formulation, they considered that the electron wave passing
through the potential field of a finite domain suffers a phase modification
not only due to the effect of the potential field but also due to the
spread of the wave by the Fresnel propagation proceéses; They have also
shown that, for a periodic potential, the multislice dynamical approxi-
mation reduces to Bethe's two beam dynamical formulation only when the
forward scattered beam and one diffracted beam have dominant amplitudes
(Cowley, J.M., and Moodie, A.F;, 1957) . Furthermore, Fujiwara (1959) has
shown that application of the higher order Born approximation to obtain
the general solution for electron scattering by crystals leads to the
multislice approximation. It has been reported that by comparison of '
the calculated and observed diffraction intensities and/or the image
intensities, much important information about the object has been obfained
(Allpress, J. G. et al, 1969).

It should be expected -that the path integral formulation of quantum
mechanics can be used to derive the multislice approximation. To show

this, the multislice dynamical approximation is derived in order to



-32-

demonstrate.the unity of the scattering approximations treated in this
thesis. The propagator of an electron passing through a slab of a potential
field can be described by the path integral equation (2). The path integral
can be obtained by dividing the potential field into n-slices of thickness
AZ. Within each slice, we assume that only the straight line paths will
give a significant contribution to the propagator (Fig. 4). The validity
of this assumption depends on the thickness of the slice takep as well as
on the strength.of the potentiél field. The differehce in path length
between the electron passing through the straight line path and the one

scattered at a certain angle is

- 2 -+ >, 2 _
A, = VRX(,p) ) + A2 - Az, (26)

> -y _ -' 2. -' 2 -)=.+—)
where Ri(p’pi—l) = \/(x xi—l) + (y yi—l) s, P (x,y) and AZi is the

thickness of the ith slice. Let us assume that the slice is very thin
and that the electron momentum is much larger than the change of the
momentum due to interaction with the potential field. In this case, the
probability of an electron being scattered at a 1argé éngle as it passes
through a slice of potential field can be neglected.. The elecfrons can
be said to be scattered mostly into a small angle. The difference in

path length can then be approximated as

2++| 2
A . R;(PsP4 1) ) Az 6y 27
i 2AZ 4 2

This path difference contributes an additional phase change to the
scattered wave function of the phase object approximation. This phase

change is due to the contribution from the potential energy as well as
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Figure 4. Schematic electron paths for the multislice dynamical approximation: the

potential field is divided into n-slices. 1In each slice, multiple scattering
events occur along the straight line paths. Only those paths which originate
at the entrance face of the slice are considered in the evaluation of the
transmitted wave function. The transmitted wave function at the exit face

of the ith slice is related to the transmitted wave function of the (i-1)th
slice and can be described recursively by equation (31).
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from the kinetic energy of the electron. Since the object potential is
small compared to the kinetic energy of electrons at significantly high
energy, the contribution from the potential energy, because of the very
small difference in path length, can therefore be neglected. The propagator
P(;,;') following the straight line path from a point.;{ at the exit face
of the slice éan then be written as

24

P(r,r') = exp(— ;‘%f V(E,’z")d'z") S k@ - (28)
Zy1
where 3 = (;,;) and Zi—l’ Zi are, respectively, the z-coordinates of the
entrance and the exit face of the ith slice.
The transmitted wave function emerging from the exit face of the

ith slice can be described by the following equation
&5 . _ S dl + >y bd)
4@ = [ GLpr@b_ e 29)

where wi(Si) and w(Si_l) are,respectively, the transmitted wave function
e
emerging from the exit face of the ith and the (i-1)th slice, and P(p,p")

is the propagatof function. We have then

z _
> e RIG.0; D\ o,
' - e —————————————
wi(p) fwl 1(pi 1) exp|- o fV(p Z2')dz ik(\Az, + 207, dpy 4
Z,
i-1 (30)

where AZi is the slice thickness of the ith slice. The integral over
Bi—l should be limited to values which are associated with a small angle.
For objects whose diffracted beam intensities at very large angles are

very small compared to those at small angles, the integration can be
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performed ovér all possible values of 3;_1 without.giving significant
error to the transmitted wave function.

Since the potential does not depend on the variable 3;_1, the
exponential function, depending on V(;,E‘),'can be factored out from the

integration. Equation (30) can be rewritten as

YA

' i
) = ikA 3) * ikp® i r AT A
wi<o> exp(-i Zi) \Di_l(p) exp(- 282 + expl- +— | V(p,Z )dZ
;4 (31)

where * sign represents a convolution., This is the recursion relation
for the diffracted wave in the multislice approximation. The transmitted
wave function ;hrough the sequence of n-slices may be described recursively
by this equation.

The validity of the multislice approximation depends on the
electron energy relative to the strength of the object potential and on
the thickness of the slice taken. It is noteworthy in the limiting case,
that the slice thickness goes to zero and the number of slices goes.td
infinity, such that their product remains constant‘and equal to the
object thickness. Then the multislice approximation becomes consisten;

with the conventional quantum mechanical description (Moodie, A.F., 1971).
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I1I. THE VALIDITY DOMAIN OF THE PHASE OBJECT APPROXIMATION

The phaée object approximation offers an attractive solution for
the correction of the dynamical electron scattering effect in high
resolution electron micrograph images. Unlike other, more complex
dynamical approximations, it gives a simple and yet invertible relationship
between the transmitted wave function and the projected object potential
(18). 1In other words, the phase object approximation can be used to
obtain the true structural information when the phase and amplitude of
the diffracted wave,* which suffers dynamical scattering processes, are
known. Several electron microscopical techniques tqgether with data
processing have been proposed for the recovery of tﬁe diffracted wave.
One of the attractive techniques, in the author's opinion, is the half
aperture holography technique. It is not, however, the purpose of this
manuscript to deal with the recovery of the diffracted waves. We leave
this problem aside for future research.

It is eésential to determine the validity domain of the phase
object approximation before it can be readily applied to correct the
dynamical scattering effect in the electron micrograph image. The phase
object approxiﬁation assumes that the scattering angle is véry small,
such that thé paths of the scattered electron can be approximated by a
straight line path. 1Its validity depends, therefore, on the electron
energy, the strength of the object potential and also.the object thickness.

For a given object and electron energy, the phase object approximation is

x o
The diffracted wave is defined as the Fourier spectrum of the transmitted
wave function.



-37-

expected to be accurate for a limited range of scattering angles., This
means that the approximation is valid only for limited image resolution,
since for a given electron energy, large angle scattering is associated
with the high resolution information of the image. As the specimen
thickness increases, more electrons undergo multiple 9cattering processes.,
This results in an increasingly significant change in the number of
electrons scattered at larger angles. The phase object approximation
can then be expected to give progressively more incorrect scattering
amplitudes for the large angle reflections. Consequently, its validity
will be limiied to an increasingly lower resolution. At high energies,
electron scéttéring is confined to a smaller éngle, and the phase object
approximation can be expected to be reliable for mﬁch thicker specimens.
There is a domain, therefore, in terms of resolution, electron energy
and specimen thickness where the phase object approximation is valid.
This chapter intends to describe this validity domaiﬁ.

In this manuscript, only the elaqtically scattered electron from
a perfect crystal are considered because the inelastic scatteringvas
well as the thermal motion effect complicate rathe: than dominate the
whole treatment of the dynamical scattering.

" We use thé two organic crystals, anhydroué cytosine and disodium
d-oxypyrimidine 2-sulfanate, hexahydrate as our test objects for the
determination of the validity domain of the phase objéct approximation.
These crystals differ not only in their structures buf also differ
significantly in their unit cell dimensions. The difference in unit
cell dimension means that a larger range in resolution can be used for

the determination of the validity of the phase object approximation.
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The use of two different crystals can also show that the domain of validity

determined here does not depend on the specificity of the crystal structure.

A. The Structures of Crystals Used As Our Test Objects

1. Anhydrous Cytosine Crystal

The strﬁcture of the anhydrous cytosine crystal, C4H5N30, has been
determined by x-ray crystallography (Barker, D. L., Marsh, R. E., 1964)}
The unit cell dimensions are a=13.041 x, b=9.404 K, and c=3.815 &. -
The crystals'are orthorhombic with space group P212121. The model structure

of this crystal viewed down the c-axis is given in Fig. 5a.

2. Disodium 4-oxypyrimidine-2-gulfanate hexahydrate ('DISOPS')

The crystal structure of 'DISOPS', (Na,C,H,N,0S0,6H,0), has been
previously determined by x-ray analysis (Sletten, J., 1969). The crystals
are orthorhombic with space group Pcbm. The crystal contents are

'a=9.299 &, b =20.253 §, and c = 6.946 k. The model structure of the

crystal projected along the c-axis is given in Fig. 6a.

B. Method of Computation

The computation falls into five major parts:

1) The calculation of the diffracted waves, thch emerge from
the specimen of any given thickness, following either the
phase object or multislicé dynamical approximatioﬁ.

2) The determination of the validity domain for the diffracted-
beam intensities calculated by either the kinematic approxi-

mation or the phase object approximation.
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XBL 753-359

Figure 5. a) The model structure of cytosine crystal viewed
down the c-axis. The dashed frame indicates the
unit cell while the so0lid frame shows the projected
potential being centro-symmetric.

b) The displayed projected potential of cytosine
crystal viewed down the c~axis. The information
in this is limited to a spatial frequency of less
than 2.0 &7%, '
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XBL 753-358

Figure 6. a) The model structure of 'DISOPS' viewed down
the c-axis.

b) The displayed projected potential of 'DISOPS’
viewed down the c-axis. The information in this
display is limited to a spatial frequency of
less than 2.0 X°!. '
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3) The.computatioﬁ of the projected pofential, retrieved by the
phase object approximation from the diffracted wave function,
but which is calculated originally by the'multislice dynamical
approximation.

4)  The calculation of the deviation between the retrieved projected
potential and the 'true' projected potential.

5) The computation of the dissimilarity factor for the retrieved
projected potential. |

All of these computations are outlined by the flow diagram (Diagram 1).

1. Diffracted Wave

The first step in the computation of the diffracted wave using
either the phase object or multislice dynamical approximation, is to
calculate the projected potential of the crystal. This projected potential

along the z-axis can be represented by the following equations

V(x,y) F[F(h,k,0)]

n 2mi(hx, +ky,) (32)
e tre 1 7
i=d

F(h,k,0)

where F(h,k,0) is the Fourier spectrum of the projéctgd potential in
the z—direction, fj and (xj,yj) are, respectively, the atomic form factor
and the atomic position of the j-atom in the crystal unit cell, n 1is
the number of atoms in a crystal unit cell, and (F is the Fourier transform
operator.

The atomic form factors used here, except for the hydrogen atom,
were calculated from the analytic function whose paraméters were obtained

by Doyle and Turner (1968) through curve fitting with the values calculated
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using the relativistic Hartree Fock atomic field. The form factor for
hydrogen was obtained from values given in the International Table for
X~-ray Crystailography (1968) .

A fast Fourier transform algoirthm (Singleton, R. C., 1969) was
‘used in the computation. It shouldbbe noted here,vfhat the Fourier
coefficients for the construction of the projected potentiél are limited
to a finite number of reflections. In the calculation of the projected
potentials, the Fourier spectrum was truncated at the spatial frequency
of 2.0 K_l. fhe projected potentials are displayed by the two dimension

'z-modulation display' (Fig. 5b, 6b).

(a) Kinematic Approximation

The kinematic approximation, because of its simplicity, is the
most attractive approximation for structural analysis by diffraction
techniéue.' Its validity in electron microscopy still remains however,

a controversial topic. In order to obtain some quantitative measure
about its validity for the structural investigation of organic crystals,
the kinematic approximation is used to compute the diffracted wave which
is then compared with thé diffracted wave calculated by the most accurate
electron scattering approximation. The diffracted wave in the kinematic
approximation éan be described by equation (12). The shape transform

for a finite parallel slab of crystal can be represented by

sinﬂSZH

E(SZ) = —-;gzﬁ—*- (33)

where Z(SZ) is the shaﬂe transform for crystal thickness H, and SZ

corresponds to the z-component of the wave vector. The diffracted wave
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can then be described by

{ 1 ' _ " when h=k=0
F (h,k) = ) .
kin iF(h,k,0) Sif%%ﬁ%‘;“ otherwise (34a)
and
. .2 2\
£l = A/z(h—2+l;-2—) ©(34b)
a

where &(h,k) is the excitation error for the (h,k) reflection, A is the

electron wavelength, and a,b are crystal unit cell dimensions.

(b) Phase Object Approximation

In the phase object approximation, the diffracted wave for a finite
slab of crystal of thickness H can be described by the following equation,

H

H - - 'y g0
FPOA(h,k) = 3[exp( iOfV(x,y,z_)d;):l (35)
0 . g
where F§0A(h’k) is the diffracted wave, h and k are Miller indices, 2}
is the Fourier transform operator, © (=-JL is the interaction constant,

‘ hv
and V(x,y,2z) is the object potential. For large object thickneSﬁ or

strong object potential, the transmitted wave function, exp(-io V(x,y,z')dz? .
oscillates very rapidly for a small change in (x,y). Extremelyofine sampling
intervals must be used in the Fourier integral. To use such an infinifesimal
interval is not computationally practical. To overcome this difficulty

the propagator function for crystal thickness Iiiis expressed as n-times
multiplication of the propagator function for a thin slice, c, which in

this manuscript, is taken to be the crystal unit cell dimension in c-axis.
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We can write then

V(x,y,Z')dZ') . | (36)

H
n
exp 10 v( ,y,z)dz = Tr exp(—ic
0]

O\n-

and H =

The diffracted wave can then be represented by

Fpoak) = QLK) *#Qh,K) *Q(h,1) * ... *Q(h,k)  (37)
e ———m—— N m——

n time convolutions -

and C

Q(h,k) = a"[exp(—iof V(x,y,z')dz')]

0

where Q(h,k) 1is the diffracted wave for a thin crystal of thi.ckness c,
and * denotes convolution.

Theqreti'cally, the convolution has to be done over all possible
diffracted beams. However, the number of diffracted beams is still
infinite even after the reduction due to the symmetry of_ the crystal.
Such a computational operation is impractical if no.t‘ impossible. For
practical purposes, the convolution was’done in éur'calculation with the
limited number of diffracted beams. To ensure that a sufficient number
of beams has been included in the computation, the diffracted beams
calculated must approximately fulfill the following unitarity test

(Moodie, A. F., 1965).

+ 1 ~ when h=k=0 »
Z :Q (h',k') Qth-h',k-k') = (38)
h'. k' 0 otherwise

, :
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and : c

g[exp(ic‘/‘V(x,vy,z')dz')]

0

Q" (h,k)

This unitarity test can indicate whether a sufficient number of beams has
been included in the computation. If an insufficient number of beams are
used, the large angle diffracted beams which are neglected in the convolution
operation woul& rapidly absorb the total beam intensity as the number of
convolution operations in the calculation for the diffracted beams increases,
or, in other words, as the crystal thickness increases. In the calculation
of the diffracted waves, the number of beams used in tﬁe convolution
operation is 355 for the case of cytosine and 543 for 'DISOPS'. Inclusion
of these numbers of beams means that the electrons, which are scattered
at an angle corresponding to frequencies greater than 0.95 K—l, are
neglected. With these numbers of beams used, only a small percentage
of the total beam intensity is absorbed bylthe neglected, high frequency
diffracted beams. For example, at 100 keV, the unitarity test for a
single slice thickness gives 0.03% and 0.02% error, respectively, for
cytosine and 'DISOPS' crystals. The tetal beam intensity, after passing
through a 500 R thick crystal, reduces to 927 of the total beam intensity
for both cytosine and 'DISOPS' crystal. The error in the unitarity test
as well as the absorption effect decreases as the electron energy increases.
It is worth noting that Lynch (1973) has recently proposed an
alternative method for evaluating the scattered wave function for the
phase object approximation for the case of thin specimen. This evaluation

is made directly from the projected potential, without evaluating the
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scattered wave function for each sampling point. The proposed method
employed the following equation

S > oo

exp(iOfV(x,y,z')dz') = 2im [1 -'r-j—'sgjv(x,y,z')dz']s : (39)

In comparison with the conventional method, the new method has its
advantages together with its disadvantages. As pointed out by Lynch, the
new method requires less amount of computer storage, but loses the physical
insight attained from the intermediate steps in the.cénventional method

of the calculation.

(¢) Multislice Dynamical Approximation

In the multislice dynamical approximation, the diffracted waves
for crystals limited by parallel plane surfaces can be described by the

following equation
F (h,k) = n[Qn(h,_k)* ....z[bz(h,k)* l[Ql(h,k)J Pl(h,k)]

+
. Pz(h,k)] Pn(h,k):l
2 n

Q (B,K)

4
g[exp(—iofv(x,y,z')dz')]
Zi1

and | ' ’ - (40)

2 2
P, (h,k) exp [inx Az (h? + k )]

+Within a given bracket, the operation should be performed from left

to right.
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ﬁhere Fm(h,k) vis the diffracted wave in the mgltislice dynamical approx-
imation. Pi(h,k) is the Fresnel propagator for ;he ith slice, Qi(h,k) is
the ith slice diffracted wave in the phase object approximation, AZi is
the thickness of the ith slice and all other notations haQe been defined
previously. The numerical computation for these diffracfed waves is
similar to the one for the phase object approximation. The difference

is only an additional '"gaussian function" or Fresnel propagator: in the
multislice dynamical approximation, the diffracted waves emerging from
each slice are those of the phase object approximation but multiplied by
a "gaussian function'". The computation therefore takes approximately

the same computing time for these two approximations.

2. A Validity Measure for the Diffracted Beam Intensities

A quantitative measure Qf the validity of the diffracted beam
intensities calculated by either the kinematic approximation or the phase
object ap?roximation can be obtained by computing the deviation of tﬁese
diffracted beam intensities from thé 'exact' diffracted beam intensities
calculated by the multislice formulation. One can then calcqlate, for
either the phase object approximation or the kinematic approximaﬁion, the
fraction of diffracted beams whose intensities deviate from the corresponding
'exact' intensities by less than a specified percentage error. This
percentage agreement is calculated as a function of crystal thickness.

It can give some validity measure of the approximations. This measure

of validity, D(H), can be described by

b = 22H) . 100z | (41)
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where H is the crystal thickness. An(H) is, at a given crystal thickness,
the number of the diffracted beam in£ensities which deviate, within a
given percentagé error, from the corresponding 'exact' diffracted beam
intensities calculated by the multislice formulation. N is the total
number of beams used in the computation of the diffracted waves by the

multislice formulation.

3. The Projected Potential Retrieved by the Phase Object Approximation

In the phase objéct approximation, the retrieved projected potential

is related to the transmitted wave function as

im | , o
VR(x,Y) = %E% (fan—l(gifizlzl> + nﬂ> (42)
Q (x,y)

n =0,1,2,3,....

where VR(x,y)‘is the projected potential retrieved, h is Planck's
constant, v is the electron velocity;r H is the crystal thickness, and
QR(x,y), Qim(x,y) are, respectively, the real and imaginary part of the
transmitted Qéve function. |

For a given transmitted wave function, the projectéd potential
retrieved byithe phase objecf gpproximation has, at each point (x,y),
nultiple values. Infinite choices of projected potentials having
the same value of the transmitted wave function at this point can
therefore be obtained. The true projected potential which possesses
this value can often be retrieved if the continuity property of
the projected potential is imposed. There is still an infinite

number of the true projected potential having the same
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transmitted wave function since the projected poténtial, which differs by
a constant value 2mh/0H, will only change the scattered wave function by

a constant pﬂase; and such a constant phase factor éannot be determined
from the experimental data. However, a unique projected potential can be
obtained if the crystal thickness as well as the éverage pfojected
potential of a unit cell are known paraméters. In any event, to:retrieve
the projected potential of a thick crystal requires, in general, a lengthy
and complicated computer program. For a thin organic crystal of less than
100 K, and for electron voltage of 100 keV, the exponent in the

phase object approximation is less than -2m, when the résolution of the
projected poteﬁtial is less than 1 &. Under these cirqumstances the
projected potential can be easily obtained. Figure 14 shows the retrieved

projected potehtials for thin crystals.

4. The Dissimilarity Factor for the Retrieved Projected Potential

As alréady outlined in Section III.B;3, thevphase object approxima-
tion can be used, in principle, to obtain the projected potential from the
scattered wave function, which caﬁ theoretically be extracted from the |
experimental data. Whether this retrieved projected potential is a‘valid
representation of the true projected potential depends on the validity of
the phase object approxiqation. To evaluate the validity of the phase
object approximation, a measure of the validity of the retrieved projected
potential is needed. That is to say, a measure which can relate quantita-
tively between the true projected potential and the one retrieved is
required in order to determine the validity of the phase object approximation.

Although tﬁe reliability factor commonly used in x-ray crystallography

can be employed to give a validity measure for the retrieved projected
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potential, such a measure is, howefer, insensitive to structural changes
that contribute only to the phase of the Foﬁrier $pectrum of the projected
potential. Instead of the conventional reliability factor, we use the
dissimilarity factor that takes the phase into consideration. This

dissimilarity factor can be written as

H,K .
2 |F_(h,k) - F _(h,k)|
h k (o m
u(H,K) = 2 TS (43)
Y |F (0|
h,k i

where u(H,K)' is the dissimilarity factor as a function of resolution for
the projected potential VR(x,y). (H,K) is the cut-off spatial frequency
corresponding to the resolution which is desired for the dissimilarity

. test., Fc(h,k) and Fm(H,K) are, respectively, the Fourier spectrum of the
true and retrieved projected potentials, and (h,k) represents the Miller
indices. This type of dissimilarity factor has been proposed by others,
as a measure of the dissimilarity for image aﬁalysis, to characterize

the processes of the strucfural changes caused by radiation damage
(Frank, J., 1974).

In the evaluation of the dissimilarity factor, the Fourier spectrum
of the retrieved projected potential is not needed, instead the difference
between this Fourier spectrum and that of the trge projected potential_is
required. Within the validity domain of the phase object approximation,
the retrieved projected potential can be expected to be similar to the
true projected potential. The difference between these projected potentials
can therefore be anticipated to be much smaller than the true projected

potential itself. Within the validity domain of the phase object approx-
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imation, computation shows that, at 100 keV, the difference between the
true projected potential and that of the retrieved one is less than T/CH.
It should be noted that the validity of the phase object approximation,
in terms of crystal thickness, is defined such that the dissimilarity
factor is less than.0.05. For determination of the validity domain for
the phase object approximation, there is no need, therefore, to write a
lengthy program which is able to retrieve the projected potential of any
given thickness. |

The difference between the true and the retrieved projected
potential can be calculated from the diffracted wave functions computed
by the phase objecf approximation and those calculated_by the multislice
dynamical approximation. Both the true and retrieved projected potential

bear the same form of relationship with the diffracted wave functions as

Jlexp 10V (x,y) 1 = Ei(h,k)

(44)
H

Flexp i0V(x,y) 1 = Fpoa (BoK)
where V(x,y) and VR(x,y) are, respectively, the true and the retrieved
projected potential, Z} is the Fourier transform operator, F?OA(h,k)
and Fz(h,k) are, respectively, the diffracted wave fﬁnction for é crystal
of thickness H, in the phase objedt approximation and in the multislice
dynamical approximation. The difference between the true and the retrieved

projected potential can then be described as follows:

1 Ag(x,y) 0
(V(-X,Y) -VR(xs}')‘) = 6’ tan<—ﬁ“"‘“‘—_ H A (x9Y)

H H |,
2 (x,) I ERCERE N
im 7?77 '

45)
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where Agm(x,y) and Aﬁ(x,y) are, respectively, the imaginary and real part
of the complex function AH(x,y). The asterisk sign, *, denotes the
convolution. The Fourier spectfum of the deviation of the retrieved, from
the true projecﬁed potential, can be obtained by taking the Fourier
transform of equation (45).

The dissimilarity factor calculated from this Fourier spectrum is
more accurate than that computed from both the Fourier spectrum of the
retrieved projected potential and of the true projected potential. This
is because the 'exact' diffracted wave was computed with a limited number
of beams and with finite slice thickness. The 'exact' diffracted wave,
calculated in such a way, is therefore inaccurate and introduces an error
to the retrieved projectedbpotential. The dissimilarity factor calculated
from the retfieved projected potential is bound to carry this error. On
the.other hand, the error contributing to the dissimilarity factor can
be expected to réduce when the dissimilarity factor is calculated from
the diffraéﬁed wave functions computed by the multislice approximation
and by the phase object approximation. Since the diffracted wave functions
in both the multislice dynamical approximation and the phase object
approximation were calculateq in the same manner, or, in other words,
since the same slice thickness and.number of reflections were used, the
error resulting from the inaccuracy of the 'exact' wave function is
compensated by the similar, systematic inaccuracy of the diffrécted

wave in the phase object approximation.
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C. Results and Discussion

The diffracted beam iﬁtensities as a function of crystal thickness
were calpulated_by

1) bthe_kinematic approximation,

2) fhe phase object approximation,

3) fhe multislice dynamical approximation.

The calculation was also done for various electron accélerating voltages
in order to show the effect of electron energy on the validity domain of
the kinematic approximation and of the phase object approximation.
Figures 7a-d, and 8a-d show the typical feature of‘the diffracted beam
intensities corresponding to the low and high frequehcy reflections.

The calculation was done only for crystal thickness up to 500 L.

The diffracted beam intensities computed by the multislice dynamical
approximation,céﬁ be used as the point of.reference, for the wvalidity
measure of the intensities calculated by either the phase object approx-
imation.or thé kinematic approximation. The reasoh is that the multi-
slice dynamical approximation can be expected to be accurate especially
when the calculation is done with a large number of reflections and with
a very small slice thickness. Qualitative measure of the validity of
the diffracted beam intensity can then be obtained by comparing the
intensities célculated by either the phase object approximation or the
kinematic approximation with the intensities computed by the multislice

dynamiéal approximation.
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1. The Validity of the Kinematic Approximation for the Calculation

of the Diffracted Beam Intensity

Figures 7a-d, and 8a-d illustrate the diffracted beam intensities
as a function of crystal thickness calculated by the kinematic approximation,
phase object approximation and multislice dynamical approximatioh. These
graphs indicate that the vaiidity of the kinematic'approximation extends,
at 100 keV, to a crystal thickness of about 100 X. At higher energies,
the validity for the high frequency reflections increases to a larger
crystal thickness, whereas for the low frequency refiections, it remains
approximately the same.

A measure of validity for the diffracted beam intensities described
by equation (41) was employed to obtain the validity measure of the diffracted
beam intensities computed by the kinematic approximation. 1In calculating
this equation, the exact diffracted beam intensities, used as the standard
of reference; was computed by the multislice dynamical approximation.
Figure 9a,b shows the results of this walidity meaéure for various electron
accelerating voltages. For a given voltage or a given graph, the various
curves correspond to difference acceptable percentage errors used in the
calculation. For example, the solid line corresponds to the case where
the diffracted beam intensity in the kinematic approximation does not
deviate more than 5% of the exact diffracted beam intensity in the multi-
slice dynamical approximation. The graphs show that for a low acceptable
percentage error, the validity of the kinematic approximation decreases
very rapidly as crystal thickness increases. As electron energy increases
from 100 keV to 1.0 MeV, this validity domain extends to a slightly larger

crystal thickness. With further increase in electron energy it decreases
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The diffracted beam intensities for the (2,1,0) reflection
are plotted as a function of crystal thickness. Kinematic
approximation (* ¢ * * ), phase object approximation
(+——+—=—) and the multislice dynamical approximation
(————). The crystal is cytosine and accelerating
voltage is indicated on each graph.
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Fig. 7b. The diffracted beam intensities for the (1,2,0) reflection
are plotted as a function of crystal thickness. Kinematic
approximation (¢ ¢ ¢ ¢ ¢), phase object approximation
(#—=—+—=—) and the multislice dynamical approximation
(——). The crystal is cytosine and accelerating
voltage is indicated on each graph.
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7c. The diffracted beam intensities for the (1,8,0) reflection
are plotted as a function of crystal thickness. Kinematic

approximation (* * * ¢ ¢),

phase object approximation

(#—+—+—=—-) and the multislice dynamical approximation
(——). The crystal is cytosine and accelerating
voltage is indicated on each graph.
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The diffracted beam intensities for the (1,9,0) reflection

. are plotted as a function of crystal thickness. Kinematic

approximation (* * * ¢ *), phase object approximation
(#—+—+—+—) and the multislice dynamical approximation
(—————). The crystal is cytosine and accelerating
voltage is indicated on each graph.
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Fig. 8a. The diffracted beam intensities for the (0,2,0) reflection
are plotted as a function of crystal thickness. Kinematic
approximation (¢ ¢ ¢ ¢ +), phase object approximation
(#—=—=—=—) and multislice dynamical approximation (———).
The crystal is 'DISOPS' and accelerating voltage is
indicated on each graph.
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Fig. 8b. The diffracted beam intensities for the (1,2,0) reflection
are plotted as a function of crystal thickness. Kinematic
approximation (¢ ¢ ¢ ¢ *), phase object approximation
(+—=—+——) and multislice dynamical approximation (——).
The crystal is 'DISOPS' and accelerating voltage is
indicated on each graph.
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8c. The diffracted beam intensities for the (3,3,0) reflection
are plotted as a function of crystal thickness. Kinematic
approximation (¢ ¢ ¢ ¢ *), phase object approximation
( =) and multislice dynamical approximation (——).
The crystal is 'DISOPS' and accelerating voltage is
indicated on each graph.
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The diffracted beam intensities for the (5,9,0) reflection

are plotted as a function of crystal thickness.
approximation (e ¢ ¢+ +), phase object approximation
(#—=—=—=—=) and multislice dynamical approximation (

Kinematic

).

The crystal is 'DISOPS' and accelerating voltage is
indicated on each graph.
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The fraction of diffracted beams whose intensities in the
kinematic approximation deviate less than a given percentage
error from the exact diffracted beam intensities calculated
by the multislice dynamical approximation, is plotted as a
function of crystal thickness. The crystal is cytosine.

The electron accelerating voltage used is indicated on each
graph. ( ) 5%, (———-) 20%, (~=———- ) 50%, and
(—+—+—+—) 100%.
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The fraction of diffracted beams whose intensities in the
kinematic approximation deviate less than a given percentage
error from the exact diffracted beam intensities calculated
by the multislice dynamical approximation, is plotted as a
function of crystal thickness. The crystal is 'DISOPS'.

The electron accelerating voltage used is indicated on

each graph. ( ) 5%, (————) 207%, (—==—— ) 50%,

and (—e+—+—+-—) 100%.
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to a small cryétal thickness: The graphs also show tﬁat‘for a large
acceptable percentage error, the validity domain of the kinematic approx-
imation decreéses'with electron energy.

We can conclude that the validity dcmain of the kinematic approx-
imation does not always increése with increasing electron energy. Although
the cross sectioh of the electron scattering decreases Qith increasing
energy, the dynamical scattering effect may yet play an important role

at high energy.

2. The Validity of the Phase Object Approximation for the Calculation

of the Diffracted Beam Intensity

Figures 7a-d and 8a-d show qualitatively that at 100 keV the validity
of the diffracted beam intensities in the phase object ;éproximation is
limited to a smaller crystal thickness than that in the kinematic approx-
imation. As eleqtron accelerating energy increases, the validity domain
of the phase objeéf approximation in terms of crystal thickness increases,
and gradually surpasses the validity domain of the kinematic approximation.
The graphs also show that as crystal thickness increases the validity of
the phase object approximation is increasingly confined to a lower frequency
reflection and as electron energy increases it extends to an increasingly
higher frequency. This is expected since a given reflection is associated
with a smaller scattering as electron energy increases and the phase
object approximation is anticipated to be increasingly valid as the
scattering angle becomes very small. The graﬁhs further indicatg that
the diffracted beam intensities of the high frequency reflections in
the phase object approximation are larger than the corrésponding exact

diffracted beam intensities computed by the multislice dynamical approximation.
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A measure of validity of the diffracfed beam intensity described
by equation (41) and used for the case of the kinematic épproximation was
also applied to thé case of the phase object approximation to obtain its
validity domain;. Figure 10a,b displays? for various acceptable percentage
errors, the validity of the diffracted beam intensities in the phase
object approximation as a functioﬁ of crystal thickness at different
electron accelerating voltages. These graphs indicate that the validity
domain of the phase object approximation increases to a larger crystal
thickness as eiectron energy increases. Compared to the kinematic
approximation, the phase object approximation has at 100 keV, a smaller
domain of validity. Already at 1.0 MeV, the validity domain of the phase

object approximation exceeds, however, that of the kinematic approximation.

3. The Diffracted Wave

The phase of the diffracted waves may play an important role in
the structural determination of the crystal. Experienée in x-ray crystal-
lography has indicated that a recognizable molecular sﬁructure can be
obtained from the strongest 10% of the large number of diffracted beam
amplitudes with correct phases (Stout, G. H. and Jenseﬁ, L. H., 1968).
On the other hand, the amplitudes of only the complete diffracted beams
give an infinite number of possible structures. Therefore it is éléar,
if one wants to determine the validity of any given approximation for the
structural analysis, that the amplitudes together with the phases should
be used in the evaluation of the validity. |

The phases of the diffracted beams as a function of crystal
thickness have been calculated for various electfon accelerating voltages

by the kinematic approximation, the phase object approximation and the
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The fraction of diffracted beams whose intensities in the
phase object approximation deviate less than a given
percentage error from the exact diffracted beam intensities
calculated by the multislice dynamical approximation is
plotted as a function of crystal thickness. The crystal

is cytosine and the electron accelerating voltage used

is indicated on each graph. ( ) 5%, (————) 20%,
(———— ) 50%, and (—°*—+—+—) 100%.
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The fraction of diffracted beams whose intensities in

the phase object approximation deviate less than a given
percentage error from the exact diffracted beam intensities
calculated by the multislice dynamical approximation is
plotted as a function of crystal thickness. The crystal

is '"DISOPS' and the electron accelerating voltage used

is indicated on each graph. ( ) 5%, (———-) 207%, .
(=== ) 50%, and (—+—<+—+—) 100%.
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multislice dynamical approximation. Figures 1la-d and 12a-d display the
phases of the low and high frequency reflections as a function of'crystal‘r‘
thickness.‘ The graphs snow that, at 100 keV, the validity domain of the
phases in the kinematic appronimation is limited to a very smdll crystal
thickness, whereas in the phaSe object approximation it entends to a
greater cryetal thickness. As electron energy inéreases, the nalidity
domain in the kinematic approximation remains approximately the_same

while in the'phase object approximation it increasee to a 1argervcrystal
thickness.

The validity of the diffracted beam intensities evaluated in the
previons section canvbe used to gipe a quantitative picture of the validity
of the diffracted beam amplitudes; Compared to that in the kinematic
approximation, the validity or the diffracted beam amplitude in the.phase
object approximation can be expected to possess at 100 keV,; therefore, a
slightly smaller domain. The validity of the diffracted beam amplitude
in.the phase object approximation can also be expected to'increase with
increasing electron_accelerating voltage, whereas in the kinematic
approximation, it increases only elightly as electron energy increases
from 100 keV to 1.0 MeV. With further increase in electron energy, this
validity domain in the kinematic approximation decreases to a small
crystal thickness.

Qualitatively, we can conclude,

1) That the validity domain of the phase object approximation

is larger than that of the kinematic approximation,

2) That the vaiidity‘domain of the phase object approximation

Al

increases with increasing electron energy,
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The phases of the diffracted beams for the (2,1,0) reflection
are plotted as a function of crystal thickness.
approximation (****<*), phase object approximation (ssssess)
and multislice dynamical approximation (

is cytosine

on each graph.

Kinematic

). The crystal

The electron accelerating voltage is indicated
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The phases of the diffracted .beams for the (1,2,0) reflection
are plotted as a function of crystal thickness. Kinematic
approximation (***°*°**), phase object approximation (=s-ssssss)
and multislice dynamical approximation (——————). The crystal
is cytosine. The electron accelerating voltage is indicated
on each graph. - s
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The phases of the diffracted beams for the (1,8,0) reflection

are plotted as a function of crystal thickness.

Kinematic

approximation (*¢**++), phase object approximation (sssssss)

and multislice dynamical approximation (
The electron accelerating voltage is indicated

is cytosine.
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The phases of the diffracted beams for the (1,9,0) reflection
are plotted as a function of crystal thickness. Kinematic

approximation (ee+e+++), phase object approximation (

)

and multislice dynamical approximation (————). The crystal
is cytosine. The electron accelerating voltage is indicated

on each graph.
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Fig. 12a. The phases of the diffracted beams for the (0,2,0) reflection
are plotted as a function of crystal thickness. Kinematic
approximation (*---+-+), phase object approximation (sessves)
and multislice dynamical approximation (—————).  The crystal
is 'DISOPS'. The electron accelerating voltage is indicated
on each graph.
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The phases of the diffracted beams for the (1,2,0) reflection
are plotted as a function of crystal thickness. Kinematic
approximation (*e+*+++), phase object approximation (wsassss)
and multislice dynamical approximation (—————). The crystal
is 'DISOPS'. The electron accelerating voltage is indicated
on each graph. :
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The phases of the diffracted beams for the (3,3,0) reflection
are plotted as a function of crystal thickness. Kinematic
approximation (**°+*+¢) phase object approximation (wesssess)
and multislice dynamical approximation (—————). The crystal
is 'DISOPS'. The electron accelerating voltage is indicated
on each graph.
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beams for the (5,9,0) reflection
crystal thickness.
approximation (*e+e*+e+), phase object approximation (=ssssss)
and multislice dynamical approximation (
is 'DISOPS'. The electron accelerating voltage is indicated
on each graph.
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:3) That the validity domain of the kinematic approximation
ihcreases-slightly when electron energy increases from 100
keV to 1.0 MeV,but then decreases with further increases

in electron accelerating voltage. .

4., - The Validity of the Phase Object Approximation for the Retrieval

- of the Pquected Potential

The dissimilarity factor defined in Section III.B.4 can be used to
give a measure of the validity of the phése object-approximatibn. The
validity of the aiffracted wave in the dynamical approximations does not,
however, relate linéar1y to'the validity of the projected potential.

This means that an acceptable value of the dissimilarity factor fér the
diffréﬁted waves cannot always ensufe the_validity of the projected
potentiél‘retrieved. It is therefore necessary to measure the validity
of thé_phase‘object.approximation'on the basis of the projected potential,
since, aftetr all, our interest is to obtain the correct projected |
potential-retrieved, not the scattered wave function.

The dissimilarity factor, as a function of spatial freqﬁency, for
the projected potentiai retrieved by the phasé object approximation was
evaluated as a function éf crystal thickﬂess and‘for various electron
energies. Figure 13é—d shows the typical features of the dissimilarity
féctor'as a function of spa;ial frequenqy. The graphs indicate that for
a given crystal thickness the value of the dissimilarity factor of the
phasevobject éppfoximation increases as spatial frequency increases,
whereas at high energies-the'yalue of the dissimilarity factor decreases
with spatial frequency.» As crystal thickness increases, on the other

hand, the dissimilarity factor increases.
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Fig. 13a. For a given crystal thickness, the dissimilarity factor for
the projected potential retrieved by the phase object approx-
imation at 100 keV is plotted as .a function of spatial
frequency. The type of crystal and the crystal thickness
used are indicated on the graph.
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for the projected potential retrieved by the phase object
approximation at 1.0 MeV is plotted as a function of spatial
frequency. The type of crystal and the crystal thickness
used are indicated on the graph.
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For a given crystal thickness, the dissimilarity factor

for the projected potential retrieved by the phase object
approximation at 5.0 MeV is plotted as a function of spatial
frequency. The type of crystal and the crystal thickness
used are indicated on the graph. ‘
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Fig. 13d. For a given crystal thickness, the dissimilarity factor
for the projected potential retrieved by the phase object
approximation at 10 MeV is plotted as a function of spatial
frequency. The type of crystal and the crystal thickness
used are indicated on the graph.
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The dissimilarity factor gives a validity measure for the projected
potehtial retrieved by the phase iject approximation. A large value of
the dissimilarity factor indicates that the phase object approximation is
invalid. 1In this’manuscript, the phase objcct approximation is considered
valid when the dissimilarity factor is less than 0.05. This value is
based on the visual appearance of the displayed projected potentials
which possess various values of the dissimilarity factor (Fig. 14).
Furthermore, experience in x-ray crystallography has shown that the
structure determined is considered valid when the reli#bility factor is
smaller than 0.05. It should be noted here that for a given projected
potential retrieved the value of the dissimilarity factor is always less
than that of the reliability factor.

Figure 14b-d shows the appearance of the retrieved projected potential
for different values of the dissimilérity factor. These.figures illustrate
that as the valuevof the dissimilarity factor increase; the appearance of
the retrieved projected potential becomes gradually dissimilar to the
true projected potential. A four to fifteen percent value of the dissimi-
larity factor shows only a small difference in the overall appearance of
the retrieved ﬁrojected potential. There is, however, a significant
change in the high resolution detail. This is because all of the retrieved
projected potentials displayed are dominated by the low resolution infor-
mation; and this low resolution detail possesses a very low value of the
dissimilarity factor.

Figure 15 shows the results of the calculation for the validity
domain of the phaée object approximation. The graphs show that at 100

keV the validity domain of the phase object approximation for the retrieval
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XBL 753-4762

Figure 14. a) The projected potential of the cytosine crystal.

b), c¢) and d) are the projected potentials calculated by
the phase object approximation from the diffracted beams
which have been computed on the basis of the multislice
dynamical approximation and which have, respectively, the
thickness of 5, 9 and 10 unit cells. The number of beams
used for retrieving these projected potentials is 355
reflections (resolution: 1.05 X), and the electron veoltage
is 100 keV., The dissimilarity factors for b), c) and d)
are 4%, 10%Z and 157 respectively.
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of the projected potential decreases to the low resolution information

as crystal thickness increases. At 5.0 MeV, the validity domain for the
high frequency Fourier coefficients or for the hiéh resolution information
extends to a larger crystal thickness compared to that for the low
resolution information. For a crystal thickness of 40 % and an acceler-
ating voltage of 100 keV, the phase object approximation is justified

for a resolution lower than 1.5 X. But for an electron energy of 1.0

MeV and the same resolution, the approximation is valid to a crystal
thickness of 150 &. With further increase in electron energy the validity
also increases. It should be noted here that the validity domain for the
'DISOPS' at 5.0 MeV is larger than that for the cytosine crystal. This

is because the number of beams and the slice thickness used in the
calculation of the diffracted waves of these crystals are different.

This difference can be expected to contribute a difference in the amount
of percentage error to the value of the dissimilarity fector. The
difference iq the amount of error is expected to increaée as the number

of slices increases, or in other words, as crystal thiekness increases.
Since the validiﬁy domain at 5.0 MeV extends to a 1afge crystal thickness,
it is then clear why the validity domains for the two different crystals

are different at this energy.

It is important to note here that the validity domain shown in
Fig. 15 was caleulated for the case where the diffracted beams extend
only to a spatial frequency of 0.95vK. For the case where the diffracted
beams extend to either a larger or a smaller spatial frequency, the
validity domain can be anticipated to be different from the one obtained.

in Fig. 15. This is because tﬁe diffracted wave in the phase object
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approximation is not related linearly to the projected potential. We

can expect that the validity domain will increase as the diffracted beams
used are limited to an increasingly low frequency, since the diffracted
wave is shown to be increasingly valid.as the spatial frequency decreases,

or in other words, as the scattering angle becomes very small,



-88-

IV. THE VALIDITY DOMAIN OF THE HIGHER ORDER PHASE OBJECT
APPROXIMATION

The phase object appfoximation has been shown in the previéus
chapter to poséess a small domain of validity for the retrieval of the
projected potential especially at 100 keV. There is a heed,.théfefore,
to develop a new approximation %hich has a larger domain of validity
and which still retains the invertible reiationship between the transmitted
wave function and the projected potential. The higher phase object
approximation was developed in Chapter II under these éonsiderations.

It was derived by taking not only the straight line path resulting in

the phase object approximation, but also some specific non-straight line
paths. Compared to the phase object approximation, the higher phase
object approximation can therefore be expected to posséss a larger domain
of validity. 1In fhis chapter we will evaluate quantitatively the expected
larger domains of validity for the retrieval of the projected potential

in the higher order phase object approximation at 100 keV.

A. Approximation

The diffracted wave function in the higher order phase object
approximation canfbe described by the product of the Fourier transform
of the transmitted wave function and the Fourier transform of "the
function'" characterized by the higher order phase object approximation.
The diffracted wave can be represented by equation (25). In order to
obtain this diffracted wave function, the Fourier transforms of both
functions have to be evaluated. The computer time reqﬁired for the

calculation of the diffracted wave function can be substantially reduced
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when "the function'" can be approximated by a function whose Fourier
transform can be expressed in an analytical form. For small angle
scattering we can approximate ''the function'" in such a manner. To show

this, let us first expand "the function" in power series as

exp(-ikpz/ZE ) - exp(—ikpz/ZZ )

poA’ | _ 1__l_(ikp2)(__l_'+ 1)
. n =

-1kp (fl“ - ——l——) /2 28N 2 Nz Zpoa
Z, “POA
L 2\ 2

+L —lkp) ,\,—]'-+,\,l + 1 R : (46)

' o 0“POA POA :

We can rewrite this series as
CilL A9 Y il A2
exp(-ik p/ZZo) exp( 1k.p/ZZPOA) _ —ikp? [ 1 1

1 i = exel T \3 tz

_-ikp2--—-z——)/2 Zo "POA
Z POA
o

1 (ikp? V{1 1 ¥ |
+’2'z'(1—'2&')(~:——-z—> S (47)
Z, “poa
2
' . . kp .
For a small angle, such that the sum of the series in is small

‘ POA
compared to the exponential function or ''gaussian function'", we can

then neglect the series; and then write the diffracted wave function as

Z
F(z,io)_ = exp(—ikzo) [exp ;ilfpv(p z! )dZ ]
Z

iznxio(hz + k2)
* exp =

7
(} + o )
POA

. ‘for Z, > Zpoa (48)
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where (h,k) are Miller indices. It may be helpful té note that the
Fourier transform of.a "gaussian function'" can be expfessed in the
analytical form.

The error from such an approximaticu is of second and higher
order terms in nature and can be expected to be quite small when the
series converges very rapidly. For instance, the error of the leading
term is less than 6ne quarter of the true second ofder term. We will
use such an gpproximation in the calculation of thevdiffracted wave

function.

B. Calculation Method

The calculation method for the determination of the validity of
the higher order phase object approximation follows iﬁ a very similar
manner as in the case for the phase object approximation described in
the previous chapter. The diffracted wave in the higher order phase
objectt approximation differs from that of the phase object approximation
by an additional '"gaussian function'. Detailed calculation methods for
the diffracted wave will therefore not be described again here.

The value of ZPOA used in the calculation of the diffracted

wave function at 100 keV is taken to be 5 unit cells (Vv 19 &) for

cytosine crystal and 3 unit cells (Vv 21 K) for 'DISOPS'.

C. Results and Discussion

Since the diffracted wave in the higher ordef'phase object
approximation differs from that of the phase object approximation by a

phase factor, the diffracted beam intensity in both cases is therefore
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the same. Thus, the validity of the diffracted beam inténsity in the
higher order phase object approximation is the same as that of the phase
object approximation described in the previous chapter and will therefore

not be discussed.

1. The Phase of the Diffracted Wave

The phases of the diffracted beams as a function of crystal
thickness at.lOO keV have been computed by the highef phase object
approximation.: Figure 16a,b displays the phases of the high and the low
frequency reflection for both cytosine crystal and ;DISOPS'. In these
graphs, the phases computed by the phase object appfoximatoin and by .
the multislice dynamical approximafion are also displayed for comparison.
The graphs indiéate that the phases in the higher order‘phase object
approximation, &hen compared to that in the phase objeét approximation,
show an improved agreement with the 'exact' phases coﬁputed by the
multislice dyhamical approximation. At very large crystal thickness,

phase object ggg;pximationrand the phase wobject

SUN

both the highg; order

et LS ML e oraey PFlias

approximation fail to describe the phase of the diffracted waves.
ApPProslmation tdail LU UGdouvioe L Rrgkhatd

2. JThe Image Intensity

<. bt EISLT L O L T et
The image intensity can be used to give some qualitative measure
Lile luage Lo ey Vakl B Goes i ‘

of tl‘lg yg}f’u%}? of the h}g&l?@}' order phase object approximation. Figure

17 shows the image intensities of cytosine crystal (v 38 X thick)

calculateq By the multrislice dynamical gpproximation,>phase object

approximatiqg and the higher order phase object approximation. The
w 1a G e Ry £ o

e 1 e intensity of the higher order phase

display indicaggg tl

object approximat%q‘
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XBL 753-4761

Figure 17. The image intensity of cytosine crystal . (38 R)
at 100 keV calculated by a) phase object
approximation, b) multislice dynamical
approximation, and c) higher order phase
object approximation.
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calculated by the multislice dynamical approximation, whereas the image
intensity in the phase object approximation differs significantly. It
is clear then that the higher order phase object approximation is superior

in accuracy when compared to the phase object approximation.

3. The Validity of the Higher Order Phase Object_Approximation for

the Retrieval of the Projected Potential

The dissimilarity factor as a fﬁnction of spatial frequency for

" the projected potential retrieved by the higher order phase object
approximation was evaluated as a function of crystal thickness. Figure 18
shows at 100 keV the typical features of the dissimilarity factor as a
function of crystal thickness. The graphs indicate that the dissimilarity
factor, for a‘given crystal thickness, increases slowly with spatial .
frequency. Compared to that of the phase object approximation (Fig. 13a)
the dissimilarity factor of the higher order phase object approximation
for the same crystal thickness decreases. One can conclude that the
higher order phase object approximation, when compared to the phase

object approximation, gives an iﬁprovement in accufacy.

As in the case of the phase object approximation, the higher order
phase object approximation is considered valid when the dissimilarity
factor of the retrieved projected potential is less than 0.05. The
results of the higher order phase object approximation at 100 keV are
displayed in Fig. 19. The graphs show that as crystal thickness increases,
the validity of the projected potential retrieved by the higher order
phase object approximation decreases very rapidly to low resolution
information. However, when compared to the phase objeét approximation

the higher order phase object approximation possesses a larger domain
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For a given crystal thickness the dissimilarity factor for
the projected potential retrieved by the higher order phase
object approximation is plotted as a function of spatial
frequency. The crystal thickness and the type of crystal
used are indicated on the graph.

Figure 18.
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potential. The curves correspond to the dissimilarity
factor of 0.05.
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of validity.  For crystal thickness of 30 K, the higher order phase
object approximation is valid up to a resolution of 2 %, whereas the
phase object appfoximation is limited to resolution of less than 5 &}.
With further increases in crystal thickness the validity of both approx-
imations gradually coincide. This is expected since the amplitudes of
the diffracted waves for both approximations are the same and since the
validity of these amplitudes can effect the limit of the validity domain.
It can be concluded that the higher order phase objéct approximation
indeed possesses a larger domain of validity for the retrieval of the

projected pbtential.
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V. VOLTAGE DEPENDENT CONTRAST IN ORGANIC CRYSTAL IMAGES

One of the factors limiting the interpretation of the crystal
image is the contrast. Image contrast in electron microscopy depends on

the amount of aberration which is due to the imperfection of the lens

and also on the character of the scattered electrons forming the image. |

Ineléstically scattered electrons, for instance, can reduce the iﬁage
contrast and therefore are undesirable for high resolution imaging. The
reason for this reduction in contrast is that because of the chromatic
aberratiﬁn,_the inelastic scattered electron waves suffer varioué amounts
of phase distortion,depending on the energy loss. The contribution of

these electron waves results in an increase of thé'background intensity

of the image. The lens aberrations, other than chromatic aberration,

can also affect the contrast of the image. Howéver, this effect can be
optimized by suitable choice of defocus énd aperture size.

High #oltage electron microscopy is an.aftractive tool for high
resolution structural investigation of biological specimens. In previous
chapters, we have demonstrated tﬁat the simple invertible dynamical
approximations possess a larger domain of validity as the electron energy
increases; High voltége electron microscopy, therefore, is thé practical

way to solve the dynamical scattering effect problem} Furthermore,

" experiments in radiation damage have shown that the critical exposure

of biological specimens increases as the electron voltage increases.

This is advantageous for structural studies of biological specimens

where radiation damége‘limits the poSsibility of imaging the high

resolution structure. Calculations for single atom images have indicated

~ that excepf for a carbon atom, contrast increases for high voltage
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microscopy (Siegel, B.M., 1971). The high contrast can definitely lower
. the electroﬁ'ekpoéure needed to obtain an acceptahle sigﬁal—to—noise ratio
aﬁd allows the beneficial reduction in radiation damage. This reduction
gives in turn an increase in image contrast. It is therefére essential
to study theoretically the effect of dynamicél scattering at differeﬁt
electron energies, with respect to the contrast of organic crystal images.
Image confrast of inorganic crystals has been calculated previously
by others for differeﬁt object thicknesses at 100 keV, in order to
interpret the observed higﬁ resolution images. Using the phase object
appro#imation, Fejes (1971) has computed the contrast of high resolution
_image of Tiszloo29 cryétal employing thé "optimum defocus condition”
proposed originally by Scherzér. His result shqwed that contrast increases
with object thiékness up to 100 R and then levels off. On the basis of
the large phase change occurring in the phase object approximation, Cowley
and Tijima (1972) have also made the same prediction which is in agreement
with the observed high resolution crystal imége. HoweVer, the effect
of dynémical scattering at different electron enérgies on‘crystal image
lcOntrést has not breviously been considered.
The purpose of this ghapter is to study theoreﬁically the effect
of dynamical scattering at‘different.electron energies on the contrast of
high resolution imagés of organic crystals. 1In the'calculétion, images
of the knpwn structuré were computed using fhe multislice dynamical theory
‘énd inelaéticaliy écatteredbelectrons-havé been ignoredf' The calculated
diffrac;ed wave is given a phase distortion in ordei to consider the éffect
of both the sphérical aberratibn and defocus of .the léns. The phase

distortion is optimized by suitable choice of defocus and aperture size.
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A. "Optimum Defocus Condition"

Because of the imperfection of the lens in the electron microscope
the image quality is mainly complicated by the spherical aberration of
tﬁe lens. In order to minimize this the image is given a defocus to
compensate'fhe spherical aﬁberation. Even if the eleétron optical lens
is perfect it is very difficult, in practice, to obtain an in-focus image.
Lens aberration as well as defocusing produce an artifact on the. electron
image. The phase distortion function accounts for this aberration. The
effect of spherical aberration and defocusing causes a phase shift in the
diffracted ﬁaves. This phase shift depends on the scattering angle of
the electrons, or in other words, depends on the spatial frequency. This

phase distortion function, H(s), is given by

eiY(S)

H(s) = ,  and Y(s) = nszx(css"‘xz/z-Af) (49)

where CS is the spherical aberration céefficient of the lens, Af

is the amount of defocus, X is the electron wavelengfh, and s is the
spatial frequency. The defocus is positive when the image is obseryed
below the plane of the in-focus image.

In order to get a faithful propagation of the phase detail of the
diffracted wave, the exponent in the phase distortiqn function should be
kept close to constant or zero for the largest domain of spatial frequency.
For a given sphérical aberration coefficient and electron accelerating
energy, this exponent can be optimized over a limited domain of the
diffraction angle by varying the defocus of the lens. The "optimum

.defocus condition" introduced first by Schérzer‘designates the optimum
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value of the defocus as well as of the aperture size. It can be shown
that the "optimum defocus condition", or the Scherzer criteria, fulfills

.the'follqwing'relatibns'(Eisenhandler, G.B. and Siegei,'B.M{, 1966):

1 L
. 2 < < 2
(e M7? < Af (2¢_1)
(50)

. 1
. 2472
Spp = (2Af/CSK )

where A is the electron wavelength, is the aperture limit, and

AP
Af,CS are, respectively, the defocus and spherical aberration coefficient

of the lens.l

B. Image Contrast of Crystals

Image contrast is a measure of the image quality and gives some
quantitative measurement about the discrimination of the image from the

background intensity. It hasbbeen conventionally defined as

SN ST
c = max mi | (51)
(Imax + Iﬁin)/2

where 1 and I . "are, respectively, the maximum and minimum image
max min -
intensity in the given area of the image where this contrast is measured.
This type of contrast is useful for single atom imaging where the interest
has been to differentiate the single atom imaging from the background
intensity due to the substrate. For crystalline objects, such defined
contrast can neither give a measure for the average image contrast, nor
can it discriminate_betweén the average contrast from low and high

resolution information of the structure. Some measure of resolution-
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dependent contrgst gould therefore be informative.

For crystalline objeéts the aﬁplitude of the Fourier spectrum at
a given frequenéy is related to the image intensity which possesses the
infofmation of the resolution corresponding to that frequency. The.
resolution-dependent contrast for a periodic image can then be calculated
by measuring each coefficient of the Fourier spectrum of the image
intehsity. This type of contrast‘can be represented by the following

equation

C(h,k) = 4|F(h, i) | | (52)

F(0,0)

where F(h,k) is the Fourier coefficient.of the image intensity and h,k
ére integef numbers corresponding to the Miller indices in the crystal
lattice;. |
| For comparison of crystal image contrasts at different electron
accelerating energies, the resolution-dependent contrast gives too detailed
an amount of information, whereas we need a simple measure of the contrast
" that is being contributed by all‘of tﬁe spatial frequencies together.
Integration of the resolution-dependent contrast over the possible fre-
quencies can give some measure'of_the average quaiit? of the crystal image.
'This contrast can be described by the following eduation

PRNEICROY

¢t = Ik } (53)
|F(0,0) |

where C' is the contrast and F(h,k) is the Fourier coefficient of the
image intensity with the spatial frequency (h,k). The prime in the

summation means that the zero frequency coefficient has been omitted.
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c. Imagé Wave and the Fourier Spectrum of the Image Intensity
The image Qave can be computed by the invefse Fourier transform
of the product of the diffracted wave, the phase distortion function,
and aperture function. This image wave can be represented by the following

equation

b Gy) = F6) - H(s) + AGs)] (54)

image

where wimage(x’y) is the image wave, ¢(s) is the diffracted wave, H(s)
is the phase distortion and A(s) is the aperture function. The value of
the aperture function is unity when the spatial fréquency is smaller than
that of th; ‘aperture limit', and is zero elsewhere.

The image intensity is the p?oduct of the image‘wave and its

complex conjugate:

y) U (x,y) (55)

I(x,y) image

I‘Uimage

The Fourier spectrum of the image intensity is defined as the Fourier
transform of the image intensity and for central symmétric image can be
described as the convolution between the diffracted.Qave, modified by
the phase distortion function, and its complex conjugate as

Fh,) = & HIGLM] = [6()H(S)AE) ] * [¢7(-e)u" (-)A(=5) 6
56

For crystalline objects, doing this convolution directly is less time
consuming than calculating first the image intensity and then obtaining
the Fourier spectrum, since the number of the diffracted beams after the

reduction afforded by éymmetry is quite small.
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D. Calculation Method

The diffracted wave function of a given ctyétal can be calculated
using the multislice dynamical approximation. Detailed calculation
methods for the diffracted wave function of a crysﬁai.of any given
thickness has already been discussed in Chapter III. As in Chapter III,
two different organic crystals, cytosine and 'DISOPS', were uéed as test
objects in ordéf to show that the results obtainedvhere.do»not depend
specifically on the crystal structure. In the calculation of the diffracted
wave function, the number of beams used is 355 and 543'respectively for
cytosine énd 'DISOPS'. The slice thickness was faken to be the unit‘cell
in the c-axis. |

The iehs aberrations were introduced by multiplying the diffracted
wave function Qith the phase distortion function. The spherical aberration
coefficient ofvthe electron microscope was assumed to be CS'= 0.7 mm at
100 keV. Such a small value in the spherical aberration is practical and
also commerciaily available in today's high resolution electron microscope.
The spheriéal aberration coefficients at high eleétron energies were
obtained by keeping Csl constant, or in other words, without changing the
strength of the magnetic lenses of the microscope. The amount of defocus
is calculated_éécording to the Scherzer criteria. The valugs for the lens
parameters are listed in Table 1 for different eleétron energigs. |

The Fourier spectrum of the image intensity éan be obtained from
the diffracted wave following equation (56). The image contrast can then

be calculated from the Fourier spectrum of the image intensity.
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TABLE 1

Electron microscopical parameters used in the calculation of contrast.

Electron Electron Spherical N
energy wave Aberration Defocus Aperture Resolution
(MeV) length (&) Coefficient &) limit () )

Cs (mm) -
0.1 3.70x 102 0.70 620 0.38 2.63
1.0 8.72x10 3 2.97 620 ©0.74 1.35
5.0 2.26%x10° 11.47 620 1.45 1.05"
10.0 1.18x107° 21.94 620 2.00 1.05+

*
The resolution defined as the reciprocal of the largest spatial
frequency reflection is included.

—l..

The diffracted beam used in the calculation of the diffracted wave

is limited to the spatial frequency of less than 0.95 &' which is
smaller than the aperture size used at 5.0 or 10.0 MeV,
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E. Results and Discussion

Resolution—dependent contrast as well as integrated contrast for
the image intensity of organic crystals have been calculated for various
thicknesses and for different electron accelerating energies. For a
given resolution, the resolution-dependent contrast fluctuates with
crystal thickness without any obvious periodicity, and.is not iinearly
proportional td the amplitude of the diffracted wave (i.e., the larger
the amplitude of the diffracted wave the greater the resolution-dependent
contrast) as ﬁould be expected when the kinematic approximation is valid.
This contrast, in most cases decreases in avérage amplitude.as the
electron energy increases (Figs. 2la-d, 22a-d). This decrease is expected
because the.total cross section for the elastic electron scattering
decreases also with increasing electron energy.

For a given electron energy, the integrated contrast increases
linearly with crystal thickness and then levels off (Fig. 23a,b). For
example, at 100 keV, the integrated contrast, for either cytosine or
'DISOPS', increases linearly up to a thickness of about 100 £ and then
fluctuates irregularly with its average amplitude femaining constant.

As electron energy increases to 1.0 MeV, there is a net increase in the
integrated contrast. The integrated contrast increases by about 100% és
the voltage increases from 100 keV to 1.0 MeV. Beyond 1.0 MeV the
integratéd‘contrast remains almost the same. This is because for 5.0

MeV and 10.0 MeV, the number of beams used in the cqmpuﬁation of the
diffracted waves is smaller than that which is actually néeded: the
number of beams employed in the calculation was limited to the resolution

of about 1.05 X, while the aperture limit extends to higher resolution.
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It should be noted that the number of beams used at 10.0 MeV was taken

to be the same as that at 5.0 MeV. Since the integrated constant at

10.0 MeV is slightly less than that at 5.0 MeV, i£ is clear then that

the integrated contrast of the images pOssessing.the same information
decreases with an increase of electron energy. We can conclude that the
increase in integrated contrast at high energy cases is due to the increése
in the number of beams allowed to pass through the aperture. That is to
say, the increase at high energies is due to the increase in information

of the image.
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VI. CONCLUSION AND SUMMARY

The kinematic approximation, the phase object approximation and
the multislice dynamical approximation have been derived following
Feynman's path integral formulation of quantum mechanics. The higher
‘order phase object approximéﬁion has, for the first time, been developed
in order to éxtend the validity domain of the phase object approximatioﬁ
and still preserve the invertibie relatidnship between the projected
pqtential and the transmitted wave function. The validity of these

approximations was discussed and their validity domains were evaluated.

Kinematic Approximation

The validity dpmain of the diffracted beam intensifies in the
kinematic approximation ié'limited at 100 keV to a crystal thickness of
less than 100 X, whereas the validity of their phases is confined to a
ﬁuch smaller crystal thickness. These domains stay approximately the
same as electron energy increases. It can be said then that the validity
of the kinematic approximation for the structural investigation of organic

crystal is confined to a very small crystal thickness.

Phase Object Approximation

The validity of the diffracted beam intensity inrthe phase object
aﬁproximation at 100 keV is confined to a smaller crystal thickness than
that in the'kinematic approximation. The validify of the phases of the
diffracted beams extends, however, to a larger crystal thicknéss. The

‘validity of the phases together with the amplitudes in the phase object

approximation'decréases either with increasing spatial frequency or with
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increasing crystal thickness; but this validity increases as electron

energy increases.

Higher Order Phase Object Approximation

The validity domain of the higher order phase object approximation
at 100 kéV was evaluated. It was demonstrated that the higher phase
objept approximation, when compared to the phase object approximation,
possesses a lafger domain of validity for the retrievai of the projected
potential.

The effect of high voltage to the contrast of organic crysﬁal
images under "optimum defocus condition' has also been studied. It was
shown that the contrast increases with increasing eiectron energy. The.
increase in contrast will definitely lower the electron exposure needed
to obtain an acceptable signal—to-noisé ratio and allows the beneficial |
reduction in radiation damage. |

One can conclude that high voltage electron microscopy not only
gives a larger domain for the retrieval of the projected potential by
the phase object approximation, but also gives an increase in conﬁrast.

This increase can be beneficial for reduction in radiation damage.

Future Applications to Biological Specimens

Within their validity domains, both the phase object approximation
and the highef order phase object approximation can be properly used to
obtain the true structural information when the phasés and amplitudes
of the diffracted beams are known. Several attractive techniqhes such
as half aperture holography have been proposed in the literature for the

recovery of the diffracted waves. Future research will be to retrieve
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the correct_quect structure from the high resolution.object image and

the diffracted Beam intensities. This method will be applied to obtain
the true projec;ed potential of biological specimens such as gap junction
membranes which are believed to be the‘site of cell to cell communication,
catalase crystal and tabacco mosaic virus. The three dimensional

reconstruction of these objects at high resolution will be our ultimate

goal.
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o APPENDIX A
The Validity of the Kinematic Approximation for the Structural

Determination of Biological Structures by Electron Microscopy

The scattering of electrons by a three dimensional potential field
must, in principle, involve multiple scattering processes; An electron
wave is perturbed several times as it passes 'through the three dimensional
potential field. In other words, an electron which is scattered from one
part of the potential field has the probability to be scaktered again and
again as it passes through the other parts of the three dimensional
potential.  When the multible scattered electron waves are related to
one anothef in a systematic way, this type of multiple scattering is
referred to aé dynamical scattering. It can be expected, therefore, that
the dynamical scattering effect is espeéially important in the structural
investigation of crystalline materials by electron microscopical imaging
technique. This is because the potential field of one part of the
crystalline.object can be related systematically to the other part.
'Furthermore; the electron waves used for imaging must possess an appreciable
degree of coherency. Thus it is clear that the dynamical scattering effect
may play an important role in the image of an appreciably thick crystal.

For a thin biological object, the number of electrons which undergo
multiple scattering processes can be expected to be quite small coﬁpared
to that of the single scattefed electrons at small angles. This number
can, howevef,.be quite significant when compared to the number of single
scattered electrons at large angles. This means that even for a fhin
specimen, the dynamical scattering effect may play an important fole in

the high resolution information of the image. In fact, study from electron
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diffraction by gas molecules of high atomic numbep has shown that the
single scattering approximation (kinematic approxiﬁation) is inadequate

for the structural determination of the molecule (Glauber, R. and Schomaker,
V., 1953). For an increasingly thick specimen, the contribution of the
multiple scattered electrons to the number of scattéred electrons at a.
small angle Becomes increasingly significant. The dynamical scattering
effect for a thick crystal can be anticipated to bé important even for

the low resolution image.

Erickson -and Klug (1971) have studied experimeﬁtally the image
formation using a thin (v 200 &) negatively stained catalase crystal and
have shown that the medium resolution (v 20 §) imége followed the lineérv
theory of image formation. This indicates that the dynamical scattering
effect plays an insignificant role in the medium resolution image of a
thin, negatively stained crystal. It should be pointed out, however,
that their determination of the defocus value, based on the radius of the
rings of the maximum and minimum noise intensity of thevoptical transform
of the image, is not appropriate since ;he stained méterial does effect
the radius of the rings. Furthermore, the contribution of the dynamical
scattering effect cannot be separated from the contribution of the amplitude
contrast in the first order theory of image formation.

Following the same technique used in the case of the thin specimen,
Erickson and his collaborator (Voter and Erickson, 1974) have recently
shown that, for a thick negatively stained catalase crystal, the low
resolution information of the image followed the first order theory

while the medium resolution information deviated significantly. It is

R

[

clear that for a thick crystal, the dynamical scattering effect plays a :
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dominant role in the medium resolution information.

Dorset and Parsons haye'reported that the total diffracted beam
intensities for a fully'hydrated catalase crystal is, for crystal thickness
up to v 3000 X, small relative to the incident beam intensity. Based on
this fact, they indicatéd that the kinematic diffraction theory is a valid
approximation for treating the intensity data. Thié criterion is, however,
not a sufficient condition for assuming the validity of the kinematic
approximation.v Calculations;(Chapter I1I) have shown that ‘although the
total diffracted beam intensities become smaller relative to the incident
beam intensity as electron energy increases, the validity for the kinematic
approximation does not increase. Furthermore, the validity of the kinematic
approximation for tfeating'the diffracted beam intensities does not warrant
the applicability of the kinematic approximation for the structural
determination of  the cryétal since calculations have also shown that the
phases of the aiffracted waves have a smaller validity domain when compared
to the validity domain of the diffracted beam intensities. Phase retrieval
techniques in x-ray crystallography, such as isomorphous replacement
technique, may therefore, not be used to obtain the correct phase

information in electron diffraction study.
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APPENDIX B

Evaluation of the Integral [in Equation 8)1

For the far field region, [equation (8)], for the case where the

_>
_potential V(r,t) is independent of t, can be written as

\b(—r),t) r:q}exp(—ii()o . ? + (h—l-) Eot) + (%)jF(l?—?' |',£')V(?') exp(—ii:O °,_r>')d_r>'

[a]

and
> o> - m 3/2 im —; ?'Iz i .
F(r-r']0) T+ o ,{[ZTTht':l exp< 2ht’ ) eXP(h Eot )dt

[b]

where t is the time required for the electron to travel from the initial
r} —> 3 . 3 -) I3 - . r _).
point r, to the final position r. For a limited potential field |r| > o0

means that t—-«, We can then write equation [b] as

| e 3/2 T 22 .
> > _ m -im{r - r'] 1y
Fllr-rtlo t > j[Z‘lTht'] eXp( 2nt’ >'eXp(h Eot)dt' o]
0 c

. - . '*_”*v 2 1/2
To simplify the integral, we substitute (- H“_l]zf_hi_r_l_> by the variable °

L. We have then

N . -u® -a?/u
F(|[t-T'|,t) = —[ ‘31/1“2 ] — 1+ fe au  [d]
™' "h [r—r'|

and

i"
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The definite integral can be integrated in close form as (Standard

Mathematical Tables, 1965)5
oo o - -
2 2,2 ' _
-x" -a“/x° o 2a S _
e odx = ————E——f—- [e]
0 ' :

Thus, equation [d] can be rewritten as

> >, N im ) 1 . _ii'_ ' —>_—>'
F(|r r ‘|,t) 5w 2 <|¥_;'l>egp( f \/ 2mEO lr T ) [£f]
Noting that Eo is the energy of the free electron, we can write

- (hk)? > ) ' - -
Eo = S5 — where |k| = lko[. Equation [f] can then be rewritten as

> > im 1 ) > -

F(fr-r'|,t) = exp(-ik|r-1']) . (gl
t—>oo.2ﬂh- I;_}’v _ , v

Substituting this relation into equation [a], we can finally write

‘equation [a] as follows:

’ . 3 . . —' ‘+—->'
b (r,£) = ,exp(—ii ‘T+@E t) - —B—fexp(-iﬁ ST v xRS E‘Ji ') g3
oot o o 2 o : _
27h : r-r'|

(h]
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