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Ab.tract 

Powerful and qui~ general argument. IUggest tbat N - 1 lUp..-gravity, and in 

particular the lupentring-inapired nc>acale modela, may de.cribe the phyaia of the 

four-dimenaiona1 vacuum at energy dCll.litiea below the Planck acale_ Theae modela 

are not renonnalizable, .inee they &rile u effective theoriea alter the large maaaea 

have been integrated out olthe fundamental theory; tbUi. they have divergencea in 

their loop amplitudes that mUit be resulated by impoaing a cutoff_ 

Before phYlia at experimental energies can be extracted from theae modelI. 

the true vacuum ltate or Itatel mUit be identified: at tree level. the pound ltatea 

ol the effective theoriea are hishly degenerate. Radiative corrections at the one-Ioop 

level have been ahown to break the degeneracy .ufticiently to identify the Itatel ol 

vanishing vacuum mulY. 

As the concluding .tep in a program to calculate theae corrections within a 

lieU-consistent cutoff prescription. all fermioruc one-loop divergent corrections to the 

scalar effective potential are evaluated_ (The corresponding boaonic contributions 

have been found elsewhere.) The total effective scalar Lagrange density for N = 1 

8upergravity is written down. and comments are made about cancellations between 

the fermionic and boaonic loopa. Finally, the result is epecialized to a toy n~ 

scale model with a single generation of matter fields. and proapects for eventual 

phenomenological constraint. on theories of this type are brieHy discus8ed. 
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CHAPTER 1 

Background and Mot.ivatlon 

One 01 the major themea or twentieth-century phy.iCl baa been the discovery 

of lurpri.inl 10gjcal and cauaa1 connectiOlUl between the behavior or Iy.lema at 

radically different acalce oflensth, m_ and energy (I). No philoeopher or an earlier 

age would have gueued, for example, that the rate or a dyinl Itar could depend 

critically on the preciae m_ or an iron atom, or thai the rotaiion c:urva or galwee 

could hold cluee to the result. or future wUider experiment.. Yet one of the larleet 

diaparitiel or acale in all or acience, thai between the enerl)' ai which we underatand 

elementary particlee and the energy ai which nature (or ai any rate the geometry 

or spacetime) Appeara to underatand them, remuna to thia day not merely puzzlins 

but inexplicable within the context of the Itandard model. 

In particular, the pup boeooa tbai carry the electrowak f0rce8 we ot-ne, 

and the hypothetical acalar fields that give them _ by the Hi. mechani8m, 

have m_ thai are approximately aeventeen orden 01 mapjtude lower than the 

naiural acale (the ~CaIIed Planck II\&M) thai ariaea from ait::empt. to quantize Ein· 

llein', theory 01 gravity_ Wane atiO, the quantum field theoriea we have, though 

spectacularly 'uccelllrul in their quantitative predicliOlUl, are understood only per. 

turbatively. Even if a rnechaniam were found to make the W* and ZO bo.on mll8llell 

small at uroth order in perturbation theory, quantum correctiOlUl would mix their 

masses with any available large mAlI aca.Ies in the theory; aince the leading cor­

rections depend quadratically, and not logarithmically, on the mll8llell or the heavy 

modes, the fields we _ ai accelerator energiel could be kept light only by very 

unnatural fine-tuning. 

It is easy, in contrast, to Iceep the maaaea or Cermionic, or matter, fields small: 

because these field. have a chiral aymmetry that ia not preserved by mAlI lerma, 

they cannot acquire m_ until thai Iymmetry ia broken. The Itrongelt motivation 

for Itudying IUperaymmetric modele, in which a very peculiar symmetry connects 

e&ch oo.on with a fennion (through rotation by an "angle" described by an anti'­

commuting numbu), ia that the boeona in IUch a theory can atay strictly massless, 

to all orden in puturbation theory, until .uperaymmeLry, or SUSY, is broken. 

A second reason to take supenymmetry seriously, in Ipite or the present paucity 

of experimental evidence ror it, can be round in empty Ipace itself. The largest 008-

mologica1 COIIItant, or vacuum energy density, that ia consiatent with the observed 

Hubble parameter i. more than 120 orden or magnitude .maller than the Planck 

density; the universe il far RaUer, and rar older, than quantum mechanica and gen· 

eral relaiivity would lead UI to expect. It i8 a general property or supersymmetric 

modele, however, that their ground .tate baa vanishing vacuum energy, 80 long as 

the IUperaymmetry ia unbroken. Since we do not in ract observe mass degeneracies 

between the known fields and their lupupartnen (another necessary consequence 

01 an unbroken SUSY generator), we mUit break SUSY either explicitly or sponta· 

neouaIy, presumably in IUm a way that the Higga field can acquire a maaa near 

the e1ectroweak acaIe, while the induced 008mo1ogica1 constant i8 highly suppressed. 

While rew would maintain that the blackneu or the nighttime sky is experimental 

evidence ror IUperaymmetry, it i. at least enoourll8ill8 that we now have a mecha­

nism capable or explaining, in principle, the Imallness or the present vacuum energy 

density. 

This ia not the place to provide a comprehensive review or supersyrnmetric 

theory and phenomenology; the reader is instead rererred to the already extensive 

review literature (2). The point of principal interest at present is that models in 

which there is only one generator or supersyrnmetric rotations (hence N = I), 

and in which that generator is local, or gauged (hence supergravity) have the best 
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prospect of luccesafully describing the Iow·energy phYliCi we ot.erve. Theorie8 

in which more than one SUSY generator lurvives at low energies have the very 

undesirable property that' a1t low-mass fermions mUlt be in real representatiOll8 of 

the underlying gauge group, unlike the known quarks and leptons, which occur in 

complex, or chiral repraentatiOll8. A global or ungauged lupenymrnetry would be 

sufficient to protect the lIiggs masa from large corrections; however, workable models 

with such a symmetry eeem to be difficult to construct (3). Alao, since supergravity, 

or SUGRA, it a natural feature of all well-behaved .tring theories (purely boeonic 

theories of quantized .trin" have tachyGIUI and other dieeuee), and indeed it likely 

to be needed in any finite theory of gravity at the Planck energy, parsimony dict&te8 

that we attempt to make uee of it, rather than invoking aome new mechani.m by 

which a &IobaI .uperaymmetry could ariae. 

A el .. of N = llUpergravity models, the no-acale model. [4-7), have features 

tlw make them sood candid&te8 for explaining phYliCi below the Planck acaIe. At 

tree level in theee modell, the coemological COIUIlant vaniahea without fine-tuning, 

and there it a degeneracy in lOme of the parameters of the theory. In particular, the 

gravitino mUll is undetermined at tree level. Thia ia important since it i. a nonzero 

gravitino masa that it the .ignal for supersymmetry breaking, which mUlt occur in 

order to explain why we do not observe light scalars with the same mass as the light 

fermions. 

Also important ill the requirement that the supersymmetry breaking should 

affect the fields and parameters of the observable world only weakly; otherwise, 

without fine-tuning, radiative corrections would make them too large. Typically, 

the supersymmetry is spontaneously broken by the vacuum expectation values of 

"hidden· sector" fields; that is, fields that interact only with gravitational strength 

with observed particles. The gravitino mass, the scale of superaymmetry breaking 
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in the observed a«tor, and the scale of weak interaction physics are all determined 

dynanlically. 

The model that we shall consider in most detail i8 a toy model "inspired" by 

superstrings [8,9). It has one generation of matter fields, and is derived by a simple 

Calabi·Yau compactification from the zero-slope limit of the heterotic superstring; 

i.e., from ten·dimensional N = 1 supergravity with an E. ® Ei gauge group. Al­

though thia ill not a realistic model, it ill at least believed to provide a prototype 

that i8 worth .tudying. General features of thi. model are expected to appear in 

more realistic four- or ten-dimensional string-derived (rather than string-inspired) 

models, with eeveral generatiolUl. In addition, in a 8uperaymrnetric world, no-scale 

models are good effective models valid below the Planck scale, in a aenae that ill 

largely independent of the underlying physiCi. Even if some other, as yet undis­

covered, theory replaca Itring theory &I a model of physice valid above the Planck 

scale, we may stiD expect its low-energy limit, from the point of view of field theory, 

to be some type of no-scale model. 

Thi. mtuatioo can be compared with the large Higga-mUl limit of the renor­

malizable Itandard model of electroweak interactiOll8 [10,11). In this limit the phys­

ical Higgs ia removed from the theory; one is left with an effective nonrenormaliz. 

able model valid below the Higgs mUl. However, it is precisely the detaila of the 

symmetry-breaking sector that are not completely known. By removing the physical 

Higgs we have gained a model that, although nonrenormalizable, is in a sense more 

general than the standard model. Even if the standard model is superseded by a 

better model, we expect the low-energy limit to be very similar to the the large 

Higgs-mass limit of the standard model. In the same way, even though we do not 

yet have a good understanding of strings, or even know if strings are good models for 

Planck-scale physics, we might expect that some type of nonrenormalizable no-scale 
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.upe.-gravlty model will prove to be the Iow-energy limit of the real, perhape finite, 

underlying physica. 

There ia, to be sure, one important difference between the large Higga-maaa limit 

of the standard model and an effective low-energy supergravity model: whereas the 

weak scale it praently acceuible to direct experimental probee, the Planck auJe it! 

not. A. a conaequence, although we have a definite model ror low-energy electroweak 

phy.ica, we do not have a definite model ror low-energy phy.ica below the Planck 

acaJe. What we have inatead ia a belief that .uch a model will be of the no-acaJe type. 

How can we choc.e rrom aU the pouible no-acaJe modela that we could write down? 

A. we have already mentioned, the tree-level coarnological CO/lItant varushea. An 

obvioua lint .tep ia to check ir radiative corrections nonelheleu generate too large 

a coamolosical OOOItant. In addition, we .houId .tudy how radiative COCTections 

affect-and pe.-hape even detennine-Iow-energy parameteR that we can measure. 

By .tudying radiative axrectiooa in theae modda we can hope to gain more concrete 

knowledge about what comtitutel a good no-lC&Ie model. 

Of courae, mnee Mlpergravity ill nonrenonnalizable, radiative COCTectiona will 

sener&le diversent terma that do not appear in the tree-level Lagrangian. It ia 

clear how to interpret theae divergencea if we appeal once again to the analogy of 

dectroweak phyaia. The large Higga-maaa limit of the standard model is also a 

nonrenormalizable theory that yields divergent loop COCTectiona not in the tree-level 

Lagrangian. If the correaponding corrections are computed in the (renormalizable) 

standard model they must be finite. In this case it i. the Higgs boson that enten to 

make the otherwise divergent corrections finite. We expect that by cutting off the 

momentum integrala in our large Higgs-maaa model at the lIiggs maaa we should 

reproduce, up to threshold uncertainties, the O(M~ .... ) and O(ln MHV) results of 

standard· model calculationa. in fact, this i. just what is found [III. In the same 

5 

way, the diversent momentum integrala of our aupergravity calculation. should be 

cut off at the acale at which the underlying physica comes into play. We expect this 

procedure should reproduce, again up to threshold effects, the leading correctiona 

computed in the underlying theory. 

Unfortunately, calculating the radiative corrections for aupe.-gravity modela i. 

a technicaUy complex undertaking. The large number of particles and interactions 

conspire to make determining even the leading one-loop correctiona a nontrivial 

taak. (In Chapter 2, a simpler fermion loop calculation, due to Gaillard (121, will 

.erve to outline the basic program, and the main calculation of Chaplen 3-5 will 

follow this outline fairly cloeely.) In addition, whereas in the electroweak·physica 

example there ia only one particle, the Higgs, that we take to be heavy, here strings 

dictate an infinite tower of maaaive modes. Thus one haa to be very careful when 

conaidering how these heavy modes affect the Iow-energy results. 

The toy model that we OOOIider in this wOl"k ia the moat extensively atudied 

and the best undentood .tring-inapired no-acale model. Some of the complications 

ueociatect with the radiative corrections and the relevance of the u1traheavy modes 

to the effective low-energy theory are underatood. Aa haa already been stressed, 

thia model ia expected to have much in common with more realistic modelaj all the 

toot. and techniques used to atudy it ahould be just aa applicable to such models. 

A description of what is known about thia toy model can be found in the 

literature [8,9,3,131. The toy model haa a hidden sector that ia pure Yang-Mills 

and is aaymptotically free. All the gauge couplings are unified at, or very near, 

the compactification scale, and the hidden-sector gauge coupling runs so that it 

quickly becomes strong. When this happens a fermion condensate forms, just as 

in technicolor modele. In particular, a gaugino condensate breaks supenymmetry. 

SupeOlymmetry i. alao broken by the vacuum expectation value of the compact 
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part of the field strength of the antisymmelric two-Conn that appean in the ten­

dimensional sUpe1"gravity multiplet. In general, both these supenymmetry-breaking 

ternuo are preeent below the condensation scale, but only the latter il present between 

the condenaation scale and the rompactification scale. 

In more realiatic modele _ might alao expect other 8OUI'CeI of aupenymmelry 

breaking. For example, aupenyrnmetry may be lpontaneously broken by coordinate­

dependent mrnpactific:ationa (14). In the Itring context, in all luch mode .. that 

have been studied to date, one aIao finds effective Cour-dimenaional modela with a 

Itructure of the ~acale type (IS). There may aIao be nooperturbative atring effects 

that are aurpriaing from the point of view of point field theory, but aa yet no one 

know. what theee effecta may be. In any cue, our toy model wiU have only the 

two nonperturbative (point field theory) luperaymmetry-breaking effects mentioned 

above. 

The tre&1eveI toy model is d-=ribed by ita KihIer potential, given by (8,9): 

C; = -1n(.I + I) - 31n(1 + i - kl;13
) + In IWl3 

sG+InIWI3
, 

(1.1) 

where Re" and Re' are gauge linglets related to the ten-dimensional dilaton , and 
< 

the breathing mode a of the compact manirold by 

(1.2) 

and the fields ;1, ... ,;N are N light gauge nonsinglet scalars. We will eet the 

parameter k to one for the remainder or this work. The 8uperpotential W at the 

compactification (GUT) ecaIe is at least trilinear :n the gauge nonsinglets. Below 

the condensation scale, the luperpotential is modified by an ,,-field dependent tenn 

that arises from integrating out the heavy gauge and gaugino fields oC the hidden 

sector (9). The ,,-field plays a special role, since in the toy model the matrix-valued 
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Cunction f .. of the scalar fields (which entera, Cor example, into the gauge kinetic 

energy tenn) is given by 

( 1.3) 

In particular, the auperpotential is given by 

(1.4) 

where c parametrizes the vev of the antiayrnmetric three-form: 

(H, .. ,,) ex (cm~~, .. ,,); (1.5) 

and " parametrizes the vev of the gaugino bilinev term: 

(1.6) 

Here mPl is the Planck rna., holTl' = (l/~) is the compactification scale, 

and flo detennines the /I-function of the hidden sector. Then the gauge coupling 

conatanta at the mrnpactification scale are all equal to 

golTl' = (l/~)· ( 1.7) 

The final result in Chaptu 6 will therefore be presented in a form in which the 

,,-field dependence is explicit. 

It il Itraightforward to check that tbi, model is of the no-scale Conn; that is, 

that at tree level it haa VBl\ishing vacuum energy and that the gravitino mass is 

undetermined due to lIatneaa or the potential in certain directions in field space 

(9,3). The one-loop effective potential is just given by the superaymmetric Coleman­

Weinberg result and haa been studied in various papera (16,17,3). In reCerence (3) 

the effective potential has been computed by using the Kahler potential given above 

and taking " :f 0 Cor momenta within the integration range 0 < ,; < A~, and 
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Ia = 0 for A~ < P' < Al.UT. In thil cue it haa been ahown at tree plUl one loop 

that either the potential it unbounded or else the cosmological oonstant vanishes, 

with either unbroken luperaymmetry or brollen lupenymmetry and undetermined 

gravitino m.... It haa aIao been shown that the gauge-nonainglet ecalara remain 

maaeleaa at one loop and no other 10ft symmetry· breaking terma (_called A-lerma) 

are generated in the obeerved ecalu aectOl'. (At two loopa, however, gauge and 

gravitational interactiona can both contribute to the acalu potential in the same 

di agam, and it it no longer possible for the global Iymrnetries of the Kibler potential 

to protect the acaIu muaea.) The fint result it due: to the invanance of Gunder 

global nonIina.r Heiaenberg tranaformations among the , and _' fields, while the 

latter il cJ<.eIy related to the vanishing of th,. roemological constant. One-loop 

correctiona to the gaugino maaaea have aIao been studied. It ia found that corrections 

from momentum integrala below the condenaation acaIe will vaniah if the ground 

ltate vacuum energy vaniahea. Of courae, corrections from momentum integrala 

intermediate between the CQIldenaation acale and the oompactific:ation Kale mUlt 

aIao be included. In thia cue, the evaluation ia plaaued with technical difficultiea 

aaeociated with the utificial ltep-like behavior ofla at the condenaation acaIe. 

Reference (3) dra_ no definite conclusion about the one-loop gaugino muaea, 

and in fact make:. the obeervation that radiative correctiona oomputed with the 

effective tree model defined by the Kihler potential (l.l)·and the aupapotential 

(1.4) do not include all the necessary loops. Loops containing hidden-aector gauge 

and gaugino fields ue missing, since these have been integrated out at tree level. 

The correct procedure is to oompule the radiative correctiona from all the fields and 

lhen integrate out the heavy hidden-aeclor fields to define an effective theory below 

the condenaation scale. In this case, there is reason to believe (3) that the gaugino 

maaaes may vanish at one loop. 
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The first ltepa in IUch a program were made in reference (13), which presents 

the leading-N one-loop correctiona quadratic in the compactification scale, where 

N ia the number of chiral supennultiple.... Corrections from just the light modes 

(i.e., excluding the Kaluza·Klein and atring modes), cut off at the field dependent 

compactification scale, are not themselva luperaymmetric. In fact, to obtain a 

luperaynunetric anawer one haa to cuefully consider the heavy modes whose m881 

is neu the oompactification ecale. In general, oomputing the O(A~UT) corrections 

from these heavy modes would require a knowledge of their spectrum and couplings. 

However, synunetries of the effective low energy theory may in some csaea be 

lufficient to find these additional corrections. Reference (13) considen a general 

c1 ... of no-ecale models with putial nonlineu synunetries among the scalae fields, 

of which the toy model ia a puticulu example. These synunetries, which aee rem­

nanta of the ten-dimenaional theory, along with the constrain ... of low-energy local 

IUpenymmetry, ate enough to de\ermine all the leading O(Al;UT) corrections for 

thia clau olno-ac:aIe modela. In puticulu, it waa found that the net result of all 

the corrections waa to redefine the Kihler potential (after wavefunction renormal­

izationa were performed). These resul ... were then uaed to define an effective theory 

below the oondenaate acaIe. It waa found that the ground-state degeneracy is not 

lifted and there ate no obeervable 10ft luperaynunetry-breaking effects. 

The aim ol the present work is to carry the program further by computing, 

up. to O(A~UT) and 0(10 A~UT)' all the one-loop corrections to the effective scalae 

Lagrangian that arise from light fields. Thus, we will set Ia = 0 in (1.4) in explicit 

calculations. However, our results will first be presented in a completely general 

form that can be applied to any supergravity model. We also detennine similae 

one-loop corrections to the gauge field terms, excluding corrections that arise be­

cause the gauge fields have & noncanonical kinetic energy. The purely scalae loop 
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corrections 116.17.121. the scalar and gauge corrections I1SI. the acAlar and graviton 

corrections 1191. and many of the gaugino and chiral fermion corrections 112.3.131 

have already been computed. Also. GaiUard and J.un have calculated the addi· 

tional corrections arising from mixed gauge and graviton loop" 120.211. We will 

combine theae result. with all the rem.uning fennion·loop corrections. particularly 

thoee arising from gavitino and mixed gravitin~spinor loop". 

Loop corrections to theories with derivative scalar aeU-couplings can be eval­

uated with rovariant-derivatiw: expansion techniques 122.12.23.241. Theae methods 

involve expanding the fields about a background and then functionally evalUAting 

the path integral over the quantum fields. Theae methods are powerful since they 

allow one to compute the radiative correctiona in a manner thAt manifestly respects 

the symrnetriel. both linear and nonlinear, of the theory. For example, since a 

nonlinear C1-modeI ill invariant under repararnetriutiona or the scalar fields, their 

exparwion about a badgound involves the UlIe of normal coordinAtes 122,25.261. A 

manifestly lIC&lar-fieid repar.unetriution-invariant evaluation of the one-loop corre<:­

tiona to a scalar nonlinear a-model can be found in reference 1121. Generaliution 

or theae techniques for gauged nonlinear a-models can be found in references [101 

and IISI, and for nonlinear C1-models in curved spacetime in reference [271. An 

applicAtion or th_ techniques to our Lagrangi~ wiU yield manifestly scalar-field 

repararnetriution- and gauge-invariant corrections, but not manifestly 8upenym­

metric corrections, which wiU require further generalization. However. the fad that 

we are working in a 8upenymmetric theory will reveal itself in cert.un cancellations 

between the bosonic and fennionic loops. 

Our starting point is the supergravity Lagrangian of Cremmer et 01. [281. In 

reduced Planck-mass unita (m", = ../1/SrrGN == I), the relevant purely bosonic 

Lagrangian for an N = I SUGRA theory with Yang-Mills covariant couplings is 
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given by 

~.cB = t)"D .. ~ir D.zl- el1 (t)i(t)-I)il!i, - 3) 
.;g (I.S) 

-! R.ef.-.F""'~ -! Imf .. F"""F!.. + !R. 
4 - "" 4 2 

For the acalara we uae the notation zr == %' and as usual the Kahler metric (iiI is 

defined in tenna of the Kahler potential (l(z, zl) by 

(}It)(z, zl) 
t)il = azi a,,1 . 

The gauge rovariant derivative i. just 

(1.9) 

( 1.10) 

For the toy model of interest, the Kahler potential is the real function of the scalar 

fields z = s, t, and ~l, •• _ ,V' defined by equAtions (1.1) and (1.4), and f.b(z) is 

given by equAtion (1.3). In addition, our gauge group ill aaaumed to be unified, with 

a single coupling conatant defined at the GUT scale by equation (1.7). 

Since we are interested here in only the acalar and gauge corrections, we need 

only retain backgrounds for theae fields. (The graviton field can be expanded about 

the Minkowski metric.) Then, since one-loop correctiona come from tenos quadratic 

in the quantum fields, we can drop all terma of quartic or higher order in the fennion 

fields. Neglecting spacetime curvature, and using the sign conventions of Itzykson 

and Zuber (29) for the metric and Dirac inatrices, the relevant ferrnionic Lagrangian, 

including Yukawa and gauge interactions with the bosonic sector. is [2S) 
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The .... ge number of desn- of freedom in even this toy model makm evaluation 

of the one-loop potential a dauntinl project. In Chapter 2 we wiD lee bow the 

fennionic one-loop contribution to the effective action of a .impler theof)' may be 

calculated. thWl outlininl the procedure without too much ob.cwinl algebra. ('nUl 

reault is due to GaiUard (12). and will be UIed freely in Chapter 4. where we wiD 

COIIIider .pin-, IoopI in the context of our full theof)'.) Chapter 3 win COIIIider the 

cue of aravitino. or .pin- t. 1oopI. and develop machinery ror computinl the Dirac 

-y-matrix tr&eel for auch 1oopI. Chapters 4 and 5 win generalize tllia calculation to 

the full fermiooic: Lagaqian. (1.11). and theo work out .everal tenna explicitly ror 

the cue ofl»'lCaie modeIa. 

Finally. Chapter 6 win cdlate and .wnmari:.e the raulta obtained in the previ­

OWl three chapters. and combine them with the reaulta of GaiUard and Jain [18-20). 

TIIia win yield the full _loop effective acalar Lagrangian for I»'ICaie modeII with 

canonical vector kinetic eneI'l)'. 

In the explicit calculationa of Chapterl 3-5 we uee a double aubtraction proce­

dure to regu\ate divergent integr .... corlIiatent with the procedure uaed e\eewbere 

(20.21) for the boeonic 1oopI. Our final relulta in Chapter 6 wiD be preeented in a 

preacription-independent form. and we wiD comment on additional tenna that may 

be preaent (13) when the regularization preacription il made fully consistent with 

local IUperaymmetry. Finally. we make !Orne brief remarka about the application of 

our results to the problem of determining the maaa acalea in a ~acale model. such 

aa the toy model whOle Kibler potential takes the form of equation (1.1). 
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CHAPTER 2 

Fermion Lo0IM: a Primer 

The evaluation of effective potenti'" induced by fennion loops haa a long and 

venerable hi.tory in the literature of particle physics. As early as 1936. Weisskopf 

conaidered the theof)' of npnlinear photon couplinp through electron loops in quan­

tum electrodynamics (301. and (without the benefit of Feynman diagrams. or even 

modern four-vector notation) obtained an analytic result for the sum over all one­

loop amplitudm. in the limit where the photons are 80ft compared to the electron 

mUl. 

Thi.aort of limit is exactly where effective field theories are mOllt useful: since 

the perturbatiVe expanaion is in loops (or. more intuitively. in powers of A) rather 

than in the couplinl conatants of the theory, the sum over all configurations of 

externallin~n our caee, oflcalar 6eIda-can be evaluated to O(A) in one step. 

Allume for simplicity that each vertex around the loop contributes one external line 

to the dill&J'loID. Since the nth one-Ioop dill&J'lI;Dl hal n internal propagators. and 

a lI)'IIUIletry factor of1/n from the (n - 1)1 inequivalent configurations of external 

lines, the sum is simply tbe logarithm of the internal propagator. Thus: 

(2.1) 

where 6 F(p) is the appropriate internal propagator. and the overall minus sign on 

the loop comea from Fenni statistics. The one-loop effective potential then becomes 

v.-btp(~.) = -iJ (:~4 t ~(~.6F(P»" -, 
= -iJ(:~4In(1 - i~.6F(p», 

(2.2) 

From this schematic result we can observe two salient features of effective La-

8I'angiana. Firat. the integral in (2.2) is divergent and must be regulated; and 
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eecond, the maaaes of the particles in the loop (repreaenled here by the implied 

maaa in AF ) will determine the momentum scale at which they contribute to the 

effective potential. The latter point should be emphasized: since we are far Crom 

having an ultimate point field theocy of everything, and indeed have no strong rea­

SOR to believe that IUch a thins existl, it is reaaaurins to know that the physica 

below a given energy scale can in general be accurately deecribed by an effective 

theory in which the unobserved heavy modes have been integrated out and appear 

only u point couplings. To be sure, a momentum cutoff cannot protect ua entirely 

from our own ignorance, aince large logarithmic conectiona Crom acales Car above the 

regularization acale can contribute to the low-energy phyaia. Still, the ability that 

the effective Lagrangian Cormulation gives us to view the uni_ at a hierarchy of 

maaa scales, from Weiaakopf'. aoft photona below m. right up to the Planck acaIe, 

is in essence what makes it • useful tool. 

With these oI.en-ationa in mind, we now consider. calculation by Gaillard (12) 

that containa all the euential Ceatura of the general Cermion-loop result we hope 

to obtain. Thi. is the effective Lagrangian COl' the cue of • aingle Dirac spiROI' t/J, 

coupled to a acalar background by the general tree-level Lagrangian 

, = ~(iZ(4I)' - B(~»t/J, (2.3) 

where Z(4I) is. derivative coupling (which we could take to be a matrix in fennion 

space if '" has internal quantum numbenl), and B(4I) may have nontrivial "1-matrix 

content. The inverse propagator is given by 

(2.4) 

where C == Z-I B. 

As we saw in (2.2), the one-loop effective Lagrangian (not really an effective 

potential, since now we are allowing derivative couplings), will tum out to be given 
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by the logarithm oC an inveJ'1le propagator; more precisely, by [311, 

1 cfZ{.I_"- = -iTrin Z-I A-I = -iTr In(ill- C), (2.5) 

with the trace taken over spacetime points in the Taylor aeries Cor the logarithm, as 

well as over Dirac-matrix space. A Fourier transCorm gives 

(2.6) 

110 that now we can expand out the logarithm, shift the argument of C, and recon­

tract, finally writing 

'1_"- = -i 1 (:~. tr In(; - C(z - i ~») == -i 1 (:~. trln(; - C), (2.7) 

with the uncapitalized trace now acting only on the Dirac matrices. 

If C(z) = "1"A .. (z) + M(x) (which, u we shall see in Chaptenl 3 and 4, is not 

by any means the mOlt general form of physical interest), we can write 

trln(; - 4. - M) = trln(-;+ A - M) 

... ~trln(-(;- ~)3 + M3 + ~- ~,MJ). 
(2.8) 

Since we know that 

(;- ~,MI = i(IM +i[~,M)) == ifJM, (2.9) 

with 

(2.lO) 

defined in the natural way, and with 

(2.11) 

we have implicitly solved Cor the one-loop effective Lagrangian oC the theory. It only 

remains to expand out the Taylor series Cor each barred (i.e., shifted) function of 

the spacetime coordinates. 
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However. the appearance of a covariant derivative. 1> ... in our anawer augmu 

that (2.8) can be cut in a fully covariant fonn. thua praumably limplifyinS the 

algebra. (When we lackie the full fermion -=lor of the thealy. tru. simplification 

will be our only hope of extracting phYliCi from the rault.) Since £I_ .... (Z) ill to be 

inl.egrated over aU lpace. we are free to operate on the argwnent althe momentum 

integral with a unitary operator. 

(2.12) 

provided that U(ia/lJp. a.) equala one at the origin. To _thill. memy c:onaider the 

aerie. elCpAll8ion al U and U-I; the latla' operalelto the right on nothing, and the 

fOllllel' can be inl.egraled by parU n timm, 10 u to operate to the Icft on nothinS. 

lfwe tab 

U = exp[-i(8,. + iA .. (z» ~) exp[i8,.~) 

.. exp[id .. (z) ~) exp[i8 .. ~ .. ], 

_ will haw the foIIowinalimplifyina icientitiel: 

and 

After applyins th_. equation (2.8) becomea 

1 .-
trlnB = 2trln(-(I+J)' + M' +iPM). 

where 

and similarly for PM. and where 
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(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

and 
• GO n + 1 (-i)"a" 
J.,. = ~ (n + 2)! (a,.", .a.."Id., d,.J) ap,.,"· ap .... 

.. n+l . (-i)"a" 
::a ~ (n + 2)! (8,."" 8 .... J ... ) ap .. ,'" lJp ..... 

(2.18) 

Our expreuion for the effective Lagangian now depend. only on M. i_. and their 

covariant derivative.. Furthermore. we can square out the first term of (2.15); 

(~+ J)' == p' + l + 2Y'J,. - ik" .. + iul"'U ... - ii ... ), (2.19) 

where k ... == i([1.,p,.) - J ... ), and 10 

k :a~(n+l)(n+2)(8 ... 8 8 . ) (-i)"8"+! 
... ~ (n + 3)' '" ..... J.. A.. 8p ... 8p . ..0. "'1'11.,. ". 

(2.20) 

To evaluate the divergent contribuliona to £1_ ..... the only paru we can hope 

to set right without a real underalanding of the abort-distance physia. we need a 

regu.larization ICbeme for the momentum integration that will allow ua to extract 

botb quadratic and logarithmic divergencea. For consilltency with earlier reaulu 

(12.18,19,21) we c:booec a dou~le lubtraction echeme, introducing a new mass acale, 

which we denote by",: 

trln B -+ trln B + trln(B - 2,,') - 2trln(B _ ",2). (2.21) 

Since the tuk of pickinS out t~e quadratic and logarithmic divergencea in the regu­

lated integral dependa on the detailed fonn of B. which in the more general problem 

will differ from the reault we have obtained here, there is little pedagogical value in 

carrying on. lnatead. we now proceed directly to the actual fermionic Lagangian 

of our N = 1 supergravity model. equation (1.11). and try to apply what we have 

learned from this chapter's single-fermion model to the full fermionic spectrum of 

the 8upersymmetric theory. 
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CHAPTER 3 

Pure Gravitino Loop. 

8ecauae the models we wish to study poeaeae a local supenymmetry generator, 

they must have a aupenymmetric partner for the graviton, and ao the fermionic 

Lagrange density liven in (Lll) containa both gravitino aelf-couplinp and mix­

ing terms between the gravitinee and the chira! fields_ (Indeed, aa mentioned in 

Chapter I, it is the fad that the tree-level gravitino mau is a free pu&meLer or 

the theory that makea the no-acale models ao attractive as candidate. for describ­

in, the non-aupenymmetric world we ot-rve at.acc.elerator energie.). Since the 

gravitino tranaforma aa both a vector and a spinor under the gauge group or the 

theory, however, we appeal' to have the freedom to eliminate at least some or these 

couplings. 

To evaluate the one-Ioop contribution from spin-t fermionl, "',., the obvious 

lint atep is to find aome lauge in which these fields decouple completely from the 

apin-, chiral fields, deaisnated by xi = i (1- "Yah:j . (The ,augino fields ~. decouple 

at once if we eel 'l"I/I,. = 0.) A. we shall see, however, this explicit diagonalizatioo 

does not lead to a genuine simplification, becauae the Fadeev-Popov gauge gheeLa 

introduce new mixing between the fermiona. Thus we wiU lint perform the func­

tional integration over the gravitino degrees of freedom only (alao for the moment 

neglecting background Yang-MiUs fields, 110 that we may replace D,. by 8,.), and 

then, in Chapter 4, conaider all fermion-mixing m&88 ~nna in a conaistent way. 

(Alternatively, we could work in a "smeared" gauge, defined by aetting "Y' '" = I( r), 

where I(r) is aome suitably damped function. This approach haa not yet been 

adequately explored.) 

The portion of the rermion Lagrangian. equation (1.11), which depends on the 
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gravitinee ia: 

(3.1) 

+ Hcrmitian conjugate. 

In the gauge where 'l"I/I,. = 0, we can simplify this, using 

(3.2) 

and 

(3.3) 

!IO that C. reduces to 

I - (i i . 1 Q/2 ) 
C. ... _ = "'" -.' + 80.,z''''I. +.e (1 + "'I.) "',. 

- *xi.O~ .. ZI + H. c. 

-(i i I .IQ/2) 
= "'" -2' - 8(0.,z - O.,z'h, + 2c "',. (3.4) 

- 2~0.i.o,.zlxi. - 2itO,.8"i", .. 

1 - ( )-= 2"'" -i('+ iq"'l,) + M "',. - 2(",,.X,. + X""',.), 

where: 

i . I QI 
F .. :: .(0.8 .. z' - o.o,.z), M:: e 2, 

(3.5) 

and X,.:: oJ.o,.z'xf· 

We could now redefine "' .. in order to complete the square: 

""' .... = I/>"oId - 4A..,X". (3.6) 

If we require that A.., satisfy 

(-i(' + iq"'l,) + M)A.., = I, (3.7) 
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the"" . ~ croa-tenn will juat drop out. In I.enn.I of the new I/I-field, the gravitino 

Lagrangian would then be: 

I - I 
l .... = 2IP"A-;'\I> .. +8~"A .. X .. · (3.8) 

However, u mentioned before, new ~x-mixing I.enn.I will appear in the ghoet int&­

sration, and in any cue we shall see in Chapter 4 that it is IOOnI natural to treat the 

~)(,. tenn .. a seneralized m_, and to e&ny OW" rault (ew the ~ .. -fidd over to an 

extended spinoc containing all the (ennion degreea of (reedom. Few the time beinS, 

therefore, we ,hall simply ipore the remaining Xi- and '\-.1.enn.I in the action. 

With thia simplification, equation (3.8) reaemble. the (ennionic Lagrangian 

of Chapter 2, equation (2.3). However, the Dirac 1·matrix oonlent of the inverae 

propagatc:w prevent. ua from simply writinS A .. out explicitly, and 10 we must raaort 

to Ie. eJqant metboda, which we praent below. The calculation wiD be carried 

out in considerable detail, even at the ClOet of some redundanCy, 10 u to make the 

parallel with the previoua chapter easier to (oUow through the _wnS thicket or 
spin-matrices. 

The variation of ~ .. under a gauge tr&lll(onnation is given by (28): 

i6.~ .. = (8 .. - ir .. )e~ + i1,.Me. + O(""x,h,l.\), 

i6.!/1,.,. :; (i6.~,.)do.""', 

= (8 .. + ir .. )e. + i1 .. Me~ + O(x~,h,l.\); 

(3.9) 

(or an infinitesimal change 01 gauge parametrized bye. (This definition of the gauge 

variation actually diffen (rom that of reference :28) by a (actc:w of i, as is evident 

(rom the way we take the charge conjugate. Out choice give. the gauge determinant 

the same sign u the inverse propagaton, with the sign conventiona or reference 

(29).) Since our gauge condition is l' '" = 0, the Fadeev-Popov determinant (which 
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parametrizes OW" overcounting of states in the (unctional integral) is 

! det 6.h . ~aId) = del( -i" + iq1,) + 2M). 
e 

Thua the (one-loop) effective action from gravitino loops is 

s:. = -i In j[dt/J)6h' t/J)deCI(-i/. + 2M)e-i/"'.t.., 

where 6h . t/J) =- l[do) exp( i 1 tJ4 z 61 . t/J) ill a functional delta-function, and 

d .. :; 8,. + ir .. 1 •. 

Writing the functional integral over a out explicitly, 

S:. = -iln(det-' (-i/.+2M) j[d~J(do)e-i/"..(t.'A-'o/t-""".I) 

(3.10) 

(3.11) 

(3.12) 

= -iln(deCI(-i/. + 2M) j[dt/J)e-i/""l~A-'. j[do) e-i/"''''''''''Aoya), 

(3.13) 

after a .hift of t/J .. -. !/I,. + AII7 .. a. Integrating over !/I .. and a, we get: 

where 

s:., = -iln(det-'(-ijl + 2M)det4i2(-ijl + M)det l /3-,"A .. 1,.) 

= -iTr( -In(-i/. + 2M) + 21n(-i/. + M) + ~ In-,"A .. 1,,) 

=-iTr(-InA:;' +2InA-'+!InV.-I
) .11 112'" 

(3.14) 

(3.15) 

and where the (capitalized) trace is understood to be taken over both the spacetime 

coordinates and the Dirac-matrix indices. 

After making a Fourier transronn. using the sign convention or (12), we see that 

S. 'jtJ4 j tJ4p ( --dI = -I Z (211")4 tr -In( -I + Q1, + 2M) + 21n( -I + .Q1s + A:I) 

+ ~ In1"(-1 + ihs + AI)-1 1,,). 

(3.16) 
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wh~re the trace is now only over Dirac indices, and 

- 0 
J(r) == I(r - i op) 

(3.11) 
= e-'(II/Ip.Uo/lI", J(r)e,(II/ Ip.UII/II"",. 

Since S~ == J (/4r C~(r), we have found the one-loop Lajp-angian, and are done in 

principle. 

Befoce evaluating the momentum integral, however, we can make it covariant 

by gelling rid 01 the shifted acgumenlII. Firat picking a repraentation for the Dirac 

algebra that diaaonalizea the ll-matrix (29): 

_can write 

l' = -l, = ( o. a'), 
-a' 0 

where" :0 Ao + " . It. and .\ = Ao - a . A are 2-dimenaional matrices. 

Now, for any 4-dimensional matrix 01 the form 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

So trln M. = Htr In M. + trln M.) = ~ Ir In M.M., because odd powers of a' are 

tracelesa, and odd powera of m do not occur on the diagonal. 
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But if we consider the 8-dimensional matrices 

(3.22) 

we see that tr J(M,) = tr J(M,) aa weU, again because odd teona are traceless. 

Now, tr J(M.M.) gelll a·matrices only in pairs like ~~ and t6f, and 

(3.23) 

whereaa tr J(M,M,) geu l-maLricea only in 

And ,in~ M.M. haa the same form in " and 11 that M,M, haa in 4 and fJ, it 

foUow, that 

(3.25) 

By pulling a ..,0 in front of each of our inverse propagators (thus introducing 

an irrelevant det"lO = I into the final result), we can make direct use of this trick, 

writing: 

(3.26) 

and 

_ ( (1- f/)3 - },-p -[ p, },~) + 2~,if) . 
M,M, = _[ p, }'-I) _ 2f/ AI (p + q)3 _ M3 

(3.21) 
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Now that the two chiralities in the inveJ1!e propagalol' have been explicitly 

~parated, we covariantize the action by making the ahift M.(p,z - iiJ/{Jp) -

U ,\-f.lp, z - iiJ/iJp)U-I, where 

(3.28) 

In the chjral repre.entation, Ill' :0 diag{iJ .. + ir .. ,IJI' - ir .. ) :; diag{d! ,ct,;). and the 

shifted. aquared invene propagalol' becomes 

with: 

e-wt+·".{ -i,M + 2q M)C;r.".) . 
(I-/)' - w 

M3:;E'!'-(8 ... 8 M') (-i)"8" • 
_nl'" ... {Jp ...... {Jp ... 

. J 8 
J,. a "'iJp,,' and 

_ 00 n + 1 ( -i)"/J" 
J",. = ~ (n +2)1(8 ...... 8 ... [cI!".d!J) iJp ...... iJp ... 

00 n + 1 (-i)"/J" 
:0 L -( 2)'(IJ ...... 8 ... J" .. >{Jp ... iJp . _ n+ . ... ... 

We may introduce the covariant derivative operators. 

D!X == [<.X). 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

which ad &I oniinary derivativa on functions X(z) of the spacetime coordinates 

(like W or J" .. = ilJ"r .. - io .. r,,) that connect states of the same helicity. We then 

generalize thie to a chiral covariant derivative. D .. = diag(D! .D;). which ie defined 

on the helicity-llipping mau term &I well: 

D! M == 0 .. "" ± i( r,.~ M} :0 0,.'" ± 2ir,.M. (3.34) 

2S 

Thus both the diagonal and off-diagonal term. in (3.29) are actually covaria.nt. 

The role of D .. , the covaria.nt derivative defined above, becomes more tra.n.par­

ent if we write the gravitino m&81 term &I 

(3.35) 

a.nd define 

(3.36) 

and 

(3.37) 

and &lao 

(3.38) 

In othel' wocd8.~. tranaforme in the Arne way &I tP£ == Ijf,.. and oppoeite to tP. :0 

tPi - ~£' (Note tlw the reality property mu :: mtu ie unique to the gravitino. 

For spin-~ fermiOlll. ma£ ie a general complex matrix. and rIO ia aIao in general a 

matrix. We wiD make use of this added generality when we incorporate the other 

fermione into our calculation in Chapter 4.) With the definitions (3.33) and (3.34) 

of the covariant derivative, the expression (3.29) is equivalent to equation (4.21) of 

reference (12). (There ie a factor i misaing in front of the (PM)' term in equation 

(4.21) of reference (12).) 

A more straightforward. but perhaps lese rigorous. way to obtain the result 

(3.29) is to write (27) the gravitino Lagrangian in terms of the eight-component 

spinor 1/1 == (tP ... tP£)T. perform the functional integration (treating 1/1 and ~ as 

independent variables). and divide the final result by two to compensate for the 

doubling of real degrees of freedom. 
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Returning to (3.29), since only even powen of the.e off-diagonal term. will 

appear in the trace, we can work directly with their product; that is, 

(e-·4*1I.(,M ± 2iQM)e"'·II. )(e-·4
•

1I'(,M Of 2iQM)e"'*"') 

;; e-ilIlI.(,M ± 2iQM)(,,,, Of 2iQM)eillll• 

... I 2 (-i)"8" ;; E ;;1(8 ...... 8 •• .18" M8 .. M +4F"r .. M nBp ... Bp - ~ ~ 
== I>,.fijMI == '1>'1/12

• 

It will abo be convenient to aquan: out the dillflOllai Lerma explicitly. writing 

(~ ± Jl2 = p2 + j .. i,. ± (~, J) 

= p2 + j,. i,. ± 2,," j .. ± [i .. ,,,") ± ia""[j .. ,p,.) 

= p2 + j,. i .. ± 2,," j .. Of ik .... ± ia""(j .... - ik .... ). 

where k .... == i([i ... p .. ) - i_). and so 

k =E(n+l)(n+2)(8 ... 8 8J) (-i)"8"+1 
... _ (n + 3)! '" ~ ..... Bp.Bp ...... Bp~' 

Cootinwna .. in tbe limple fermion cue. we write 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

and introduce a renonnalization ecale IJ. The twice-Iubtracted contribution from 

each tenn i Tt In 6-': in J::" is then 

I 2 i j (/tp (.. . 
C ... (IJ)= 4 (2 .. )4 trlnB+trln(B-21J2)-2trln(B-1J2» 

= iIJ
2

{ld>.j (/tp tr(-I- __ 1 ) 
410 (2 .. )4 B - ..\1J2 B - (I + ..\)1J2 

(3.43) 

= _ iIJ
4

{1d{1
I
d..\j (/tp tr( I )2 

4 10 0 (2 ... )' B - ..\1J2 - (1J2 • 

To expand this in poWcll of P". we write 

B = (p2 + j .. j _ .\i2)1_ ~ I1IMS + ~ DiM's 
.. 2" + 2" -

(3.44) 

+ (2,," j .. - ik .... + il7 .... (j .... - iK .... »S .. 
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where I il the 8-dimensional identity matrix, and S, and S~ are direct products of 

the 4-dimensional identity matrix with the Pauli matrices 17, and 17~ == 17~ ± il7 •• 

Then. by defining A luch that 

(3.45) 

we can WJe the expansion 

I I ~(,.\ I )" (3.46) 
B - ..\1J2 - (1J2 = p2 - W - ..\1J2 - (1J2 :::;; p2 - M2 - ..\1J2 - (1J2 ' 

and. after aquaring thil, we shall be able to pick out the divergences of C:"(1J2) by 

power-counting. 

We are only interested in the divergent terme. which are at m08t of fourth order 

in derivatives of zi and Zli therefore. by (3.32) and (3.41). we can take 

(3.41) 

and 

(3.48) 

since J .... = lei! • tit) it already of I«".OIld order in derivatives of the ecalar fields. So 

only tenna at II10IIt quadratic in i or in k wiD survive. As for the m&8IJ teems. we 

have only fI2 == M2 - W left on the diagonal. and. since we are only interested in 

the divergent part. which is of order ~ p-2 in B. &II defined in (3.42). or of order 

~ p-e in the expaneion of (3.46). we need only keep 

JV2 = t (_i)" (8 ... 8 M2) 8" 
_I nl '" ~ 8p ... · . . 8p~ 

'8 28 18 "'2 88 
-- -I .. AI ~ - -2 .. u .. M ,,-,,-. 

VI'.. uP .. UP .. 

(3.49) 

And IPMI2 • which appears in the trace only at order p-8 (from ,.\2 terma). need 

not be expanded at all: 

(3.50) 
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Pullins all of theee approximationl together into A, we can write expansion (3.46) 

as: 

I 1 .A 
B - .\,.' - {,.' = P' - AtJ - .\,.' - (,.' + (P' - AI' - .\,.' - {p')' 

8/ + C 'D...,JI'JI' 
+ (P' - M' - .\1" - {,.')l + (P' - M' - .\,.' - {pl). 

+ O(~), (3.51) 

where, ir we neglect tenna that cannot contribute to the traces: 

and 

i - i - , I 
.A == 2,MS. - 2PM 5_ - 2i(7,w J...,5., 

8 .. == 2i8 .. M'1 + ~i(8'" JIW - i(7~'(8 .. J~, + 8~J,.,)5., 

C == (l)3M' - 8"MiJ .. M - 4r"r .. M' + ~J"" JIW 

- ~a-J .... ~ J ... )I- ii(7,w(iJ3 J .... + 2iJ'iJ .. J ... )S., 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

SqUar1nS thil (apin keepill8 only the divergent parts, and dropping tenna that 

ace odd in JI') and Wick-rotatins, we have 

which can be integrated to yield 

(3.57) 
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Cor the quadratically divergent part, and 

for the logarithmically divergent part. The traces ace: 

trA = 0, 

trC = 88"8 .. M' - 8iJ"!J8 .. M - 32r"r .. M', 

tr'D" .. = -328"8,.M' - 16J .... J,w, 

tr A' = -88" M8 .. M - 32r" r .. M' - 4J .... J ..... 

(3.58) 

(3.59) 

Uaill8 (3.57) and (3.58), we can evaluate the first two tenna of (3.16) at once. 

Thus, the sravitino contribution to the divergent part or the I-loop Lagrangian is 

minus twice the expreaeion (3.43) or (3.56): 

p'M'1n2 In,.' 
.c~/2 = 21f' + 81f' (8"MiJ,.M + 4r"r"M' 

+ iJIW JIW - i8"8"M3 
- M·). 

(3.60) 

The Fadeev-Popov determinant iI juat theexpreuioo (3.56), but with M -+ 2M, 

givins 

p'W1n2 _lnp'(8"M8 M +4r"r M' 
If' 41f' .. " 

+ l~JIW J,w - i8"8,.M3 - 4M·). 
(3.61) 

TIle W tenna in these two expreuiona ace the weD-known contributions to the 

Coleman-Weinberg scalae potential (32), and the J3 tenna are the analogue (12) oC 

the fermion contribution to the tJ-Cunction in gauge theories; the coefficients are in 

agreement with previous results. 

Moving on to the contribution rrom the auxiliary field 0, we note that the 

covariant derivative d,.(z) = 8 .. + ir .. " commutes with ...,0,". So we are Cree to 
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write: 

Trln v.;' = Trln ,"11 .. , .. 

j '" J d'p I 0 "M-' 0 = az (2 .. )4 trn " 4" .. 

J.e J d'p I 0 "UM-'U-' 0 = az (2 .. )4 tr n, , 4 , ,,.. 

If we now expand UM;'U-' about Mo'. with 

and 

we have 
DO 

UM;'U-' = L(-Mo'6M)"Mo'. 
....0 

Here i,. i.I defined by (3.31) and (3.32). and 

o· _ 0 • ~ 1 ( 0 (-i)"8" 
, N =, (M - M) = ~;;! d .. \.(d ....... (d .... , MiliA.. ... A.. 

~l vy~ vy~ 

o GO 1 (-i)"8" =, L ;;!(D .. ,'" D ... M) Op .. . Op • 
... 1 '" ,... 

(3.62) 

(3.63) 

(3.64) 

(3.65) 

(3.66) 

where as before d .. = 8,. + ir,. 'i' and D,. is the covariant derivative as defined by 

(3.33) and (3.34) in the chira! representation. At lint sight this appears much more 

complicated than equations (3.18) through (3.25). which would have resulted in a 

similar expression. involving an infinite series in D .. M; i.e .• in r,. and its derivatives. 

had we applied the transformation (3.28) directly to the propagator 11.,. The fact 

that r,. ap~ only in aecond order in (3.43) reflects the fact that the maaa M 

appears in the final trace only in the combination M Mt. which satisfies (3.38). 

Howe .. er. no way to cast the auxiliary field determinant (3.62) in such a compact 

form haa yet been found. 
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But sinc,e all the lenna in 6M contain spatial derivatives. we can halt the 

expansion at the fourth lenn, and then conunute , .. through to the right explicitly. 

removing the initial ,0 as before (since det,O = I). Thus: 

tr In ,o,-UM;'U-',o, .. = 

trln,O," Mo'(1 - 6MMo' + (6MMo')'ho, ... 

and by a Hausdorff expansion of the logarithm. we can write 

where 

and 

In A(I - B) = In A + 1n(1 - B)+ !(In A.In(1 - B)) 
2 

I + i2(ln A.(1n A.In(1 - B))) 

1 
- i2(ln(1 - B).(1n A.In(1 - B))) + finite. 

(3.67) 

(3.68) 

(3.69) 

(3.70) 

and where all higher lenna in the commutator expansion can be neglected. since 

they give only finite oontributiona to the p-integral. 

The lint term i.I just 

-i-M 2~-4M 
trln,-pl_ "p"''' = trln P' _ M2 

(3.71) 

= 21n(p2 - 4M2) - 41n(p2 - M2) + 41n 2 

The constant divergence. 41n 2. precisely cancels the bosonic divergence given in 

references (201 and (211. as the underlying 8upersymmetry of the Lagrangian requires. 

To evaluate the remaining terms in the expansion. we push momentum derivative 

operators to the right in the expression for B above. and retain only terms that 

give logarithmically divergent contributions to the effective action. Terms linear in 

the antisynunetric tensor J jW vanish in the trace because they carry a factor 's; in 
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fad, even without tllia factor they would contribute no divergent tenna due to their 

AIltisymmdry. Similarly, tenna with an odd number of (covariant) derivativea on !tI 

wiU not appeal' in the effective action. Theile ternUi can be explicitly eliminated in 

the expanaion of B, equation (3.70), beause they appew with either an odd number 

of ,.-matricea 01' an odd power of p, and 10 must vanish either in the trace 01' upon 

integration over all momentum. 

The other aurvivins t.enna are then 

tr In( 1 - B) == - tr B - ! tr B' 
2 

... ~(2JjW J - 8!t1D D !til - 8D"MD MI) ,. fW ,. iii ~ 

+ Ji'; (-4J: J •• + 8M 0,.0."" + 320 .. M 0.",1); 

(3.72) 

~ tr(ln A,ln(l- B)J == -~ tr A-'(A', B + ~B'J - i tr A-4(A',(A', B + ~B'II 

... ~(-!J-J + 14MD"D !til +2D"MD MI) ,.«... ,. .. 
Ji'JI' + y(J:J._ - 38MD .. D.MI - 10D .. MD .. MI); 

(3.73) 

l~ tr(lnA,(ln A,ln(1 - B)II == - ~ tr A-4(A'.(A',B + ~B~J 
Ji'JI' I 2 

== y(-12J:J •• + 10MD .. D.MI + iD .. AW .. MI); 
(3.74) 

and 

I 1 
- 12 tr(ln(l- B).(lnA,ln(l- B)II == -2i trA-'(B,(A',BII 

I I 4 
== pi(i2 J .... J .... + 3D"MD .. MI) (3.75) 

+ Ji': (-~J:J •• _ ~ D .. MD.MI). 

In evaluating the cornrnutatoc tenna, we have used the identity 

(3.76) 
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repeatedly, trunwing all expanaion. at O( I/p4). Note that the log expantiion above 

doea not yield increasing powen of IIp, since there is an A-' in front for each 

additional A in the commutators. But all terms with more than two commutators 

vanish identically, becauae for divergent pieces there are at moet two p-derivativea 

acting within each term; thus, we have fully evaluated the nonfinite part of the 

trace. 

Only (3.71) contributes to the quadratic divergence, giving 

(3.71) 

when we integrate it in the familial' twic;e.aubtracted prescription. while the sum of 

the logarithmic divergences from (3.72), (3.73), (3.74), and (3.75) is 

FOI' the gravitinoe, of COlIne, we have M == MI, and 50 MD"D"MI == MlJ'M-

4["3 M'. But the moce general result Wall worth the effort, as we shall see in the 

foUowing chapter. 

Adding thelle results to (3.60) and (3.61). we get the total sum of the quadratic 

and logarithmic divergences arising from pure gravitino loops: 

e,' == _I-I'M'ln2 _ In 1-1' (lJ"MIJ M - !.!MiJ2M 
tP 411" 1611" .. 6 

+34r .. rM'_77J .... J -7M4) 3 .. 96.... • 

(3.79) 

At this point we can eliminate a total divergence, writing MiJ2M _ -lJ"MlJ .. M. 

The divergent Lagrangian then becomes 

e,' == _I-I'Afl 10 2 101-1' (7M. 77 JIW J 
tP 411" + 1611" + 96 IW 

- ~(O"MIJ .. M + 4P'r .. M'». 
(3.80) 
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Rewriting this in terma of the Kibler potential C(~, ~I), we find that 

(I:; _,,1In2~Q + 1n,,1(1~lQ+ !!.J-J _ .!.!CClII'~ia z'eQ ) (3.81) 
.. 411"1 1611"1 96 - 6' 1" .. 

:; _"lin 2 ~Q + In ,,1 (1~lQ _ .!.!C Cff/" ~'a z'eQ 

411"1 1611"1 6' .. 

+ I~C'PIJlJ"~il1'z'(lJ .. ~·8J - 8w~·8 .. i»). (3.82) 

since 

(3.83) 

Thia ia the complete relult fOl" contributions from pure 'Pin- t Ioope. The remaining 

task, to generalize (3.82) by including the fennioo-rnixing maaa terma we oegIected. 

wiu be carried out. in straightforward but exhauating detail. in the next chapter. 
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CHAPTER .. 

The Total Fermion Contribution 

Now. at laat, we return to the spin-~ fenniODS in the theory, and at the sa.me 

time oonaider the effects of background Yang-Milla fields. When this result is com­

bined with thoee of Gaillard and Jain [20,21), we shall have the complete one-loop 

corrected sCAlar &lid gauge Lagr&llgian (for canonical gauge kinetic .energy) of our 

simple n~aca1e supergravity model. This result is then easily generalized to other 

N = 1 SUGRA models. Looking once more at the full fennionic Lagrangian, (1.11). 

in the gauge "t . '" = 0, we write the kinetic energy piece as 

(4.1) 

Here ~ ;;;; ..,..d .. • t&llda for the fully gauge- and reparametriution-covariant 

derivative. which takes the fonn 

(d .. t, = It,(8 .. + ir .. "t.). 

(d .. )~ = .s~(8 .. - ir .. "t.) + ie(A .. )~ + r"K8 .. ~'. and (4.2) 

..... • -.. i 60 -
(d,.). = o~(a .. + ar .. "t.) - u .. A .. + 2(11 Re f) 'D .. (lmf ... h •. 

when acting on the gravitinoe, chiral fenniODS, and gauginoe respectively. The 

labels I.J.K, ... an: shorthand for i.i,j.J.k.k, .... where it is to be understood 

that X~ and X~ both transform like ii. and that A~ = (Aj)· = At. The (~ ... are 

the totally &IItisymmetric structure constants of the gauge group. As always, the 

only nonvarushing reparametriution connections are I\j and its complex conjugate. 

The r .. pieces are juat the chiral U(I) connections [33,34), excluding the fermion­

dependent pieces. The relative minua sign for the chiral fennions is just due to the 

fact that the left-h~ded X's transform like the right-handed I/J .. and '\'s under the 

crural U(l). In the presence of background gauge fields. we must covariantize all 
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spatial derivativm, 10 that, (rom (3.5), 

(4.3) 

The formalism is IOmewhat limplified if we racale the saugino fieldl, 10 U to 

put their kinetic energy into canonical form. More prea.dy, we make the transfor-

mation 

(4.4) 

10 that the saugino kinetic mer&>, ia just 

(4.5) 

where now the covariant derivative ia 

(4.6) 

with 

(4.7) 

In the rmt of thia chapter we shall wock in theae racaled coordjnatea, which leave 

the final rmult for the effective action invariant. 

The rmt of the quadratic tenna in 'F can be written in the form 

'" I" -i J I .. . 1'" w I 1 - •• .. ,"~ = -imi,X .. ". + 2m ......... l/I. - i m .. A .. A• 
(U) 

+ m::~x{ - (m:; + riI!:)l~xi + H. c., 

with the maaaea given by: 

mij = 2(aij + a;aj - a.r';J)elll3, 

m:" = ",..,efJ/3 (Thi, is our old M.) 

m!. = -i(I/JReJ):(l/JReJ):~~,:a~n.e"n. 
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(4.9) 

We have written ml" and rill" out separately, since the laUer term has nontrivial 

Dirac-matrix content and will require careful treatment. 

There ia one more piece quadratic in the fenniona. This is the term in the 

fermionic Lagrange density, (1.11), that involves tP" and AG, This tenD mixes only 

fermiODI of the same handedneu, aince it contains an odd number of 'Y-matricesj 

thua, it is not a mass term. It can, however, be treated as a connection, and we 

shall treat it 10 io what foUowa. 10 the gauge 'Y .l/I = O. the relevant term becomes 

(4.10) 

where If,.. == ~(~) .. F!... 
To apply the rmulta of the pure-gravitino calculation above to this fuU fennion 

Lagrangian. we define a big (4 + (N + 2) + Na)-component spinor 8, with the 

flavoc-apace entries: 

8" = tP". IJI = X'. and 0- = AG. (4.11) 

The fennionic Lagrangian, equations (4.1) and (4.8). can then be wriUen as 

(4.12) 

where 6,· ia a (4 + (N + 2) + Na)-dimensional matrix in flavor space. Z is the 

metric with block-diagonal entries. 

Z .... = -"..... Zi, = 2(1i,. Z .. = 6 ... (4.13) 
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which is uaed to lower indics, while Z-I is uaed to raise them. The masa matrix 

has the 1-matrix space deComposition 

where M = Z-I(ZM) is defined implicitly by 

(

m:.. rn!j-

ZM == mt" m~ 

Om!: 

(4.14) 

(4.1:i) 

with the individual entries given by equation (4.9). We have left out the contri­

bution from the last masa piece of (4.9): as mentioned before, the a--dependence 

introduces a slight complication, and so we shall lint derive the one-Ioop results 

without this ~like term, and then modify them to find the fuU answer. 

With these definitions, the decomposition of the inverse propagator 6;1 in 

flavor space is, with the convention that M" = l(l - 1,)m'" + HI + 1,Hm"')' 

and so on, 

(

6;,1)... -M':: il!:) 
6;' == -M'/: (6;;1)" -M~" . 

ira: -At:: (6. 1
) .. 

(4.16) 

We write iu inverae with upper indics. Note that 6':' does not equal 6';, since 

inversion mixes the off-diagonal dements with the diagonal oncs. 

We now gauge-fix. The ghost contribution has already been evaluated. The 

auxiliary field contribution is just 

(4.17) 

As before, we shift the 8-field to remove the crose-tenn involving the auxiliary field: 

(4.18) 
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after which the full fennionic Lagrangian is 

(4.19) 

We will come back to the auxiliary field later. To compute the contributions 

from the other fermions we decompose the fermions into left-handed and right­

handed parte. In particular, we write 

(
tPr) 

8, = :: ' 
, 

(4.20) 

witb a corresponding right-banded spinor 8". Then, in the 1-matrix chiral repre­

eentation, the total (quadratic) fermionic Lagrangian can be written as 

(4.21) 

wbere er iii (8:;, 8f) and iu transpose are &pinon in the chiral representation. Our 

covariant derivatives are: 

(d!)~ = 6~(a .. T ir .. ):i: ie(A .. )~ + r'K,i>,.zK; 

(d!): = 6:<1' .. :i: ir .. ) - et·6cA~ :i: i(L,.):; 

and also, from the ~tP-tenn, equation (4.10): 

(d!): = (J~J) .. (F" .. )'; 

(d!): = (J~J):(F~,.)·. 

The fermionic one-loop correction is given by: 

S:.r = -iTrln (
if" 
-M' 
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(4.22) 

(4.23) 

(4.24) 



In thi. form it i. cuy to tee how to ute the reaulta or the gavitino loop calculation 

pre5ellted above. A, before. by using Tr 111 .. ) = Tr I( --' .. ). and doublillg the 

dimensions of our matrices. we can write: 

i (rr + MMI -ifJ+M) s:., = --Trln 
4 -ifJ-MI rr+MIM' 

(4.25) 

where O! i. defined by ,eneralizing equation (3.34) eo u to include background 

Yang-Milia and background reparametrization invariance: 

( 0 O!M) = [(d! 0) (0 M)I 
0; MI 0 0 d; • MI 0 

(
Oil! M -0 Md;) • 

= eMI - Mt~ .. .. 
eo that. rrom (4.21) and (4.22). 

O!M = O,.M + i(r,..M} + iA~M + iMA,. + i{L,..M}. 

D;Mt = 8,.MI.:... i(r ... Mt} - iA .. MI- iMtA~ - i(L".Mt}. 

when DOW r .. • tanda few a matrix with eJementa 

(4.26) 

(4.27) 

(4.28) 

L .. stand. for a matrix whole only nonzero elements are given by (L .. )%. u defined 

in equation (4.7). and A" it the matrix with elementa 

(A .. t, =0. 

(A!): = i(.jae J).,.(F",,)'. and (A!): = i(.jae J):(F~ .. )·. 

from 4' = A· B - icr .... A .. B ... equation (4.25) becomes 

S:., == -iTrln(d"d,. + M 3
) 

. (~d+" + MMt - icr""F!:. I" 3 .... = --Trln 
4 -ifJ-!.It 
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(4.29) 

where F,!. = [d!.~J. Now. treating everything but the d .. d" tenn u a single mass­

squared piece. M3. we can use the results or either the gravitino loop calculation or 

of rererence [121 to find the divergent one-loop corrections: we get 

where the trace i, over both internal labela and -,-matrix space. This hu an overall 

minus sign relative to the scalar case. and we have divided by rour to compensate 

for squaring the propll8ator and doubling it, dimensionality. Using the identities 

Tr-, .. :; O. Trcr ....... O. Trcr .... cr ... = 4(IJH IJ_ -IJ ... IJ~,). and Tr 1:; 4. the -,-matrix 

trace can be euily evaluated. and we have 

e,' :; _1_ Tr([(MMt)3 _ 0+ MO-"MI 
... 32",3 .. 

- i(F,!.f* .... + F;r .... )] 1n(~/pl.l3) +2MMtlJI.I3). 
(4.32) 

which it just a modification of equation (3.60). with the trace over internal indices 

only. 

Now. returning to the lut maaa term in (4.9). we introduce the variable M ..... 

also a (4 + (N + 2) + Na)-dimensional matrix in RaWI' space. We use the decom-

poeitiona 

and 

(M' + M!.,cr"")(M + M .... cr"") = Mt M + 2M!.,M .... + i( .... ""'Y,M!a 

+ (MI M .... + M!.,M - 4ilJ,llJ" .. IJT .. M!ai/lT)cr"" 

Then. to let M ~ M + M .... cr ..... we make the replacement 

Tr MI M -+ Tr!tll M + 2Tr M!.,"; ..... 
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(4.33) 

(4.34) 

(4.35) 



after taking the Dirac·matrix trace. The In j.ll.dependent pieces come from the 

(.\It M - ~ ju-F!Y teon. and also from the P- .\It fJ+ AIt term. in equation (4.30). 

The replacement AI -- M + "" .... u"" thus aJso results in the modification 

Tr(AIt M)l __ Tr(M' M)J + 4 Tr Mt AI M!-Ai-

+ 4 Tr( Ai!., Ai-)J - Tr( r'" Ai!., M __ )1 

+ La Tr(Ai!.,M + AI'Ai,.., - ~F,!. - 4i",~"· .. ,,r~M:'Ai~r) 

)( (M'- M + Mt M- - ~F*- - 4i" .... rt .. ,,·~ M!,M.,.). 
2 

(4.36) 

The ± refen to the two different contributiona that an.: from the equare of the lut 

matrix in (4.30). Finally. 

Tr D; }.It D+" M -- Tr D; M' D+"}.I - 16 Tr D; M'-D+' MH 

- r--f .. ."rTr D;M!.D!Ai/tr - 2iTrD;Mt-DtM (4.31) 

- 2i Tr D; M' D: M-. 

To uae these result. to incorp<Xate the last m .... term in (4.9). we eet 

(4.38) 

From thia. of COW'IIe. we CAlI find Ai!-: 

(4.39) 

Since these additional traces wiU take on a much simpler form when we set f ... (z) = 

6 ... .1. we wiU defer their flavor· space expansion to Chapter 5. where we shall specialize 

to the no-scale models. 

Let us now compute the f1avor·space traces for the terms not involving M_. 

From (4.13) and (4.15). we find for the matrices M and M' (with one upper and 
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one lower index each): 

and from (4.28). we find that 

11!:m~x) . 2V .. I 

6acm~ 

-,,"'m!r%c 

(4.40) 

(4.41) 

: ). 
6acm~ 

(4.42) 

OC COW'IIe, thia lut relation is just a reflection of the Cact that since, Cor example. t/JL 

lransforma like tiJ. under the chiral U(I), the m .... m'" must transform by twice as 

much u t/J., but that, aince X. transforma in the opposite sense from tiJ., the m .... 

m%c doell not transform. We also observe that the only nonzero components or the 

(L., M}: = (L.)W"m~c + (L.):6cdm~b, 

(L"M>: = (L,):(mAX )!, 

(L" M}i = (mAX)!(L,)'. 

From F:" = F;" = lei!, ~J, we find: 

(F,!:.)'o = « JRen ... (F' .. )'( JRef):(Fo~)" - (IA .... II» + '1'oJ_; 

(F,!.)~ = -(R_)j + ie(f .... lj - ~"'_j 
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(4.43) 



- ie(F _): + 6:J_ + (K .... ):i 

(F,!.): = (6:8 .. + i(L .. )~ - c(·ec:A~)(v'Ref)w(F-~)4 - (I' .... .,)i 

(F,!.): = (6:8 .. - i(L .. ), + e(·kA~)(v'Ref):(F~)4 - (I' .... .,); (4.44) 

where R_ and 1_ ace curvature terms, defined in terms of the lICAIu oovariant 

derivative and the background gauge field by 

(4.45) 

and where J_ = i(8 .. r~ - 8~r .. ) is the dUral U(I) curvature defined in the previoul 

chapter. The curvature term K .... is: 

(4.46) 

It is uacful to DOte that when I .. is proportional to the unit mdrix, .. is the cue 

for our toy model, this curvature term taka on a very aimple fonn. We wiD mw 

use of this aimplification later on. 

The trace. ace: 

Tr AI' M = 4(m,,)3 + !g"gjlmlllmll + (,-C~m'''m'' 4 Q '1 ..... 

- """cr'm!.""'m~ + cS"gilm!:"m~"; 

Tr(M'M)3 = 4(m")4 + ..!..gilgjJg4lgllm"'m" m"'m~ 
16 II J' Ttl I, 

(4.47) 

+ 6K6w6·I.s-"m!!mim~:m!. - 2(m")3,,-gilm!''''''m~ 

- ~m",(.,...,g"gJJm!"m::m!i' + H. c.) 

+ !""''l'"'' g"gJJm''''''m'''''m''''''m''''' 2 -r ,,". ~1 "J 

+ !6"6G
'" g;'g"m'A-mA-m'A-mA" 2 ., 0', ~J OJ 

_ !,,-Q;'QJJQ"m''''''m~m'''m''''' 2 ~ 'J;"" 

4~ 

- '1-Q;rgJI6um!t'm~"m~~"m 1': 
+ !6"g"QJJQ"m'''-m~ m"'m"" 2 .. "jllG 

+ 26"6"'6·IQ"mCm~"m!:"m~. 

+ ~(6"6"'Q;rgjJm::"m~m!;"mi + H. C.)i 

TrD-M'D+"M = 4D-m"'D+"m" + !D-(Q;lm'-)D"'(QjJm") 
" " 4" II 'J 

+ cSK,swD;m!!D+"m!, - ,,--D .. (g"m!.t")D"m:" 

+ 6"D;(";'m!:")D+"m~"i 

where, by equations (4.26-4.28) and (4.40-4.42), 

D!m" = (8 .. + 2ir .. )m", 

(4.48) 

(4.49) 

D!(m")~ = 61(8" - 2ir .. )(m")! + i(A~)~(m")! + i(m")~(A .. )~, (4.50) 

and 

D!{m")' = oSt(8 .. + 2ir .. )(m"): + i(A~>:<m"): + i(m"):(A .. ): 

+ i(L .. );(m"): + i(m").(L .. ):, 

(4.~1) 

(4.52) 

(4.53) 

and the D,:s in the IIeCOIId to laat tenn of (4.49) are just the appropriate gauge­

and reparametrization·oovariant derivatives, since there ue no dUral U(I) or L .. 

connection terms. The 6nt tenn in each of equations (4.47-4.49) is just the pure 

gravitino oontribution, .. given by equations (3.60) and (3.61). Finally, from (4.44). 

it is p<IIIIIible to 6nd the field·strength dependent traaa needed to evaluate (4.32) 

and the subsequent modifications explicitly. However, the general expressions are 

rather cwnberaome (even by the standards of the present work), and not particularly 

iUwninating. Instead, we give the results for I .. = ,,6 .. , aa is appropriate (or our 

toy model. In this case we find, after setting (K_): = 6:K .... and (L .. ): = 6:L ... 
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the following traces: 

(F.!.)~F+"")I = (R .... );(R-)I- 2ie(R ... );(f .... )1 + (N + 2)J .... J .... 

+ 2J .... (R- - ie' .... ):. 

(F,!.)'(F+-)! = NG(J .... + K_)(J- + K-) - e2(P .... ).(P-)! 

- 2(Ru)2(P_~l'(P ... ).«f" .. t(P;). - (" ... ,,» 
- 4ie R.e.t(P .. l.<P ... ).(p .... ): 

+ 4(J .... + K .... ) R.e.t(P-.. ).(P ... ) •• 

(F,!.):(F+ .... ): = 2(i>"..ra;;P"').(D~..ra;;P ... ). 

-2(V..ra;;P"').(i>",JR;";p ... )· 

+ 2L .. L~ R.e.t(P"')·(P ... ). - 2L .. L~ R.e.t(p .... )·(P ... ) •• 

(4.54) 

(4.M) 

(4.56) 

(4.57) 

where in writing the lut expreaaion we have u-t the fact that the gauge-covariant 

derivative D .. automatically account. foc the gauge-field dependent connections 

given explicitly in the last two lines of (4.44). Of COUJ1le. this IAllt trace and the 

trace (F.!.):(F+ .... ): are identical. 

We now return to the auxiliacy field whoee one-loop contribution is. from equ .... 

tion (4.19). 

(4.58) 

To evaluate this using the covariant derivative expansion technique we will need to 

use the following substitution rules: for a background-covariant derivative operator 

47 

d~. we take 

d 
. .... lJ 

~ -IP~ + lu.~a 
p-

. 00 n (-i)"{J" 
=IP .. -L(n+1)!(d ...... d ••. .G-~)lJp ... lJp • 

~I ~l ~ 

(4.59) 

with G .... = [d ... d.J. and for a matrix-valued function of spacetime coordinates F(x). 

we take 

• 00 1 (-i)"lJ" 
F --t F = L -Cd ···d F) . 

_1 n!~' .... lJp .... . . lJp .... 
(4.60) 

This is similar to the procedure we used in Chapter 2. where we made the analogous 

tranafonoationa (2.18) and (2.16). However. we must be C<IleCul. because. for exam-

pIe. d .. = IJ~ + ir,. "'a does not commute with ..,". This will cause problems. since in 

order to use this substitution rule we need to bring an operator e-Od(~I·S •• applied 

from the left on the argument of the log in equation (4.58). through any ..,-matrices 

to act on quantities euch as the momentum and the maeses. Even though moving 

d .. through a ..,~ only changes the sign on some of the connections. a nice way of 

finding the appropriate lubstitution rule is by noting that d .. commutes with ..,0..,_. 
Then. since 10..,0..,0 = 10 1 = O. we can write 

(4.61) 

Now. from (4.16). we see immediately that ..,06.,1 contains terms like ..,o~ = ..,o"'''d~ 

and ..,°M. Our operator e-Od(~l'''' can move through all the ..,0..,_ pairs freely 50 that 

the lint part of the rule. equation (4.59). remains unaltered. However. the second 

part. equation (4.60). must be applied not to AI but rather to ..,°M. Now. after 

the shift. we can get rid of all the ..,o·s by introducing yet another ..,0. All we did in 

(4.61). The result of all of this is to evaluate (4.58) by using the substitution rule 

(4.59) for the covariant derivatives. but instead of (4.60) for the m~ we use 

• 00 . ° lJ 1 0 iP M --t AI =.., b M -I(d .., M)- - -Cd d .., M)--- + ... ). (4.62) 
~. lJp~. 2"'''' lJp~. lJp.., 
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Thil just UTIOtInli to chAnging the aign on, for example, all the chiral connectioN 

in the covariant derivativa acting on M. 

from (4.16) we find the expansion 

A_ A_ A_ .,ft AIIM.- A'" t A-M"'" A II.,"'" AGOM" A'" .,"'" A"" 
U, = U .. + u .... ""'J( I, ..... ..... ., U" .. I,. U.. IIK U _" " ..... 

+ i6'; M~6~/M::6tIt-16': t i6,;r.:6tM,-:6:' Mt:6': 

- 6'; M~ 6~' Mt: 61 ¢ 6-: 1t-1 6': 

- 6,;r.!6tIt:6'tAr::6:'Mt:~: 

- 6,;r.:6tM:/6~'Ar:c16t¢6': 

(4.63) 

After the lubetitution rule, now given by equations (4.59) and (4.62), ia ~, 

(4.64) 

wben: 

(4.M) 

and 

(G .. ) .... ;;; i(8"r~ - 8"r"h, = J .... 1'I. (4.66) 

with (0.) .... as in (U9)-thia ia just like J .... in Chapter 3-and M,. as in (4.60). 

In addition •• inee r A ia part of a covariant derivative, ill subetitution rule ill 

(4.67) 

which containa at least one p derivative, 80 that the last four terma of (4.63) give 

(4.68) 
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where 

(4.69) 

We al80 need to expand the last three &erma in (4.63). The last two terma, being 

of order Mt. wiD yield only log.divergent correction.. The IIeCOnd tenn, being only 

of order M', will give both quadratically and logarithmically divergent correctione. 

Again. alter using the aubetitution rule, remembering that (6~1}1I = Z,.(6~1)~. 

(4.70) 

where qain (Q,,)~ and (M,,)~ ,. Z'KM:, are as specified by the 8ubatitution rule. 

We find, up to Iog·divergent terma, 

_ 2 IKI" 
1',,6, 1'~ = -j + 1'" j 'j"!' 

III· 11· dolt .1·1, 
-1"(j + jK j)M;'f(j + j(M" - y" + M"jM")j). 

- 1 1 I 
)( ZKIM!:(j + jKjh' 

,1."." Z" (.".",,-M"'" M,,16M 
.... ,(1) Z·L ."." 1 J 

+., j'".'-T '""iT ~K - 1·7W1
,· T,"i; 'j' . 

(4.71) 

We expand 6'; up to O(Mt) and O(i)t/8z·). Dropping terma that cannot con· 

tribute to the effective action due to their Lorentz transfonnation propertiee, we 

find. for (4.71). that 

A_ 2 lKl" M M 
1'"u, 1'" = -j + "'''j j" + M. + 3 + , 

(4.72) 

+Nt tN, +N, +N; +" + Fa +" + ... , 
where 

l' !K!"" = 4M .. _ 2M~ + 4M: _ 2M: 
"-; -; r hi' ". -;". 

1 '" 1 2M .. 0 0 1 + .,,, iN .. - "''')j''Y'' - 7"Y N .. .., j (4.73) 

2M.. 1 I 1 I 1. 1", 1 
- TN .. pi + "YpjN"jN .. ,,"" + "'''jq;''r'''p'', 
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and 

u I .. I J ('I'"Z'Il I" -'I'"Z""I" .VI. = P'''' I' " .. , ,. ,~'1 "-" " .. 

- M!'t" z" M:.1 6" M:;l Z'" M,!: 

- M!'t"Z'· M~"Z"" M~",Z'" M:! - 2M!M!?Z'" M:; 

and 

- M!M::Z'''M~,!" - M.M~Z'J(M~~Z'·M,!: 

- M M'" Z'" M~ Z" M'") ..., IfJ ,_, 

M "" _.!...,·J(M"Z'''MhZILM" + M MlhZ"M" 
3 ,.' ., If J " .. _I 1_ 

+ M.M:: Z" M!:" ). 

M 1.1 JMlhZ"''''' , "" -pi'" 1'.' Mi#~. 

with 

and also 

N.=M.-M •. 

N .. , = {~/h _ Mh) ... 

N: = (,Uh _ .. Mh):. 

(4.74) 

(4.75) 

(4.76) 

(4.77) 

(4.78) 

(4.79) 

(4.80) 

(4.81 ) 

(4.82) 

(4.83) 

(4.84) 

Here. we have used ..,,,M = M''"'I~. and the fact that M", is real. To evaluate the 

divergent cocrections that we are interested in. we write (4.72) as 

... 2( I 1 I" I 
..,,,A, '"'I~ = -~ 1- 2;..,,,~K~'" - 2;(M. + M3 + M, 

+/11. +/113 +/11, +/11; +.1", +F. +.1", + ... ») 
2 =-i l + X ). 

and then uae the Hausdorff expansion. 

InAB"" In A + In B + ~[lnA.1n B) + ~[In A.[lnA.1n BII 

1 + 12[1n B.[lnB.lnA)) + .... 
and the identity 1n(1/;) = -t Inri'. to find 

I 
Tr In ..,,,A'i '"'I" "" Tr In( -2) - 2 Tr In p' + Tr In(l + X) 

- ~Tr[InP'.In(l+ X») + .... 

(4.85) 

(4.86) 

(4.87) 

The field-independent pieces an: the same as thoee in the pure gravitino calcula-

tion. equation (3.71). Since they cancel with the field· independent graviton sector 

contribution (20). we will now drop them. fUrthennore. we uae the identity 

[lnp'.X) = ~[p'.X) + 2~[P'.[p"X)) +... • (4.88) 

and the fad that only the /II and .1" pieces contribute to the commutator terms 

(becauae they have momentum derivatives) to find the relevant terms in (4.87). 

The terms that give divergent contributions an:: 

1n..,,,A'i'"'l,, = -~;{M. + M, +JV. + N3 +/11, +N; +.1", + F. + .1",) 

I AI {I .l.M} 1 , - 2 '" ~'I' 3 + ijM",M, 

1 (.I. )1 2 , 2 1 - 8 I'M, - 3M",(~.-\1, + M1~) (4.89) 

+ 8~[p1.(JV. +JV3 +JV1 +N; +.1", +F. +.1",)) 

5; [ 1 [ , /If + 96p' P • P. ( • +}/3 + .1"1»)J· 
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lIere we have dropped tenna that depend ooly 00 K. correctiona from which have 

already been computed in the previoul chapter. Some algebra showlI that 

and 

I ( , ( , ")) 1 (od 0 " (d 1")' ,8p1'''' oJ P' P. P • .lVt 3 P'''' .. .., M ),,"M .'" ~7' . 

{N'3 and ~(P'.N'3)} 3 ~Mlt'hOd .. d"..,OM)!""~(8p1': - 2rr)-t 

+ ~M!"(d .. d"MI)~l' ~(8p1'r - 2,,..-;- 21"pI' - 2l"p")..,· 

and 

~[p'.[pl.N'3J):3 ~M,':"hOd .. d • ..,OM)!"'''~(8p1':)-t 

+ ~~(d .. d.MI)~""~(8p1':)-t. 

and alao 

and finally 

F, 1 [ 2 F,) '" I M"(Mh,A)'.(G".A) ..,' (I .. " 3 -" I _) .. 
I - 4p3 P. I ~ 2 .1 ..... ". r'f 1 - 2;' ~P 1. 

.Po I [ , _) 1 (G".A) (M-A),. MI" ..,' (I -"" 7 I") .. 
I - 4p3 P .r, :3 2 ... G' ., pi ji'''' - ijl"jiP 1. 
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(4.92) 

(4.93) 

(4.94) 

(4.M) 

(4.96) 

(4.97) 

(4.98) 

and 

where we have dropped total momentum derivatives. The p-t(,r. (p'. All terms. 

where A e (N',.N2.F,.F:J. do not contribute to either the 0(/-1') or the 0(1n /-I') 

effective actioo. Also. the derivation of the expressions involving N', is complicated 

by the fact that a:., contail\.l a "'a' 
To evaluate the momentum integrals we again follow reference (27). The regu­

lated integrals that we require are (after a Wick rotation): 

'f cJ4p P .. ,··· P.,. A .. · ...... 
• (2)4 ..2(IHI 

II' Y (2I)! 2'1n 2 

{ 

" .. , ...... "11( .. _11 .... A,.. ...... (1!2')2 ( ~611'2 ). 

- . A" ....... (21)1 (-In(/-I'/2~») 
"", ...... ,,11( .. -,..... ' 11(1 + 1)!2" 1611" • 

I: = 1; 

1:=2; 

(4.100) 

where A .. ' .. · ... ill understood to be totally symmetric in its indices. 

It ia now straightforward. if tedioua. to obtain the divergent corrections. The 

only quadratically divergent conection ari8ell from the .M, tenD. We find that 

. f cJ4p ( l.t :) (21-'2 In 2) T '''''' "'" 
• Tr (211')4 -2".M2 = -2 1611" rem m ). 

The 0(M4) log-divergent corrections are 

iTr f (:~4 (-~;.Mt) = 
_ (1n(/-I

2
/ 2pt,») Tr(ml""'m""'m''''''m''''' _ m''''''m"AmbAm''''' 

1611'2 

(4.101) 

- m''''''m''m'''m''''' - 3m!m''''''m''''' - m".(m''''''m''m'''''' + H. c.»). 
(4.102) 
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(4.103) 

and 

In all thae expreaeiooa the trace refen to & contractioo of Lorentz indices, 10 that, 

fex example, 

(4.107) 

The caauaJ reader i8 aJeo reminded that we must use Z" .... ~ail to contract the 

chiraJ fermion indices. 

The Iog.divergent corrections from the derivative terma are 

iTr J (~~. (-~,w. + 8~(p3,N.1 + ~~(p3,(p~,N.JJ) = 

~ Cn(~:~~~»)a"( 19(a.:m!~)'l-PW"m:X) - 68(a"m~~)W-m~) 

+ 4(a"m!~)W·m!f»). 
(4.IOB) 

55 

and 

iTr J (~~. (-~,w3 + 8~[p3.N3) + ~~[p3.[p3.N3JJ) = 

__ 1_(ln(jJ3/21'~»)ail(8(aa"m'''''')'l·'m'''. _ 31(<Ca"m'''''')m''''' 
144 16 .. 3 .. -I po • ..1 .. 

- 31(a.a"m!~)m;1- 46m!~'l··(d!.t+"m~) 

+ 23m~~« .t+"m~) + 23m!~« .t+"m;1»). 
(4.109) 

iTr J (~~. (-~,w3 + 8~[p3,N3) + ~~[p3,[p3.N3JJ) = 

(
In(jJ3 /21'~») J,,"l!il 'nm""c 

16 .. 3 "m .. , .... 

(4.110) 

Finally, it i8 easy to ahow that the contribution to the O(ln jJ3) effective action hom 

N!, vaniahee due to the antiaymmetry of (G~J),," in ita Lorentz indices, and that the 

log-divergent contributiona hom " and.r; cancel each other. 

The contributions from If. and N3 to the auxiliary-field effective action of 

equation (4.58) add up very neatly to 

i J J4p I ~ 3 - i Tr (2 .. ). (-'2i{N. +N3) + 8",(P ,(N. +N3») 

+ ~~[p3,(p3,(N. +N3)JJ) 

= (In(~~~))al(a''m~~)W·m~) 
(4.111) 

= (In(jJ3 /2jJ~») (40 (d")i i> zl(d")Ji> i) 
32 .. 3 .J l.. r - , 

where we have made use of integration by parta, neglected total divergences, and 

used equation (4.9) to write the final result. This tenn haa a bo&onic analogue in 

the contribution from mixed scalar and graviton loops, given by the first two tenns 

of equation (2.68) in reference (20), and exactly cancels that contribution. Notice 

that in (4.111) the derivatives are both gauge- and reparametrization-covariant, and 

contain no chiral U(I) connections, by virtue of equation (4.42). 
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CHAPTER 6 

Reaulu for n~Kale .uperaravity 

We now .pecialiu our re8ulu to the flO-KaIe .upergravity modd di.cua.ci in 

Chapter I. Taking h ~ 0 and writing out the .I-field dependent tenJUI explicitly, we 

find, from (4.9), that 

m!." = -2g"iJ",s, 1" _ i I"! (T )i 
moo - 2(Re.t)3f1V' .' , 

- 1" - _,_. _ F-"" 
m .. - In-:-:u".. 

4vn.e.t 
and m!~ =0, (5.1) 

which we can uae to rewrite the mua-t.enn lracu, equation. (4.47--4.49). Foc elClIlII­

pie, equation (4.47) becoma 

Tr M' M = (lg"(gii + g,g; - g.~i;)la + 4 + No + g.gi + g,g.)e" 
4 • i' , 

- (. + j)a8,..t8"i - 4gil1>,.z 1)I'z (5.2) 

+ t! jgig, + sa,,) (T.Z)i(T",)I. 

The full exp~ for Tr(M'M)~ and TrD;M'D+IIM are unwieldy; we shall 

include them in the total one-Ioop result at the ronclusioo of thill paper, inetead 

of expanding them here. The additional traces from terms involving M_, from 

equatione (4.35--4.37), must still be calculated. Using the no-acale masses, we get 

the foUowing result.: 

" I --Tr 101 M = -(. + a)E'" F-' 
4 - • , 

(5.3) 

Tr'(M'IoI)l = ( ___ I_a ./JI'i + 2(. + i)e" + !e1lJ/3W.Wi 

16(. + i) .. 6' 

+ ~gig,(T.z)i(T"z)') F!.Fr' 
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- (. + i)(~F.:"'8'(ij - i.) + p-t;#)('b"F:_ - iJ~t:,.) 

+ ~(. + j)V;:J;·.:"'~Fr + 10F:"r~F ..... Fr 

+ 12t;,t;#~F:" - asF:"r-F ..... F:") 
~ <TOIo,. - I + 3g•g,(T"')'(1 ~Z) F._F;' - '2(N + No + 6)J_J-

I i I 
- - Tr If'" R + -eTr R ,- + -e~Tr ,-J. 

4 - 2 - 4 .... 

- !No(e~to: t.- + K K- + 2J K .... )· 
2 - • - ....' 

(5.4) 

Tr' D; M'D+" M = (. + j)(!iJ ~.P-~.# + !iJ to: i>" t. .... - u to: iJ t."-) 8"" 4"~-· _po 

I - - - -
+ 8(.+j)(F.:"'~"". -IOF:"F;..»( 

(58p .tc'f' j - 2IJ_.tc'f'. - 2IJ_ic'f'i) 

+ (!to: i>-t.- - !to: u t.1'# - t.I'#U to: )£J (.I + i) 8-· 4-· ..... -
3 • (- . + 2(. + i) 1>" F:"gi(T"Z)')£J~(ii - i.). (5.5) 

In (5.4) the \racea are ova- both barred and unbaned acaIar-field indices, and, to 

make lhi8 rault notatiooally c:onaistent with the boeonic rault. of references (18) 

and (20), we ahould take e .... I. In Chapter 6, we adopt this convention. 

We now have all the tenJUI that contribute quadratic or logarithmic divergences 

to the fennionic Lagrangian. After adding the direct and auxiliary-field contribu­

tione, as we did for the pure gravitino loops in Chapter 3, we can combine the 

total with the boeonic contributione derived by Gaillard and Jain [20.21). We shall 

present this inclusive result below. 
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CHAPTERS 

Concluaiona 

In Chaplen 3-5, we luccesafuUy identified all divergent one-loop fennionic con­

tribuliofll to the effective acalar Lagrangian for a general aupergravity theory with 

canonical kinetic energy for the gauge field., and outlined the limplified results for 

a real Kihler potential of the no-acale form. We now lpecialize to the prototype IU­

pergravity theory from lupentrings (8,91 that i.e defined by (1.1-1.4), with h = 0 in 

equation (1.1), and, combinins our results with the boeonic OOIltributiona calculated 

elsewhere (20,21) we WIC the apecial properties of the Kihler potential G of equation 

(1.4), as given in Appendix B of reference (3), as weU as the sause invariance of both 

the Kibler potential G and the luperpoteotial W, to obtain the followins impc»­

ing result Cor the total divergent part of the one-loop contribution to the effective 

Lagrangian: 
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1. 

+'[G"i>"z"i> .. ,p'(ea [(¥ + Na)W,W + ~W;.W· + iw;.,W·'] 

..s... [ 103 (1"').V 20 K.]) + ,,+,; 3 ,.+ 3 ' 
- lJ j 25 32 • 40 1 4] 

-G .. 'C1'z" (" ~,;)[2(3' + Na)e
Q + gV + gV+ 3W + 3K 

- IJPJ. i> ~;(ea[2(25 + Na)W;W + 28
3 

W;.W. + W;.,W"] 
(" +") .. 3 

+ G. [64 (1"').V + 8K.]) ,,+,; 3 ,. , 

- '" - .. (88 Q 32 . J8) Q lJ""o .. " 
+ G",G .. V .. z 'C1'z ge - 21 V + 21V - 2Nae (" + ';)2 

- . - . ( o( W W.) 19 G.G, ( .( ,) + 'C1'¢1V .. _' e 18W;j - 2W;j. + 3' ,,+,; 1"'); T.)j 

+G .. i>"z"i> .. _;(eO (24W;W - ~W~W·) + ~ ,,~,;(1"')~V.) 
- lJ" (146 Q 16 • 11) +G,,'C1'z"(,,~,;) (T+No)e +gV+3'V 

IJP" - .( 0 W W.) + (s + ,;) V .. </I' e «48 + Na)W; + 3W;. 

+ 12 ,,~.,; (1"')~V.) + H. c.]) 
- p'" [(N - No - 12)eQ + !(2N - 29)V + ~(N - 13lV] 

16,,' 3 3 

+ In:;;:) [(N _ No - 44)e2Q + ~(N - 2)eQy + ~(4N + 59)Y' 

2 8 Q 8 -+ g(2N + 93)vJ + 3(N - 4)Ve + g(N + 13)VV 

Q 2 - 8 4 • 1 -) 
+2W(3e +3V+3V)+2K(3V+3V-6e1i 

4 20 .·,.20 .•. 
10_( _)V+e (W;j.w,W'J W - -3 W;jW.W' WJ 
'"(1"+" .. 

+ (W;J.WW;jW· + H. c.) - ~W;JWW;Wj) 

+ ( 4 _)' V. (V6G.(-61"'r</l)· + Gj(K1"')j) 
s+" 

o 
+4_e_(2OV W(1"');.wi -5WK;Wi +2W(1"'l{WIri 

(" + i) ., J ' J 'J. 

- «3W,W + W;iWi)(K</I)i + H. c.»)] + (C~)', (6.1) 

where (C:"')' includes all the terms which contain three or four d,rivatives with 



respect to the spacetime coordinata: 

(£1 )' = In(,.2)p [!(N _ 101)(G iJ Z",p.. Z4)2 + .!.(~79 _ 5N _ 45N. ) (8 .. "OO'i)2 
... 32w2 9 "''' .. 12 8 c (" + .;)4 

I 2429 18 .. ,,00'''12 

+ 12(8 + 5N + 45No ) (" +i)4 

I 5751 - .. -" - '" - " + 36(-8- + 'l3N + ISNo}G ... ,,'D .. z 'D~z G ..... 1>"z U'z 

I 4457 - -" - -" + 36(-8- - 'l3N - 15No}G",,,'D .. z"''D~z G",,,U'z"'1>"z 

8 .. .s8~i ( 365 - .. - " + 6(" +';)2 (8 +SN + 15Nc )G .. ,,1>"z U'z 

749 - -
- (8 + SN + 15No )G .. "U'z"1>"z" 

- 8'1""G .. "iJ.z .. z;..z") 

- ~(a + j)J(3f:,F,:'" r..~ + 2f:,~ F.,.~ 

- 4F:,F;'r..r." - 3Of:,F""F_r.") 
1 317 - -+ 36(a+I){2'D .. ~,1>"r.-' 

- 45D .. ~, z;.. F.:'" + 95U F;,iJ,F:') 

( 
1 ns 

- F:,F.:'" 72(. + I) (438 .. .s8". + 438,..i8"i - 2 8,..s8"1) 

- 4(a + i)G_iJ,.z·"i>"z") 

,( 1859 859 •• 563_ 
+F;..(F~). 72(,,+ i) (T8".s8".t+ T8".i8"'" + 28".s8"',,) 

+ 16(. + i)G .. "i>"z"Uz") 

. (I 461 'l3 1 J97 + IF,:'" [i( 8" + 3 N + SNe ) + gG,z'( 8" + 5N + SNo )) 

)( U"G ... "iJ .. z"'iJ~z" 

+ i(G .. (rz). + 3(r>nG.Ji>"ziUr' 

( 2 G ')( 1351 65 ) 8 .. .s8~i ) + 1+3 ,z 24"+gN+15Na 6(.s+i)JU" 

+ 9iiJ .. F:"G.,(iJ~i(ri>' - iJ~r'(rz)') 
Ji8 .. (i - .s) - ] 

- 2(.s + oi) 'D~(F:"u"). (6.2) 
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In the above expreasi0f\8 the indices labeled m. n. P. q = 0 •...• N run over 

both the t and the ~ fields. while i.i.k.1 = 1 •... • N run only over the tJ; degrees 

of Creedom. The scalar reparametrization·covariant derivative d .. is defined in the 

U.tual way. 

(6.J) 

The matrices r and K represent the gauge group generators and Casimir oper­

ator. respectively, 00 the chiralsupennultipleta; and k- ' = Tr K/No and kG I = 
Tr Ko/No , where No ia the number of gauge degrees of freedom and Ko representa 

the saup Cuimir on the ,aup aupennultipleta. The gauge coupling constanta are 

uaumed to be unified at the scale at which we are working, but the chiral multiplet 

representation of the gauge group is in general reducible, 10 K is not proportional 

to the unit matrix. However. we have assumed that the r are traceless. 

with 

The classical scalar potential V defined by (1.1) and (104) with h = 0 ia 

• 0' 1 
V=e Wilfi, and 'D=-( _)'DoU". 

.s+.s 

(6.4) 

(6.5) 

where 1>- = Gi(r~); = G.(rtJ;)' by gauge iovariance. In addition we have intro­

duced the dimension-two operators W = eOWiiW;j and IC = 2G;(KtJ;)i/(" + i). 

As throughout this work, the index-raising operator on scalar-field matrices is the 

inverse scalar metric; thU.t Wi = ~iJW" and 10 Corth. The nonderivative terms in 

£:.. differ Crom thoee given elsewhere IJI by the inclusion oC the graviton "mass" 

contribution, mb = -2V. 

Finally, the field strength F;, is normalized 88 in (1.8) with /06(:) = ,,606, i.e., 

with noncanonical kinetic energy. A. stressed in the text, we have not included 
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the loop correctiona arising from this lalter coupling; these wiU contribute terms of 

order NG involvins derivative couplings of the a-field, AI weU AI terms involving the 

,Iual field strength f_..,F:'. and will be presented elsewhere. 

The complete one-loop corrections fOl" the simpler case we have considered. 

where 1.,,(1) = corutanl, can be obtained from the results of the previoua chapter; 

the full fermion-loop correctiona foc nonconstant 1 .. (%) have been evaluated there, 

and all such terms, except foc thOle proportional to F;,.8_(a + .i), are included in 

(6.2). The rationale behind this exception is the following: when we modified the 

result. of the previous boeonic calculation [20.21) by setting e = l/y'ii;; and then 

rescaling (that ii, leuing F;,. -- .jR;;F;,.), the covariant derivatives '1>_ acting on 

F;,. generated terms like F;,.8_(.s + .i), which we have neglected. Since we do not 

have all the terms of thia form, it would be inconsistent to include only the fermionic 

terms in our total. 

In (6.1) and (6.2),,, and p parametrize the uncertainties in threshold effects and 

Snite term. that ace dependent on the regularization preecription (in the double­

subtraction Kheme uaed in our explicit calculationa, " = 2ln 2, and p = 1). De­

termining these parameten requires & knowledge of the details of the underlying 

short-distaoce physics that serves to damp the apparently divergent integrals. How· 

ever, many qualitative results found (16,17,3) by studying the one-loop effective 

potential are prescription-independent. 

On the other hand, treatment of the quadratically divergent terms requires more 

care, since they do not scale uniformly [13,27) with threshold effects, 90 it would seem 

that a different uncertainty fac4H" "i should be introduced fOl" each quadratically 

divergent term. However, the symmetries of the theory can be uaed to reduce this 

uncertainty. The approach taken. in references (13) and (27) WAI to assume that the 

underlying theory i. finite, and to use a Pauli-Villars regulation to parametrize the 
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effects of the heavy modes. When these modes are introduced in a manner consistent 

with supenymmetry, there are additional terms, due to mass-dependent couplings, 

that are not quadratically divergent, but scale as does the cutoff, 111. In this way 

it was ~ible to fully determine the leading-N contributions from chiral multiplet 

loope to the part of the one-loop effective Lagrangian that scales as 111. Note that 

mass-dependent couplings do not induce additional terms in In 1'1, so in principle 

the full leading-N "divergent" one-loop Lagrangian (i.e., the part that grows with 

112) is known. A .imilar treatment of the leading-Ne (number of gauge multiplets) 

contribution will be given elsewhere, where additional divergent contributions to the 

a-field kinetic energy, which arise from the noncanonical form of the classical gauge 

kinetic-energy term, wiU also be included. 

Before physics can be extracted from the results we have obtained, we must 

find a .imilar procedure to regulate all the quadratic divergences. Note, however, 

that it may not be necesaary to fuUy regulate the theory in the sense that the 

regulated theory including maaaive Pauli-Villars modes i. actually completely fi­

nite. To identify COrTCCtly the "divergent" part (which is all we can hope to do 

without a complete underatanding of the short-distance physics), we need only can­

cel the quadratic divergences, since the coefficients of the log divergences are not 

preecription-dependent. For example, in regulating (13) the leading-N part, massive 

modes were introduced in a way that cannot be easily generalized to the non leading 

gauge- and superpotential-dependent couplings of the gauge-nonsinglet chiral multi­

plets. On the other hand, many of the quadratically divergent contributions arising 

from these couplings cancel among scalar and fermion loops. 

In addition, all the result. presented here must be generalized 90 as to include 

background f~ion fields [3,27) and a nonllat background metric (27), in order to de­

termine the wavefunction renormalizations and Weyl transformation [13,27) needed 



to recut the I.cnnII quadral.ic in Kibler and lpacetime derivative8 into standard 

form (28). Then, for example, once the full effective one-Ioop Lagrangian haa heen 

determined for lCaie. above the acale of hidden gaugioo condensation-II = 0 in 

equation (1.4)-an analYIg aimilar to that of Dine d GI. (9), following Affleck d GI. 

(35), can be performed to determine (13) the effecla of one-loop correctiona from the 

unconfined hidden Yang-Mill. regime on the effective theory below the acale of hid­

den gaugino condenaation. In particular, one wiu be able to address questions IUch 

aa the stability of the potential [36,37,3) and eoft auperaymmetry-breaking Lerma 

[17,38-40,10,3,41). 

Aa st~ in Cbaptu I, the model [8,9) we are studying here ia a prototype, 

not a realistic model for particle phyaica. Nevertheless, the varioua techniques de­

veloped in thia paper can easily be generalized to more realistic aupentring-inspired 

[42,43) or auperatring-derived [44-48) rnodela. Moreover, the symmetry alructwe (41) 

of the prototype model ia aimilar to that of many more rea1iatic DlOdels. It haa re­

cently been coojectured (41) that an eud clasaical noocompad. nonlinear symmetry 

of the model g rapooaible for the cance1l&l.ion of ot-rvable soh aupenymmetry­

breaking dfectl found by explicit calcu1a1.ion (3) aI. one loop in perturb&l.ion theory 

for the effective theory below the acale of condenaation. Indeed, when dfecla due to 

symmetry-breaking by anomaliee at the quantum level of the hidden gauge sector 

are included, a nonvaniahing contribution to obeervable-sector gaugino m8.lllleS is 

found (41). Its mll8Jlitude il such thai. a suffickntly large gauge hierarchy i. gener­

ated even if the gravitillO mau and the acales Aom and he are only a few orden 

of magnitude below the Planck acaIe, aa luggested by a numerical analysis (3) of 

the effective one-loop potential_ It il important to delermine whether or not any 

other. potentially larger, observable superaymmetry-breaking effecla are generated 

by purely perturb&l.ive loop effecla. If realistic models can be constructed in which 
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there are 110 IUch effects, they may provide the beat candidatea for a nal.ural and 

fundamental explanation of the enormoua disparity between the natural scales of 

gravity and of observable particle physics. 
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