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Fermion Loops in the Effective Potential of N = | Supergravity,
with Application to No-Scale Models

by

Joshua Wingate Burton

Abstract

Powerful and quite general arguments suggest that N = | supergravity, and in
particular the superstring-inspired no-scale models, may describe the physics of the
four-dimensional vacuum at energy densities below the Planck scale. These models
are not renormalizable, since they arise as eflective theories after the large masses
have been integrated out of the fundamental theory; thus, they have divergences in
their loop amplitudes that must be regulated by imposing & cutoff. .

Before physics at experimental energies can be extracted from these models,
the true vacuum state or states must be identified: at tree level, the ground states
of the effective theosies are highly degenerate. Radiative corrections at the one-loop
level have been shown to break the degeneracy sufficiently to identify the states of
vanishing vacuum energy.

As the concluding step in a program to calculate these corrections within a
self-consistent cutoff prescription, all fermionic one-loop divergent corrections to the
scalar effective potential are evaluated. (The corresponding bosonic contributions
have been found elsewhere.) The total eflective scalar Lagrange density for N = 1
supergravity is written down, and comments are made about cancellations between
the fermionic and bosonic loops. Finally, the result is specialized to a toy no-
scale model with a single generation of matter fields, and prospects for eventual

phenomenological constraints on theories of this type are briefly discussed.

For my parents of blessed memory,
Mabel Guerra y Morandeira de Burton
and

Cyrus Matthew Burton



Acknowledgements

Professor Mary K. Gaillard deserves first place on my list of benefactors, in
simple justice as well as in tradition. As my advisor for the last four years she has
been an unfailing inspiration, showing me by example and by shrewd advice how
physica is done, and then stepping out of the way to let me do it myself. Without
her guidance and expertise, this project could never have been completed; without
her kind allowances for my wayward habits, I could never have found in myself the
motivation to go on in particle theory.

I am also most grateful to all the fine teachers who have helped to bring
me to this point, including my grandfather Lloyd Kem Marquis as well as Lesa
Comeau, Stanley Baltuch, Milton Zoloth, Robert Schultz, Howard M. Georgi, I,
Barry Mazur, William T. Vetterling, David R. Nelson, Steven Kahn, Mahiko Suzuki,
Martin B. Halpern, and Bruno Zumino. Special thanks are due to Lawrence J. Hall,
Harry Bingham, and Joseph Silk for serving on my qualifying committee, and to
Robert N. Caha and lan Hinchliffe for telling me where to go. Nicolaos Stathakis,
James A. Glazier, Jonathan Yedidia, David E. Brahm, Stamatios Vokos, and espe-
cially Vidyut Jain have been my partners in late-night misery and dawning compre-
hension over the years, Jon Yamron and David A. Rabson have shielded me from my
digital illiteracy, and A Jay Cristol, Roy Gordon, Sumner Davis, Martin Ballanoff
and others have sustained me emotionally and kept me on track. Without the tire-
less assistance of Ken Miller, Betty Moura, Luanne Neumann, and Nancy Plunkett,
1 would surely be standing on line somewhere in Sproul Hall to this day.

Finally, I am forever indebted to my grandmothers Lillian and Isabel, each of
whom had much to teach a teenage ward about how to be young; to my sister Joyce,
who let me grow up alter all, and is still wondering why; and to my wife Deborah,
with whom all things begin and end.

Contents
Dedication . . . . . . . . . . Lo e e e e e e i
Acknowledgements. . . . . . . . .. ... L0000 oL il
Contents (seeLoops). . . . . . . . . . ... . Lo iv
Background and Motivation. . . . . . . . .. ... 0L 0oL 1
Fermion Loops: aPrimer. . . . . . . . . . . ... . ... ... . 14
PureGravitinoLoops . . . . . . . . . . . . ... ... 19
The Full Fermion Contribution . . . . . . . . .. ... ... ..... 36
Results for No-Scale Supergravity . . . . . . . .. .. ... .. .... 57
Conclusions. . . . . . . . .. . .. . e e 59
Notesand References . . . . . . . . . . .. .. ... .. .. .... 67



CHAPTER 1

Background and Motivation

One of the major themes of twentieth-century physics has been the discovery
of surprising logical and causal connections between the behavior of systems at
radically different scales of length, mass and encrgy [1]. No philosopher of an easlier
age would have guessed, for example, that the fate of a dying star could depend
critically on the precise mase of an iron atom, or that the rotation curves of galaxies
could hold clues Lo the results of future collider experiments. Yet one of the largest
disparities of scale in all of science, that between the energy at which we understand
elementary particles and the energy at which nature (or at any rate the geometry
of spacetime) appears to understand them, remains to this day not merely puzzling
but inexplicable within the context of the standard model.

in particular, the gauge bosons that carry the electroweak forces we obeerve,
and the hypothetical scalar fields that give them masses by the Higgs mechanism,
have masses that are approximately seventeen orders of magnitude lower than the
natural scale (the so-called Planck mass) that arises from attempts to quantize Ein-
stein’s theory of gravity. Worse still, the quantum field theories we have, though
spectacularly successful in their quantitative predictions, are understood only per-
turbatively. Even if a mechanism were found to make the W# and Z° boson masses
small at zeroth order in perturbation theory, quantum corrections 'woult.i mix their
masses with any available large mass scales in the theory; since the leading cor-
rections depend quadratically, and not logarithmically, on the masses of the heavy
modes, the fields we see at accelerator energies could be kept light only by very
unnatural fine-tuning.

It is easy, in contrast, to keep the masses of fermionic, or matter, fields small:

because these fields have a chiral symmetry that is not preserved by mass terms,
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they cannot acquire masses until that symmetry is broken. The strongest motivation
for studying supersymmetric models, in which a very peculiar symmetry connects
each boson with a fermion (through rotation by an “angle” described by an anti-
commuting number), is that the boeons in such a theory can stay strictly massless,
to all orders in perturbation theory, until supersymmetry, or SUSY, is broken.

A second reason to take supersymmetry seriously, in spite of the present paucity
of experimental evidence for it, can be found in empty space itself. The largest cos-
mological constant, or vacuum energy density, that is consistent with the observed
Hubble parameter is more than 120 orders of magnitude smaller than the Planck
density; the universe is far flatter, and far older, than quantum mechanics and gen-
eral relativity would lead us to expect. It is a general property of supersymmetric
models, however, that their ground state has vanishing vacuum energy, so long as
the supersymmetry is unbroken. Since we do not in fact observe mass degeneracies
between the known fields and their superpartners (another necessary consequence
of an unbroken SUSY generator), we must break susy either explicitly or sponta-
neously, presumably in such a way that the Higgs field can acquire a mass near
the electroweak scale, while the induced cosmological constant is highly suppressed.
While few would maintain that the blackness of the nighttime sky is experimental
evidence for supersymmetry, it is at least encouraging that we now have a mecha-
nism capable of explaining, in principle, the smallness of the present vacuum energy
density.

This is not the place to provide a comprehensive review of supersymmetric
theory and phenomenology; the reader is instead referred to the already extensive
review literature [2]. The point of principal interest at present is that models in
which there is only one generator of supersymmetric rotations (hence N = 1),

and in which that generator is local, or gauged (hence supergravity) have the best



prospect of successfully describing the low-energy physics we obeerve. Theories
in which more than one SUSY generator survives at low energies have the very
undesirable property that all low-mass fermions must be in real representations of
the underlying gauge group, unlike the known quarks and leptons, which occur in
complex, or chiral representations. A global or ungauged supersymmetry would be
sufficient to protect the Higgs mass from lasge corrections; however, workable models
with such a symmetry seem to be difficult to construct [3]. Also, since supergravity,
or SUGRA, is a natural feature of all well-behaved string theories (purely bosonic
theories of quantized strings have tachyons and other diseases), and indeed is likely
to be needed in any finite theory of gravity at the Planck energy, parsimony dictates
that we attempt to make use of it, rather than invoking some new mechanism by
which a global supersymmetry could arise.

A class of N = 1 supergravity models, the no-scale models [4-7], have features
that make them good candidates for explaining physics below the Planck scale. At
tree level in these models, the cosmological constant vanishes without fine-tuning,
and there is a degeneracy in some of the parameters of the theory. In particular, the
gravitino mass is undetermined at tree level. This is important since it is a nonzero
gravitino mass that is the signal for supersymmetry breaking, which must occur in
order to explain why we do not observe light scalars with the same mass as the light
fermions.

Also important is the requirement that the supersymmetry breaking should
affect the fields and parameters of the observable world only weakly; otherwise,
without fine-tuning, radiative corrections would make them too large. Typically,
the supersymmetry is spontaneously broken by the vacuum expectation values of
“hidden-sector” fields; that is, fields that interact only with gravitational strength

with observed particles. The gravitino mass, the scale of supersymmetry breaking
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in the observed sector, and the scale of weak interaction physics are all determined
dynamically.

The model that we shall consider in most detail is a toy model “inspired” by
superstrings (8,9]. It has one generation of matter fields, and is derived by a simple
Calabi-Yau compactification from the zero-slope limit of the heterotic superstring;
i.c., from ten-dimensional N = 1 supergravity with an E, ® E§ gauge group. Al-
though this is not a realistic model, it is at least believed to provide a prototype
that is worth studying. General features of this model are expected to appear in
more realistic four- or ten-dimensional string-derived (rather than string-inspired)
models, with several generationa. In addition, in a supersymmetric world, no-scale
models are good effective models valid below the Planck scale, in a sense that is
largely independent of the underlying physics. Even if some other, as yet undis-
covered, theory replaces string theory as a model of physics valid above the Planck
scale, we may still expect its low-energy limit, from the point of view of field theory,
to be some type of no-scale model.

This situation can be compared with the large Higgs-mass limit of the renor-
malizable standard model of electroweak interactions [10,11]. In this limit the phys-
ical Higgs is removed from the theory; one is left with an effective nonrenormaliz-
able model valid below the Higge mass. However, it is precisely the details of the
symmetry-breaking sector that are not completely known. By removing the physical
Higgs we have gained a model that, although nonrenormalizable, is in a sense more
general than the standard model. Even if the standard model is superseded by a
better model, we expect the low-energy limit to be very similar to the the large
Higgs-mass limit of the standard model. In the same way, even though we do not
yet have a good understanding of strings, or even know if strings are good models for

Planck-scale physics, we might expect that some type of nonrenormalizable no-scale



supergravity model will prove to be the low-energy limit of the real, perhape finite,
underlying physics.

There ia, Lo be sure, ons important difference between the large Higgs-massa limit
of the standard model and an effective low-energy supergravity model: whereas the
weak scale is presently accessible to direct experimental probes, the Planck scale is
not. As a consequence, although we have a dcﬁm’tc’ model for low-energy electroweak
physics, we do not have a definite model for low-energy physics below the Planck
scale. What we have instead is a belicf that such a model will be of the no-scale type.
How can we choose from all the possible no-scale models that we could write down?
As we have already mentioned, the tree-level cosmological constant vanishes. An
obvious first step is to check if radiative corrections nonetheless generate too large
a cosmological constant. In addition, we should study how radiative corrections
aflect—and perhaps even determine—low-energy parameters that we can measure.
By studying radiative corrections in these models we can hope to gain more concrete
knowledge about what coastitutes a good no-scale model.

Of course, since supergravity is nonrenormalizable, radiative corrections will
generate divergent terms that do not appear in the tree-level Lagrangian. It is
clear how to interpret these divergences if we appeal once again to the analogy of
electroweak physics. The large Higgs-mass limit of the standard model is also a
nonrenormalizable theory that yields divergent loop cotrections not in the tree-level
Lagrangian. If the corresponding corrections are computed in the (renormalizable)
standard model they must be finite. In this case it is the Higgs boson that enters to
make the otherwise divergent corrections finite. We expect that by cutting off the
momentum integrals in our large Higgs-mass model at the Higgs mass we should
reproduce, up to threshold uncertainties, the O(M},,) and O(In Mijigp) results of

standard-model calculations. in fact, this is just what is found [11]. In the same

way, the divergent momentum integrals of our supergravity calculations should be
cut off at the scale at which the underlying physics comes into play. We expect this
procedure should reproduce, again up o threshold effects, the leading corrections
computed in the underlying theory.

Unfortunately, calculating the radiative corrections for supergravity models is
a technically complex undertaking. The large number of particles and interactions
conspire to make determining even the leading one-loop corrections a nontrivial
task. (In Chapter 2, a simpler fermion loop calculation, due to Gaillard [12], will
serve to outline the basic program, and the main calculation of Chapters 3-5 will
follow this outline fairly closely.) In addition, whereas in the electroweak-physics
example there is only one particle, the Higga, that we take to be heavy, here strings
dictate an infinite tower of massive modes. Thus one has to be very careful when
considering how these heavy modes affect the low-energy results.

The toy model that we consider in this work is the most extensively studied
and the best understood string-inspired no-scale model. Some of the complicationa
associated with the radiative corrections and the relevance of the ultraheavy modes
to the effective low-energy theory are understood. As has already been stressed,
this model is expected to have much in common with more realistic models; all the
tools and techniqué used to study it should be just as applicable to such models.

A description of what is known al.mut this toy model can be found in the
literature [8,9,3,13]. The toy model has a hidden sector that is pure Yang-Mills
and is asymptotically free. All the gauge couplings are unified at, or very near,
the compactification scale, and the hidden-sector gauge coupling runs so that it
quickly becomes strong. When this happens a fermion condensate forms, just as
in technicolor models. In particular, a gaugino condensate breaks supersymmetry.

Supersymmetry is also broken by the vacuum expectation value of the compact



part of the field strength of the antisymmetric two-form that appears in the ten-
dimensional supergravity multiplet. In general, both these supersymmetry-breaking
terms are present below the condensation scale, but only the latter is present between
the condensation scale and the compactification scale.

{n more realistic models we might also expect other sources of supersymmetry
breaking. For example, supersymmetry may be spontaneously broken by cooedinate-
dependent compactifications {14). In the string context, in all such models that
have been studied to date, one also finds effective four-dimensional models with a
structure of the no-scale type {15]. There may also be nonperturbative string effects
that are surprising from the point of view of point field theory, but as yet no one
knows what these effects may be. In any case, our toy model will have only the
two nonperturbative (point field theory) supersymmetry-breaking effects mentioned
above.

The tree-level toy model is described by its Kahler potential, given by [8,9}:

C=—In(s+3)—3n(t + - k|¢)’) + W |W]?

(r.1)
=G +In|W)?,

where Re s and Re ¢ are gauge singlets related to the ten-dimensional dilaton ¢° and
the breathing mode o of the compact manifold by

Res=e¥(¢°)"¥* and Ret=¢"(¢°)*+ ;W. (1.2)

and the fields ¢',... ¢V are N light gauge nonsinglet scalars. We will set the
parameter k to one for the remainder of this work. The superpotential W at the
compactification (GUT) scale i; at least trilinear in the gauge nonsinglets. Below
the condensation scale, the superpotential is modified by an s-field dependent term
that arises from integrating out the heavy gauge and gaugino fields of the hidden

sector [9). The s-field plays a special role, since in the toy model the matrix-valued
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function f,, of the scalar ficlds (which enters, for example, into the gauge kinetic

energy term) is given by
| Jas = 36, (1.3)
In particular, the superpotential is given by
W = c+ he ™/ + W(4'), (1.4)

where ¢ parametrizes the vev of the antisymmetric three-form:

(Hyww) o (emprecun)i (1.5)
and A parametrizes the vev of the gaugino bilinear term:

(AA) o (AAd pe /), (1.6)

Here my, is the Planck mass, Aqyr = (1/VResRet) is the compactification scale,
and by determines the S-function of the hidden sector. Then the gauge coupling

constants at the compactification scale are all equal to
gaut = (1/VRes). (1.7)

The final result in Chapter 6 will therefore be presented in a form in which the
s-field dependence is explicit.

It is straightforward to check that this model is of the no-scale form; that is,
that at tree level it has vanishing vacuum energy and that the gravitino mass is
undetermined due to flatness of the potential in certain directions in field space
{9,3]). The one-loop eflective potential is just given by the supersymmetric Coleman-
Weinberg result and has been studied in various papers (16,17,3). In reference [3)
the effective potential has been computed by using the Kihler potential given above

and taking h # 0 for momenta within the integration range 0 < p* < A%, and
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h =0 for AL < p* < Alyp. In this case it haa been shown at tree plus one loop
that either the potential is unbounded or else the cosmological constant vanishes,
with either unbroken supersymmetry or broken supersymmetry and undetermined
gravitino mass. It has also been shown that the gauge-nonsinglet scalars remain
massiess at one loop and no other soft symmetry-breaking terms (so-called A-terms)
are generated in the obeerved scalar sector. (At two loops, however, gauge and
gravitational interactions can both contribute to the scalar potential in the same
diagram, and it is no longer possible for the global symmetries of the Kihler potential
to protect the scalar masses.) The first result is due to the invariance of G under
global nonlinear Heisenberg transformations among the ¢ and ¢* fields, while the
latter is closely related to the vanishing of th: cosmological constant. One-loop
corrections to the gaugino masses have also been studied. It is found that corrections
from momentum integrals below the condensation scale will vanish if the ground
state vacuum energy vanishes. Of course, corrections from momentum integrals
intermediate between the condensation scale and the compactification scale must
also be included. In this case, the evalustion is plagued with technical difficulties
associated with the artificial step-like behavior of A at the condensation scale.
Reference [3] draws no definite conclusion about the one-loop gaugino masses,
and in fact makes the obeervation that radiative corrections computed with the
effective tree model defined by the Kahler potential (1.1)-and the superpotential
(1.4) do not include all the necessary loops. Loops containing hidden-sector gauge
and gaugino fields are missing, since these have been integrated out at tree level.
The correct procedure is to compute the radiative corrections from all the fields and
then integrate out the heavy hidden-sector fields to define an effective theory below
the condensation scale. In this case, there is reason to believe [3] that the gaugino

maasses may vanish at one loop.

The first steps in such a program were made in reference [13}, which presents
the leading-N one-loop corrections quadratic in the compactification scale, where
N is the number of chiral supermultiplets. Corrections from just the light modes
(i-e., excluding the Kaluza-Klein and string modes), cut off at the field dependent
compactification scale, are not themselves supersymmetric. In fact, to obtain a
supersymmetric answer one has to carefully consider the heavy modes whose mass
is near the compactification scale. In general, computing the O(A% ) corrections
from these heavy modes would require a knowledge of their spectrum and couplings.

However, symmetries of the effective low energy theory may in some cases be
sufficient to find these additional corrections. Reference [13] considera a general
class of no-scale models with partial nonlinear symmetries among the scalar fields,
of which the toy model is a particular example. These symmetries, which are rem-
nants of the ten-dimensional theory, along with the constraints of low-energy local
supersymmetry, are enough to determine all the leading O(A} ) corrections for
this class of no-scale models. In particular, it was found that the net result of all
the corrections was o redefine the Kahler potential (after wavefunction renormal-
izations were performed). These results were then used to define an effective theory
below the condensate scale. It was found that the ground-state degeneracy is not
lifted and there are no observable soft supersymmetry-breaking effects.

The aim of the present work is to carry the program further by computing,
up. to O(A%yy) and O(In AZy1), all the one-loop corrections to the effective scalar
Lagrangian that arise from light fields. Thus, we will set & = 0 in (1.4) in explicit
calculations. However, our results will first be presented in a completely general
form that can be applied to any supergravity model. We also determine similar
one-loop corrections to the gauge field terms, excluding corrections that arise be-

cause the gauge fields have a noncanonical kinetic energy. The purely scalar loop
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corrections [16,17,12], the scalar and gauge corrections (18], the scalar and graviton
corrections {19}, and many of the gaugino and chiral fermion corrections [12,3,13)
have already been computed. Also, Caillard and Jain have calculated the addi-
tional corrections arising from mixed gauge and graviton loope [20,21]. We will
combine these results with all the remaining fermion-loop corrections, particularly
thoee arising from gravitino and mixed gravitino-spinor loope.

Loop corrections to theories with derivative scalar self-couplings can be eval-
uated with covariant-derivative expansion techniques (22,12,23,24). These methods
involve expanding the fields about a background and then functionally evaluating
the path integral over the quantum fields. These methods are powerful since they
allow one to compute the radiative corrections in a manner that manifestly respects
the symmetries, both linear and nonlinear, of the theory. For example, since a
ponlinear o-model is invariant under reparametrizations of the scalar fields, their
expansion about a background involves the use of normal coordinates [22,25,26). A
manifestly scalar-field reparametrization-invariant evaluation of the one-loop correc-
tions to a scalar nonlinear o-model can be found in reference [12). Generalization
of these techniques for gauged nonlinear a-models can be found in references [10)
and (18}, Aﬁd for nonlinear o-models in curved spacetime in reference [27]. An
application of these techniques to our Lagrangian will yield manifestly scalas-field
reparametrization- and gauge-invariant corrections, but not manifestly supersym-
metric corrections, which will require further generalization. However, the fact that
we are working in a supersymmetric theory will reveal itself in certain cancellations
between the bosonic and fermionic loops.

Our starting point is the supergravity Lagrangian of Cremmer et al. [28]. In
reduced Planck-mass units (mp = \/m = 1), the relevant purely bosonic

Lagrangian for an N = 1 SUGRA theory with Yang-Mills covariant couplings is
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given by

Ly =6,D,49D, 2 - L6676, 3)
v (18)
~ (RefuF™ Fl = {Im [ FFL, + IR

For the scalars we use the notation z¥ = 7' and as usual the Kahler metric G,; is

defined in terms of the Kahler potential §(z,z!) by

3G(z,2%)
Gy= 32947 (1.9)
The gauge covariant derivative is just
D x= (8, —icA)z. (1.10)

For the toy model of interest, the Kahler potential is the real function of the scalar
fields z = s, t, and ¢%,... ,¢" defined by equations (1.1) and (1.4), and f,,(z) is
given by equation (1.3). In addition, our gauge group is assumed to be unified, with
a single coupling constant defined at the GUT scale by equation (1.7).

Since we are interested here in only the scalar and gauge corrections, we need
only retain backgrounds for these fields. (The graviton field can be expanded about
the Minkowski metric.) Then, since one-loop corrections come from terms quadratic
in the quantum fields, we can drop all terms of quartic or higher order in the fermion
fields. Neglecting spacetime curvature, and using the sign conventions of Itzykson
and Zuber [29] for the metric and Dirac "mat.rices, the relevant fermionic Lagrangian,

including Yukawa and gauge interactions with the bosonic sector, is (28]

Cr = 39D Re fy — 3D, (10710 Im o = 35704 Re £u6.0,2
s . »
+ 182G 6% + ikt DG,
i 1 S
- ‘i:ﬂ“xi(gh,' - EGHGJ)D..‘J - i',.xi Cw’(g.‘,' + gigj -~ gc(G")‘EGB,‘)

. of il  _ c i) [} -ya )
=i e b/ Re 0 Pegmi o — 2ike 6, T
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R 1- . -
V1D, + 5H 60,8 + (D1 + 1,

| -

+

- BBPRGTLE + A, Pl Re

+ "".’u‘l“x', 3G, — $,1°7*x2 6, D, 2' + Hermitian conjugate. (1.1)

The large number of degrees of freedom in even this toy model makes evaluation
of the one-loop potential & daunting project. In Chapter 2 we will see how the
fermionic one-loop contribution to the effective action of a simpler theory may be
calculated, thus outlining the procedure without too much obscuring algebra. (This
result is due to Gaillard [12], and will be used freely in Chapter 4, where we will
consider spin-} loops in the context of our full theory.) Chapter 3 will consider the
case of gravitino, or spin-1, loops, and develop machinery for computing the Dirac
~-matrix traces for such loops. Chapters 4 and § will generalize this calculation to
the full fermionic Lagrangian, (1.11), and then wock out several terms explicitly for
the case of no-scale models.

Finally, Chapter 6 will collate and summari.e the results obtained in the previ-
ous three chapters, and combine them with the results of Gaillard and Jain [18-20).
This will yield the full one-loop effective scalar Lagrangian for no-scale models with
canonical vector kinetic energy.

In the explicit calculations of Chapters 3-3 we use a double subtraction proce-
dure to regulate divergent integrals, consistent with the procedure used eisewhere
(20,21} for the bosonic loops. Our final results in Chapter 6 will be presented in a
prescription-independent form, and we will comment on additional terms that may
be present [13] when the regularization prescription is made fully consistent with
- local supersymmetry. Finally, we make some brief remarks about the application of
our results to the problem of determining the mass scales in a no-scale model, such

as the toy model whose Kahler potential takes the form of equation (1.1).
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CHAPTER 2

" Fermion Loops: a Primer

The evaluation of effective potentials induced by fermion loops has a long and
venerable history in the literature of pasticle physica. As carly as 1936, Weisskopf
considered the theory of C li photon couplings through electron loops in quan-

{

tum electrodynamics [30], and (without the benefit of Feynman diagrams, or even
modern four-vector notation) obtained an analytic result for the sum over all one-
loop amplitudes, in the limit where the photons are soft compared to the electron
mass.

This sort of limit is exactly where effective field theories are most useful: since
the perturbative expansion is in loops (or, more intuitively, in powers of A) rather
than in the coupling constants of the theory, the sum over all configurations of
external lines—in our case, of scalar fields—can be evaluated to O(A) in one step.
Assume for simplicity that each vertex around the loop contributes one external line
to the diagram. Since the nth one-loop diagram has n internal propagators, and
a symmetry factor of 1/n from the (n — 1)! inequivalent configurations of external
linea, the sum is simply the logarithm of the internal propagator. Thus:

r,...,0) = -(%') xi / %(mp(p))". (2.1)

where Ag(p) is the appropriate internal propagator, and the overall minus sign on

the loop comes from Fermi statistics. The one-loop effective potential then becomes

f AP = "
Viciop () = =i ﬁ 3 - (68()
n=l (2.2)
. d .
= —:/IQT};‘- In(1 — ig. Ap(p)).
From this schematic result we can observe two salient features of effective La-

grangians. First, the integral in (2.2) is divergent and must be regulated; and
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second, the masses of the particles in the loop (represented here by the implied
mass in Ag) will determine the momentum scale at which they contribute to the
eflective potential. The latter point should be emphasized: since we are far from
having an ultimate point field theory of everything, and indeed have no strong rea-
son to believe that such a thing exists, it is reassuring to know that the physics
below a given energy scale can in general be accurately described by an effective
theory in which the unobserved heavy modes have been integrated out and appear
only as point couplings. To be sure, a momentum cutoff cannot protect us entirely
from our own ignorance, since large logarithmic corrections from scales far above the
regularization scale can contribute to the low-energy physics. Still, the ability that
the effective Lagrangian formulation gives us to view the universe at a hierarchy of
mass scales, from Weisskopf's soft photons below m, right up to the Planck scale,
is in essence what makes it a useful tool.

With these observations in mind, we now consider a calculation by Gaillard [12]
that contains all the essential features of the general fermion-loop result we hope
to obtain. This is the effective Lagrangian for the case of a single Dirac spinor ¢,
coupled to a scalar background by the general tree-level Lagrangian

L = ¥(iZ(4)9 - B(#)¥, (23)

where Z(¢) is a derivative coupling (which we could take to be a matrix in fermion
space if ¥ has internal quantum numbers), and B(¢) may have nontrivial 7-matrix

content. The inverse propagator is given by

5§35
ANy = m%{; = 2()(id, + C(2))6%= — y), (2.4)
where C = Z-'B. .

As we saw in (2.2), the one-loop effective Lagrangian (not really an effective

potential, since now we are allowing derivative couplings), will turn out to be given
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~ by the logarithm of an inverse propagator; more precisely, by [31),

/ 20,y = —iTeln 2787 = —i Teln(id - C), 2.5)

with the trace taken over spacetime points in the Taylor series for the logarithm, as

well as over Dirac-matrix space. A Fourier transform gives

. dp _. NN
A — ) = —iesf s o(—: LY
(i, + C(2))6*(z - y) /(2')‘c (f c( zap))c v (2.6)
so that now we can expand out the logarithm, shift the argument of C, and recon-
tract, finally writing
t:,_,,‘,,=_-/(2 z mn(,s c(z-.ap)) =- /(2 G tein(s - ¢, (@1
with the uncapitalized trace now acting only on the Dirac matrices.

If C(z) = A, (z) + M(z) (which, as we shall see in Chapters 3 and 4, is not

by any means the most general form of physical interest), we can write

trin(p— 4 - M) = teln(-p+ 4 — M)

1 ) ) (2.8)
=3 trin(~($ —~ 4)* + M* + [p - 4, M)).

Since we know that

- 4. = @M + (4, M) = iPM, (29)
with
IM = %S (PM )P % (2.10)
' defined in the natural way, and with

D, (z)f(x) = (8, +iA,(x), f(z)] = [d,(2), f(=)], (2.11)

_ we have implicitly solved for the one-loop effective Lagrangian of the theory. It only

remains to expand out the Taylor series for each barred (i.e., shifted) function of

the spacetime coordinates.



However, the appearance of a covariant derivative, D,,, in our answer suggesta
that (2.8) can be cast in a fully covariant form, thus presumably simplifying the
algebra. (When we tackle the full fermion sector of the theory, this simplification
will be our only hope of extracting physics from the result.) Since £;_y,.o(x) is to be
integrated over all space, we are free Lo operate on the argument of the momentum

integral with a unitary operator,
trln B — trln(UBU™Y), (2.12)

provided that U(i8/8p, 8,) equals one at the origin. To sce this, merely consider the
series expansion of U and U~": the latter operates Lo the right on nothing, and the
former can be integrated by parts n times, 30 as to operate to the left on nothing.
If we take '
U = exp[~i(8, +iA (:))-—a—] exp[i&,—o-]
v op, 9,

(2.13)
= eplid, () | sl )
we will have the following simplifying identities:
UGHU™" =ip-@,, d
() i$-9,, w 2.14)
Uf(2)U™" = e7*42% (1) =)0,
Alter applying these, equation {2.8) becomes
trn B = %trln(—(f-f 0P+ M 4+ ipM), (2.15)
where
i = U~ = 3 l .. 3 _ﬂ:&'_
M=UMU g (0., -0 M) Bo Op (2.16)
and similarly for ﬂl , and where
Ju= i,,.a%. (2.17)

and

n+l (=i}
EZ( el ‘”)a - ap

l‘u
n+l (=)™ 3"
Z (n+2)l( w l‘-]vu)a 8})“-'

Our expression for the effective Lagrangian now depends only on M, j,,, and their

(2.18)

covariant derivatives. Furthermore, we can square out the first term of (2.15):
B+ =p* + 7 + 205, — ik, +i0* ([, —ik), (2.19)

where Ew = '.(Dulpul _}w)o and so0

(n+l)(n+2) (—i)mg~+?
e LR KRR e

L™

(2.20)

To evaluate the divergent contributions to £,_y.,, the only parts we can hope
to get right without a real understanding of the short-distance physics, we need a
regularization scheme for the momentum integration that will allow us to extract
both quadratic and logarithmic divergences. For consistency with earlier results
(12,18,19,21] we choose a double subtraction scheme, introducing a new mass scale,
which we denote by u:

teln B — trin B + trin(B — 24%) - 2trin(B - 4?). (2.21)

Since the task of picking out th'e quadratic and logarithmic divergences in the regu-
lated integral depends on the detailed form of B, which in the more general problem
will differ from the result we have obtained here, there is little pedagogical value in
carrying on. Instead, we now proceed directly to the actual fermionic Lagrangian
of our N = | supergravity model, equation (1.11), and try to apply what we have
learned from this chapter’s single-fermion model to the full fermionic spectrum of

the supersymmetric theory.



CHAPTER 3

Pure Gravitino Loops

Because the models we wish to study possess a local supersymmetry generator,
they must have a supersymmetric partner for the graviton, and so the fermionic
Lagrange density given in (1.11) contains both gravitino self-couplings and mix-
ing terms between the gravitinos and the chiral fields. (Indeed, as mentioned in
Chapter 1, it is the fact that the trec-level gravitino mass is a free parameter of
the theory that makes the no-scale models so attractive as candidates for describ-
ing the non-supersymmetric world we obeerve at. accelerator energies). Since the
gravitino transforms as both a vector and a spinor under the gauge group of the
theory, however, we appear to have the freedom to eliminate at least some of these
couplings.

To evaluate the one-loop contribution from spin-g fermions, ¢, the obvious
first step is to find some gauge in which these fields decouple completely from the
spin- chiral fields, designated by x] = 1(1—7,)x’. (The gaugino fields A* decouple
at once if we set 7*y, = 0.) As we shall see, however, this explicit diagonalization
does not lead to a genuine simplification, because the Fadeev-Popov gauge ghosts
introduce new mixing between the fermions. Thus we will first perform the func-
tional integration over the gravitino degrees of freedom only (also for the moment
neglecting background Yang-Mills fields, so that we may replace D, by 3,), and
then, in Chapter 4, consider all fermion-mixing mass terms in a consistent way.
(Alternatively, we could work in a “smeared” gauge, defined by setting v-¢ = f(z),
where f(z) is some suitably damped function. This approach has not yet been
adequately explored.)

The portion of the fermion Lagrangian, equation (1.11), which depends on the

gravitinos is:

C, = 2o, v 0, + %u},cw"q,w,cia,z‘ + {0+ 1)

-

- SR TROTLE — by PxiCa0," + WX,
+ Hermitian conjugate.
In the gauge where vy, = 0, we can simplify this, using
V. =i - 9°7)
and
J‘.ayy = —iJ’vv
so that £ reduces to
L'yo-o = J’“("ia + %cia’i'h + %eﬂlﬂ(l + '15))'1’,.
- 2¥xig 0,48+ H.c. .
= P50~ 560"~ 095 + )y,
- W*0,8,7'x, ~ 2500505,
1., . . -
=¥ (i@ +ilw) + M)y, — 20X, + X*¥,),

where:

i
4
and x, =6,38,2°.

We could now redefine ¢, in order to complete the square:

r,= (G,«ouz" -G,z"), M=,

Vhew = Vg ~ 44,,x".
If we require that A,, satisfy

(—i(@+ i)+ M)A, =1,
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3.2)

(33)

(3.4)

(3.5)

(3.6)
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the ¢ - x cross-term will just drop out. In terms of the new y-field, the gravitino
Lagrangian would then be:

1 -
Lo = 307 0UN, 488 Bx, (38)

However, as mentioned before, new ¢ x-mixing terms will appear in the ghost inte-
gration, and in any case we shall see in Chapter 4 that it is more natural to treat the
V*x,, term a8 a generalized mass, and Lo carry our result for the y,-field over to an
extended spinor containing all the fermion degrees of freedom. For the time being,
therefore, we shall simply ignore the remaining x'- and A*-terms in the action.
With this simplification, equation (3.8) resembles the fermionic Lagrangian
of Chapter 2, equation (2.3). However, the Dirac y-matrix content of the inverse
propagator prevents us from simply writing A, out explicitly, and 30 we must resort
to less elegant methods, which we present below. The calculation will be carried
out in considerable detail, even at the cost of some tedundmi:y, 20 as to make the
parallel with the previous chapter casier to follow through the ensuing thicket of
spin-matrices.
The variation of ¥, under a gauge transformation is given by [28):
,th, = (0, = il)e, + 37, Meq + 0,5, IN),
B = () (39)
=@, +il)e. + %7..“& +O(x¥, Xx, AA);
for an infinitesimal change of gauge parametrized by e. (This definition of the gauge
variation actually differs from that of reference [28] by a factor of i, as is evident
from the way we take the charge conjugate. Ou: choice gives the gauge determinant

the same sign as the inverse propagators, with the sign conventions of reference

[29).) Since our gauge condition is v - ¢ = 0, the Fadeev-Popov determinant (which
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parametrizes our overcounting of states in the functional integral) is
%det&,('y V) = det(=i(@ + iffxg) + 2M). (3.10)
Thus the (one-loop) effective action from gravitino loops is
Sl = —iln / (dy) 8Ly - Y] det™" (~id + 2M)e S 45 Lo (3.11)
where 5[y - ¥) = [{da] exp(i f d*z &7 - ) is a functional delta-function, and
d, 58, +il,y. (3.12)
Writing the functional integral over a out explicitly,
Sl = —iln(det™ (<id + 2M) / ([dv][da] e[ 387 v-0r 1)

=_"ln(de‘-l(_.-‘+2M)/[d¢le-ifd‘t}‘A‘IO‘/[do]e-ifd‘:‘hAw)'

(313
after a shift of ¥, — ¥, + A,7,0. Integrating over ¢, and a, we get: !
Sly = —iln(det™}(—ig + 2M)det 3 (—id + M)det'/?y*A ,7,)
= —iTe(= In(~if + 2M) + 2In(=id + M) + % lny*ayy)  (314)
= —iTr(-n A7} +2ln A7} + %lnv,,"),
where
Y = (PA) = (P (-id+ M) (3.15)

and where the (capitalized) trace is understood to be taken over both the spacetime
coordinates and the Dirac-matrix indices.
After making a Fourier transform, using the sign convention of [12], we see that
Sh= —i/d‘z/ui:;—‘ te(=In{—p + Jvs + 2M) + 2In(—p + [vs + M) 016)
+ %lnv“(-# + v+ M)',),
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where the trace is now only over Dirac indices, and

fe) = gz =id)
P (3.17)

= 0189, )(0/05") (1) (0/30,)(8/05%),

Since Sl = [d*z L} (z), we have found the one-loop Lagrangian, and are done in
principle.

Before evaluating the momentum integral, however, we can make it covariant
by getting rid of the shifted arguments. First picking a representation for the Dirac
algebra that diagonalizes the v,-matrix [29):

0 -1 ) 0 o
= R e _ .
-1 0 - 0

(3.18)
1 0
and v = iv’y'y%y = ;
0 -1
we can write
o o Ao
T4=A4-1"1-A= ) , (3.19)
0 A
where A = Ag+0-A and § = A, — o - A are 2-dimensional matrices.
Now, for any 4-dimensional matrix of the form
A m
M, = (3.20)
m* R
it is true that tr f(M,) = tr f(M,), where
. A -m
M= M|oeeo = . ) . (3.21)
- - —m. B

Sotrin M, = Mtrln M +trln M,) = Ltrln M M,, because odd powers of o* are

traceless, and odd powers of m do not occur on the diagonal.

2

But if we consider the 8-dimensional matrices
(3-22)

we ace that tr f(M,) = tr f(M,) as well, again because odd terms are traceless.
Now, tr f(M M) gets o-matrices only in pairs like K& and K&, and

K§ = F*G, - o'(F.G, - F,G)) - i, 0*FG;; (3:23)
whereas tr ](M.M,) gets y-matrices only in

1
”¢ = F“G“ + ipﬁab‘[‘"' 7“]

o 0 [ 0
= PG, - (F.Gy - F,G;) - ie¥, FG,. (324)
0o

0 -¢
And since MM, haa the same form in A and K that M A, has in 4 and P, it

follows that

%trlnM.A;l. = %trlnM.M.
1 A’ -m? —Am+mpP
= i trin . (3.25)
m4—-Ppm -m?+ B?
By putting a 7° in front of each of our inverse propagators {thus introducing

an irrelevant det™ 4% = 1 into the final result), we can make direct use of this trick,

writing:
o (-k+R -M
M =2 (-p+ v+ M) = ( _ ) (3.26)
-# —x-K
and
L B=DP-A (g2
MMy = ( _ . _ ~ ) (3.27)
—[pM)=20M (P + ) - M?
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Now that the two chiralities in the inverse propagator have been explicitly
separated, we covariantize the action by making the shift M,(p,z — i3/8p) —
UMy(p. £ —18/3pd~", where

U = e~ Ot Im)(8/09,) 0,(0/09,) _  -idla)8, 30,8, (3.28)
In the chiral representation, d, = diag(d, +il,,8, —il,) = diag(d},d;), and the
shifted, squared inverse propagator becomes

UMW UMB™) =

B+ -m O (—iM + WM)e‘”-)
(e--"‘~°-(-.'aM -2 M) % B-Jy- '
(3.29)
with:
- = 1 i)
M= ga—!(b‘,‘ -9 M’)E;'_ap::’ (330)
J,= j'*a%' and (3.31)
_x=n+l o (<i) o
=3 O O D
— n+l —i)*on
=2 O o) gt (332)
We may introduce the covariant derivative operators,
DiX =|d%, X}, (3.33)

which act as ordinary derivatives on functions X(z) of the spacetime coordinates
(like M? or J,, =id,I, — i3, T,) that connect states of the same helicity. We then
generalize this to a chiral covariant derivative, D, = diag(D?, D;), which is defined

on the helicity-flipping mass term as well:

DEM =3,M £i(l,,M} = ,M + 2l M. (3.31)
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Thus both the diagonal and off-diagonal terms in (3.29) are actually covariant.
The role of D, the covariant derivative defined above, becomes more transpar-

ent if we write the gravitino mass term as

P MY, = Jamu v, + H.c., (3.35)
and define
D,my, =08,my, +i{l,,my} (3.36)
and
D,m,y=D,m}, = (D,my,)! = 8,m}, —i{F,,mL,}, (3.37)
and also

Dm mg =8 m,m, —ill,m,,m,} (338)

Dmym,,=3,mym +i[l,,m,m,]
In other words, ¥, transforms in the same way as ¥, = 5, and opposite to ¢, =
¥ ~ ¥,. (Note that the reality property m,, = mk, is unique to the gravitino.
For spin-4 fermions, m,, is a general complex matrix, and [, is also in general a
matrix. We will make use of this added generality when we incorporate the other
fermions into our calculation in Chapter 4.) With the definitions (3.33) and (3.34)
of the covariant derivative, the expression (3.29) is equivalent to equation (4.21) of
reference {12]. (There ia a factor i missing in front of the (PM)? term in equation

(4.21) of reference [12}.)

A more straightforward, but perhape less rigorous, way to obtain the result

" (3.29) is to write [27) the gravitino Lagrangian in terms of the eight-component

spinor ¥ = (¥,,¥,)T, perform the functional integration (treating ¥ and ¥ as
independent variables), and divide the final result by two to compensate for the
doubling of real degrees of freedom.



Returning to (3.29), since only even powers of these off-diagonal terms will
appear in the trace, we can work directly with their product; that is,
(c™4* % (IM £ 2P M) %) (7" % (IM F 2ifM)e*" %)

e 2% (IM £ 2 MY PM F 2T M)
= g L0, 0, (O°MOM + 4I‘“I‘_M’))ﬁ 239
= pMPM! = |PM.
it will also be convenient to square out the diagonal terms explicitly, writing
B2hy =9+, 2 (3.1}

=p 4+ Jud, 2200, £ [J,,p*] £ic*[J,,p,) (3.40)
=p' +J*J, £2p*J, FiK*, tio™(J, - iK,),

where K, = i((J,,p,} - J.), and so

Z:(n+|)(n+2) 8,...a_a,4,) =

(n+3)! A ... 0. “)m. (3.41)
Coatinuing as in the simple fermion case, we write
B=UMMU", (3.42)

and introduce a renormalization scale u. The twice-subtracted contribution from
each term i Trin A in L7 is then

C,',‘(p’) = - (2')‘ (trlnB +trin(B - 24%) - 2trIn(B — )

1
.” / /(2‘)‘ " B- Ap B~ (1+ ,\)#2) (3.43)

—T 0 dc/o dA/E"T o ﬁ—z\pl‘-—fp’)n'

To expand this in powers of p*, we write

= (" +J%J, - N S PMS, + 5 PM'S_
] ) (3.44)
+(2p#d, - iK*, +i0™(J,, - iK,.))S,,
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where I is the 8-dimensional identity matrix, and S, and 8 are direct products of
the 4-dimensional identity matrix with the Pauli matrices 0, and 0, = o, + i0,.

Then, by defining A such that
B=(p*-MH-A, (3.45)

we can use the expansion

1 I = 1 n
B P - M-\ 0 g(AP’—M’—Xﬂ’-E#’) » (3:46)

and, after squaring this, we shall be able to pick out the divergences of £} (4?) by
power-counting.

We are only interested in the divergent terms, which are at moet of fourth order
in derivatives of z* and z'; therefore, by (3.32) and (3.41), we can take
i i i) 8

S
J,—i1 -ta 88.1 (3.47)
w 2 w 3. Wap Wap’
and
ko-You, 2 _i384,29 (3.48)

3“’”8}) Zpuuvap’ap‘
since J,, = (d},d?) is already of second order in derivatives of the scalar fields. So
only terms at most quadratic in J or in K will survive. As for the mass terms, we
have only N? = M? — M? left on the diagonal, and, since we are only interested in
the divergent part, which is of order > p~2 in B, as defined in (3.42), or of order
> p~% in the expansion of (3.46), we need only keep

2( i (@0, M) 55
s (3.49)

8 8
i M o, 88M 3p,, .

And |PM?, which appears in the trace only at order p=® (from A? terms), need
not be expanded at all:
|PMP* — 3*M3M + 4" [M? (3.50)
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Putting all of these approximations together into A, we can write expansion (3.46)

as:
1 _ l - A
B-Ma-g2 P-M- (P = M = 2u? ~ )2
B“p" + c D,.pp
MR R Vo R R YL PR
= 51
+0( P,). (351)
where, if we neglect terms that cannot contribute to the traces:
A= %p’ils, - %p’if's_ - %iaw,,s,. (3.52)
B, =2, M1 + g.’(a'.l,, -ig"(d,J,, +3,J,,))S,, (3.53)

C= (M~ MOM — AT LM + 2=,
- %a“'.l»a".l,,)l - %.'aw(a'J,, +200,0.)S,,  (354)
and
D, = (—48,0,M* - 2J2J,)1
+(22°0,0, +i0™(8,0,0,, +28,8,J..))S.. (3.55)

Squaring this (again keeping only the divergent parts, and dropping terms that
are odd in p*) and Wick-rotating, we have

= "—/ / (2r)'
2tr A

(v mmrem ~ e wTe
2trC + tr A? 2uD,p'p (L))

P+ M4 02 G (P ARG T \p
(3.56)
which can be integrated to yield
= 32 - +1trA) (3.57)
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for the quadratically divergent part, and

Lhy= —ln—”(Ml‘ + M trA+ L, + = tr.A’ trD“ L) (3.58)

for the logarithmically divergent part. The traces are:

trd=0,

trC = 899, M? — 8* MO M ~ 32 ,M?,
(3.59)
D%, = —RFIM - 16+ J,,

tr A* = —B*MOM ~ 32", M? —4J*J .

Using (3.57) and (3.58), we can evaluate the first two terms of (3.16) at once.
Thus, the gravitino contribution to the divergent part of the 1-loop Lagrangian is
minus twice the expression (3.43) or (3.56):

wM3n?2 lny

Cyp =t + 25 (@ MOM + AT I M

(3.60)
+ SJ“'J,, - 58"8,M' - MY).
The Fadeev-Popov determinant is just the expression (3.56), but with M — 2M,
giving
M2 In 2 ln p

M n2
C:r == ',3

=5 ("M, M + ar*r M?
(3.61)
gy, - 58“8,,M’ —4MY).

12
The M? terms in these two expl;usiom are the well-known contributions to the
Coleman-Weinberg scalar potential (32}, and the J? terms are the analogue [12] of
the fermion contribution to the g-function in gauge theories; the coefficients are in
agreement with previous results.

Moving on to the contribution from the auxiliary field a, we note that the

covariant derivative d,(z) = 8, + il 7, commutes with 4%y*. So we are free to



write:

Teln V' = Triny*A,7,

p ,
B /d‘x/n:;‘ trin 2" M0, (3.62)

= ./d':/(—%‘};-; trin ‘7°‘7“L4M:'U"'y°7,.

If we now expand UM'U™" about M3", with

M, =1°(~p + M) (3.63)
and
SM=UMU™ — Mg (—Jv + N), (3.64)
we have
UM = i(—M;‘&M)“M;'. (3.65)
pee

Here J, in defined by (3.31) and (3.32), and

PR = = M) = 3 Sl M
nal (o] (o]
o~ 1 (-iyor (.69
= gm(D“ID“‘M)aP“‘BPA“

where aa before d, = 8, + 11,7, and D, is the covariant derivative as defined by
(3.33) and (3.34) in the chiral representation. At first sight this appeara much more
complicated than equations (3.18) through (3.25), which would have resulted in a
similar expression, involving an infinite series in D, M; i.e., in I, and its derivatives,
had we applied the transformation (3.28) directly to the propagator A,,. The fact
that I, appears only in second order in (3.43) reflects the fact that the mass M
appears in the final trace only in the combination MM!, which satisfies (3.38).
However, no way to cast the auxiliary field determinant (3.62) in such a compact

form has yet been found.
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But since all the terms in §A14 contain spatial derivatives, we can halt the
expansion at the fourth term, and then commute 4* through to the right explicitly,
removing the initial 7° as before (since det 4° = 1). Thus:

trln '1°‘7“UM;'H"‘7°‘7, =

trln MGt (1 — MMG! + (MM ), aen
and by a Hausdorff expansion of the logarithm, we can write
In A(1 - B) = n A + In(1 — B) + %[lnA,ln(l - B)]
+ éun A,[In A,In(1 - B)}) (3.68)
- é[ln(l - B),{InA,In(1 — B)]] + finite,
where
A=z, = v s, (3.69)
and
B = A7y MG (MM — (MM ) .., (3.70)

and where all higher terms in the commutator expansion can be neglected, since
they give only finite contributions to the p-integral.
The first term is just

—-p-M

’ 2 — 4AM
P-M

P - M3
=2In(p’ - 4M?) — 4In(p® — M*) +4In2

teiny* =trin

(3.m)

The constant divergence, 41n2, precisely cancels the bosonic divergence given in
references [20) and |21}, as the underlying supersymmetry of the Lagrangian requires.
To evaluate the remaining terms in the expansion, we push momentum derivative
operators to the right in the expression for B above, and retain only terms that
give logarithmically divergent contributions to the effective action. Terms linear in

the antisymmetric tensor J,, vanish in the trace because they carry a factor v;; in
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fact, even without this factor they would contribute no divergent terms due to their
antisymmetry. Similarly, terms with an odd number of (covariant) derivatives on M
will not appear in the effective action. These terms can be explicitly eliminated in
the expansion of B, equation (3.70), because they appear with either an odd number
of 4-matrices or an odd power of p, and so must vanish either in the trace or upon
integration over all momentum.

The other surviving terms are then
trin(l ~B) = -t B - %M’B’

- Plﬂ(uw_, ~8MD,D,M" - 8D*MD,M") (3.72)

N2

~4J.2J,, +8MD, D, M + 32D, MD, M");
” » v [ "

% tr{ln A, In(1 — B)] = -% tr A=A B + %B’] - %u A4 (A% B + %B’])

1,1
= (-39 Ju + UMD*DM' +20°MD,M")

+ %(J,’J,, ~38MD, D, M" — 10D, MD,M");
(3.73)
T+ tlin A, [1n A,In(1 - B)] = — R ATAN B+ B
P 2 ' (3.14)
e f o —— » - .
=5 (- 3 J, +10MD,D,M" + 3D, MD, M");
and
- lizt.{ln(n ~B),(lnA.In(1 - B))) = -ElztrA"[B,[A‘,B]]
= l _l. 4 1 t
= (g7 + 3D MD, M) (3.75)
+ ‘%—(-%J;J,, - ?D,MD,M').
In evaluating the commutator terms, we have used the identity
o0 N comanut atore
1 _nt—T—*—“
[lna,X]=Y" —AT A [AAX) (3.76)
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repeatedly, truncating all expansions at O(1/p*). Note that the log expansion above
does not yield increasing powers of 1/p, since there is an A~! in front for cach
additional A in the commutators. But all terms with more than two commutators

vanish identically, because for divergent pieces there are at most two p-derivatives

~ acting within each term; thus, we have fully evaluated the nonfinite part of the

trace.

Only (3.71) contributes to the quadratic divergence, giving
apg
wx  #M%In2
Y T (3.77)
when we integrate it in the familiar twice-subtracted prescription, while the sum of

the logarithmic divergences from (3.72), (3.73), (3.74), and (3.75) is

o = -:“T';;(m‘ — I du ~ SMD*DM! 4 SD°MD,M').  (378)
For the gravitince, of course, we have M = M!, and so MD“D M! = M3*M —
4I”M?. But the more general resuit was worth the effort, as we shall see in the
following chapter.

Adding these results to (3.60) and (3.61), we get the total sum of the quadratic
and logarithmic divergences arising from pure gravitino loops:

#M3n2 Ing?

t
Ly = 4x? 16x?

(@MoM - L MM

“ 7 (3.79)

+ ?I‘“I‘,M’ = 567" = IMY).

At this point we can eliminate a total divergence, writing MM — —3*M3, M.
The divergent Lagrangian then becomes

702 ' 2
1 _ #MIn2 Inu 77
£°——T+l—($;i(7hl‘+-ﬂijw‘l“"

17 (3.80)
- E—(B“M&,M +4rer,m?).
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Rewriting this in terms of the Kahler potential (z, z'), we find that

2 2
v #In2 5 Ing
Ly=- 4x3 <+ t6x3
p’|n2¢¢ inu?
4x? 16x2

7 .
(169 + 0., - S60240,28) (381)

(7;“’ - %g,g,mz'a,z’é’
+ G Gud O (0,0, - 8,0,). (382)
since
= %G,,(&“z'ﬁ“z’ —ored). (3.83)
This is the complete result for contributions from pure lpin-g loops. The remaining

task, to generalize (3.82) by including the fermion-mixing mass terms we neglected,
will be carried out, in straightforward but exhausting detail, in the next chapter.

CHAPTER 4

The Total Fermion Contribution

Now, at last, we return to the spin-% fermions in the theory, and at the same
time consider the effects of background Yang-Mills fields. When this result is com-
bined with those of Gaillard and Jain {20,21), we shall have the complete one-loop
corrected séalar and gauge Lagrangian (for canonical gauge kinetic energy) of our
simple no-scale supergravity model. This result is then easily generalized to other
N =1 SUGRA models. Looking once more at the full fermionic Lagrangian, (1.11),

in the gauge ¥ - ¢ = 0, we write the kinetic energy piece as
i . i, .
C3nn = =3P oV +iX'GLdix + 55" Re fuf ). CR)

Here ¢ = y“d, stands for the fully gauge- and reparametrization-covariant
derivative, which takes the form

(d.), =10, +il%),

(d)% = 62(8, —il,x) +ie(A )L +17,.8,2*, and 42

(4,22 = 88, + L) - eu Al + 5(1/ Re ))*D, (Im L),
when acting on the gravitinos, chiral fermions, and gauginos respectively. The
labels 1,4,x,... are shorthand for i,i,j,7,k,k,..., where it is to be understood
that x and % both transform like 3, and that A} = (A%)* = Al. The ¢, are
the totally antisymmetric structure constants of the gauge group. As always, the
only nonvanishing reparametrization connections are [, ; and its complex conjugate.
The I, pieces are just the chiral U(1) connections [33,34}, excluding the fermion-
dependent pieces. The relative minus sign for the chiral fermions is just due to the
fact that the .lel't-ha'nded x's transform like the right-handed ¥, and \'s under the

chiral U(1). In the presence of background gauge fields, we must covariantize all
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spatial derivatives, so that, from (3.5),
r,= i(g..b,z' -6D,1"). (4.3)

The formalism is somewhat simplified if we rescale the gaugino fields, 8o as to
put their kinetic energy into canonical form. More precisely, we make the transfor-

mation

2= (\/TG;T):” (4.4)

so that the gaugino kinetic energy is just
e = %X*&J:,\‘, (4.5)

where now the covariant derivative is

(d,)e = 628, + il %) — e &S +i(L,)bvs, (6
with
(Lt = 1/ VRET )64, Im L)1/ /ReT ) (a7

In the rest of this chapter we shall work in these rescaled coordinates, which leave
the final result for the effective action invariant.
The rest of the quadratic terms in £y can be written in the form
1
cy A== "x,x{ + 2m“,¢a"w,. - —m_‘»» )
+mm»:x’.—(m.;-‘_ oW + H.c.,

with the masses given by:

m}, = 2G;; + 6.0, — 6% ) )e¥?,

m¥, =, (This is our old M.)
mi =~/ VRET L/ VRET G20,
a7

mix = ~26,(D,2F),
miy = 51/ VRET )1/ Re fy* g,
- 2(1/VRef);6,T5:*,  and
’:;‘=—(l/\/—").zf°;a~i* (4.9)

We have written m** and m** out separately, since the latter term has nontrivial
Dirac-metrix content and will require careful treatment.

There is one more piece quadratic in the fermions. This is the term in the
fermionic Lagrange density, (1.11), that involves y* and A°. This term mixes only
fermions of the same handedness, since it contains an odd number of y-matrices;
thus, it ia not a mass term. It can, however, be treated as a connection, and we

shall treat it so in what follows. In the gauge v - ¢ = 0, the relevant term becomes
Ly = -X’ﬂm!ﬁ“ +Hc., (4.10)

where ff, = Y(M)“i’:,
To apply the results of the pure-gravitino calculation above to this full fermion
Lagrangian, we define a big (4 + (N + 2) + Ng)-component spinor @, with the

flavor-space entries:
=g+, #=x', and 6 =21 (4.11)
The fermionic Lagrangian, equations (4.1) and (4.8), can then be written as

Cp= %Jz(.',l— M,)0 = -;-M;'o, (4.12)

where 45" is a (4 + (N + 2) + Ng)-dimensional matrix in flavor space. Z is the
metric with block-diagonal entries,

2= N Z5=20y 2Z,=§,, (4.13)
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which is used to lower indices, while Z-! is used to raise them. The mass matrix

has the vy-matrix space decomposition
1 ] '
M, = 5([—7,)®M+§(1+7,)®M , (4.14)

where M = Z~'(ZM) is defined implicitly by
o0

ZM=]|m> mX my |, (4.15)

i)

m m

v,
x
0 my mi

with the individual entries given by equation (4.9). We have left out the contri-
bution from the last mass piece of (4.9): as mentioned before, the 0**-dependence
introduces a slight complication, and so we shall first derive the one-loop results
without this masslike term, and then modify them to find the full answer.

With these definitions, the decomposition of the inverse propagator A, in

flavor space is, with the convention that M** = (1 — )m** + 1(1 + 4, )(m**)!

and so on,
(A;‘)w - :T i‘::
o=l -Mx (a7, -My |. (4.16)

i -MT (83
We write its inverse with upper indices. Note that 4;" does not equal A}, since
inversion mixes the off-diagonal elements with the diagonal ones.

We now gauge-fix. The ghost contribution has already been evaluated. The

auxiliary field coatribution is just
L, = —ayy" = —ay,8". ' 4.17)
As before, we shift the §-field to remove the cross-term involving the auxiliary field:

# — 0+ A),a, (4.18)
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after which the full fermionic Lagrangian is

.
Lp= 0030 - armA‘,“'q,a. (4.19)

1
2

We will come back to the auxiliary field later. To compute the contributions
from the other fermions we decompose the fermions into left-handed and right-

handed parts. In particular, we write

6,=1xi 1. (4.20)
AL
with a corresponding right-banded spinor 8,. Then, in the y-matrix chiral repre-
sentation, the total (quadratic) fermionic Lagrangian can be written as

1 Wt -M
Cp = -éz ) [}
2 ~M' W

= (@ mz[(‘: .-xor)'(;t ‘:)] (:)

where 67 = (8T, 67) and its transpose are spinors in the chiral representation. Our

(4.21)

covariant derivatives are:
(&), =n"(8, £iL);
(d2)) = 6(3, Fi6,) £ ie(A,), + T, D,z"; (4.22)
(A = 83(8, £i6,) — e’ A £i(L,)5:

and also, from the Ay-term, equation (4.10):

(&) = (VRe [) (F)"

(4.23)
(@) = (VRe [ )(F.L).
The fermionic one-loop correction is given by:
. . it -M
Sag=—tTrin (—M' " ) . (4.21)
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In this form it is easy to see how Lo use the results of the gravitino loop calculation
presented above. As belore, by using Tr f(7,) = Tr f(—7,), and doubling the
dimensions of our matrices, we can write:

i (l’(’ + MM —ip*M )

'
s‘ =3 - In '

4 —-ipM MM

where D? is defined by generalizing equation (3.34) so as to include background

(4.25)

Yang-Mills and background reparametrization invariance:
0 DM a0 0 M
oMt 0 0 &/ \M O

( 0 d:M—Ma‘;)
ds MY — MAd? 0

50 that, from (4.21) and (4.22),

(4.26)

DIM =M +i{l, M} +iA,M +iMA, +i(L, M), zm
4.
DM = QM —i(F, M) —iA M —iM'A, —i(L,, M),
where now I, stands for & matrix with elements
(ry,=or, (L),=-6F,, ad (LN=§,  (4.28)

L, stands for a matrix whase only nonzero elements are given by (L,);, as defined
in equation (4.7), and A, is the matrix with clements

(A0, =0, (A); =eAl +iT%D,*, (A} = -iecs A5,

] ) (4.29)
(A0 =i(VRef) (F)' and (A3)0 =i(VRe[)[(F,)
From 4B = A- B ~ io, A*B", equation (4.25) becomes
Sk = -41 Trin(d*d, + M?)
i did** + MM - Lo~ F3 —-iPp*M
= —zTr In .
—-ip-Mt dod + MM - %a“"F‘;
(4.30)
41

where F% = [d2,d%]. Now, treating everything but the d d* term as a single mass-
squared piece, M?, we can use the results of either the gravitino loop calculation or

of reference [12] to find the divergent one-loop corrections: we get

c !

rs = 3553 T\((M‘ + %(F:,F"‘" + Fo F™)) In(ud/ps®) + 2M’rm’), (4.31)
where the trace is over both intemnal labels and y-matrix space. Thia has an overall
minus sign relative to the scalar case, and we have divided by four to compensate
for squaring the propagator and doubling its dimensionality. Using the identities
Trq, =0, Tro, =0, Tro 0, =4(n,0, — N.%,), and Tr1 = 4, the y-matrix
trace can be easily evaluated, and we have

Loy = 53 To( (MM ~ Dt MD™ag? )
— MELF 4 FLF) InGd/ou®) + 2MM ),
which is just a modification of equation (3.60), with the trace over internal indices
only.
Now, returning to the last mass term in (4.9), we introduce the variable M,
also a (4 + (N +2) + Ng)-dimensional matrix in flavor space. We use the decom-
positions

(M* + MY o™} (M + M, 0™) = M'M + 2M}, 1* + ™ M,

+(M'M,, + MM — din %, 0", M), M, )™ (4'33.)
and '
PHM + M, 0") = P*M — 2iy, D} M* + e 4,1, D} M,,. (4.34)
Then, to let M — M + A-l“,a“", we make the replacement
TeM'M — Te MYM + 2Te M2 A1, (4.35)
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after taking the Dirac-matrix trace. The In u?-dependent pieces come from the
(M'M — Yio* F2)? term, and also from the P~ M P* M! term, in equation (4.30).

The replacement M — M + M, 0" thus also results in the modification

Te(M'M)? — Te(M'M)® + 4 T MMM} A~
+ 4 Te(M!, M™)? — Te(e*~ MIM,,)?
+ T T (MUM + MN, - %Pf, — 4" " " MY M,,)
X (M™ M + M'M* — %F*"" — 4™ n® M} ML)
(4.36)
The £ refers to the two different contributions that arise from the square of the last
matrix in (4.30). Finally,
TrD;M'D**M — Te D M'D**M — 16 Tx D; M D** M,
- "¢ T D; M}, Dt My, — 2 Te D; M DM (4.37)
- 2T D; M'D} M.
To use these results to incorporate the last mass term in (4.9), we set
0 o0 0
ZM, =0 0 (@), |. (4.38)
0 (m™), 0

From this, of course, we can find A.IL:
YZM} 0™y, = (ZM, ™). (4.39)

Since these additional traces will take on a much simpler form when we set f,,(z) =

§.,3, we will defer their flavor-space expansion to Chapter 5, where we shall specialize
to the no-scale models.

Let us now compute the flavor-space traces for the terma not involving Mw.

From (4.13) and (4.15), we find for the matrices M and M! (with one upper and
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one lower index each):

—wemt, gm0
M= ggnmf: 1G*m3; ggnm:: ; (4.40)
o smlX  6%m)
—pomld —pem 0
M'= Z7Y(ZM) = | LgEmiYx  AgHmix  AgEmix 1 (a41)
0 omix <mb
and from (4.28), we find that
-mg, 0 0
{r,,M}=2r, 0 -ig*mf, o0 . (4.42)
0 0 6m}

Of course, this last relation is just a reflection of the fact that since, for example, ¢,
transforms like %, under the chiral U(1), the mass m¥ must transform by twice as
much as ,, but that, since x, transforms in the opposite sense from ¢, the mass
m¥* does not transform. We also observe that the only nonzero components of the
matrix {L,, M} are:

(L,  M}} = (L,)i%mge + (L,)26%m}b,

{L,, M} = (L)} (m™)], (4.43)

(L,  M}; = (m™)(L,);.

From FY = F = [df,dﬂ, we find:

(FL)% = (VR (P2 VRE 2B K = (1 o ) + P
(FL) = —(RL )} +ie(f)y — 8,05 '
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(FL = (VRe [ )l PP (VR [ YU F,L) = (1 = v))
~ie(F R+ 650, + (K )
(FL)% = (820, + (L)} = e LADVRe I F,)! = (u e v);
(FL)8 = (88, —i(L) + e ANVRe [ (FL) - (e vy (444)

where R, and [, are curvature terms, defined in terms of the scalar covariant

derivative and the background gauge field by
DD R +e(FL), + el (Fud) = (R +efL)), (4.45)

and where J, = i(3,1, - 8,T,) is the chiral U(1) curvature defined in the previous

chapter. The curvature term K,
(KL) = i(628, ~ CLADNLIE - (4 = v). (4.46)

It is useful to note that when f,, is proporstional to the unit matrix, as is the case
for our toy model, this curvature term takes on a very simple form. We will make
use of this simplification later on.

The traces are:

TeM'M = 4(m*) + - G"C”m"‘m" +6“6“m“md
- 'r-'c"m}:'m;" + 6*G U mi X mlX; (4.47)
TH(M'M)? = 4(m*)* + lc"c"’c“c"m.','m ,miym
6“6“6"6"‘mdm‘_m):m~ —2(m*)%y “"G" 1o *"
- -m*(n“'g"ﬁ”m m + H c)
+5 n"’n“"c"G"mu m:‘.m'f;‘m*‘
6“6“”0"0” “"m"mL‘,"m"

l
~ 316 GG m mmiEm

45

— eI mit m,, m!;"m::‘

+ = 6“0.'0”0.‘ ﬂlm m(‘xm::

+ 26“6“‘6'/c"m::m“m::"m A

+= (6“6“0"0%'** mi*ml, + H. c.); (4.48)

Te D;M' DY M = 4D;m*D**m* + ID;(G"m:,")D*“(G”mZ‘,)
+ 669D, mlyD**m), — 4D (¢ " m!¥*) D*mYX
+ 64D (6" mit¥) D m; (4.49)
where, by equations (4.26-4.28) and (4.40-4.42),

D:m‘ =(3,+ 2il‘“)m".
D} (m¥)} = 8(8, — HL,)(m*)} +i(ALE(m)] +i(m*)i(A4,)},  (4.50)
D} (m*)} = §(8, + 2T, )(m"): +i(A)5(m*): +i(m*)5(4,):  (4.51)
+i(L)5mY): + i(m*)(L,)z, (452)
and

D} (m*); = 8,(m™)} +i(m*™ )L, + i(m*)3(4,)}, (4.53)

and the D,’s in the second to last term of (4.49) are just the appropriate gauge-
and reparametrization-covariant derivatives, since there are no chiral U(1) or L,
connection terms. The first term in each of equations (4.47-4.49) is just the pure
gravitino contribution, as given by equations (3.60) and (3.61). Finally, from (4.44),
it is possible to find the field-strength dependent traces needed to evaluate (4.32)
and the subsequent modifications explicitly. However, the general expressions are
rather cumbersome (even by the standards of the present work), and not particularly
iluminating. Instead, we give the results for f,, = s6,,, as is appropriate for our

toy model. In this case we find, after setting (K, )} = & K,, and (L)} = L,
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the following traces:

(FLY(F*)%, = 4J,0* — 2ARe ) (F*)(F, ) J((F ) (FL)y — (5 = v),

(4.54)
(FLUF**) = (RLWR) - 2ie(RLNN + (N +2)J,,J*
‘ + 22 (R —ief*). (4.55)
(FLR(F*), = No(J + K )NJI™ + K%)= (FLR(F~),
= 2Re o) (F*, ' (FL ) ((F™) (F) )y = (1 = v))
— gieRes(F,),(F, ) (F*)
+4(J* + K*)Res(F?),(F,)°, (4.56)

(FLY(F+=)s = 2(D*VResF*) (D, VResF, )
- 2D VResF*) (D" VResF,,)*
+2L,L* Res(F™)*(F,)), — 2L, L" Res(F*)"(F,,).,

(4.57)

where in writing the last expression we have used the fact that the gauge-covariant
derivative 1-)_ automatically accounts for the gauge-field dependent connections
given explicitly in the last two lines of (4.44). Of course, this last trace and the
trace (F4)5(F+*)2 are identical.

We now retumn to the auxiliary field whose one-loop contribution is, from equa-

tion (1.19),
Sha = —% Trin(y,485°7,)- (4.58)

To evaluate this using the covariant derivative expansion technique we will need to

use the following substitution rules: for a background-covariant derivative operator
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d,, we take
K

d, —ip, +iG,, %

- _ - (4.59)
. n (—i) o
=ip, — ,;, m(dm‘ : “‘».Gvu)_opm. - op,."

with G, = [d,,d,), and for a matrix-valued function of spacetime coordinates F(z),

we take

(=)
8, 0P,
This is similar to the procedure we used in Chapter 2, where we made the analogous

FoF=Y" ;:-'(dn. --d, F) (4.60)
n=l

transformations (2.18) and (2.16). However, we must be careful, because, for exam-
ple, d, = 8, + il 7, does not commute with v*. This will cause problems, since in
order to use this substitution rule we need to bring an operator ¢*¥*)%  applied

from the left on the argument of the log in equation (4.58), through any vy-matrices

to act on quantities such as the momentum and the masses. Even though moving

"d, through a 4* only changes the sign on some of the connections, a nice way of

finding the appropriate substitution rule is by noting that d, commutes with 1°v*.
Then, since In4°1° = In1 = 0, we can write

Trln 45", = Trin 1%, ((+°45") )" 1%,. (4.61)

Now, from (4.16), we see immediately that 4°A3? contains terms like 1l = 12y4d,
and v°M. Our operator ¢™*¥*)% can move through all the v%y* pairs freely so that
the first part of the rule, equation (4.59), remains unaltered. However, the second
part, equation (4.60), must be applied not to M but rather to 4°M. Now, after
the shift, we can get rid of all the 4°'s by introducing yet another 1°, as we did in
(4.61). The result of all of this is to evaluate (4.58) by using the substitution rule
(4.59) for the covariant derivatives, but instead of (4.60) for the masses we use

a 1 oxp O
o 5(dd,, M)m +-0). (4.62)

M — M =1"(1"M - i(d, 1°M)
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This just amounts to changing the sign on, for example, all the chiral connections
in the covariant derivatives acting on M.
From (4.16) we find the expansion
Ay = A% + A MIFAYMEE AT + 8 MIEAY MIXAY MBI A M Ay

+ A MO MO AP ME AT M AT - AT AL AT
+iAY MPZAUMEAPRIAT + a7 AP MI AT MPAY
- O MIAY MR AP LA Ay
- AT APMIAT M AT
- AT RATMT A M AT AT
+ AT RLARRI Y074, 07 + 0(9'/02"). (4.63)

After the substitution rule, now given by equations (4.59) and (4.62), is used,

(830 = = lid~ M,) = 0, (3 - C), (4.64)
where | )
C=M,- 1"(0.)...5% =M, -, (4.65)
and
Gyl =10, 1, -0, )y =J %, (4.66)

with (G,),, as in (4.59)—this is just like J,, in Chapter 3—and M, as in (4.60).

In addition, since f A s part of a covariant derivative, its substitution rule is
i - g, (4.67)

which contains at least one p derivative, so that the last four terms of (4.63) give

only finite corrections and can be ignored. We then have the expansion
1

1 Y/ A
AYY, =727 +1.2(C+C
1.8% 7, 7{{ 1,( 3

2 1
C+-- _7“
)’ (4.68)

2 1..1
=ptugh
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where

C-C+ . (4.69)

We also need to expand the last three terms in (4.63). The last two terms, being
of order M*, will yield only log-divergent corrections. The second term, being only
of order M3, will give both quadratically and logarithmically divergent corrections.

Again, after using the subetitution rule, remembering that (A3'),, = Z,,(A3')5,
(B3] = (i, — (M,)}) — (88} — (M)} + §1,), (4.70)

where again (J, ), and (M,)} = Z'XM3, are as specified by the subatitution rule.
We find, up to log-divergent terms, ’

2 1,1
7881 = ~3 +7,.;l\;7“

1 !

ol L Ly bl X — crx L oLy
-7(f+,K‘)M}'}‘(*+*(M ¢"+M"#M)#)K am
ol g dgl '
x2Z M}‘;"(#+#K#)1'

e g S ez - a2 ) B .
We expand A}" up to O(M*) and O(8Y8x*). Dropping terms that cannot con-
tribute to the effective action due to their Lorentz transformation properties, we
find, for (4.71), that
1

2 1
10801 = ~3 + ‘7“;1(;7" + M+ My+ M,

(4.72)
+NAMN+ M+ M+ F+ R+ F+ -,
where
1,1, 4AM, M) AM3 oM}
Koy — N ¢ ¥
A LA Rl i M
1 1 M, 1
Fy AN, = )y = S 0n 0 4.73
‘7,.,‘( v ¢w)#’1 7 Y NYY # ( )

LI Y 1o W N P P
3 Mt gbedag
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and

1,1
M= 2 ;f(M,'f"Z"M,‘;"q“"M,':"Z“Mf}

— MY ZU AL S MU 2 MY

— M ZUME ZMNMISZIT MY~ SMIMI 2 M

— MIMYX 2/ M — M MYEZ'" MIXZ" MPY

— M M Z"‘M:,Z“M{:"),
M, = _#-,'»,'(M:,xz"u,',gz"uf: + M, M2 M

+ M,M,*,"Z"M):’").

M, = -&-ri MYPZUMY,
and
Ny= =7 5N SN 37
Ny= =" SN, 2 M — 7 S ML SN,
wy = mztr (30,5 + L4 ),
Ny = MEMIPT S,
with
N,=M,-M,,
N,, = (M* - M*),,,
NJ = (% - M¥™);,
and also
R L Lo
B = SR My g,

F= f%@i%%‘%v"~
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(4.12)

(4.75)

(4.76)

(4.11)
(4.18)
(4.79)

(4.80)

(4.81)

(4.82)
(4.83)

(4.84)

Here, we have used y M = M"y“, and the fact that M, is real. To evaluate the

divergent corrections that we are interested in, we write (4.72) as
1

;'Y
+M+N,+N,+N,’+f.+f*.+}',+-~)) (4.85)

2 1 1 1
Ay, = -;(1 = 3B NgK 7 = HM ot Myt M,

2
¢
and then use the Hausdorfl expansion,

1+ X),

mAB=InA+lnB+ %[lnA.lnB]+ -l-li[lnA.[lnA.lnB]]

l (4.86)
+ 35l B[l Bln Al + -,
and the identity In(1/$) = —} In g, to find
Trin7,8%7, = Trin(=2) - & Trlnp® + Trln(1 + X)
2 (4.87)

- 3 Tlng (1 + X)] + -
The field-independent pieces are the same as those in the pure gravitino calcula-
tion, equation (3.71). Since they cancel with the field-independent graviton sector
contribution {20], we will now drop them. Furthermore, we use the identity
1 1 '
2 y1_tr2 233 ..

[lnp®, X] = p,[p X]+ 2p.[p doh XN+ (4.88)
and the fact that only the A and F pieces contribute to the commutator terms
(because they have momentum derivatives) to find the relevant terms in (4.87).
The terms that give divergent contributions are:

1
Iny,A5%y, = —ép(M. TMu+ N+ N+ N+ N+ F+ FL+ Fy)
1
2
1 2 2 1
- g()ﬁMz)2 - §M3(;Mz + Mz;) (4.89)

+ é%[p’,(N.+N,+N,+N,'+}'. +Fi+ 7))l

1
— SM M) + MM,

5
+ el 5 W+ M+ F
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tlere we have dropped terms that depend oaly on K, cotrections from which have

already been computed in the previous chapter. Some algebra shows that

_l_° O g9x N:J'_l. v Z‘_’f__ﬁ In Y+*
Ne3 P4t M), (@M 5 (v + 858 — 2ot~ 2n ), (eo0)

;,—[p’.N.la ;:.—(7°4.1°hl").,(d.M'*") #(8———-7 - 2rr~)1'. (491)
FILRENATE LR RS WER LG D LS (R

and

1
(¥, and #[P'.N;I}B-M,'“(7°d.d.1°hl)£'1’£r(8%—2vr“")7’

(4.93)
M2(d,d.M'), (8— - -2 - 27“p')7’
F‘L("-(P’-/\Gll 3 MU0, d2°M) r(al%:)" (4.94)
Mr"(duduM');"’}l’(sp”T’f)'l'n
and
1o 1 ,.,1 3 . pp
Ny 3 MIEM 2y GL(;""’ i ;’r“F)v'. (4.95)
LI xpqtex g e L BB,
PP Ml 3 SMEMIP 2 Gl g (4.96)
and also
M ad %“’ M3 - MM (GY)u P'p_la‘r’. (4.97)
and finally
(4.98)

f*.-z{;lp' Fi3 (G*‘)..(M“)"‘ or w(ﬂ"’ 2# ﬁ" )
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and

R ARy AR B

P 18y
(GG T h“('r"v"'f' 5 ,1 ‘r”P’ °1"p - 7"%?"
-3rhe g "d’))v L 499)

where we have dropped total momentum derivatives. The p~4[p?,[p?, A]] terms,
where A € {N;, N}, F,,Fi}, do not contribute to either the O(u?) or the O(ln u?)
effective action. Also, the derivation of the expressions involving A, is complicated
by the fact that G, contains a v,.

To evaluate the momentum integrals we again follow reference [27]. The regu-

lated integrals that we require are (after a Wick rotation):

Lo B reop A
@) pen

v (20! (247102
{ L e w2y (—16‘—,‘). k=1;
- : s 2D o=l L
s T A iy (—ter ) k2
(4.100)

where A*1"*1 is understood to be totally symmetric in its indices.
It is now straightforward, if tedious, to obtain the divergent corrections. The
only quadratically divergent correction arises from the M, term. We find that

3
'n/ (2r)‘( "M’)_ 2(2';6:;2)1"('"'“"""‘)- (4.101)

The O(M*) log-divergent corrections are

'Tr/(21r)‘( 3

- ( E(L’_/"’_“.o_)) 'I}(m“"‘m""m"”‘m“"‘ — MV A ¥
16x2

— mY* mX*m*m¥ — 3mImY*mY% — m (mmXm!X 4 N c.))'

(4.102)



2 2
i’I’r/(—;‘,—r% (-%‘M}M,) = —(ﬂ‘;—e/;?-‘g-)')m:'l‘r(m'"m“). (4.103)
2 2
.T/(2 (- -M,(#M,+M,%))=4(E‘(—’l‘(s—?:-‘—°—))m:’rr(m'“m“). (4.104)
iTr (‘:l;. %}M,fM,) =
5('2%2"&) (Tr(2m'*"m"m'*"m“ — MY m¥Em ¥ m1¥x)
+ Tr(m"¥*m¥™ )') (4.105)
and
d&* 1
s (M M) =

- (%)(m Te(m"m*m!¥* 4 m¥*m h‘m&x)

+4m? n(m'*xm**)). (4.106)

In all these expressions the trace refers Lo a contractioa of Lorentz indices, so that,

foc example,
Tr(m™m*) = g (m*m¥), = %,,wg"’m};*m" (4.107)

The casual reader is also reminded that we must use Z'/ — 10 to contract the
chiral fermion indices.

The log-divergent corrections from the derivative terms are

[ A e

In{?/2u3
%(“"—“(_'fs{r 218)) G110 mly )PP (44 m¥e) — 68(d-Hmlye)(d*m¥)
+A(d miy ) mE)),
(4.108)
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ln(l‘ /2“ ) . “m t ve "
- 144(——-1-5'79-)01(8(4-4- W) em¥x - 31(d; d P mi¥)mYx

< 3 I mIYYm¥X — amlYne(dtdt m¥Y)
+ 28m¥X (dF d**m¥) + 23m!¥*(d} d**m *‘))
(4.109)
and
pr ) 1 ) 5p
'“/a;i;: (-5 + ‘BF[P’-/V:] + QT,:[P'-[P'.M]]) =

In(u?/243) it 1, X
(_———161’ 2 )J“'G Imly*mlX.

(4.110)

Finally, it is easy to show that the contribution to the O(In u?) effective action from

N} vanishes due to the antisymmetry of (GY'),. in its Lorentz indices, and that the

log-divergent contributions from F, and F] cancel each other.
The contributions from N, and N, to the auxiliary-field effective action of

equation (4.58) add up very neatly to
[
31 [k (- 5H 4 M)+ P, N+ AL
—P‘—[p .[P »(N +A/:I)n)
= (ln(l‘ /2b )G"(d"' Wx)(dw Wx)

(ln(u 1215)
32x2

(a.111)

L) (46, (@D, (@)D, ),

where we have made use of integration by parts, neglected total divergences, and
used equation (4.9) to write the final result. This term has a bosonic analogue in
the contribution from mixed scalar and graviton loops, given by the first two terms
of equation (2.68) in reference {20], and exactly cancels that contribution. Notice
that in (4.111) the derivatives are both gauge- and reparametrization-covariant, and

contain no chiral U(1) connections, by virtue of equation (4.42).
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CHAPTER 8

Results for no-scale supergravity

We now lpécialiu our results to the no-scale supergravity model discussed in
Chapter 1. Taking h = 0 and writing out the s-field dependent terms explicitly, we
find, from (4.9), that

R o T
m:x = —”.,ﬁnz,. :: = 2(& )3/20 (T ‘) '
w2 Ao S o F® and mM=0, (51)

X = — === Gy(T, . Y -
= RO = R
which we can use to rewrite the mass-term traces, equations (4.47-4.49). For exam-

ple, equation (4.47) becomes

TeM'M = (IG"(G;, +66,-G .',‘)l’ +4+No+ 0.0 +gﬂcl)‘°

Gt ,),o 3073 — 4G, D, D (5.2)

+ (36,0, + 86,) (T.a)(T™s.
The full expressions for Tr(M!'M)? and Ty D, M'D**M are unwieldy; we shall
include them in the total one-loop result at the conclusion of this paper, instead
of expanding them here. The additional traces from terms involving M,,, from
equations (4.35-4.37), must still be calculated. Using the no-scale masses, we get

the following results:

Te'M'M = %(: +3)Fo F, (5.3)

Te'(M'M)? = 3,50"5+2s + 3)e¥ + %J"/’w,.w-‘

(- !
16(s + 3)
+ SOV T P B
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-(.+a)( Fdr(is ~ is) + D*F2*) (D F2, -~ D,F2)
+ ﬁ(a +IAPFLFC LR + 105:,#““1?,,,1?":'

+ 12F5 PR, By — 38F2 P F,  F7")
+ cc,(r'z)'(rz)’f‘ Y- -(N + Ng +6)J,J*
- -nn"'n +:eTeR ]“’+ T i

3
- 5zv,,(e'ﬁ;',»r:" + K K™ + 21,,1(“"); (5.4)
Te'D; MYD** M = (s + 3)(o D, Fo D Fre 4 LD, Fo P i — D o B, F0)

0 OF

Y5+ ,)(F""P w, — 10F2F,) x
(50,80°5 — 20,30°s — 20,30 3)

+GR DRy - LD R — BT EL)0 (s 4 3)

2(,::_ 3) “(F“”Q (T‘z)')8 (18 — is). (5.5)

In (5.4) the traces are over both barred and unbarred scalar-field indices, and, to
make this result notationally consistent with the bosonic results of references [18)
and [20), we should take ¢ — 1. In Chapter 6, we adopt this convention.

We now have all the terms that contribute quadratic or logarithmic divergences
to the fermionic Lagrangian. After adding the direct and auxiliary-field contribu-
tions, as we did for the pure gravitino loops in Chapter 3, we can combine the
total with the bosonic contributions derived by Gaillard and Jain [20,21]. We shall

present this inclusive result below.



CHAPTER 6

Conclusions

In Chapters 3-5, we successfully identified all divergent one-loop fermionic con-
tributions to the effective scalar Lagrangian for a general supergravity theoty with
canonical kinetic energy for the gauge fields, and outlined the simplified results for
a real Kahler potential of the no-scale form. We now specialize to the prototype su-
pergravity theory from superstrings [8,9] that is defined by (1.1-1.4), with A=0in
equation (1.1), and, combining our results with the basonic contributiona calculated
" elsewhere [20,21] we use the special properties of the Kahler potential G of equation
(1.4), as given in Appendix B of reference [3], as well as the gauge invariance of both
the Kahler potential G and the superpotential W, to obtain the following impos-
ing result for the total divergent part of the one-loop contribution to the effective
Lagrangian:

Re 132 .88
L= p:,p:v[sT,‘ (m'q ~In(ew?)(5-¢" +9V + TD+ wc))

]
S (-
8,303 p’__r! In(p p) ((79

+Ng)ed + (v+v)+w+4/c)]

(s + 3)2 L4x?
s s In y
+G,‘.D“l o ] m(N_8)<._ 3(;‘:’)((13_§N)¢°_ 5(54‘ EN)V
- l(8+gN)D)]
+‘":g‘ "’(a G\D,:" D2t ((1o+ Ng)ef + = ?+4;°D+9W g'C)
+ 9D w‘( [T + Na By + SWTS 4 W3]
142
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o
- TP G».Gr)
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- ((3W, W + W,,Wi)(K) + H. c.))] +(CL), (6.1)
where (£},)’ includes all the terms which contain three or four derivatives with
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respect to the spacetime coocdinates:

. ln(u e 579 _ (8,5043)?
' ™ 1, ad — —_
() = [g(N 101)(C g D, 2™ D¥2%) + 12( 5Ne) T
2429 18,39"s)*
( + SN + 45Ng) T
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1 775
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“""([l (ﬂ + —N +5Ng) + ¢ G z (—-— +5N +5Ng))
X D*GnyD,2"™D, s

+ g(c (T*2)* + 3(T°)})G,, D D

+(143 G ,)(1351 ';—5N+ |5NG)(%’+2—":)7D')
+ mv,r"'c,,(v #(Tzy - D, J(T°z))
3id,(5-9) - ..
- S6r DFeD). (6.2)
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In the above expressions the indicu labeled m,n,p,q = 0,... ,N run over
both the t and the ¢ fields, while i,j,k,{ = 1,... , N run only over the ¢ degrees
of freedom. The scalar reparametrization-covariant derivative d, is defined in the

usual way,
(@) = (D) + [y (9) D8 (2). (6.3)

The matrices T* and K represent the gauge group generators and Casimir oper-
ator, respectively, on the chiral supermultiplets; and k! = Tr K/Ng and kg' =
Tr Kg/Ng, where Ng is the number of gauge degrees of freedom and K represents
the gauge Casimir on the gauge supermultiplets. The gauge coupling constants are
assumed to be unified at the scale at which we are working, but the chiral multiplet
representation of the gauge group is in general reducible, so K is not proportional
to the unit matrix. However, we have assumed that the T are traceless.

The classical scalar potential V defined by (1.1) and (1.4) with h =0 is
V=V+D=c*+V+D, (6.4)
with

- - -
V=eEWW, and D= (+_)DD" (6.5)

where D* = G;(T*¢)' = G,(T°¢)" by gauge invariance. In addition we have intro-
duced the dimension-two operators W = ¢W,,;W and K = 2G,(K¢)'/(s + 3).
As throughout this work, the index-raising operator on scalar-field matrices is the
inverse scalar metric; thus W* = ¢7W y» and so forth. The nonderivative terms in
L}, differ from those given elsewhere [J] by the inclusion of the graviton “mass”
contribution, m% = -2V.

Finally, the field strength F2, is normalized as in (1.8) with f,,(z) = s6,,, i.c.,

with noncanonical kinetic energy. As stressed in the text, we have not included
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the loop corrections arising from this latter coupling; these will contribute terms of
order Ng involving derivative couplings of the s-field, as well as terms involving the
dual field strength ¢, F?*, and will be presented elsewhere.

The complete one-loop corrections for the simpler case we have considered,
where f,(z) = constant, can be obtained from the results of the previous chapter;
the full fermion-loop corrections for nonconstant f,,(z) have been evaluated there,
and all such terms, except for those proportional to F3, 3,(s + 3), are included in
(6.2). The rationale behind this exception is the following: when we modified the
results of the previous bosonic calculation [20,21] by setting e = 1/vRe's and then
rescaling (that is, letting F2, — VResF2 ), the covariant derivatives D, acting on
F2, generated terms like F3 9,(s + 3), which we have neglected. Since we do not
have all the terms of this form, it w’ould be inconsistent to include only the fermionic
terms in our total. .

In (6.1) and (6.2), n and p parametrize the uncertainties in threshold effects and
finite terms that are dependent on the regularization prescription (in the double-
subtraction scheme used in our explicit calculations, n = 2In2, and p = }) De-
termining these parameters requires a knowledge of the details of the underlying
short-distance physics that serves to damp the apparently divergent integrals. How-
ever, many qualitative results found [16,17,3] by studying the one-loop effective
potential are prescription-independent.

On the other hand, treatment of the quadratically divergent terms requires more
care, since they do not scale uniformly [13,27] with threshold eflects, so it would seem
that a different uncertainty factor #; should be introduced for each quadratically
divergent term. However, the symmetries of the theory can be used to reduce this
uncertainty. The approach takenj in references {13} and [27] was to assume that the
underlying theory is finite, and to use a Pauli-Villars regulation to parametrize the
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effects of the heavy modes. When these modes are introduced in a manner consistent
with supersymmetry, there are additional terms, due to mass-dependent couplings,
that are not quadratically divergent, but scale as does the cutoff, u?. In this way
it was possible to fully determine the leading-N contributions from chiral multiplet
loops to the part of the one-loop effective Lagrangian that scales as u?. Note that
mass-dependent couplings do not induce additional terms in In u?, so in principle
the full leading-N “divergent” one-loop Lagrangian (i.c., the past that grows with
#?) is known. A similar treatment of the leading-Ng (number of gauge multiplets)
contribution will be given elsewhere, where additional divergent contributions to the
s-field kinetic energy, which arise from the noncanonical form of the classical gauge
kinetic-energy term, will also be included.

Before physica can be extracted from the results we have obtained, we must
find a similar procedure to regulate all the quadratic divergences. Note, however,
that it may not be necessary to fully regulate the theory in the sense that the
regulated theory including massive Pauli-Villars modes is actually completely fi-
nite. To identify correctly the “divergent” part (which is all we can hope to do
without a complete understanding of the short-distance physics), we need only can-
cel the quadratic divergences, since the coefficients of the log divergences are not
prescription-dependent. For example, in regulating [13] the leading-N part, massive
modes were introduced in a way that cannot be easily generalized to the nonleading
gauge- and superpotential-dependent couplings of the gauge-nonsinglet chiral multi-
plets. On the other hand, many of the quadratically divergent contributions arising
from these couplings cancel among scalar and fermion loops.

In addition, all the results presented here must be generalized so as to include
background fermion fields {3,27) and a nonflat background metric [27], in order to de-

termine the wavefunction renormalizations and Weyl transformation [13,27] needed
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to recast the terms quadratic in Kahler and spacetime derivatives into standasd
form [28]. Then, for example, once the full effective one-loop Lagrangian has been
determined for scales above the scale of hidden gaugino condensation—A = 0 in
equation (1.4)—an analysis similar to that of Dine et al. [9), following Affieck et al.
[35). can be performed to determine [13) the cffects of one-loop cotrections from the
unconfined hidden Yang-Mills regime on the effective theory below the scale of hid-
den gaugino condensation. In particular, one will be able to address questions such
as the stability of the potential {36,37,3] and soft supersymmetry-breaking terms
[17,38-40,10,3,41].

As stressed in Chapter 1, the mode! [8,9] we are studying here is a prototype,
not a realistic model for particle physics. Nevertheless, the various techniques de-
veloped in this paper can easily be generalized to more realistic superstring-inspired
(42,43) or superstring-derived [44-48] models. Moreover, the symmetry structure [41)
of the prototype mode] is similar to that of many more realistic models. It has re-
cently been conjectured 41) that an exact classical noncompact, nonlinear symmetry
of the model is responsible for the cancellation of observable soft supersymmetry-
breaking effects found by explicit calculation [3] at one loop in perturbation theory
for the effective theory below the scale of condensation. Indeed, when effects due to
symmetry-breaking by a lies at the quantum level of the hidden gauge sector

are included, a nonvanishing contribution to observable-sector gaugino masses is
found {41]. Its magnitude is such that a sufficiently large gauge hierarchy is gener-
ated even if the gravitino mass and the scales Agyp and Ac are only a few orders
of magnitude below the Planck scale, as suggested by a numerical analysis {3] of
the effective one-loop potential. It is important to determine whether or not any
other, potentially larger, observable supersymmetry-breaking effects are generated
by purely perturbative loop effects. If realistic models can be constructed in which
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there are no such effects, they may provide the best candidates for a natural and
fundamental explanation of the enormous disparity between the natural scales of

gravity and of obeervable parsticle physica.
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