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ABSTRACT 

We describe a method to analyze the linear imaging characteristics of rotationally invariant, radially 
variant tomographic imaging systems using singular value decomposition (SVD). When the projection 
measurements from such a system are assumed to be samples from independent and identically distributed 
multi-normal random variables, the best estimate of the emission intensity is given by the unweighted least 
squares estimator. The noise amplification of this estimator is inversely proportional to the singular values 
of the normal matrix used to model projection and backprojection. After choosing an acceptable noise 
amplification, the new method can determine the number of parameters and hence the number of pixels 
that should be estimated from data acquired from an existing system with a fixed number of angles and 
projection bins. Conversely, for the design of a new system, the number of angles and projection bins 
necessary for a given number of pixels and noise amplification can be determined. In general, computing 
the SVD of the projection normal matrix has cubic computational complexity. However, the projection 
normal matrix for this class of rotationally invariant, radially variant systems has a block circulant form. A 
fast parallel algorithm to compute the SVD of this block circulant matrix makes the singular value analysis 
practical by asymptotically reducing the computation complexity of the method by a multiplicative factor 
equal to the number of angles squared. 

1 INTRODUCTION 

Using singular value decomposition (SVD), the performance of an imaging system can be determined when 
the projection measurements are independent and identically distributed multi-normal random variables. 
The best estimate of the emission intensity is given by the unweighted least squares estimatorJ1] This esti­
mator can be obtained by applying the pseudo-inverse of the projection formation tensor to the measured 
projection data. The pseudo-inverse is easily computed from its SVD.[2] The noise amplification of the 
imaging system is inversely proportional to the square of the singular values of the projection formation 
tensor. 



The computation of the singular value decomposition of the projection tensor, in general, has a 
cubic computational complexity. Thus, the use of this technique has traditionally been impractical for 
many systems. 

1.1 Data acquisition 

Projection formation can be described by the discrete-continuous model[3],[4] 

POk = FOk b 

J dy J dx IOk(X, y) b(x, y) 

(1) 

(2) 

where POk is the measured projection at angle index () and bin position k. FOk is a second order tensor 
functional operating on the two dimensional object distribution b. This represents the integration of the 
product of the impulse response or transition probabilities 10k (x, y) and the object distribution b( x, y) over 
the imaging field as depicted in figure 1. There are mo different angles and mk projection bins at each 
angle. 

y 

b(x,y) 

x 

'--- F (X,y) 
ek 

Figure 1: Schematic of projection formation. 

Because the model assumes the detection process is discrete and the original distribution to be 
continuous, the model is easily adapted to include a variety of physical effects found in positron tomography, 
single photon emission computed tomography, nuclear magnetic resonance imaging, and other imaging 
modalities. For positron tomography, F(}k can include radioactive decay, positron range, sampling geometry, 
attenuation, inter-crystal scatter, crystal penetration, and detection efficiency.[5] 
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One simple but important statistic model of each acquired signal, POk, is to assume that it is a 
sample from an independent and identically distributed multi-normal random variable. The distribution 
is determined by the first two central moments, which are the mean 

and covariance 

'EO'k'Ok 

where p is a constant. 

1.2 Estimation 

/lP9k 

E [(PO'k' - EpO'k') (POk - EpOk)] 

E [PO'k'POk] - /lO'k'/lOk 

fibo'oDk'k 

(3) 
(4) 

(5) 

(6) 
(7) 

The goal of tomography is to reconstruct the unknown distribution b from one realization, l?ek of the mea­
surement process POk. Unfortunately, recovering the continuous distribution b is difficult, if not impossible. 
Instead, a discretized version, bij, shown in equation 8, is estimated from the measurements where Bij 
define a generalized pixel. Thus, bij is the value (i,j)th pixel assumes. 

In this basis, the projection formation equation becomes 

POk FOkBijbij 

= Fokijbij 

where there is an implied sum over repeated subscripts, or rewritten in matrix-vector notation 

p=Fb. 

(8) 

(9) 
(10) 

(11) 

However, the choice of basis functional Bij determines the systematic error which is defined as the difference 
between POk and PBk. In this paper, we will assume that the errors have been minimized by the appropriate 
basis choice.[6] 

With this choice of basis, the least squares estimator is given by equation 12. 

b arg ~n E { (E. - Fb) T (E. - Fb) } (12) 

arg { [FT (E. - Fb)] = 0 } (13) 

(FTF) -1 FT E. " (14) 

(VSTUTUSVT) -1 VSTuT E. (15) 

V (STS) -1 STUT E. (16) 

F+E. (17) 



F+ is the pseudo-inverse of F and is computed from the SVD 

F=USVT (18) 

where U and V are matrices containing the left and right singular vectors of F, respectively. S is a 
generalized diagonal matrix containing the singular values of F. The covariance matrix for the estimator 
is given by equation 19. 

2.1 Error bound 

Eb Cov(b) 

= F+Ep(F+)T 

= F+pI(F+)T 

pF+ (F+)T 

pV (STS)-l V T 

2 ANALYSIS 

(19) 

(20) 

(21) 

(22) 

(23) 

To bound the statistical error associated with the reconstruction process, we compute the L2 norm of the 
covariance matrix using induced norms as shown in equation 24. When computing the induced norm, a 
unit vector b is multiplied by the covariance matrix and the norm of the resulting vector is calculated. The 
length of the unit vector is scaled up or down and the square of the largest scale factor is the induced norm. 
From the induced norm, it can be seen that the noise amplification bound during reconstruction is inversely 
proportional to the square of the smallest singular value of the projection formation matrix. Thus, it is 
necessary to find the singular values of F to compute the error bound. This differs from the deterministic 
approach where the noise amplification is the ratio of the largest singular value to the smallest singular 
value; e.g., the condition number,[2] 

= 

max IIEbA bl1 2 
IIb 1l 2 =1 

max IlpV (STS)-lVTbI1 2 
Il b 1l2 =1 

max pil (STS)-l bll 2 
IIb 1l2 =1 

1 
maxPS~. 

tt 
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2.2 Computation of singular values 

The normal or self-adjoint matrix, A, which backprojects POk and reprojects it to PO'k' has elements 

AO'k'Ok FO'k' FOk 

= J dy J dx jO'k'(X, y) jOk(X, y) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 
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and represents overlap or correlation integrals of the impulse response at two angles and bin positions as 
shown in figure 2. 
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Figure 2: Schematic of projection normal matrix overlap integrals for two different angles and bin positions. 

The SVD of A is given in equation 31. The singular values of A are asymptotically equal to the 
squares of the singular values of F; therefore, by computing the smallest singular value of A we have found 
the desired error bound. The singular values of F are a function of the choice of the basis functional Bij. 
The singular values of A are not a function of the basis functional but only of the projection functional; 
thus, we can compute its SVD without specifying the shape of pixels. 

I"' The computation of this SVD requires on the order of (momk)3 operations.(7].[2] For practical 
imaging systems, the product mOmk is approximately 60, 000; thus, the computation of the SVD is usually 
computationally intractable. However, for a special class of rotationally invariant systems described in 
section 3, the computation problem is greatly simplified. 

(31) 



2.3 System comparison 

We have assumed that j5 is the known variance of each projection measurement and F(}k has been prede­
termined. Now, we define the acceptable maximum variance in the reconstructed image to be b. Thus, 
the minimum singular value of F allowed in the computation of the pseudo-inverse F+ to maintain the 
variance bound according to equation 28 is 

Sroin = Jr. (32) 

All singular values and the corresponding singular vectors less than Sroin should not be used. If N is the 
number of singular values greater than Sroin, then we should only reconstruct pixels that correspond to 
these N basis vectors of V. In general, these N pixels are not the familiar square pixels used to display 
images. 

We turn now the task of determining the number of angles, m(}, and bins, mk needed with a fixed 
number of pixels, N, to obtain a desired maximum variance, b in a reconstructed image. Again, assume 
that j5 is the known variance of the projections and Sroin is as in equation 32. We must find a projection 
formation functional such that 

(33) 

Since a closed form solution for the singular values of F(}k is not usually possible, this is done by computing 
the projection normal matrix and its SVD for various values of m(} and mk until the desired value of SNN 

is obtained. 

3 ROTATIONAL INVARIANCE 

When the elements of the projection normal matrix are a function of only the difference between e and 
e' modulo m(}, as shown in equation 34, the system is rotationally invariant. If it is not a function of 
the difference between k and k' modulo mk, then the system is radially variant. When the system is 
rotationally invariant, the matrix can be written in block circulant form. The block circulant structure is 
shown in equation 37. There are m(} X m(} blocks each of size mk X mk. 

A= 

Ao 

A mo- I 

Amo-2 

A[(B-B')modmo]k'Ok 

A[~Bmodmolk'Ok 

J dy J dx ![Mmodmolk(x, y) !Ok(X, y) 

Al A2 A mo- 2 A mo - I 

Ao Al A mo- 3 Amo-2 

A mo - I Ao A mo - 4 A mo - 3 

A2 A3 A4 Ao Al 

Al A2 A3 A mo - I Ao 

(34) 
(35) 

(36) 

(37) 

Let !k(x, y) denote the impulse response of a rotationally invariant, radially variant system, then equation 1 
can be rewritten as 

PBk = J dy J dx!k [x cos (e ~) + y sin (e ~) , -x sin (e ~) + y cos (e ~)] b(x, y). (38) 



A(}'k'(}k J dy J dxA, [x cos (O'!:,) +YSin(O'!:,), ~xsin(O'!:,) +ycos(O'!:,)] (39) 

" fk [x cos (0 ~) + ysin (0 ~) , -x sin (0 ~) + ycos (0 ~)] (40) 

. / dy J dx A, [ x cos ( £10 ~:,) + y sin ( £10 ~:,) , -x sin ( £10 ~,) + y cos ( £10 ~:,) } 41) 

A(x,y) (42) 

3.1 Block circulant singular value decomposition 

An order m~m(} log m(} fast Fourier transform (FFT) technique[9],[10] and an order m(}m~ SVD 
technique[7],[2] can be used to compute the block circulant singular value decomposition (BCSVD) of 
A given in equation 43Jll] This represents as asymptotic relative savings of m~ operations over a general 
SVD algorithm. The memory required is also reduced by a relative factor m(}. 

A UASAUi 
uAsnUi 
(Fme @ Imk)t UnSnUb (Fme @ I mk ) 

4 SUMMARY 

(43) 

(44) 

(45) 

The noise amplification characteristics of linear imaging systems can be analyzed by singular value de­
composition (SVD). Analysis proceeds in three steps. First, the projection normal matrix is computed 
for a particular impulse response. The second step is to compute the SVD of the projection normal ma­
trix: Finally, the singular values and consequently the imaging performance for different impulse response 
functions can be compared with the induced norm of the covariance of the estimated image used as a 
performance metric. This differs from deterministic approaches that use the ratio of the largest to smallest 
singular value (e.g., the condition number) as a metric. The maximum number of pixels possible for an 
acceptable noise level can be obtained for an existing system with a given numberof angles and projection 
bins by computing the number of singular values greater than the square root of the ratio of projection 
variance and desired image variance. For the design of a new system, the number of angles and projection 
bins necessary to support a desired number of pixels can be computed by iteratively varying the number 
of angles and projection bins until the desired singular value spectra is obtained. 

For a special class of rotationally invariant, radially variant systems that are quite common in 
practice, a fast parallel algorithm to compute the block circulant singular value decomposition (BCSVD) 
of the projection normal matrix can be used to make the analysis computationally feasible. This algorithm 
reduces computation time by a multiplicative factor equal to the number of equally spaced angles squared. 

We are currently working on methods to extend the algorithm to weighted least squares and Poisson 
maximum likelihood estimators. Choosing the pixel basis functional such that is a eigenfunction of the 
right singular functions of the projection formation functional is also a topic of interest. 
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