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Abstract A three-phase flash algorithm (Nelson, 1987) has been 

incorporated into a program for calculating high-pressure phase 

equilibria (Dohrn, Brunner, 1989a). The method presented here includes 

the ~ priori determination of the number of phases present and the 

solution of the flash equations once the number of phases has been 

determined. Although an extension to more than three coexisting phases is 

possible, the method given here is restricted to multicomponent systems 

with a maximum of three phases in equilibrium. To illustrate the method, 

phase-equilibrium calculations are shown for the ternary systems 

Hexadecane-Water-Hydrogen and Toluene-Water-Hydrogen at elevated 

pressures and temperatures. 
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INTRODUCTION 

The multiple-phase flash problem can be solved by using either of two 

techniques. The traditional flash algorithm is based on the thermodynamic 

condition of equal fugacities for each component in each phase. By 

assuming the number of phases present at equilibrium and estimating the 

initial values for the distribution coefficients, the material balances are 

solved for the phase fractions. The resulting phase compositions then 

provide better values for updating the distribution coefficients, using an 

equation of state. Convergence has to be achieved for the phase 

compositions (or distribution coefficients). 

Alternatively, flash algorithms may be based on a Gibbs-energy 

minimization as proposed, for example, by Gautam and Seider (1979) and 

Michelsen (1982). The Gibbs energy is at its minimum when all flash 

equations are satisfied. Although minimization methods are superior to the 

fugacity-matching methods whenever chemical reactions have to be 

considered, they appear not to be competitive for normal physical 

equilibrium calculations (Ohanomah and Thompson, 1984). 

The flash algorithm discussed in this paper is based on the fugacity

matching method. To avoid unnecessary computations for three-phase 

equilibria when only one phase or two phases exist, the search for a two

phase solution is only performed when all single-phase tests failed; the 

three-phase flash is started only when there is no solution to two-phase 

equilibria. 
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THE ISOTHERMAL-ISOBARIC FLASH 

Four types of equations are required to describe the three-phase flash 

completely; they are 

Phase equilibrium 

(i=1,2, ... ,C) 

Component material balance 

I I II II 
Fz·=Vy·+L x·+L X· 1 1 1 1 (i=1,2, ... ,C) 

Total material balance (summing up eq. (2) over all components): 

I II 
F=V +L +L 

Stoichiometric 

K K I K II 
L y i = L Xi = L Xi = 1 
i=l i=l i=l 

All symbols are defined at the end. 

(1) 

(2) 

(3) 

(4) 

Using eq. (1). eq. (2) can be solved for the mole fractions of the vapor 

phase. liquid-phase I and liquid-phase II : 
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Yi= I II I II II I 
(i=I,2, ... ,C) (5) 

V~Ki+L~+LKi 

II 
I Zi F~ 

Xi = ----------
I II I II II 1 

(i=I,2, ... ,C) (6) 

V~~+L~+L ~ 

I 
II Zi F Ki 

Xi = --I -1-1 --1---";;1-1 --1-1-1 (i=I,2, ... ,C) (7) 

V~~+LKi+L ~ 

Summing eq. (5) to (7) over all components and using eq. (3) and (4), 

equations (8) to (10) follow after rearranging : 

I II K 
Pl('I','I' )=L,Yi-1 

i=l 

- 1 = 0 (8) 

I II K I 
P2('I','I' )=L,xi-1 

i=l 

K II 

" Zi Ki 
=£.J I II I II I III II 

- 1 = 0 (9) 
i= 1 Ki Ki + 'I' Ki (1 - Ki) + 'I' Ki ( 1 - Ki ) 

I II K II 
P 3 ('I','I' )=L, X i- 1 

i=l 

K I 

= " Zi Ki 1 - 0 (10) £.J III III I III 11--

i= 1 Ki Ki + 'I' Ki (1 - K;) + 'I' Ki (1 - Ki ) 
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where the phase fractions '¥ I and '¥ II are defined by 

I 
'I' 

I 
L 

=-
F 

II LII 
'1'=-

F 

(11 ) 

( 12) 

Equations (8) to (10) are the objective functions which must be satisfied 

simultaneously for the three-phase flash. Two problems arise when using 

these objective functions. First. only two of them can be independent 

because there are only two independent variables. '¥ I and '¥ II. Also, all three 

functions have a superfluous root at one of the vertices of the triangular 

domain of interest. This behavior causes difficulties when a gradient-based 

root-finding technique is applied. Depending on the starting value for the 

phase fraction '¥ I or '¥ II, either root will be reached. 

More suitable for numerical solution are the two independent functions 

derived from eq. (8) to (10) : 

I II K I K 
Ql ('I' ,'I' ) = I, Xi - I, Y i 

i= 1 i= 1 

I II I II 
= P 2 ('I' • 'I' ) - P 1 ('¥ • 'I' ) 

K II I 
" Zi Ki (l-K;) 

=£.J I II I II I II I II =0 (13) 
i=l Ki Ki + 'I' Ki (1 - Kd + 'I' Ki (1 - Ki ) 

I II K II K 
~ ('I' • 'I' ) = I, Xi - L Y i 

i=l i=l 

I II I II 
= P 3 ('I' ,'¥ ) - P 1 ('I' • 'I' ) 

-' 
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=0 (14 ) 

The values of Ql, and Q2 at the vertices of the triangular domain are 

shown in Table· 1. Figure 1 depicts the Q-functions for normal three-phase 

behavior. 

Q 1 is normally positive at (0,0) and negative at (1,0). Ql changes sign 

somewhere along the 'P Caxis. The same is true for Q2 along the 'P II-axis and 

for Ql - Q 2 along the diagonal. The solution of the three-phase flash (the 

equilibrium point for all three phases), lies in the triangular domain 

where both Q-functions intersect and equal zero. If no such point exists 

within the domain, a vapor-liquid 1 system can exist, if the Ql-functi on 

equals zero along the 'P I-axis. For the presence of a vapor-liquid 2 system, 

Q 2 equals zero along the 'P II-axis. Ql - Q2 equals zero along the diagonal, if a 

liquid I-liquid 2 system exists. Under certain conditions, no root can be 

found along the axis or the diagonal; in that event, only a single phase 

exists. 

Since the single-phase tests do not require iterating calculations, they 

precede the two-phase flash calculations. To check for single-phase 

behavior, it is only necessary to evaluate the Q-functions and the 

difference QI-Q2 at the vertices of the triangular domain (Table 1). 

The tests can be presented by 

a) single vapor phase : 

and 



b) single liquid-phase 1 

K. I 
L Zi ~ <1 and 

i=l 

c) single liquid-phase 2 

K II 
L Zi ~ <1 and 

i=l 

6 

K II 
~ ~z·-<1 ~ 1 I 

i=l ~ 

I 
K ~ L Zi-<1 

. 1 II 
1= ~ 

As indicated above. the solution of the flash equations for the two-phase 

flash is a point on either the 'II -axis or the diagonal. Again. criteria for 

three different systems can be represented by 

a) vapor phase and liquid-phase 1 : 

K Z. L_1 >1 and 
. 1 I 1= K. 

1 

wi th ~(q/, 0)<0 at the point 

b) vapor phase and liquid-phase 2 

wi th 

K . 
L2>1 
. 1 II 
1= ~ 

and 

at the point 

K I 
LZi ~ >1 
i=l 

QJI/, 0)= 0 

K II 
~Z· K· >1 ~ 1 1 

i=l 
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c) liquid-phase 1 and liquid-phase 2 

wi th 

I 
K ~ l: zi ->1 

. 1 II 
1= ~ 

at the point 

and 

K II 
~ ~ z·->1 £.J 1 I 

i=l ~ 

For finding the roots of the Q-functions. the Newton-Raphson procedure 

can be used: 

a) (15) 

(16) 

with (17) 

b) ( 18) 



8 

(19) 

with (20) 

c) (21 ) 

(22) 

wi th 
( ) K ( II 1)2 

d Ql - ~ = L -Zi Ki -Ki 

I . 1 ILl I I 11)2 
d'P 1= \Ki - 'I' (Ki - Ki ) 

(23) 

Only if none of the above single-phase tests or two-phase flashes lead to 

the solution, is a three-phase flash performed. The criteria are : 

( III) 
Ql 'P ,'P =0 (13) 

( 
I 11\ 

~'P,'PJ=O (14 ) 

The solution of eq. (13) and (14) is iteratively determined by applying 

the Newton-Raphson procedure : 



" 

wi th 

9 

=(;:t -d(~r ~;:) ~ (~L 
d(~) -1 = (:~i) (:~~) -1 

d( ;:) M (:~i)(:~~) M 

1 
--

D 

with 0 as the detenninant of the Jacobian Matrix : 

dQl dQ2 dQl dQ2 
D=-----

I II II I 
d'P d'P d'P d'P 

(24) 

(25) 

(26) 

(27) 
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and the derivatives 

(28) 

(29) 

K IL 1)2 ( 11\2 
= L -zi\Ki l-KiJ 2 

i= 1 ( I II I II I II I II ) 
Ki Ki + 'I' Ki (1 - Ki ) + 'I' Ki (1 - Ki ) 

(30) 

PROGRAM DESCRIPTION 

Based on the algorithm described above, a subroutine for flash 

calculations has been written and adjusted to an existing program for 

high-pressure phase-equilibrium calculations. The flash subroutine is 

linked to the main program and to the subroutine in which the distribution 

coefficients are evaluated, based on some selected equation of state. 

For the entire calculation procedure, two sets of distribution coefficients 

( K i I and Kill) are required, even if fewer than three phases are present. 

Figure 2 presents a schematic of the flash subroutine. 

With given pressure P, temperature T and feed composition Zi, as well as 

first estimates for the mole fractions of all three phases (XiI, XiII and Yi) 

and the phase fractions ('II I, 'P II), the equation of state used provides updated 

initial values for the two sets of distribution coefficients. 
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The first step is to check for single-phase behavior. This step is easily 

achieved since no iterating calculations are performed. 

In the preceding two-phase flash, it is necessary to determine the root of 

the Q-functions or the difference of both Ql - Q 2 along the axis or the 

diagonal using the Newton-Raphson procedure. At least one of the two

phase flashes will lead to the solution of the appropriate Q-function but at 

most for one of these flashes will all criteria be satisfied. Once the root is 

found with constant sets of distribution coefficients and the criteria 

mentioned earlier are all met, the mole fractions of the three phases are 

recalculated using eqs. (5) to (7). For the nonexisting phase, the mole 

fractions will sum up to less than unity and should be normalized. With 

these improved estimates for the phase compositions, new sets of 

distribution coefficients are calculated using the equation of state. The two

phase flash continues with a new search for the root of the Q-function 

until all distribution coefficients converge within tolerance. 

If all two-phase flashes fail, the three-phase flash has to be performed 

by iteratively and simultaneously searching for the roots of Ql and Q2. 

Similar to the two-phase flashes, the solution of the Q-functions will lead to 

better estimates for the phase compositions of all three phases calculated 

by eqs. (5) to (7); thereafter, new distribution· coefficients can be 

determined. The flash problem is solved when distribution coefficients 

converge within tolerance. 

For a two-phase flash, we use initial values of 0.5, for phase fractions 'PI 

and 'I' II. If a three-phase flash must be performed, a good starting point 

('1'1,'1' II) is found from the two-phase flash which solved the Q-function 

without solving the flash problem. 

Finding initial values for the mole fractions is simple if experimental 

data are available for all phases. If the existence of a second liquid phase is 
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in question, suitable starting values for the composition of this phase are 

obtained by assuming that one component is in excess.. The mole fraction 

of this component is arbitrarily set to 0.998 at the beginning of the 

iterating procedure. 

EXAMPLES 

Using the method described above, we have calculated phase equilibria 

for the ternary systems Hexadecane-Water-Hydrogen at 2000 C and 200 bar 

and Toluene-Water-Hydrogen at 2000 C and 100 bar using experimental data 

from Dohrn (1986) and Liebold (1988). The first example was calculated 

using the Redlich-Kwong-Hederer equation of state (Hederer et al., 1976); 

the second example used the Peng-Robinson equation of state with modified 

parameters (Dohrn and Brunner, 1989). 

Table 2 shows the pure-component parameters for the equations of state. 

Figures 3 and 4 illustrate the experimental and calculated phase

equilibrium data. Interaction parameters 9ij were fitted to the experimental 

data of the ternary system. 

In both examples the calculation procedure consists of two sections. In 

the first section. the flash calculations were performed using the 

experimental data for the phase compositions as starting values. Where 

only two experimental phases were present, the composition of the third 

phase was estimated as described above to start the flash calculation 

procedure. In the second section. the calculation procedure started at the 

binary boundary of the triangular diagram by using the calculated mole 

fractions of the last flash as starting values for the next flash. After each 

successful flash. the feed composition is changed in such a way that the 

feed point moves on a straight line toward the upper vertex of the ternary 



13 

diagram. If the composition point of the feed reaches the three-phase 

region, the three-phase flash is entered. After this flash is completed, the 

calculation procedure continues at either boundary of the three-phase 

region to cover all possible miscibility gaps in the system. 

CONCLUSIONS 

The flash algorithm described in this paper can be used to calculate 

phase-equilibria for multicomponent systems with two or three coexisting 

phases at equilibrium. It has been installed into a program for calculating 

high-pressure phase-equilibria with a selected equation of state. In 

ternary systems containing Water, Hydrogen and Hexadecane or Toluene at 

elevated pressures and temperatures, the two- and three-phase regions are 

correctly predicted using either one of two cubic equations of state. Where 

no experimental data were given, the composition of the second liquid 

phase had to be estimated. For all calculations performed, this was easily 

done by initially assuming, that this phase contains one component in 

excess. 

Program listings and tapes are available upon request. 
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NOMENCLATURE 

a = parameter of the RKH equation of state 

ac = parameter of the PR equation of state (modified parameters) 

b = parameter of the RKH and PR (modified) equation of state 

C = number of components 

D = determinant of the Jacobian Matrix, equations (25) 

F = total moles of feed to the flash 

= vapor/liquid distribution coefficient for component 

phase I 

Kill = vapor/liquid distribution coefficient for component 

phase II 

LI = moles of liquid in phase 1 

LII = moles of liquid in phase 2 

P = pressure 

Pi = objective functions defined by equations (8) to (10) 

and liquid 

and liquid 

Q = objective functions defined by equations (13) and (14) 

T = temperature 

V = moles of vapor phase 

Xo = parameter pf the PR equation of state (modified parameter) 

XiI = mole fraction of component in liquid phase 1 

XiII = mole fraction of component in liquid phase 2 

y i = mole fraction of component in the vapor phase 

Zi = mole fraction of component in the feed 

a = parameter of the RKH equation of state, 

~iL I = fugacity coefficient of component i in liquid phase 1 

~iL II = fugacity coefficient of component in liquid phase 2 

~i V = fugacity coefficient of component i in the vapor phase 
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'PI = phase fraction of liquid phase 1 

'PII = liquid 2 phase fraction 

9ij = interaction parameter for the binary system containing 

components i and j 
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CAPTIONS 

Fig. 1 : Objective functions Q I, Q2 and Q 1 - Q2 for normal three-phase 

behavior : Q 1 function; - - - - - - - Q2 function; ................ Q 1 - Q2 

function. 

Fig. 2 Schematic of the program for three-phase flash calculations 

Fig. 3 : Ternary phase diagram for the system Hexadecane(1)-Water(2)

Hydrogen(3) at 200 0 C and 200 bar.· experimental phase composition and 

........ .... ..... ........ ...... experimental tie lines (Dohm, 1986); 

calculated binodal curve and tie lines (Redlich-Kwong-Hederer EOS); 

interaction parameters : e 0,2) = 0.2756, e (1 ,3) = 0.2249, e (2,3) = 0.4201. 

Fig. 4 : Ternary phase diagram for the system Toluene(1)-Water(2)

Hydrogen(3) at 200 0 C and 100 bar.· experimental phase composition and 

experimental tie lines (Liebold, 1988); 

calculated binodal curve and tie lines (Peng-Ro bins on 

EOS with modified parameters (Dohrn. Brunner, 1989». interaction 

parameters: e (1,2) = 0.2500. eo ,3) = 0.9500, e (2.3) = 0.6000. 
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Table 1: Values ofQ1 ,~ and Q1 - Q2 at the vertices of the triangular domain 

o o 

1 o 

o 1 

f Zi -1 
. 1 I 
1= K. 

1 

K I 
1 -~ Z· K· £..J 1 1 

i=l 

K K~ K n 
~z....2..-~z·K· £..Jl I £..Jl 1 
i=l K· i=l 1 

f Zi -1 
. 1 II 
1= K. 

1 

I 
K K. K I 

LZr-fi -LZ){i 
i=l K· i=l 

1 

K IT 
l-~z.K. £..J 1 1 

i=l 

K K L Zi
I 

- L Z~ 
i=l K· i=l K· 1 1 

K K~ 
1 -~ Z·_l £..J 1 IT 

i=l K. 
1 

II 
K K. L Zi 1 - 1 

i=l K~ 
1 
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Table 2 : Pure-component parameters 

It 

Component RKHEOS PR EOS (modified parameters) 
(l a b a c Xo b 

[ -] [bar m6/kmole2Kj [m3/kmole] [bar m6/kmole2 K] [-] [m3/kmole] 

: 

Toluene 671.50 -0.51570 0.09199 19.350 0.55997 0.09057 

Hexadecane 41,261.3 -0.92199 0.27492 97.531 0.86464 0.26897 

Hydrogen 0.30 -0.01049 0.01772 0.274 1.58355 0.01682 

* * * 
Water 114.60 -0.47909 0.01607 6.064 0.93742 0.01917 

* * * 

* calculated from the PR EOS 
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Figure 3 
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Figure 4 
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