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Abstract 

Recent research suggests that the high-temperature superconducting oxide, 
YBa2Cu306+(5, assumes three equilibrium phases as the oxygen content (8) 
is varied at low temperature: a tetragonal phase (1) that is stoichiometric at 8 
= 0, an orthorhombic phase (0) at () = 1, and an intermediate orthorhombic 
phase (0') that is stoichiometric at 8 = 0.5. The 0' phase is characterized 
by a secondary ordering 2f ~xygen in the basal plane of the 0 phase by the 
concentration wave kl = ~::OO). We compute a phase diagram and a con
gruent transformation foP tne system on the assumption that the oxygen
oxygen interaction on the basal sub lattice is a screened coulomb potential 
supplemented by a short-range attractive potential, which is necessary to 
stabilize the 0' phase against a competing ordered phase (the "2a x 2a" 
phase). The potential is fit to experimental temperatures for the direct tran
sition T:o=O and 0:0=0' at 8 = 0.5. The model predicts a narrow 0' equi
librium field at low temperature capped by a peritectic reaction to a mixture 
of T and 0 phases, predicts that the 0' phase appears over a broad compo
sition range on quenching, and yields phase transformation behavior in 
good agreement with experiment. 

I Introduction. 

Shortly after the discovery of the high-temperature superconducting oxide 
YBa2Cu306+(5 it was recognized that the oxide appeared in at least two crystal structures: a 
tetragonal structure with the stoichiometric composition YBa2Cu306 (T-phase) and an 
orthorhombic structure with the stoichiometric composition YBa2Cu307 (O-phase) in 
which the additional oxygen atoms are ordered in the basal (eu-O) plane of the three-layer 
perovskite cell. Given the existence of two distinct structures and the possibility of con
verting them into one another by changing the oxygen content, it necessarily follows that 
non-stoichiometric samples with intermediate valu~" of the oxygen content (8) are unstable 
with respect to two-phase decomposition at suffi~~~nt1y low temperature [1]. If one as
sumes that only the T and 0 phases appear in equilibrium then it is possible to sketch the 
possible forms of the phase diagram [1]. The present authors [2] calculated a phase dia
gram for the equilibrium of the T and 0 phases, using acrystallattice gas model with a 
long-range pairwise oxygen-oxygen interaction, and fitting this model to the available data 
for the T -0 ordering temperature. More recent experimental studies [3-11] have docu
mented the low-temperature decomposition of YBa2CU306+0 and the coexistence of the T 
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and 0 phases. However, the experimental data also suggest that at least one other equilib
rium phase appears as the oxygen concentration (0) is varied. 

The low-temperature decomposition of YBa2CU306+() was confIrmed in a number 
of investigations by electron microscopic [3-8], x-ray [9-11], and Raman spectroscopic 
[12] methods. Sarikaya and Stern [3] and by Hiroi et. al. [6] found direct evidence for the 
coexistence of the tetragonal (T) and orthorhombic (0) phases at low temperature through 
high resolution electron microscopy. Sood et. al. [10] reported qualitative agreement with 
the phase diagram predicted in ref. [2] on the basis of infrared absorption and X-ray 
diffraction data. 

Detailed study of the system showed that the decomposition reaction is complicated 
by the appearance of other ordered structures that involve different distributions of oxygen 
atoms over the basal planes of the unit cell. For example, You et al.[9] observed splitting 
in the x-ray diffraction pattern of the O-phase which they interpreted as a coexistence of 
two orthorhombic phases with stoichiometries close to 7 and to 6.7. Van Tandeloo et al. 
[13], Chen et al. [4] , Werder et al. [5], Fleming et al. [14] found intermediate ordered 
structures and characterized them. It seems clear that most of these observations concern 
metastable structures that form on cooling non-stoichiometric material. The intermediate 
ordered states typically appear in the form of short-range ordered regions with coherency 
length in the range of 10 - 20 A; several have periodicities that can be anticipated on the 
basis of the well-known Magneli series of intermediate ordered structures in non-stoichio
metric oxides [15]. 

However, it has been suspected for some time that the ordered structure that is ob
tained by doubling the repeat period of oxygen in the basal plane may be an equilibrium 
phase (the 0' phase). This structure has the stoichiometric formula YBa2Cu306.S. It is 
obtained from the O-phase by a secondary ordering on the basal sub lattice of oxygen sites 
generated by a plane concentration wave with the wave vector kl = ~J.oO), and hence 
produces a diffraction maximum at the position (~o). While early s~uaies found only 
short-range order of the (¥>O) type, suggesting that the phase is not stable, recent high
resolution electron microscopic studies by Amelinckx et al. [16], Reyes-Gasga et al. [17] 
and by Beyers et al.[18] have documented the presence of (~O) double-period ordered 
phase domains with size as large as several hundred A. While 11 still remains possible that 
the observed 0' domains are metastable products of the ordering of non-stoichiometric 
material, the balance of the evidence suggests that the 0' structure is an equilibrium phase. 
It is, therefore, useful to investigate possible forms of the phase diagram that include a 
stable 0' phase. 

The experimental data of Reyes-Gasga et al. [17] and Beyers et al.[18] also sheds 
some light on the shape of the 0' phase field and its relation to the T and 0 phases. They 
only found sizeable domains of the 0' structure for oxygen concentrations if the composi
tion almost precisely equal to the stoichiometric value, 6.5, which suggests that the equi
librium phase field is extremely narrow. However, microdomains of the 0' phase were 
observed over a broad concentration range above 0 = 0.5. These observations suggest the 
existence of a two-phase 0' + 0 field of the phase diagram where precipitates of the inter-
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mediate 0' phase coarsen very slowly because of the slow diffusion kinetics. In other rel
evant experiments, Amelinda et al.[16] and Reyes-Gasga et al. [17] observed the disap
pearance of (~O)-type diffraction maxima when YBa2Cu307 was isothermally reduced in 
the electron microscope at temperatures well below the second-order transition temperature, 
To, between the disordered T phase and the orthorhombic 0 phase at 0=0.5 (To::::: 
700°C[19]). This suggests that the 0' phase is formed from the orthorhombic O-structure 
rather than directly from the disordered tetragonal phase. 

The only theoretical effort known to us that attempts to construct a phase diagram 
for the system that includes the 0' is that by deFontaine, et al. [20]. They used a two-di
mensional model that considered only the oxygen atoms in the basal plane, assumed an 
oxygen-oxygen interaction that is confined to near neighbors, and adjusted the relative 
magnitudes of the near-neighbor interactions to stabilize the two-dimensional analogue of 
the 0' structure. The approach is suspect since virtually all successful analyses of bonding 
in oxides [21-24] assume an 0-0 interaction that is largely coulombic and, hence, long
range; the long-range interaction in YBa2CU306+a is indicated by the registry of oxygen 
atoms in successive basal planes of the three-layer perovskite unit cell, which is an essential 
element of the ordered structures. Moreover, the cluster-variation method used in the 
calculation converges poorly at low temperature, so the calculated diagram is inaccurate 
there (in the published diagram [20] the low-temperature phase fields, which are in many 
respects the most interesting part of the diagram, were simply guessed). 

These problems are avoided in the concentration-wave method that was used to cal
culate the diagram in ref. [2], which does not impose any constraint on the range of an ef
fective oxygen-oxygen interaction and converges easily at low temperature. This method 
is also approximate, since it is necessary to use the mean-field approximation to produce a 
mathematically tractable model when the interaction extends beyond the immediate neigh
bors. However, while mean-field methods are inaccurate for systems with near-neighbor 
bonding, they become increasingly accurate as the range of the interatomic interaction 
grows larger [25], and are exact in the limit of low temperature or high order [26]. They 
should, hence, be useful in analyzing the low-temperature phase relationships among the 
ordered structures of YBa2CU306+a. 

In the following we calculate a phase diagram for YBa2Cu306+a as a function of 
the oxygen concentration parameter, 0, on the assumption that the three phases, T, 0 and 
0' are possible equilibrium structures. Since these phases only differ through reconfigura
tions of oxygen atoms on the basal sublattice of oxygen sites in the three-layer perovskite 
structure of YBa2CU306+a, the relative energies of the phases are governed by the effective 
interaction of the oxygen atoms. We first assume that the effective 0-0 interaction is a 
coulomb potential that is screened by free charge carriers. However, with this potential the 
0' phase is metastable (though it would appear on cooling) and is less stable than an alter
native ordered structure with a (Mo) pattern. Both these effects disappear if small, short
range corrections to the coulom26 potential are taken into consideration; in fact, a short
range perturbation is almost certainly present for physical reasons. 
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The phase diagram produced by a screened coulomb potential with a short-range 
perturbation can be computed by fitting to two experimental observations: The T~O and 
O~O' transformation temperatures at 8 = 0.5. Both the equilibrium phase diagram and the 
congruent transformation diagram can then be calculated. The resulting potential provides a 
reasonable value for the dielectric constant of the oxide, which provides an internal check 
on its physical consistency. The equilibrium diagram is consistent with experimental evi
dence in several respects: it includes both the 0 and 0' phases, it provides a narrow equi
librium field for the 0' phase in agreement with the results of Amelinckx et al. [ 16], 
Reyes-Gasga et al. [17], and Beyers et al. [18], it predicts a peritectoid reaction, 0' -
T +0, at the top of the 0' field in agreement with the x-ray data of Sood et al. [10], and it 
yields equilibrium concentrations of the coexisting T and 0 phases at 200°C that agree with 
the observations of Sood et al. [10] and Radhakrishnan et al. [11]. The associated congru
ent transformation diagram suggests that the 0' phase can form through a congruent sec
ondary ordering reaction of the O-phase on cooling over a broad range of oxygen contents. 

ll. The Free Energy 

The energy of a particular configuration of atoms over an excess set of lattice sites 
is given by the Hamiltonian 

H = ~ L W(r-r')c(r)c(r') 
rr' 

(1) 

where W(r-r') is the two-body interaction and c(r) specifies the configuration; it has the 
value 1 at occupied lattice sites and the value 0 elsewhere. Given that the bonding function, 
W(r), is long-range, it is necessary to invoke the mean-field approximation to evaluate the 
free energy from this Hamiltonian. There is no available analytical technique to treat the 
correlation effects for a long-range interaction; all known techniques become intractable 
when the interaction is significant beyond the immediate neighbor shells. 

On the positive side, the accuracy of the mean-field approximation increases with 
the range of interaction. Its quantitative accuracy was assessed by Yaks et al. [25] who 
provide an estimate for the temperature range, dT, around the second-order transition tem
perature, To, in which the mean-field approximation fails: 

dT 1 
To - N2 (2) 

where N is a number of crystal lattice cells inside a sphere of interaction whose radius, ro, 
is determined by the equation 
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Lr2W(r) 
ro2 = ...:r'--__ 

LW(r) 
(3) 

r 

The interaction radius in YBa2CU306+0 must at least satisfy the inequality ro > 3a, where a 
is the lattice parameter of the parent perovskite cell. Hence N == 20, and ~Trro is in the 
range 10-2-10-3. Since To ::::: 1000 K for the ordering reactions of interest to us, ~T is in 
the range 1-10 K. Even if this estimate is too optimistic, itsuggests that the mean-field ap
proximation is a reasonable one unless the temperature is very close to a second-order 
transition temperature. Moreover, the accuracy of the mean-field approximation improves 
with decreasing temperature; .it is asymptotically correct at low temperature irrespective of 
the interaction radius [26]. Since we are mainly interested in the low temperature behavior 
of the system the mean-field approximation should be adequate for our purposes. 

Applying the mean-field approximation yields the configurational energy 

E = ~ L W(r-r')n(r)n(r') 
rr' 

(4) 

where n(r) is· the probability that an atom occupies the site at position, r, on the basal sub
lattice of oxygen sites. Using the Fourier transform to represent the occupation probability 
function, n(r), as a superposition of concentration waves, 

-ikr 
n(r) = L n(k)e 

k 
(5) 

where k is an admissible wave vector and n(k) is the amplitude of the kth concentration 
wave within the first Brillouin zone, the energy can be rewritten 

E = 2~ L V(k) In(k) 12 
k 

(6) 

where N is the number of sites on the basal sublattice and V(l:} is the Fourier transform of 
the interaction potential, W(r): 

ikr 
V(k) = L W(r)e-

r 
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The factor Iff(k)12 is the squared amplitude of a concentration wave of wave vector k, which 
is a plane wave in three-dimensional space. The Helmholtz free energy is obtained from 
equation (6) by adding the mean-field value of the configurational entropy: 

s = - kB L {n(r)ln[n(r)] + [l-n(r)]ln[1-n(r)]} (8) 
r 

Hence the free energy of the system characterized by the temperature, volume, and oxygen 
distribution, n(r), can be written 

F(T,{n(r)}) = 2~ L V(k)tn(k)12 + kBTL {n(r)ln[n(r)] + [l-n(r)]ln[1-n(r)]} (9) 
k r 

m The Concentration-Wave Method 

Given the long range of the oxygen-oxygen interaction in YBa2Cu306+c'5 we use the 
concentration wave method [27-29] to analyze the structures and thermodynamic behavior 
of the stable ordered phases. This method allows us to predict the atomic structures of 
stable phases formed by ordering or decomposition of a high-temperature disordered phase 
if the effective interatomic interaction, W(r), is known. The concentration wave method 
has the important property that it does not impose any limitation on the interaction radius, 
which is especially important in the study of ceramic materials where the interaction is in
herently long-range. Other analytical techniques, such as the "cluster-variation method", 
become intractable when the interaction extends beyond the immediate neighbors. 

The concentration-wave method identifies the stable ordered structures in a simple· 
sequence that can be illustrated by considering the ordering behavior of an oxide like 
YBa2CU306+0 as it is cooled. At sufficiently high temperatures the free energy function 
(eq. (9» is dominated by the entropy term. The free energy is minimized when the oxygen 
atoms are randomly distributed over the available sites, in which case, 

n(r) = c (10) 

where c is the fraction of interstitial sites on the basal sublattice occupied by oxygen atoms. 
The value c is related to the stoichiometry param~trr, 8, in the chemical formula 
YBa2CU306+0 by 

(11) 

The host atoms, Y, Ba, Cu, and 0, form a fixed background frame that has tetragonal 
symmetry. Hence the crystal symmetry of YBa2CU306+0 is tetragonal when the oxygen 
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atoms in the basal plane are disordered. The corresponding phase will be called the T 
phase. 

At low temperature the disordered phase always looses its stability with respect to a 
spatial heterogeneity which is described by the soft concentration waves. The amplitudes 
of the soft concentration waves are the long-range order parameters. In the mean field ap
proximation the soft concentration waves are those whose wave vectors, k, minimize V(k)[ 
27-29]. If the minimum of V(k) falls at leo, these wave vectors are the members of the star 
of ko, {kJ }, the set of all wave vectors, ~, in the first Brillouin zone that can be obtained 
from ko gy symmetry operations of the symmetry group of the disordered phase. By 
symmetry, 

V(leo) = V(Jeio> = min V(k) (12) 

The occupation probabilities, n(r), in the most stable ordered phase that is formed on cool
ing are generated by the soft concentration waves, and are described by the equation 

n(r) = c + C11 ~ 'Yj exp(ncior ) 
J 

(13) 

where the 'Yj are constants whose values are determined by symmetry only and 11 is a long 
range order (Iro) parameter. 

There are two kinds of minima for an arbitrary function, V(k), with the symmetry 
of the disordered lattice [27, 30]: symmetry minima and accidental minima. At a symmetry 
minimum the necessary condition, OV(k)/Ok = 0 at k = leo, is automatically satisfied be
cause of the symmetry of the reciprocal lattice point leo. Such high symmetry points are 
the Lifshitz points in k-space, and are characteristic of the geometry of the disordered phase 
crystal lattice . The accidental minima where OV(k)/Ok = 0 are associated with the specific 
mathematical form of the interaction potential, W(r). They occupy positions in k-space that 
shift with infinitesimal variations of the potential, W(r). Accidental minima mayor may 
not be present. 

For the interstitial sublattice shown in Fig. 1 all Lifshitz points fall at mid-points of 
the reciprocal lattice vectors of the sublattice. The interaction potentials, W(r), that are of 
interest in this work are repulsive and monotonically decreasing. In ca~ be shown in gen
eral that such potentials produce a minimum in V(k) at the point leo = ~'(100), which is 
due to the Lifshitz point at the mid-;:Joint of the interstitial lattice recip~allattice vector 
(200). The star of this vector contain8 only the vector itself. The atom distribution of the 
ordered phase generated by this wave vector is, by equation (14), 

n(r) = c + cllo exp(ikor) = c + Cllo cos(kor) (15) 

where the coefficient 'Y is chosen to be equal to 1 to provide the conventional definition of 
Iro parameter 11 within the range between 0 and 1. 
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Since the vector ko is one-half of a reciprocal lattice vector in k-space, then 
cos(kor) takes only;rwo values, ±I, at lattice sites, and n(r) has one of the two values n± = 
c ± cllo. By the defmition of the completely ordered state the occupation probability, n(r), 
should have the value one if the site is occupied and the value zero if it is vacant. Given 
equation (15) these conditions show that the fully ordered state determined by the wave 
vector leo has the stoichiometric composition c = Cst = ~ and the maximum long range order 
parameter II = 1. 

If the composition of a primary ordered phase deviates from its exact stoichiometry, 
disorder is inevitable and the entropy cannot fall to zero at 0 K. Such a situation violates 
the third law of thermodynamics. To comply with the third law a non-stoichiometric 
ordered phase must transform in one of two ways as the temperature decreases: it must 
undergo secondary ordering into a stoichiometric ordered phase or it must decompose into 
a mixture of stoichiometric phases. The equilibrium transformation minimizes the free en
ergy. However, the transformation that actually occurs is also influenced by the relative 
kinetics of all reactions that lower the free energy. Secondary ordering reactions may occur 
congruently even if equilibrium requires decomposition if the kinetics of decomposition are 
relatively slow. The theory of the secondary ordering [28,29] shows that the type of the 
secondary reaction (and the superlattice wave vector of the concentration waves generating 
the secondary transformation) is determined by the minima of the function: 

(16) 

if the primary ordered phase is described by the distribution (15). The possible secondary 
ordered phases are fixed by the minima of V(k); the preferred secondary ordering vector is 
fixed by the least minimum of V (k). 

If the least minimum of \! (k) falls at k = 0 then isostructural decomposition is pre
ferred and the system has a stable or metastable miscibility gap between two primary 
ordered phases with different stoichiometries. If the least minimum of \! (k) falls at the fi
nite vector, kl' then the preferential reaction is a secondary ordering into a structure that is 
determined by the members of the star {k'l} of k1. The ordered phase. is generated by su
perposing concentration waves with the superlattice wave vectors {~1} on the dominant 
concentration wave that generates the primary ordered structure. The atomic distribution in 
the secondary ordered phase is : 

n 1 (r) = C + cllo cos(kor) + cll 1~ Yj exp(iIJl r) 
J 

The energy of the atomic distribution described by (17) is 
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This representation is correct for an arbitrary interaction potential, W(r), so long as 
the wave vectors ko and {Jell} minimize the functions V(k) and 'V(k), respectively. The 
thennodynamics of the sequence of ordering reactions is then determined by only three en
ergy parameters: V(O), V(ko) and V(k1). The other V(k) do not appear because the asso
ciated amplitudes, In(k)12, vanish in the macroscopic distribution. 

The sequence of ordering reactions is not necessarily terminated by secondary 
ordering. If the composition of the resulting ordered phase deviates from stoichiometry 
then the third law requires that further ordering or decomposition occur until only stoichio
metric phases appear. 

IV. The Effective Oxygen-Oxygen Interaction 

As in refs. [1,2,15] we consider structural changes in YBa2CU306+0 that involve 
only the reconfiguration of oxygen atoms on the oxygen interstitial sublattice of basal sites 
in the three-layer perovskite unit cell (Fig. 1). The associated change in the configurational 
part of the free energy is governed by the effective interaction of oxygen atoms on the in
terstitial sublattice, which we take to be a two-body interaction. A crucial test for the fonn 
of the two-body interaction is its ability to provide the correct ground state structure for the 
orthorhombic (0) phase of YBa2Cu307. To enforce the observed crystallographic registry 
of the oxygen atoms on successive (001) planes of the three-layer perovskite structure of 
the O-phase the 0-0 interaction should have an effective range that at least exceeds the dis
tance c = 3a between neighboring (001) basal planes, where a is the edge length of the ele
mentary perovskite cell. This requires that the oxygen-oxygen interaction remain signifi
cant to at least the 15th coordination shell. 

The same conclusion is reached from analysis of bonding in oxides in general [24], 
and YBa2CU306+0 in particular, which, like all perovskites, is expected to include a large 
coulombic contribution. In the specific case of YBa2CU306+0, Baetzold [21], Whangbo et 
al. [22] and Valkalahti and Welch [23] have all shown that the atomic positions in the basic 
lattice can be calculated to very high accuracy (within 0.03 A for the major bond lengths 
[21]) by assuming that the interaction is the sum of a coulombic long-range interaction 
supplemented by a short-range core repulsion and a Van der Waals attraction. 

These considerations lead to the conclusion that the 0-0 configurational interaction 
is long-range and largely coulombic. The coulomb interaction is screened by free carriers in 
YBa2CU306+0, and is certainly supplemented by short-range terms. The simplest realistic 
fonn is, hence, 

(z*)2 r 
W(r) = r exp( - ro ) + bW(r) (19) 

where r is the vector separation between oxygen ions on the basal sublattice, r is its magni
tude, ro is the Debye screening radius, and z* =.Je is the effective charge of the oxygen 
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ion, where z is the ionic charge and e is the dielectric constant. The dielectric constant (e) 
accounts for the effects of electron shell polarization and displacements of the ions. 

The screening radius, rD, cannot be too large since the density of holes in 
YBa2CU306+0 is sufficient to provide significant screening. On the other hand, the radius, 
ro, cannot be too small since the interaction potential must ensure registry between the 
oxygen arrangements on adjacent (001) basal planes that are separated by three perovskite 
unit cells. We hence consider an intermediate case, and take TO = 8al == 5.7a, where al = 
arJ2 is the nearest-neighbor distance between ° atoms, when a numerical value is needed. 

A perturbation, bW(r), to the screened coulomb interaction in (19) is dictated by the 
fact that the screened coulomb potential oversimplifies the oxygen-oxygen interaction at 
small separation distances. The potential neglects the spatial dispersion of the dielectric 
constant, which may be substantial at distances of the order of the crystal lattice parameter. 
It also neglects short-range interactions, which include contact repulsion from overlap of 
the electron shells and short-range attraction by van der Waals forces. The contact repul
sion only affects close neighbors, and should have only a small effect on the short-range 0-° interaction since the oxygen ions are never nearest neighbors. The van der Waals attrac
tion decreases sharply with the separation distance, but will contribute to the interaction of 
near neighbors on the basal sublattice. 

We also assume that the corrections, bW(r), depend only on the separation distance 
r. There is a subtlety in this assumption. When the positions of the host atoms are taken 
into account in Fig. 1 the interstitial oxygen positions in the basal plane are crystallographi
cally equivalent, but are not related by lattice translations. The comer and base-centered 
sites on the interstitial sublattice have immediate environments that differ by a rotation of 
n/2. If the oxygen-oxygen interaction does not include the multi-particle interactions in
volving the host atoms the distinction between the two types of sites does not matter. 
However, in the real case the replacement of an oxygen atom by a vacancy will introduce a 
local strain or electronic polarization whose crystallographic orientation depends on the site 
type. This effect can be included in the model, but is usually ignored in the structural anal
ysis of oxides on the grounds that the site-independent coulomb interaction is much 
stronger. In the present case, including the site distinction substantially complicates the 
mathematics of the model without improving the physics in any obvious way, so we have 
ignored it. 

v. Identification of the Preferred Ordered Structures 

(1 ()()) Order: The 0 Phase 

The Fourier transform, V(k), of the ~reened coulomb potential (the first term in 
equation (19)) has its minimum value at ko = ~(100), which is associated with the Lifshitz 
point at the mid-point of the (200) fundamenral reciprocal lattice vector of the interstitial 
sublattice shown on Fig. 1. Since the extremum arises from symmetry its position is inde
pendent of the potential; specific investigation shows that it remains the least minimum 
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when the screened coulomb potential is perturbed by short-range functions OW(r), so long 
as the total potential decreases monotonically. 

With the minimum of V(k) at ko = 21t (100), the structure of the primary ordered 
phase is described by the atomic distribution teq. (15» 

no(r) = c + cTto cos(kor) = c + eTto cos(21tX) (20) 

The interstitial lattice sites, r, are at vector positions, r = (ax, ay, 3az), where a is the per
ovskite lattice parameter and x, y, z are the coordinates of the interstitial site. In the com
pletely ordered state no(r) assumes two values, 1 and 0, c =Cst = k and Tto = 1. Hence, 08t 
= 2cst = 1, giving the chemical fonnula YBa2Cu307, which is the stoichiometric fonnula 
for the 123 compound. The atomic structure can be readily obtained by substituting the 
values of (x, y, z) at the interstitial sites (x and y are the doublets of integers and half-inte
gers whose sum is an integer, z is an integer) into equation (20) and placing oxygen atoms 
at those sites where no(x,y,z) = 1. This procedure generates the superstructure whose unit 
cell is shown in Fig. 2. 

If the Y, Ba, Cu, and 0 atoms of the host lattice are inscribed into the unit cell 
shown in Fig. 2, the structure is that of orthorhombic-123 phase. Therefore, the primary 
ordering caused by the screened coulomb interaction produces a tetragonal-orthorhombic 
phase transition (T -0) on cooling that leads to the high-T c orthorhombic phase of 
YBa2CU306+o. 

If a non stoichiometric 0 phase is cooled then the system must decompose or order 
further; the thermodynamic preference is governed by the position of the minimum of the 
function 'V(k) defined in eq. (16). A numerical analysis of the function 'V(k) in the first 
Brillouin zone for a screened coulomb potentials with screening radii, r~>3ao, leads to the 
conclusion that there are only two minima, atkt=~~) and at kt' = ~Mo). Variations 
of the screening radius, ro , as well as short range ~orrections to the sc~ened coulomb po
tential (19) do not change the positions of the minima if they do not affect the sign and 
monot~nic decrease of the interaction potential. However, they do change the relative val
ues of V(kI) and'V(kl'). The fact that the function 'V(k) has only two minima at k *" 0 for 
a monotonic repulsive potential leads to two important general conclusions: (i) the sec
ondary phase transition is certainly a secondary ordering, and (ii) only the two secondary 
ordered phases related to the {~Ol and {-Mol superlattice points, respectively, are possi
ble. Which of these is the more stable is determined by the relative values of 'V(kI) and 
'V(kd. 

1 (200) Secondary Order: The 0' Phase 

The star of the vector kI in the primary ordered phase contains two vectors, {kl }= 
± kI = ±2:(~0). The secondary ordered phase generated by the star, {fro}, contains the 
superlattice point (100) inherited from the primary ordered phase and superlattice points at 
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(~OO) and (~O) that are associated with the secondary order. The atomic distribution for 
this case is, from eq. (17), 

= c + CTlo cos(2ltx) + 'hc [yexp(iltx)+ 1* exp(-i1tX)] (21) 

The stability criterion for an ordered phases [27-29] requires that the number of 
distinct values taken by the atomic distribution function, nCr), on the lattice sites be greater 
by one than the number of stars that generate the structure (which is equal to the number of 
different lro parameters). In the specific case of the distribution (21) the number of differ
ent Iro parameters is 2 (110 and 111)' This means that the coefficients y should be chosen so 
that the function (21) has only three distinct values at crystal lattice sites. This is possible 
only if y is a real number. Defining y =1 (this can always can be done by redefming the Iro 
parameter,111), we have: 

nl(r) = nl(x,y,Z) = c + CTlo cos(2ltx) + 2CTlI cos(ltx) (22) 

The function n 1 (r) describes the (~O) phase. It has distinct values on three differ
ent sets of interstitial sites: 

(23) 

In the completely ordered state nl(r) must have the value 1 or 0 at every lattice site. This 
occurs, consistent with eq. (23(, when c = Cst =~ and 110 = 111 = 1; then n\l) = 1, and n~2) 
= n\3) = O. Since 8 =2cst = 2' the stoichiometric formula of the (!oO) ordered phase is 
YBa2Cu306.5. The atomic arrangement can be obtained by placing oxygen atoms on those 
interstitial sites for which nl (x,y,z) = n~l) = 1 and leaving vacant positions where nl (x,y,z) 
= n\2) = n\3) = O. The resulting structure is drawn in Fig.3 where positions of the 0 and 
Cu atoms in a (001) Cu-O basal plane are indicated. The positions of atoms in all other 
basal planes are identical since the function nl(x,y,Z) does not depend on z. It is clear from 
Fig.3 that the structure is orthorhombic. 

The energy of the (~O) phase can be computed directly from eq. (7). Recognizing 
that the only concentration waves that have non-zero amplitudes ar~ those associated with 
the wave vectors k = 0, ko, kl and -kl, and that the amplitudes of these are, respectively, 
c, Cllo, CTlI and CTll, the energy is 

(24) 
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Note that while the interatomic interaction has an arbitrarily long range the energy of the 
(~OO) phase depends only on the three parameters V(O), V(ko) and V(k1) which are combi
nations of an arbitrary number of values of the potential, W(r), at the sites of the interstitial 
sublattice. 

11 (-0) Order 
22 

k 21t lin· k(l) 21t 11 The st.¥ of the wave vector I' = 9~22 ) contaIns the two vectors I' = -(-==022 ) 
(2) 2 11 a 11 a 

and kl' = ~no). The secondary ordered phase generated by the star, {no}, contains the 

super!attice point of the primary ordered phase, (lOO), along with superlattice points (~) 
and (Mo) tha~ are introduced by the secondary order. The atom distribution in the (no) 

phase is, from eq. (17), 

= c + CTlo cos(21tX) + 111c{'Ylexp[i1t(x+y)]+ 'Y2exp[i1t(x-y)]} (25) 

By the stability criterion the function nrer) can take no more than three independent values 
on the interstitial sites since there are only two Iro parameters. This is true only if 'Y1 = 'Y2 
= 'Y. Setting 'Y = 1, we have 

nl'(r) = nrex,y,z) 

= c + CTlO cos(21tx) + 111C{ exp[i1t(x+Y)]+exp[i1t(x-y)]} (26) 

The function (26) describes the atomic distribution in the (!f)) secondary ordered 
phase. It assumes one of three values on the interstitial sublattice SItes; these are the same 
as the values given by equation (23) for the (flo) phase. Also like the (~O) phase, the 
(:Mo) phase is stoichiometric when c = ± and 110 = 111 = l, in which case it lias the formula, 
yna2Cu306.S. The oxygen order in the basal plane of the (Mo) phase is shown in Fig. 4. 
Since nr(r) does not depends on z, the structure is the same In all basal planes. The struc
ture has a "2ax2a" pattern. It follows from Fig. 4 that it is orthorhombic. 

The energy of the (~) phase can be found as in eq. (7), and is: 

Nc2 
E = 2£V(O) + V(ko)1102 + 2V(kl')1112] (27) 

Note that the energy expressions (24) and (27) for the enthalpy of the (~O) and (Mo) 
phases are identical in form; they differ only in the value of the energy parameter in the 
third term, which is V(kl) for the (~O) phase and V(kd for the (~) phase. Since the 
distributions (22) and (26) of the two phases generate the same occupation numbers the 
entropies of the two secondary ordered phases are also the same: 
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s = - kB L (nl(r) In[nl(r)] + [1 - nl(r)] In[1 - nl(r)]} 
r 

3 
= _ N~B ~ {n~)ln[n~)]+[l-n~) In[1-n~)]} 

J=l 

(2S) 

where the occupation probabilities,n?) , (j = 1,2,3) are given by equations (23). It follows 
that the free energies of the two phases have the same functional fonn. For the (~O) 
phase, 

(29) 

while for the (~) phase the parameter V(kl) is replaced by V(kI"). The free ener~y differ
ence is simply proportional to the difference in these parameters. Hence,the (-iOO) sec
ondary ordered phase is more stable if V(kl ) < V(k1~. and vice versa. 

Relative Stability of the (~ 00) and (~~ 0) phases 

Direct calculation shows that when the potential is the simple screened coulomb 
potential 

(8~~t~t= 0 in eq. (19» then ~~~j1 > V(k!'); specifically, with ro = Sal, V(kl) = -
0.6S--, while V(kI") = -1.022 --. ' 

al al 

Hence the (¥o) phase is preferred. However, this conclusion is not decisive. A small 
short-range ~eviation from the coulomb interaction, which is expected here, may reverse 
the relative magnitudes of V(kl) and V(kI") and stabilize the (~O) phase. For example, 
Fig.7 shows an 0-0 potential, W(r), in which the screened coulomb potential is 
supplemented by a short-range contribution, 8W(r), whi~h affects only interactions with 
the nearest and next nearest neighbors. Although the short-range contribution is small (-
0.1 of WO(r) for the affected coordination shells), the potential, W(r) = Wo(r) + 8W(r), 
stabilizes the (fJO) phase. The reason is that a two-neighbor interaction has a very different 
effect on the energies of the two secondary ordered phases. It does not change the energy 
of the (fJo) phase but significantly affects the (~) phase. 
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To show this we note that the contribution of 8W(r) to the Fourier transform of the 
potential V(k) is 

ikr 
8V(k) = I8W(r)e-

r 

= 40W 1 cos(1th)cos(1tk) + 28W2[cos(21th)+cos(21tk)] 

+ 48w3 cos(21th)cos(21tk) 

+ 48w 4[cos(31th)cos(1Ck)+cos(1th)cos(31tk)] + ... (30) 

where the indices (hkl) are the coordinates of a reciprocal lattice point that is associated with 
the wave vector k = 21t(hkl). Substituting the indices (100), (~O) and (M<», respectively, 
into eq. (30) yields th~ result 

8VCko) = - 48wI + 48W2 + 48w3 + ... (31a) 

(31b) 

(31c) 

It follows from eq. (31b) that a perturbation, 8W(r), that is confined to the first two coor
dination shells does not affect the potential V(kl) and thus does not affect the thermody
namics of the (¥X» phase. On the other hand, the perturbation adds the potential8V(kl') = 
- 48w2 to the potential V(kr), and hence changes the relative stability of the (~) phase. 
If 8W2 is negative (the net short-range correction is attractive in the second nei¥ftbor shell) 
then the energy of the (M<» phase is raised relative to that of (~O), and the (200) phase 
may become stable. 

This result suggests that a close competition between the (!00) and (¥o) phases 
may be resolved by short-range interaction terms. This perspective IS supported by recent 
experimental observations. Electron microdiffraction studies [31,16,17] of samples with 
stoichiometries below 8 = 0.5 have revealed an ordered phase called the "2a x 2a" which 
actually is the (M<» phase describe:d above. The "2{2a x 2{2a" phase reported in 
[31,16,17] is also derivatives of the eM<» phase; it can be formed from the (~) phase 
through tertiary ordering. These observations suggest that small perturbations III the 0-0 
interaction may shift the delicate thermodynamic balance between the (Mo) and (~O) 
phases in favor of the former. The shift may particularly occur due to increases in the 
screening radius at stoichiometries below 8 = 0.5 (which stabilizes the (M<» phase) caused 
by a reduction of the hole concentration in this composition range. 
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According to equations (31), the (-kl0) phase is preferred if the screened coulomb 
potential is supplemented by a two-neigh60r potential, OW(r), whose value in the second 
coordination shell, OW2, is sufficient to raise V(k}') above V(kl). From the values given 
above this requires 

.[. z2] 
OW2 ~ -0.0835 tal (32) 

The perturbation at the first neighbor shell, OW I, it does not affect the stability of the (~O) 
phase with respect to (Mo), but does alter stability with respect to the (100) phase. 

VI. The Phase Diagram 

The Quantitative Model 

We began this investigation to study possible forms of the phase diagram of 
YBa2Cu306+0 if the 0' (~O) phase is stable. In the context of the model this can only 
happen if the screened coulomb potential is supplemented by a short-range interrc~op 
whose value at the second coordination shell satisfies the constraint, OW2 ~ - 0.0835 L-\-J 
The free energy describing the equilibrium between the T, 0 and 0' phases is then ifvlen 
by equation (25). The free energy function (25) depends on W(r) only implicitly through 
the Fourier transforms V(O), V(ko) and V(kl). When the interaction is primarily electro
static the Fourier transform V (0) at the origin of the k-space vanishes due to the electroneu
trality condition: 

V(O) = 0 (33) 

so that only the two parameters V(ko) and V(kl) appear. There are two ways to fix the 
numerical values of these parameters to calculate the phase diagram: (1) define W(r) numer
ically by setting the values of the parameters TO, E, OW I and OW2 and take the appropriate 
Fourier transforms, or (2) find the values V(ko) and V(kl) directly by fitting experimental 
results. We shall take the latter approach since it involves fewer assuIl1ptions. However, 
while W(r) uniquely determines V(ko) and V(kl), the converse is not true; the exact values 
of OWl and OW2 are not fixed by V(kO) and V(kl). Many different potentials, W(r), de
termine the same phase diagram. 

To find the phase diagram we first rewrite equation (25) in the dimensionless form: 

- F - I { 2 -r 2 
F = IV(ko) I = 2: N - (C11O> + 2~(C111) 
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+ 2 «(c-C110)ln(c-C110) + (1-c+C110)ln(1-c+C110»)] } (34) 

where ~ = V(kl)jlV(ko)1 is a dimensionless interaction parameter, 't = kBTjlV(ko)1 is a di
mensionless temperature, and we have used the fact that V(ko) is negative. The minimiza
tion of the free energy (34) with respect to the long range order parameters, 110 and 1110 
yields two equations for the equilibrium values of these parameters, 

(35) 

These equations have bifurcation points at the order-disorder temperatures for the primary 
T - 0 and secondary 0 - 0' (¥>o) phase ordering, which are both second-order transi
tions in the present model. The bifurcation temperatures are given by the equations 

o ~ 
't1 = IVCko) I = c(l - c) (36a) 

kB~ 
't~ = IVCko) I = - (c + C11~)(1 - c - Cl1d~ (36b) 

where 11~ is the equilibrium value of the lro parameter at 't = 't~, which is determined by 
the fIrst of equations (36), ~ is the temperature of the T~ 0 primary ordering. T~ is the 
temperature of the O~O' secondary ordering in a system with fIxed composition, c. 
Taking the fIrst partial derivative of (35) shows that 11~ has the form 

[(C+Cl1~)(l-C+C11~] 2C11~ 
In =--

(c-Cl1~)(l-c-Cl1d 't~ 
(37) . 

The transcendental equations (36b) and (37) can be solved simultaneously for 't~i the value 
of the reduced temperature at which the 0 phase spontaneously orders into O'(?lO), as a 
function of the ratio, ~, and the composition c = 20. 

i)ccording to ref. [19] the temperature, ~ , of the T·~ 0 primary ordering at 0 = 
0.5 (c = 4) is 973 K. Using these values in eq.(36a) yields 

V(ko) = - 5l90kB (38) 

Page 17 



Khachaturyan, Semonovskaya and Morris: On the Phase Diagram of YBa2CuJ06+¢ 

According to ref. [16,32], when YBa2Cu307 is reduced isothermally (~O) diffraction 
spots appear if the temperature is below - 40()oC, but are not observed at higher tempera
tures. This suggests that the maximum temBerature for congruent 0 ::;:: 0' ordering (at 8 = 
0.5) is near 400oC. Assuming this value, T2 = 4000 C = 673 K at c = 0.25. Then, with 
V(lq)) = - 5190kB, 't~ = kBT~IV(ko)1 = 0.13. The solution of equations (36b) and (37) for 
the two variables, ~ and 1l~ at 't~ = 0.13 gives 1l~ ::= 0.87 and ~ = - 0.52. Since V(k1) = 
~V (lq)) and V (ko) = - 5190kB, 

V(k1) = -2700kB (39) 

in units of degrees K. 

Physical Plausibility of the Quantitative Model 

Before exhibiting the phase diagram that is determined by the values of the interac
tion parameters given in (38) and (39) we investigate whether these lead to a self-consistent 
model with a physically plausible interaction potential, W(r). Specifically, the inferred val
ues of V(ko) and V(k1) should yield a reasonable value of the dielectric constant and a 
small, attractive short-range interaction that stabilizes the (-ioO) ordered phase. 

First, we compute the dielectric constant. Since the Fourier transform, V(k1), does 
not depend on the short-range corrections, it can be calculated from the screened coulomb 
potential. For ro = 8a}, direct computation of the Fourier transform, V(k), at the point kl 
=~~O) gives 

z2 
V(kl) = - 0.688 £al (40) 

Substituting this result into equation (39) with al = a/{2 = 2.71x 10-8 cm and z = 2e, 
where e is the electron charge, yields an estimate for the dielectric constant: 

£=90 (41) 

This is a physically reasonable value for an oxide in the perovskite structure. 

Next we find the quantitative perturbation of the primary ordering parameter, 
V(lq)), by the short-range interaction. The coulomb contribution to V(ko) is 

V(ko),b = [~J ~ (~I}xp(-rd exp(- ikoor) 

= - 1.494 [:J = - 5850kB (42) 

Page 18 



Khachaturyan, Semonovskaya and Morris: On the Phase Diagram of YBa2Cul06+0 

in degrees K, where we have used eq. (41). The parameter V(ko) is the sum of the contri
butions of the coulomb and the short-range interactions. Using equations (38), (42) and 
(31a), the short-range perturbation is 

bV(ko) = V(ko) - V(ko)cb "" - 4BWI + 4bW2 = 660kB (43) 

Hence the short-range perturbation is a small (-10%) correction to the energy parameter 
V(ko); as assumed, the coulomb interaction gives the major contribution to the oxygen
oxygen interaction. 

The third test test for the self consistency of the model is the requirement that (!o9> 
order be preferred to (Mo). This requirement is met if the inequality (32) holds; with :a 
= 3920kB we must have bW2 < -327kB, in which case bWl > -492kB from eq. (42). Hence 
the 0' phase is preferred for secondary ordering when 

z2 
bWl> - 0.126 eal = -492kB 

z2 
bW2 < - 0.0835 eal = -327kB (44) 

The chosen values of V (leo) and V (k 1) do not fix the values of bW 1 and bW 2 beyond these 
ineqUalities; however, the assumption that bWI and bW2 are small and attractive is consis
tent. A specific example of a suitable l'Ptential, W(r), is present~ in Fig. 5; the short
range perturbatio..vs are bWl = - 0.1255 - and bW2 = - 0.0855 :a. The Fourier trans
forms V(k) and V(k) determined by thi~potential are drawn in FlgJ. 6 and 7. The mini
mum value of the Fourier transform, V(k), falls at ko = ~100). Hence, like the pure 
screened coulomb potential, this potential establishes a the~odynamic preference for the 
orthorhombic primary ordered 123 phase ~hose atomic distribution is described by eq. 
(18) and shown in Fie.2. The potential V(k) (Fig.7) has two minima. However, the 
minimum at kl = 21t(200) is slightly deeper than that at kl' = ~Mo); the dOO) phase is 
more stable at gove~ concentration, and, thus, provides the preferred secondary ordering 
of the orthorhombic O-phase. 

The equilibrium phase diagram is determined by the free energy function (34). 
Given the inferred values of V(ko) and V(kl) (eq. (38) and (39)), the dimensionless pa
rameter ~ has the value, - 0.52. The phase diagram calculated for ~ = - 0.52 is shown in 
Fig.8. This diagram includes aT + 0 two-phase field below approximately 860 K, with a 
peritectoid reaction to an equilibrium 0' phase (!o<» near 470 K. Below this temperature 
two two-phase fields appear, T + 0' and 0 + 0'. 

According to this phase diagram, the 0' phase is only at eqUilibrium for a narrow 
range of stoichiometry at temperatures below 470 K ("" 20()oC). However, the 0' phase 
can appear above this temperature as a metastable phase. Since ordering requires atomic 
migration over a microscopic length - lA while decomposition requires diffusion over at 
least a nanoscale length, ordering occurs much faster than decomposition. Therefore, in 
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many cases the observed transfonnations of the system will be governed by metastable 
congruent ordering. The congruent ordering diagram calculated with the energy parameters 
(38), (39) is shown in Fig.9. -Congruent ordering from a metastable 0 phase to metastable 
0' occurs at temperatures well above the peritectoid line over a broad composition range. 
Figs. lOa and lOb show the calculated values of the long-range order parameters, 110 and 
111, respectively, plotted against the background of the congruent ordering diagram. 

VIT. Discussion 

The calculated phase diagram that is plotted in Fig. 8 has a second-order transition 
line between the tetragonal (disordered) T phase and the orthorhombic (ordered) 0 phase. 
This line tenninates at a tricritical point at - 860 K, where it bifurcates into two solvus lines 
that envelope a two-phase T + 0 field. The two-phase field lies above a horizontal peritec
toid line at - 470 K. Below the peritectoid line the phase diagram includes two two-phase 
fields on either side of an intervening (~O) 0' phase region. These are 0 + 0' and 0' + T 
fields. 

The diagram is calculated on the assumption that the oxygen-oxygen interaction is a 
screened coulomb interaction beyond the second-nearest distance between oxygen atoms. 
The potential deviates from this fonn for the nearest and next nearest interactions only. 
This approximation is a conventional one that is commonly used in calculations of oxide 
structures (see, for example, the reviews in ref. [24]) that has produced results in very 
good agreement with the structures, elastic moduli and dielectric constants of oxides. 
Similar potentials have been applied to the YBa2Cu3D7 oxide by Baeltzold [21], Whangbo 
et al. [22] and Bekker et al. [23]. The calculated structures are in very good agreement 
with the structural data. For example, Baeltzold reports agreement in bond lengths within 
- 0.03A. 

The calculated phase diagram is almost independent of the details of short-range 
perturbation,OW(r). It is detennined by two fitting parameters, V(ko) and V(kl), as long 
as the values of the short-range perturbations, OWer), are within the 0' phase stability 
range given by the inequality (44). The importance of the short-range perturbation is to 
stabilize the (~) 0' phase against the alternative (M<» ordered phase. 

The fitting parameters, V(ko) and V(k1), are chosen by matching the computed 
phase relationships at two points: the T ~ 0 and 0 ~ 0' second order transition tempera
tures at c = 0.25 (0 = 0.5). The first of these temperatures is reasonably well accepted. 
The second is inferred from transmission electron microscopic studies by Amelinckx, Van 
Tandeloo and coworkers [16,32]; it is imprecise and subject to refinement. However, the 
computed diagram predicts a transfonnation behavior of YBa2Cu306+o that agrees with 
expectation and experiment in several encouraging respects. 

First, the real-space interaction function, W(r), has the form expected for an oxide 
with the perovskite structure. The oxygen-oxygen interaction is primarily coulombic, and, 
given the fitted value of V(kl), predicts a dielectric constant, e "" 90, which is a reasonable 
value for an oxide of the perovskite type. The short-range interaction is relatively small. 
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While its specific form is not uniquely determined, the first- and second-neighbor potentials 
are bounded by inequalities (44) which show that they can consistently be chosen to be 
small and attractive. 

Second, the computed phase diagram predicts a peritectoid decomposition, 0' ~ 
T+O at =190 °C, that agrees with the x-ray observations of Sood et al. [10] and 
Radhakrishnan et al. [11]. These researches observed the decomposition of orthorhombic 
YBa2Cu306.73 and YBa2Cu306.78 samples, respectively, into a mixture ofT and 0 phases 
at 200 °C. This temperature is above the peritectoid temperature in the calculated diagram; 
thus the chosen compositions are inside the T + 0 field of the stable diagram. In ref. [11] 
the stoichiometries of the coexisting T and 0 phases were estimated to be near 6.15 and 
6.92, respectively, from the position of the x-ray lines. These values were also consistent 
with the volume fractions of the T and 0 phases which were measured independently. The 
values found for the equilibrium concentrations of the coexisting T and 0 phases at 200°C 
agree very closely with the computed phase diagram. 

Third, the computed phase diagram is consistent with experimental observations 
[17,18] that suggest a very narrow equilibrium field for the 0' phase, while the computed 
congruent transformation diagram is consistent with observations by the same workers that 
the 0' phase appears in samples with a wide range of stoichiometries. The calculated equi
librium and congruent diagrams also suggest that there is no real contradiction between 
experimental reports of 0 and 0' coexistence at compositions between YBa2Cu306.5 and 
YBa2Cu306.8 [9] and other reports [10,11] ofT and 0 phase coexistence in the same com
position range. The superficial contradiction is resolved if the samples, which were ob
served at room temperature, are assumed to be in "quenched" equilibrium states related to 
different high-temperature two-phase fields. The 0 and 0' phases coexist at temperatures 
below the peritectoid temperature, = 190 oC, while the T and 0 phases coexist at higher T. 
These interpretations are especially plausible in light of the slow kinetics of decomposition 
in this system. According to ref. [11] the aging time required for decomposition at 200 °C 
is very long, 672h for YBa2Cu306.7S. Thus, the decomposition is difficult to observe. 
The congruent ordering that results in the formation of the 0' phase does not require long
range diffusion, so this reaction should be much faster and much easier to observe, in 
agreement with the experience of many investigators. 

Fourth, the model is consistent with the occasional appearance of (¥o) order, ex
hibited in the "2a x 2a" phase and the closely related "2{2a x 2{2a phase~' [16-18,31]. 
The screened coulomb potential provides a minimum for the (Mo) secondary ordering wave 
that is very close to that for (400) ordering. A sui~able. minor p~rturbation of the system 
would cause the appearance of metastable phases With thls type of I)l)jer. 

Fifth, the calculated congruent transformation diagram provides a simple explana
tion for the drop in the superconducting transition temperature, Tc, from =90 K to =60 K 
when the overall composition drops below 0 = 0.8. It follows from the position of the con
gruent ordering line in Fig. 9 that the 0 - 0' transformation near room temperature starts 
at 0 < 0.8. If a sample is cooled quickly enough.to suppress decomposition (which appears 
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to be the case in most experiments) the O-phase order is lost by secondary decomposition 
when 8 < O.S. 

Tertiary ordering of the 0' phase may also occur in quenched samples to create 
superstructures derivative of the (-!DO) phase whose natural stoichiometry matches the cur
rent stoichiometry of the material. The theory of such ordering in YBa2Cu306+<> was de
veloped previously by the present authors [15] by extending the theory of the homologous 
series of Magneli phases in ceramic materials that have long-range repulsive interactions 
between ordering atoms (such as Tin02n-1 and Mon03n-l) [33,34]. According to [15] a 
homologous series of Magneli structures should be found with the generic formula, 
YBa2Cu30?-~ where n is an integer. In the Magneli phases the excess oxygen atoms 
form interstittil planar defects in the (-!DO) phase that are periodically repeated. If the dif
fusion rate is insufficient to provide the ordering of the interstitial planar defects that forms 
the Magneli phases, a random, disordered distribution of these defects should appear. It 
has been shown that these defects provides a broadening of the (-iDO) diffraction spots if the 
number of the defects is small (small deviation from the stoichiometry (8 = 0.5) and results 
in the shift of the diffraction maximum from the (-!DO) position if the deviation from ideal 
stoichiometry is larger [35]. 

The agreement of these predictions with electron diffraction observations by Zhu et 
al.[36] and Beyers et al.[IS] seems to confmn this picture of the non stoichiometric struc
ture of the undercooled 0' phase. The prediction that remains to be tested experimentally is 
that within the 0' area on the congruent diagram shown in Fig.9 the nonstoichiometric 0' 
phase is inherently inhomogeneous due to formation of a macroscopically large number of 
planar interstitial (100) defects, which may be periodic or not, depending on the kin2~<:1 
From oxygen balance considerations the fraction of the defects is given by the ratio --r=:o 
[35]. This inhomogeneity in the internal state should have important consequences for the 
properties of material in the stoichiometry range 0.5 < 8 < O.S, including both the super
conducting transition and the magnetic properties. 

If we consider only the T and 0 phases the diagram given in Fig. [S] has one of the 
two forms predicted by the authors in ref. [1]. It differs from the computed diagram pro
posed in ref. [2] in two respects: the inclusion of the 0' equilibrium field at low tempera
ture and the absence of a miscibility gap in the O-phase field. The latter difference results 
from a small change in the values of the interaction parameters. 
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Figure Captions 

Pig. 1 A unit cell of the sub lattice of interstitial sites pennitted for occupation by oxygen 
atoms within the range between YBa2Cu306 - YBa2Cu307. 0 = interstitial sites. 

Pig.2 A unit cell of the primary ordered phase described by equation (17). 0 = intersti
tial sites, 0 = oxygen atoms. If host atoms, Y, Ba, Cu, and 0 are placed in their 
respective host lattice sites within this unit cell, the resultant atomic arrangement 
describes the unit cell of the orthorhombic YBa2Cu307 phase. 

Fig. 3 

Fig. 4 

Pig. 5 

The positions of 0 atoms (empty circles) , oxygen vacancies ( 0 ), and Cu atoms 
(black circles) in the Cu-O (001) basal planes for the secondary Qrdered double
period (!DO) phase. The (x,y) coordinates of these atoms are the same at all (001) 
basal Cu-O planes. 

The positions of 0 atoms (empty circles), oxygen vacancies (D), and Cu atoms 
(black circles) in the Cu-O (001) basal planes for the secondary ordered, 2ax2a 
~) phase. The (x,y) coordinates of these atoms are the same at all (001) basal Cu
U planes. 

An example of the dependence of the oxygen-oxygen interaction potential on the 
reduced separation distance, ~. The solid line describes the screened coulomb 
potential with the screening fJdius, ro= 8al. The points indicate the values of the 
potential,W(r), slightly modified for the nearest and next-nearest separation dis
tances to provide stability of the secondary ordered (!oo) phase over the secondary 
ordered (220) phase. 

Pig. 6 The dependence of V(k) on k for i~e modified oxygCZJtoxygen interaction potential 
presented in Pig. 5 along the k = - (hOO) and k = - (hhO) directions in the first 
Brillouin zone of the interstitial su~lattice shown in pfk 1. 

Fig. 7 The dependence of'V(k) on k1Rr the modified o~en-oxygen interaction pre
sented in Fig. 5 along the k = - (hOO) and k = - (hhO) directions in the first 
Brillouin zone of the primary orJiered phase shown in~ig. 2. 

Fig. 8 The calculated equilibrium phase diagram. T labels the stability field of the disor
dered tetragonal phase, 0 the stability field of the primary ordered orthorhombic 
123 phase, 0' the field of the double-period (!DO) phase. The diagram shows that 
the equilibrium 0' phase is formed as a result of the peritectoid reactions T + 0 ,.:= 
0+ 0' or T + 0,.:= T + 0' below - 190oC. 

Fig. 9 The calculated congruent diagram describing T - 0 and 0 - 0' congruent order
ing. The solid lines indicate second-order transitions between T and 0, and be
tween 0 and 0' phases. 
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Fig. 10 a. Thin lines indicate the equilibrium values of the Iro parameter, 110' 
b. Thin lines indicate he equilibrium values of the Iro parameter, 111. 
The dotted lines describe the conditional spinodal of the isostructural decomposition 
of the 0 and 0' phases . 
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