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1 Introduction 

In the present work, we develop a self-consistent microscopic nuclear model that, for a 
specified temperature, yields the statistical weight for an arbitrary spatial distribution 
of the nucleons. Our goal is to develop a general theoretical tool with which to address 
finite-temperature non-equilibrium systems, such as those produced transiently in 
nuclear collisions at intermediate energies. In addition to its expected utility for 
heavy-ion physics, the model may also be useful in astrophysics, particularly for 
studying the structure of non-uniform matter at subsaturation densities. 

The developed model extends or improves earlier treatments by various groups. 
About twenty years ago, Myers and Swiatecki [1] formulated a simple model for 
average nuclear properties. It employed an effective nucleon-nucleon interaction of the 
form first considered by Seyler and Blanchard [2], namely a Yukawa force modulated 
by a quadratic momentum dependence, and it was solved self-consistently within 
the Thomas-Fermi approximation. By fitting its four parameters to the binding 
energy, density, surface energy, and symmetry energy of standard nuclear matter, 
Myers and Swiatecki obtained a good overall reproduction of nuclear binding energies 
and density distributions, apart from irregularities associated with the single-particle 
structure (shell effects). The most striking shortcoming of the model was that the 
effective nucleon mass was significantly too small (~ O.38m), leading to a too rapid 
energy dependence of the optical potential. This deficiency is inherent in the Seyler
Blanchard interaction because the nuclear saturation is produced exclusively by the 
momentum dependence. Another, less important, discrepancy was a somewhat too 
abrupt fall-off of the nuclear density distributions. This feature is characteristic of 
the Thomas-Fermi approximation which is relatively inaccurate in the surface region. 

The Seyler-Blanchard model was subsequently extended to finite temperatures by 
Kupper et al. [3] in a general study of thermostatic properties of isosymmetric (and 
uniform) nuclear matter. These authors recognized that the unrealistic value of the 
effective mass might render their results somewhat unreliable. However, no satisfac
tory remedy for this important problem was found, until recently when Myers and 
Swiatecki added an explicit density dependence to the effective interaction so that the 
strength of the momentum dependence can be reduced [4]. With this generalization 
of the Seyler-Blanchard interaction, the observed energy dependence of the optical 
potential (hence the effective mass) can now also be well reproduced. (A further term 
with an inverse momentum dependence can be added in order to also obtain good 
density profiles [4].) The resulting model yields a very good reproduction of average 
nuclear properties, such as binding energies, fission barriers, and density distributions. 
It is expected to be accurate for even very small or very deformed nuclei, and to be 
reliable for extrapolating to extremely large hypothetical nuclei, including systems 
with arbitrary neutron excess and arbitrary geometries, such as those that sometimes 
arise in astrophysical applications. Thus, with the model firmly anchored in observed 
properties of nuclei, it is of interest to broaden the scope to also encompass finite 
temperatures. Our present work can be regarded as such an extension. 

It should be emphasized that numerous other researchers have studied the nu
clear equation of state, and with a variety of approaches. In this presentation we 
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mention only a few instructive examples. In particular, for astrophysical purposes, 
Lattimer and Ravenhall studied the bulk properties of nuclear matter on the basis of a 
Skyrme interaction. [5] This approach is conceptually similar to the above-mentioned 
earlier work by Kupper et al.[3], and hence to ours, but differs primarily in the 
choice of interaction. One difference is that the Skyrme interaction used in ref. [5] 
has more adjustable parameters, as well as an explicit density dependence, and so 
it can be brought to fit more known nuclear properties. Another important feature 
of the Skyrme interaction is its vanishing range, which simplifies the calculations 
considerably, since the thermodynamic distributions are then functions rather than 
functionals of the basic particle and kinetic densities. A finite-range interaction is 
particularly difficult to treat when the densities deviate from uniformity. While the 
range of the force may be less important when only bulk properties are studied, as 
in ref. [5], the relative smallness of the systems generated in nuclear collisions and 
their irregular appearance demand that the finite range of the nuclear forces be taken 
into account. Our work is primarily aimed at heavy-ion related problems and it is 
a special advantage of our model that it provides the statistical weight for arbitrary 
density distributions, with the finite interaction range incorporated consistently. 

Many calculations of the nuclear equation of state have been made on the basis of 
microscopic models. An often quoted example is the work by Friedman and Pandhari
pande [6], who performed a variational calculation of the equation of state based on 
a realistic Hamiltonian with fitted two- and three-nucleon interaction terms. Though 
such calculations have the advantage of being based on independently known micro
scopic properties (such as the N N scattering cross section), they are fairly tedious 
and, in particular, they are not easily extended to systems with non-uniform density 
distributions. We shall make detailed comparisons with the microscopic calculations 
of ref. [6], in order to assess the quantitative utility of the approach. 

In order to provide a useful tool for quantitative studies of the statistical properties 
of finite-temperature non-uniform nuclear systems, we have undertaken to develop a 
conceptually simple model of rather general applicability. Working within the semi
classical (Thomas-Fermi) mean-field approximation, we describe the system in terms 
of its reduced one-particle phase-space distribution. The individual nucleons interact 
via a Yukawa potential whose strength depends on both momentum and density. The 
specific form is the density-dependent generalization of the Seyler-Blanchard inter
action recently introduced by Myers and Swiatecki [4]. For any given temperature, 
the model yields the statistical weight associated with an arbitrary spatial density 
distribution and, consequently, the statistical properties of non-uniform nuclear mat
ter can be addressed, including fluctuations. Moreover, since the model treats the 
liquid and vapor phases on an equal footing, it presents an especially useful tool for 
studying phenomena associated with the nuclear liquid-gas phase transition. Finally, 
it should be stressed that the model is expected to be quantitatively useful, since it 
reproduces known macroscopic nuclear properties, such as binding and deformation 
energies, density shapes and profiles, and effective mass and optical potentials [1, 4]. 

The formal tools developed to treat models of the generalized Seyler-Blanchard 
type are described in section 2. Then, in section 3, we calculate the equation of 
state of uniform nuclear matter for a variety of parameter sets, both in order to make 
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contact with earlier studies and to determine the sensitivity to the specific interaction. 
We also calculate the associated phase diagrams and make detailed comparisons with 
the microscopic results of ref. [6], to permit a general assessment of the model. A first 
application of the model to non-uniform distributi~ns is made in section 4, where the 
response of nuclear matter to density ripples is explored. In section 5 we summarize 
and outline expected further developments and applications. Appendix A describes 
the Fermi-Dirac momentsjptroduced to achieve fast and convenient computation, and 
appendix B describes an efficient algorithm developed for carrying out the necessary 
convolutions. 

2 Model 

The present work is carried out within a semi-classical framework, so that a nucleon 
can be characterized by its position r and momentum p. Furthermore, we restrict 
the formulation to nuclear systems with spin-isospin symmetry, so that each single
particle orbital has a degeneracy of 9 = 4. It is straightforward to relax this restric
tion. Finally, in this initial work we consider only the nuclear part of the interaction 
and thus omit the Coulomb force entirely. However, when studying the geometrical 
organization of subsaturation nuclear matter it is essential to include the Coulomb 
force. 

2.1 Seyler-Blanchard model 

Seyler and Blanchard [2] introduced an effective interaction with an explicit momen
tum dependence of quadratic form, 

(1) 

where rI2 = rl - r2 and P12 = PI - P2. It has three parameters: the range a of the 
spatial form factor (taken to be a Yukawa function), the characteristic momentum 
b, and the overall interaction strength C; it is convenient to also introduce the char
acteristic kinetic energy T = b2 /2m, where m is the free nucleon mass. Reasonable 
values of these parameters can be determined by demanding a· reproduction of the 
nuclear-matter saturation density and energy, as well as the nuclear surface energy. 
The quality of these fits is similar to what can be obtained with Skyrme-type effective 
interactions that depend only on density. 

In their original study, Myers and Swiatecki [1] determined the parameters as 
a=0.62567 fm, T=82.030 MeV, and C=328.61 MeV. These values lead to a saturation 
density of po = 0.1365 fm- 3

, corresponding to a Fermi energy of TF = 33.138 MeV, 
and the compressibility coefficient, which is given by f{ = 6TF ( 41ra3 PoC /T - 1/5), 
follows as f{ = 294.60 MeV. Later on, von Groote [7] refitted the parameters and 
obtained a=0.557 fm, T=89.274 MeV, and C=435.1 MeV. The associated value 
po = 0.153 fm- 3 (i.e. TF=35.76 MeV) is in somewhat better accordance with ex
periment, and the corresponding compressibility f{ = 304.5 MeV is still a fairly 
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reasonable value. In the present study, we shall adopt these latter values as the stan
dard parameter set, because of the better saturation density obtained. In their recent 
work, Myers and Swiatecki [4] have determined new preliminary parameters leading 
to po = 0.1645 fm- 3 (TF =37.679 MeV) and J{ = 301.27 MeV, which are probably 
somewhat better values. However, these values have been determined for an interac
tion that has an additional term with an inverse momentum dependence and hence 
they do not necessarily apply to our present model. When improved parameters are 
available for the standard interaction (1), it will be preferable to adopt those values 
to ensure an optimum reproduction of known nuclear properties. 

With the interaction specified as in (1), the many-body Hamiltonian follows. We 
shall employ the semi-classical mean-field approximation in our further considera
tions. The motion of an individual nucleon is then governed by an effective one-body 
Hamiltonian h(r, p). Due to the quadratic momentum dependence of the interaction, 
this quantity is of the simple standard form 

p2 
h(r, p) = 2B(r) + U(r) , (2) 

where B(r) is the effective mass and U(r) is the effective static potential, both de
pendent on the position r of the nucleon [8] (see eqs. (9-10)). 

In the mean-field approximation, the state of the system is specified by its one
particle phase-space density distribution f(r, p), and any state is characterized in 
terms of its spatial distribution p(r), in addition to a given temperature r, which 
governs the diffuseness of the local momentum distribution. Thus, for given p(r) and 
r, the occupancy in phase space is given by the Fermi-Dirac distribution 

(3) 

Here h(r, p) is the single-particle Hamiltonian (2) and a(r) = fJ(J-L - U(r)) is the 
local fugacity, with fJr = 1. The chemical potential J-L(r) is employed as a position
dependent parameter that will be adjusted so that the specified local density p(r) is 
obtained. 

This latter quantity, the nucleon density distribution p(r), and the associated 
kinetic density /'C(r), are given in terms of f(r,p) as 

p(r) j dp 
g h3 f(r,p) = Ft(a(r)) Pr(r) , (4) 

j dp p2 2B(r)r 
g h3 b2 f(r, p) = b2 F~(a(r)) Pr(r) . (5) 

Here we have employed the Fermi-Dirac moments Fn(a) discussed in appendix A. 
These convenient dimensionless quantities are functions of the fugacity a. It is also 
convenient to define the thermal density Pr(r) = 27rg(2B(r)r/h2p/2. 

The total energy of the system can be written on the form E = f dre(r), where 
e(r) is the energy density. This quantity is composed of several distinct terms: e = 
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(6) 

We have here employed the auxiliary functions [8] 

(7) 

J 
e-r12/a 

K(rt} = dr2 K(r2) X 41l"a3
K. 

rlda 
(8) 

They are obtained from the basic densities p and K by convoluting with the Yukawa 
form factor entering in the Seyler-Blanchard interaction (1). Physically, n(r) repre
sents the number of nucleons within reach of the force, at the specified location r, and 
K(r) is an analogous quantity. The symbol x has been adopted to indicate relations 
pertaining to uniform matter, in which the densities are independent of position. 

By performing a variation of the total energy E with respect to the local density 
p(r), it is easy to derive the expressions 

m 

B(r) 
U(r) 

c () C 3 1 + Tn r X 1 + T 41l"a p , 

-c (n(r) - K(r)) x -41l"a3C(p - K) 

for the effective mass B and the static potential U. 

(9) 

(10) 

These latter relations close the system of equations. We now proceed as follows. 
For a fixed temperature T, assume that the spatial distribution of nucleons is specified. 
For the given density p(r), the auxiliary function n can be calculated by performing 
the convolution as defined in (7). This in turn determines the effective mass B(r) as 
a function of the posi tion r. The relation (4) for the density p( r) can then be solved 
for the local fugacity a(r), using the Fermi-Dirac moments described in Appendix 
A. Subsequently, the equation (5) yields the kinetic density K(r), and the auxiliary 
function K(r) follows from (8). In this manner we can obtain all the quantities needed 
to evaluate the energy density (6) and the effective single-particle Hamiltonian (2). 
This solution method is very efficient and makes it possible to quickly calculate the 
self-consistent many-particle state associated with any specified density distribution 
p(r). 

In order to determine the thermodynamic quantities, we need to calculate the 
entropy S[p] = f drs(r), in addition to the energy E obtained as described above. 
The entropy density s(r) can be obtained from the standard expression for a Fermi
Dirac gas, 
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(11) 

where the universal function Gn(a) is defined in Appendix (A). Thus s(r) is also 
expressible in terms of the basic densities p(r) and K(r). 

The statistical weight of the system characterized by a specified density distribu
tion p(r) is given by 

W[p] = e-~F[pl , (12) 

where F denotes the free energy of the system. This key quantity is a function of 
the temperature T and a functional of the spatial density p(r). Having calculated the 
energy E and the entropy S as described above, the free energy readily follows as 

F[p] = E[p] - T S[p] . (13) 

(More generally, one may consider the local free energy per nucleon, ¢>( r) = f( r) -
TO"(r), where f = e/ p is the local energy per nucleon and 0" = s/ p is the local entropy 
per nucleon.) We note that the ground state of the system can be determined by 
minimizing the energy E, which is a relatively simple task. However, for a finite 
temperature, the equilibrium configuration is obtained by minimizing the free energy 
F, which is more complicated because of the entropy contribution -TS. 

In order to calculate the equation of state, we need the pressure P. In general, the 
local pressure can be obtained from the thermodynamic relation P(r) = p2(8¢>/8P)r. 
In the present study, we shall consider the pressure only in the context of uniform 
systems, in which case we have Po' = p(8F/8P)r - F, where 0, is the volume of the 
uniform system. We may thus calculate the pressure as 

(14) 

We note that P = 0 iff (8¢>/8P)r = 0, so that the pressure vanishes in any equilibrium 
state, as it should be. 

2.2 Generalized interaction 

In a concurrent study of macroscopic nuclear properties [4], Myers and Swiatecki have 
introduced a modified Seyler-Blanchard interaction, in which part of the explicit 
momentum-dependence is replaced by a density dependence. This modification is 
made in order to improve the reproduction of the optical potential, while preserving 
the overall good reproduction of the many other average nuclear properties, such as 
binding energies, fission barriers, and density distributions. Although that study is 
limited to zero temperature, and the specific modification correspondingly limited in 
scope, it is easy to generalize the idea to arbitrary situations. Because of the resulting 
very good global description of a large variety of static nuclear properties [4], we find 
it especially interesting to include this interaction in our present study. 
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For this purpose, we generalize the Myers-Swiatecki modification to arbitrary 
phase-space distributions as follows, 

V;~ = -c e-
r12

/

a [1- XP~2 _ XKo ((Pl)~ + (p2)~)l ' 
T12/ a b2 po po po 

(15) 

where Pi means p(rd and X = 1-X for convenience. The (arbitrary) reference density 
po is chosen as the saturation density of the model for zero temperature, and KO is the 
corresponding value of the kinetic density K. It should be noted that the standard 
Seyler-Blanchard interaction (1) is recovered for X = o. Because of the explicit density 
dependence brought in by the new interaction term proportional to the parameter x, 
the treatment is more complicated and we therefore sketch the method employed. 

It is convenient to introduce the pseudo-kinetic density K(r) = KO(p(r)/ PO)5/3, and 
the associated auxiliary function K:(r) defined in analogy with (8). We may then also 
introduce Keff = XK+Xi\:. The energy density may then be written ex = ekin+eO+eeff, 
with eeff = Xe2 + Xe2, where ekin, eo, and e2 are given in (6) and 

(16) 

For a uniform system we then have 

(17) 

(18) 

where fx = ¢>p is the free-energy density. 
In order to obtain the expression for the effective single-particle Hamiltonian 

hx' the system is subjected to a variation t5f(r, p) = h3 t5(r - ro)t5(p - Po), which 
corresponds to the introduction of a test nucleon at the point (ro, Po) in phase 
space. The induced changes in the various densities are then t5p(r) = t5(r - ro), 
t5K(r) = (po/b)2t5p(r), and t5K(r) = (5i\:/3p)t5p(r). Consequently, the induced change 
in the total energy E is 

t5E = J dr [~ (1 + X ~ n(r)) - c ( n(r) - Keff(r) - ~x ;gj n(r)) 1 t5p(r). (19) 

Since t5E can be identified with the effective single-particle Hamiltonian hx' we see 
that this quantity is still of the form (2), but with modified expressions for the effective 
mass and potential, 

m c C 
1 + XTn(r) ~ 1 + x

T
41ra3p , (20) 

-C (n(r) - Keff(r) - ~x i\:(r) n(r)) ~ -41ra3C(p - Keff - ~3XK) . 
3 p(r) 
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It is evident that for zero temperature the resulting energy density ex(r) is in fact 
independent of the parameter X, since then K. = /\'. Consequently, all zero-temperature 
results derived on the basis of e( r) (such as binding energies, fission barriers, and 
density profiles) remain unaffected by the modification. 

The fact that the effective single-particle Hamiltonian depends on the parameter X 
has direct implications for the optical potential. Moreover, because the single-particle 
energy enters in the Fermi-Dirac occupancy coefficients (3), the self-consistent solution 
also depends on X, so that in general the finite-temperature properties of the system 
are sensitive to this parameter. We shall exhibit these two effects below. 

2.3 Optical potential 

The optical potential UoPt(r, E) is obtained by rewriting the effective Hamiltonian 
(2) on the form Hopt = p2/2m + uopt . This yields the result 

(21) 

As discussed in ref. [4], the energy dependence of the optical potential is rather poorly 
reproduced by the standard Seyler-Blanchard interaction (X = 0), as illustrated by 
the fact that the effective nucleon mass comes out as Bo = 0.3817 m. By contrast, 
as was already noted by Myers and Swiatecki [4], a value X ~ 0.75 leads to a nearly 
perfect reproduction of the experimental values, in particular the effective mass is 
Bo = 0.7118 m. In our present study, we adopt this latter value as the standard 
value; it yields approximately the same ratio between the two x-dependent terms in 
the interaction as obtained in ref. [4]. 

It should be noted that the replacement of the effective Hamiltonian (2) with the 
optical-model Hamiltonian Hopt modifies the equations of motion and thus leads to a 
different time evolution (ropt(t), popt(t)) of an individual nucleon. However, the effect 
merely corresponds to a distortion of the time parameter, so we may write 

(22) 

where (r(t), p(t)) is the trajectory obtained by solving Hamilton's equations for the 
effective Hamiltonian (2) and the progression of the stretched time tOpt(t) is deter
mined by the differential equation dtOpt I dt = B 1m. Thus, within the semi-classical 
approximation, both the scattering angle and the phase shift will be correctly repro
duced by the optical potential, even though the speed of the nucleon is lowered in the 
medium. This correspondence is generally expected for time-independent scenarios, 
since the introduction of the optical potential implicitly assumes that the energy of 
the particle remains consta.nt in time. 

2.4 Pressure 

Employing the formula (14), we here derive the expression for the pressure III a 
uniform system subject to the generalized Seyler-Blanchard interaction (15). 
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For a uniform system, the expression for the energy density is 

(23) 

Therefore, 
8e b2 8K . 

p( 8;)'T' = 2B
x

P(8p)'T' + UxP , (24) 

where it has been used that ~ '" p5/ 3 • The pressure may then be written as 

where the derivatives should be carried out at the fixed temperature T. The only 
remaining problem is now to evaluate the derivatives 8Kj8p and 8sj8p. 

These quantities can be expressed in terms of the universal moments discussed in 
appendix A. First note that the density dependence of the fugacity can be obtained 
by performing a differentiation of the relation (4) with respect to p, 

(26) 

Consequently, 

(27) 

The density dependence of the entropy density follows similarly, 

(28) 

The various universal moments are discussed in appendix Aj they can be tabulated 
ahead of time and so the calculation of the pressure is rather fast. 

2.5 Maxwell relations 

It should be recognized that the approach taken automatically guarantees that the 
developed statistical model is thermodynamically consistent. This is most easily ver
ified by checking that the appropriate Maxwell relations hold. In the present model, 
we specify the system by its temperature T and density p(r). Thermodynamic con
siderations apply in the limit of large uniform systems. For such a system, specifying 
the density p is equivalent to specifying the volume V within which the system is en
closed. Thus, the proper thermodynamic variables are temperature and volume and, 
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consequently, the appropriate thermodynamic potential is the Helmholtz free energy 
F = E - TS, in accordance with what we have used. The corresponding Maxwell 
relations then read 

p = _ (BF) S = _ (BF) 
BV T ' BT v' 

(29) 

Using the displayed expressions for energy, entropy, and pressure, together with the 
properties of the Fermi-Dirac moments given in Appendix A, it is relatively easy to 
verify that the above Maxwell relations indeed hold. Of course, the other thermo
dynamic potentials (e.g. the Gibbs potential), and associated Maxwell relations, can 
then be obtained by the standard transformations. 

3 Uniform matter 

With the model described above, we now survey the thermostatic properties of nuclear 
matter. Thus, we consider an infinite system held at a uniform density p and kept 
at a specified temperature T. The principal purpose of this undertaking is to make 
contact with the existing calculations of these properties. We wish to emphasize 
that the motivation for our present work is not to reconsider uniform matter, but to 
establish a simple and reasonable basis for treating general configurations, which are 
hard to address in more refined approaches. 

In fig. 1 we show the energy per nucleon, E = E / A, as a function of the density 
p. It should be noted that the minimum in this curve shifts outwards towards denser 
systems as the temperature is increased. This is a consequence of the momentum 
dependence: for a fixed temperature, the relative diffuseness of the Fermi surface 
is smaller at higher density, and so the balance between attraction and repulsion 
is achieved at a higher density. It can be seen that the isotherms are moved up 
considerably as X is increased from zero (the pure Seyler-Blanchard case) to the 
realistic value X = 0.75. (We recall that all values of X yield the same results at zero 
temperature. ) 

The entropy per nucleon, <7 = S / A, is shown in fig. 2. The entropy decreases 
steadily with increasing density, because of the general increase with volume of the 
entropy of a gas. This effect counteracts the behavior of the energy and results in 
a free energy F = E - T S that peaks ata density below saturation, in accordance 
with the ordinary experience that a body expands when heated. Again we note a 
significant upwards displacement of the isotherms for X = 0.75. 

3.1 Equation of state 

We now turn to the equation of state for uniform matter. This key quantity can 
be expressed as the relationship P(p, T), i. e. the pressure as a function of density 
and temperature. This quantity is given in (14) and is shown in fig. 3, for X = 
o and X = 0.75, using the von Groote parameter values. The zero-temperature 
results are identical and the corresponding curve increases through P = 0 at the 
saturation density po = 0.153 fm- 3

• A quantity of particular interest in connection 

10 

," 



with intermediate-energy nuclear reactions is the limiting temperature Tlim, defined 
as the highest value of T for which the pressure can be negative. For T < 71im self
cohesive nuclear systems may occur and so 71im can be regarded as the maximum 
temperature for which nuclei can exist. (The limiting temperature is expected to 
be lower for actual nuclei, due to surface and Coulomb effects.) In fig. 4 is shown 
the limiting temperature Tlim and the corresponding density Plim as functions of X. 
We note that 71im decreases up to X ~ 0.5 and then increases more rapidly. As a 
result of this behavior, the value Tlim = 13.009 resulting at X = 0.75 is very similar 
to the value 71im = 12.998 MeV obtained with X = 0, although there is a significant 
sensitivity of Tlim to X near X = 0.75. The limiting density decreases monotonically 
from Plim = 0.095 at X = 0 to plim = 0.085 at X = 0.75, and the sensitivity is very 
small near X = 0.75. As shown by the dashed curves, the behavior obtained with 
the original Myers-Swiatecki parameters is qualitatively similar, but shifted towards 
lower temperatures by about 0.60 MeV and lower densities by about 0.010 fm- 3

. 

Also indicated in fig. 4 are the values of temperature and density associated with 
the critical point, at which the maximum and minimum in the pressure curve coalesce 
into a turning point. For temperatures below critical two distinct phases of nuclear 
matter coexist, usually referred to as the liquid and the vapor phases. The X depen
dence of the critical point is qualitatively similar to the dependence of the limiting 
values discussed above, with the temperatures shifted upwards by about 4.0 MeV and 
the densities reduced by about 0.025 fm- 3

. 

3.2 Phase diagram 

The equation of state, as depicted in fig. 3, enables us to construct a phase diagram 
for nuclear matter. The result is shown in fig. 5. In the P - T plane, the region of 
phase coexistence is bounded by a parabola-like curve starting at the origin (0,0), 
peaking at the critical point (Pcrit, Tcrit), and terminating at the saturation point 
(Po,O) (dashed curve). The points on this boundary can be obtained from fig. 3 
by means of a Maxwell construction. Inside the coexistence region, the spinodal 
boundary (solid curve) connects the extrema in the pressure isotherms. Thus it starts 
at (p<,O), tops at the critical point, passes through the (Plim,71im), and terminates 
at (p>,O), where P< and P> denote the densities at which the curve P(p,O) has 
its maximum and minimum, respectively. These characteristic phase points can all 
easily be determined from the function P(p, T) shown in fig. 3 and the two boundaries 
described above can then be approximately delineated. Figure 5 displays the phase 
diagrams calculated with the von Groote parameter values, using both X = 0 and 
the preferred value X = 0.75. The main effect of switching on the density-dependent 
term is to shift the critical density towards lower values, from pcrit = 0.0681 fm-3 at 
X = 0 to pcrit = 0.0555 fm-3 at X = 0.75. The corresponding change in the critical 
temperature is from Tcrit = 17.19 MeV to Tcrit = 16.66 MeV. Unfortunately, the 
experimental determination of the critical point for nuclear matter is still far from 
possible. 

In the phase diagrams in fig. 5, we also delineate the domain within which the 
pressure is negative (dotted curve). This curve starts near the origin at a small but 
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finite density (at which the pressure first becomes negative), has its maximum at 
the point plim, 7lim, and terminates at the saturation point (where the pressure again 
turns positive). Systems within this phase domain are selfcohesive, since they do not 
require an external pressure. 

3.3 Comparison with microscopic results 

It is interesting to compare our results with those of Friedman and Pandharipande [6], 
who performed a variational calculation of the equation of state based on a realistic 
Hamiltonian with fitted two and three-nucleon interaction terms. Such calculations 
are fairly tedious and not easily extended to systems with non-uniform density dis
tributions, whereas the model presented here has been developed specifically for the 
purpose of treating arbitrary distributions. 

Friedman and Pandharipande [6] consider both pure neutron matter and isosym
metric nuclear matter. We can compare our calculations directly with the latter 
results. First let us consider the effective mass, which in our model is given by 
B/m ~ 1/(1 + X(C/T)47ra3p). Their effective mass, m*/m, is plotted versus kF in 
fig. 7 of ref. [6]. This quantity has some temperature dependence for densities near 
saturation, whereas our Blm depends only on the density P '" ky... Up to about 
twice the saturation density the two effective masses agree with each other to within 
a few percent (our result falls right between their two curves calculated for T = 5 and 
T = 20). However, for higher densities our B falls off more rapidly, so that they differ 
by a factor of nearly two at kF = 3 fm-l. This difference is undoubtedly a result of 
the considerable differences in the short-range features of the two models. 

Ref. [6] also tabulates the free energy, the pressure, and the entropy for tempera
tures up to 20 MeV and densities up to 1.8238 fm- 3

, i.e. over ten times the saturation 
density. The comparison with these quantities can then be made more quantitatively. 
For the free energy there is agreement to within less than one per cent for densi
ties near saturation. At temperatures above 10 MeV this level of agreement extends 
down to the lowest density tabulated (p = 0.004323 fm-3

). For low densities and 
temperatures a significant relative difference develops. This is to be expected be
cause this domain is sensitive to the long-range behavior of the attractive interaction 
and the two calculations employ quite different values: We use the relatively short 
range a = 0.557 fm (which is determined by fitting to the surface energy), whereas 
the calculations in ref. [6] are made with a range of 1/0.7 >::::: 1.43 fm (according to ref. 
[9]), the range of the one-pion exchange force. Therefore, our model probably under
estimates the binding for very dilute uniform distributions. In the other extreme, for 
supersaturation densities, the short-range properties are important. With our chosen 
parameter values, we have a compressibility modulus of I< = 304.5 MeV, whereas the 
corresponding value for the microscopic model is 240 MeV. Consequently, one should 
expect our results to significantly exceed the microscopic values in the high-density 
domain. This is also brought out and at ten times normal density our results exceed 
those of ref. [6] by nearly 80%. (At this high density the temperature dependence is 
insignificant, in the range considered.) 

For the entropy the two calculations agree to within a few per cent, for densities 
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up to 2-3 times normal. At higher densities the difference grows steadily larger and at 
ten times normal the entropy of ref. [6] is nearly twice ours, relatively independently 
of temperature. This difference is most likely due to the aforementioned difference in 
effective mass at these high densities. 

Finally let us compare the results for the pressure. In the domain of low density 
and high temperature the two calculations again agree to within a few per cent. 
However, as we move away from this vapor-like scenario, significant differences emerge 
and at ten times normal density our pressure exceeds that of ref. [6] by nearly 70% 
(nearly independently of temperature). This kind of behavior is to be expected from 
the results discussed above. In spite of this difference, the associated phase diagrams 
are fairly similar. For example, with our preferred parameter values we obtain a 
critical temperature of Tcrit = 16.66 MeV, while ref. [6] reports 17.5 ± 1 MeV. It 
should be added that if substantially different X values are employed then our results 
would deviate significantly more from those of ref. [6]. 

This detailed comparison with an often-cited microscopic calculation serves to 
illustrate what can be expected from our model. Since the two models differ with 
respect to such characteristic quantities as interaction range and compressibility mod
ulus, they should not be expected to yield identical results. By adjusting these quanti
ties the two calculations can, presumably, be brought into better mutual agreement, 
should that be deemed desirable. However, the overall reasonable behavior of the 
calculated results suggests that our model, though relatively simple, may be quanti
tatively useful for addressing general nuclear density distributions. 

4 Statistical distributions 

An important advantage of the present formulation is that it is not restricted to 
equilibrium configurations but provides the statistical weight for arbitrary density 
distributions. Thus statistical fluctuations can be directly studied. To illustrate this 
feature, let us consider the statistical weight of the uniform system as a function of 
its density, for a specified temperature. For this purpose, it is convenient to consider 
the quantity w = (1/ A) In lV = a - (3E, which is the logarithm of the statistical weight 
W[p] divided by the number of nucleons in the system, A. [For infinite matter the 
free energy diverges in proportion to A and the statistical weight becomes a singular 
distribution sharply peaked at the most probable configuration. However, for finite 
systems it is possible to make excursions away from equilibrium. Such systems can be 
studied by imposing periodic boundary conditions.] The quantity w is shown in fig. 
6. For low temperatures the statistical weight is peaked near the saturation density, 
as expected, and the most favored density shifts gradually towards more dilute values 
as the temperature is raised. In concert with this shift, the peak broadens and 
the vapor spike in the dilute region near zero density grows increasingly prominent. 
Thus, the system is in principle metastable, in accordance with the fact that a nucleus 
held at a constant temperature will gradually disassemble into a dilute gas through 
sequential evaporation. When the temperature reaches the value 71im, there is no 
longer a maximum at finite density and the statistical weight increases monotonically 
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with decreasing density, basically reflecting the increase of the entropy with volume. 
This limiting temperature is thus the highest one for which a self-cohesive metastable 
nucleus can exist. Above this limit, in the range 'Tlim < T < Tcrit metastability can 
only be maintained if an external pressure is provided. 

4.1 Density ripples 

On the basis of the statistical weight, as illustrated in fig. 6, it is straightforward to 
calculate the amount of density fluctuation in a given finite system. Fig. 6 illustrates 
the applicability of the model to the statistical distribution of densities for uniform 
systems. It is of considerable interest to explore also non-uniform densities. This is 
particularly important in the region of negative pressure where the system prefers 
to phase separate so as to exploit the cohesion of nuclear matter. It is especially 
instructive to consider density distortions of harmonic form, 

p(r) = p (1 + ccos k . r) , (30) 

where k is the specified wave vector and c the amplitude of the undulation. The 
corresponding auxiliary function can then be readily obtained analytically as an ele
mentary Fourier transform, 

3- cos k· r 
R(r) = 47ra p (1 + c 2k2) . 

1+a 
(31) 

The response of uniform nuclear matter to such harmonic ripples can be addressed 
analytically, provided the amplitudes are sufficiently small to render the response 
linear. The average free energy per particle is then of the form 

</> = J drf(r)/ J drp(r) = p.. + ~C2</>2 , (32) 

where f(r) = e(r) - Ts(r) is the free-energy density, and p.. = f - TQ. is the free 
energy per particle when the amplitude c vanishes so the system is uniform. The 
restoring coefficient </>2 can be obtained by averaging the second-order terms in f(r). 
The resulting expression is somewhat complicated. However, for zero temperature we 
have K, = Ii: and the formula for </>2 is then relatively simple, 

(33) 

where po denotes the saturation density, as usual. The restoring coefficient </>2 is- a 
steadily decreasing function of the wavelength of the ripples, ). = 271"/ k. Whenever 
it is negative, the system is unstable against infinitesimal oscillations of the specified 
wavelength. Outside the phase coexistence region, the uniform system is generally 
stable against undulations of any wavelength and amplitude. Inside the spinodal 
boundary, the system is stable against distortions of small wavelength), < ).max, but 
turns unstable against undulations with a sufficiently long wavelength), > ).max. In 
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the intermediate region the system is metastable: it is stable with respect to har
monic undulations, but there exist finite redistributions of the matter that have a 
more favorable statistical weight. (For example, cold uniform matter slightly below 
saturation prefers to condense into large separated regions of matter at normal den
sity.) The calculated values of Amax inside the spinodal boundary are shown in fig. 7 
(open circles) as functions of the temperature T, for a few selected values of the mean 
density p. 

The above results pertain to infinitesimal deviations from uniformity, for which 
first-order perturbation theory can be used. However, it is also of interest to explore 
the behavior of the system when distortions of finite size are induced, especially in 
the intermediate region where the stability of the system depends on the amplitude 
of the distortion. Since lI:(r) depends on p(r) in a non-linear fashion, the induced 
undulation of 11:( r) is not harmonic and and so the finite-amplitude response must 
be obtained numerically. This can be accomplished quickly and accurately with our 
model, utilizing the method described in Appendix A. The auxiliary function Keff(r) 
must then be calculated by performing the convolution explicitly. An efficient method 
for this task is described in Appendix B. 

We have examined the response of uniform matter to periodic ripples of finite 
amplitude. For given values of the temperature T and the mean density p, the free 
energy F (and hence the statistical weight W) can be considered as a function of 
the wavelength A = 27r / k and the amplitude c of the undulation imposed. If the 
statistical weight decreases when the amplitude c is increased from zero, the system 
is considered stable against the perturbation, and otherwise it is unstable. 

In fig. 7 we show the calculated values of the maximum wavelength at which the 
system looses stability, Amax. These results have been obtained by comparing the 
statistical weight corresponding to the small finite amplitude of c = 0.1 with that of 
the uniform system (for which c vanishes). We note that the values for Amax obtained 
in this manner deviate little from those associated with infinitesimal distortions, as 
would be expected. 

Curiously, it may happen that the statistical weight first increases with the am
plitude c, but then exhibits a maximum and ultimately falls off. This behavior is 
indicative of spontaneous symmetry breaking. Thus, if prepared with a uniform den
sityand only allowed to explore undulations of the particular wavelength, the system 
would stabilize with a distribution having finite-amplitude ripples. Of course, this 
configuration would be unstable against more general redistributions, so this feature 
has little practical import. 

We also see from fig. 7 that as the temperature is raised the loss of stability occurs 
at an ever longer wave length, as expected from the above general remarks, since the 
system then moves closer to the coexistence boundary outside which it is fully stable. 
We also note that the resulting values of Amax depend significantly on the value of 
the parameter x. This feature may affect the quantitative predictions for nuclear 
multifragmentation phenomena. It may also be used to ascertain the validity of the 
commonly taken approach in which the fragmenting system is assumed to appear as a 
collection of distinct (though possibly interacting) fragments (that may be immersed 
in a nucleon vapor), see refs. [10, 11, 12], for example. 
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It should be added, that the significance of instabilities in a given dynamical 
process depends on the rate at which the unstable modes develop. This is especially 
important in nuclear collisions where the time scales are very short. The initial growth 
rate of harmonic density ripples has been studied by Heiselberg et al.[13]. 

5 Summary and outlook 

In the laboratory, a large variety of physical environments can be created transiently 
by means of nuclear reactions at intermediate energies. The interpretation of such 
collision experiments, which are often aimed at probing the nuclear equation of state, 
depends critically on our understanding of the statistical properties of non-uniform 
nuclear matter at finite temperature. We have presented a model that can be brought 
to bear on these problems. The model may also prove of some utility in connection 
with the supernova process, in which matter is compressed to densities near the 
saturation value and the temperature reaches several to many MeV, although we are 
not presently contemplating astrophysical applications. 

In this first presentation of the model, we have derived the central formalism, 
including expressions for the statistical weight and the pressure. We have considered 
two families of interactions, corresponding to two different sets of fitted values of the 
Seyler-Blanchard parameters, and each parametrized by the quantity X governing the 
strength-of the new density-dependent term (and thereby determines the energy de
pendence of the optical potential). We have found that while there is little sensitivity 
to the specific Seyler-Blanchard parameters used, the statistical properties do depend 
significantly on the value of x. Even so, the limiting temperature 7lim happens to be 
nearly the same for X = 0 (the pure Seyler-Blanchard interaction having B ~ 0.38m) 
and for the realistic value X = 0.75 (giving B ~ O.71m). 

The capability of the model to treat non-uniform systems was illustrated by consid
ering the response of matter to ripples of finite amplitude. It was found that the max
imum wavelength for which the system is stable, Amax, depends significantly on the 
value of x. This finding ma.y be especially important for studies of nuclear multifrag
mentation, since the transformation of the system into an assembly of (pre)fragments 
may well be strongly influenced by such instabilities. 

The developed model gives a consistent statistical description of nuclear systems 
with arbitrary density distributions, within the confines of semi-classical mean-field 
theory. The model combines three important features: 1) it is conceptually simple 
and computationally relatively easy; 2) it has a rather general applicability, namely 
to arbitrary density distributions held at a fixed temperature; and 3) it agrees quanti
tatively with general (avera.ge) nuclear properties, both as regards a broad spectrum 
of experimental da.ta (binding, optical potential, etc.) and with respect to theoretical 
expectations based on more elaborate calculations (such as those reported in ref. [6]). 

As already mentioned, the purpose of the present paper is to present the key parts 
of the model, including certain useful technical tools. Accordingly, we have included 
only a few instructive applications. We foresee several further developments and 
applications of the a.pproach. One direction of development is the extension of the 
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numerical treatment to two and three dimensions and the inclusion of the Coulomb 
force. Though mostly technical in nature, these elaborations are needed to make more 
direct contact with experiment. Another development is the inclusion of collective 
flow in the formulation. This formal extension can readily be made on the basis of 
ref. [S] and it will broaden the scope of the. model to more dynamical scenarios. This 
is particularly important in the context of nuclear multifragmentation, where the in
dividual fragments may carry an overall momentum (both statistical and collective) 
and so the system cannot be properly described within the confines of static theory . 
Finally, the model is developed with a view towards performing direct statistical sam
pling of the density distributions p(r), by a suitable Metropolis-type method utilizing 
the statistical weight W[p]. This will make it possible to study the statistical proper
ties of the system in situations where the fluctuations are large. Thus the model may 
help elucidate a variety of aspects related to the physical properties of hot nuclear 
systems away from equilibrium. We are presently pursuing these aspects. 

This work .was supported in part by the Director, Office of Energy Research, Di
vision of Nuclear Physics of the Office of High Energy and Nuclear Physics of the 
U.S. Department of Energy under Contract No. DE-AC03-76SF0009S. We also wish 
to acknowledge useful discussions with W.D. Myers and W.J. Swiatecki. On of us 
(ELM) would like to express his gratitude to the Nuclear Theory Group at the LBL 
for the kind hospitality. 

A Fermi-Dirac moments 

For any power n > -1 we may define the following l<ermi-Dirac moments 

[00 xn 

10 dx 1 + exp( x-a) , 
(A.l) 

100 [In(1 + eX-a) In(1 + ea-X)] 
dx xn + , 

o 1 + ex - a 1 + ea - x 
(A.2) 

where the modulation factor in the integrand for Fn is the Fermi-Dirac occupancy 
coefficient f = 1/(1 +exp(x - 0')) and the one in the integrand for Gn is the combina
tion fin f + fIn J entering in the entropy expression. These dimensionless quantities 
are useful, because certain key quantities can be expressed in terms of them. For 
example, we have p rv F1/ 2(0'), K rv F3/2(0')' and s rv G1/ 2(0'). 

When calculating the variations bK/bp and bs/bp (see eqs. (27) and (2S)), we 
need to also evaluate momentum integrals peaked in the Fermi surface. These can be 
expressed in terms of the associated Fermi-Dirac moments 

F~(O') 

G~(O') 
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The modulation factor f J (where J = 1 - f is the Fermi-Dirac availability) acts to 
concentrate the integrand around the Fermi surface. The relations on the far right 
relate the primed moments to the unprimed ones; this convenient feature reduces the 
number of moments needed. 

Moreover, it is elementary to prove the following relation 

G~(a) = (n + I)Fn(a) - anFn_1(a) , 

so that the G moments can be related directly to the F moments, 

n+2 
Gn(a) = --Fn+1(a) - aFn(a) . 

n+l 

(A.5) 

(A.6) 

Therefore, the only Fermi-Dirac moments needed are Fn for the three powers n = 
-~, ~,~. These can be calculated and tabulated ahead of time, thus reducing the 
computational problem considerably. 

In the actual applications, the quantity e = pi Pr is given, and the fugacity a 
must be determined as the solution to the relation e = F1/2(a). Subsequently, the 
moments F3/2 and F-1/2 can be calculated. Thus, we need the two functions 

(A.7) 

These universal dimensionless functions can be evaluated numerically and tabulated 
once and for all, which leads to a considerable savings in computational effort. These 
functions are defined in the interval 0 ::; e ::; 00. In the domains of very small or very 
large values of the argument e, use can be made of simple analytical approximations, 
thus reducing the amount of tabular storage space needed. These two limits are 
described below. 

For sufficiently high temperatures T, or sufficiently low densities p, we have e -+ 0 
and so the fugacity a decreases without bound. and the classical limit is approached. 
The exponential in the denominator of F then tends to infinity and a quickly con
verging expansion can be ma.de, 

(_)k 
F~lassical( a) = r( n + 1) ea '"" eka . 

L...J (k + l)n+1 
k>O 

(A.8) 

From the relationship e = Fl(O') we then find, to second order in e, 
2 

In 2v'2e a Fl1(e) ~ 
2 v&-e 

3 v& - le 
Fl(e) Fda(O) ~ -e 2 (A.9) 

2 2 2 v&-e 

F_l(e) 
2 

F_da(e)) ~ 2e ~ - 2e . 
2 211" - e 

(A.I0) 

The above expressions are used for e < 0.01, leading to an accuracy of better than 
0.01%. 
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In the opposite extreme, low temperatures or high densities, we have ~ ~ 00 and 
so a increases without bound. This is the quantallimit and we may then employ the 
Sommerfeld expansion [14J and obtain 

Fquantal(a) ~ B( _a) _ 7r
2 (n + l)n _ 77r

4 (n + l)n(n - 1)(n - 2) 
n 6 a 2 360 a 4 ' 

(A.11) 

where B( x) is the truncation function. Using this result for n = ~ we find 

[ 
1 7r 2 1 ( 7r )4] a ~ ao 1 - - (-) - - - , 

12 ao 80 ao 
(A.12) 

where ao = (~~)2/3. The two universal functions are then given as 

FdO ~ ~aj [1 + ~(~)2 _ ~(~)4] , 
2 5 12 ao 16 ao 

(A.13) 

F_1(O ~ 2ag [1 + ~(~)2 _ ~(~)4] 
2 12 ao 360 ao 

(A.14) 

The above expressions are used for ~ > 100. For ~ = 100 they are accurate to within 
0.01%. 

The utility of the Fermi-Dirac moments for thermodynamic studies of fermion sys
tems was recognized already by Stoner [15J and our above exposition is in accordance 
with his results. These moments were also employed in the work by Kupper et al. [3J. 

B Convolution 

VVe here describe an efficient method for performing a convolution with a Yukawa 
function in a semi-infinite geometry. This method was developed in connection with 
the work reported in [8], but not published at the time. We have since found it to 
be useful in a variety of contexts and therefore wish to make it generally available by 
including a brief description here. 

We consider a semi-infinite geometry, i. e. we consider a system that has transla
tional invariance in two of the three spatial dimensions. The physical quantities then 
vary in only one direction, the x direction, say. The general task is to perform the 
convolution 

(B.l) 

Here the given function f(1') depends only on x because of the translational invariance 
in the yz plane, and the Yukawa function can then be integrated over p = (y, z), leav
ing an exponential. [This result is readily obtained by using cylindrical coordinates 
and exploiting the fact that 1'd1' = pdp.J 

The first step is to split the integral into two; 
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It is then possible to derive the following recursion relations for the values of F- and 
F+ at neighboring grid points, 

F-(Xl +~) 

F+(X1 -~) 

B.1 Generalized trapezoidal integration 

(B.3) 

(B.4) 

In order to permit a fast evaluation of the integrals over the small intervals of size 
~, a simple two-point formula has been developed. It is designed to yield the exact 
result when the function f(x) is locally linear. It is elementary to show that if f(x) 
is a second-order polynomial, then the requirement 

(B.5) 

yields the expressions 

W± = ~e±t1/2a[eTt1/a_l±~](~)2 (B.6) 

for the integration weights. [It is easy to verify that w_ + W+ ~ ~ and W± ~ ~/2 
when ~ ~ a.] 

By proceeding in the same manner, it is possible to also derive a generalization of 
Simpson's three-point integration formula. The result is 

(B.7) 

with the weights 

Wo (B.S) 

, 

Note that the usual Simpson weights are recovered when ~ ~ Cl, w_ ~ W+ ~ ~/3 

and Wo ~ 4~/3. 

B.2 Specific application 

Assume that the function f( x) is given on N equidistant grid points with separation 
~ and we need to evaluate the result of the convolution at the same points. This can 
be quickly accomplished by using the recursion formulas (B.3) and (B.4), once the 
starting values F 1- and Ft, have been calculated. 
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In the context where the method was originally developed [8], the functions were 
constant outside of the explicitly considered domain, and hence it was trivial to obtain 
the starting values F1- and Ft;. In the present context we have periodic boundary 
conditions, and these values must then be calculated by explicit numerical integration. 
Using the above simple two-point formula, we find 

F; 27ra2et::./2a [w_e-t::.!a 11 + w e-t::./a (IN + e-t::./aUN_l + ... ))] (B.9) 

Ft; 27ra2et::./2a [w_e-t::./a IN + w e-t::./a (II + e-t::./a(h + ... ))], (B.10) 

where w = w+ + w_1 exp(6Ia). The remaining values are then obtained using (B.3) 
and (B.4), 

(B.ll) 

(B.12) 

The computational advantage of this method is that only two sweeps through the 
grid are required, one upwards to obtain F- and one downwards to obtain F+, in 
contradistinction with the N sweeps required by general methods (one sweep for each 
calculated value of F). This gives a significant improvement in efficiency . 
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Figure 1: Specific energy 
The energy per nucleon to = E j A in uniform isosymmetric nuclear matter as a function 
of the nucleon density p, for a range of imposed temperatures, T = 0,5,10,15,20 MeV. 
Results are also shown for the limiting temperature 7lim = 13 MeV at which nuclear 
matter ceases to be self-cohesive. Both results with the standard Seyler-Blanchard 
interaction (1) and the generalized one (15) are shown, for the voil Groote set of 
parameter values. 

Figure 2: Specific eritropy 
For the same two models as in fig. 1, the entropy per nucleon (J = SjA is shown 
as a function of the nucleon density p, and for the same temperatures T. (Since the 
entropy vanishes for zero temperature, the T = 0 curve is absent.) 

Figure 3: Equation of state 
Similarly to figs. 1 and 2, the pressure P in uniform isosymmetric nuclear matter is 
displayed as a function of the nucleon density p, for a range of temperatures T. 

Figure 4: Characteristic phase properties 
The limiting temperature Tlim (above which the pressure is never negative) and the 
corresponding density Plim as functions of the parameter x, as well as the values 
Terit and Pe~it associated with the critical point where the liquid and vapor phases 
coalesce. The solid curves refer to the parameters fitted by von Groote [7], while 
the dashed curves are obtained with the original Myers-Swiatecki values [1]. (The 
displayed density values have a numerical uncertainty of around 0.002 fm- 3

, whereas 
the temperatures are quite accurate.) 
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Figure 5: Phase diagram 
The phase diagram for symmetric nuclear matter in the p - T plane, as calculated 
with the von Groote parameter values for X = 0 and X = 0.75. The critical point is 
shown by the solid dot. The solid curve is the spinodal line, inside which the system 
is mechanically unstable. The dashed curve delineates the region inside which the 
vapor and liquid phases may coexist in thermodynamic and mechanical equilibrium. 
Uniform matter is metastable between these two boundaries. Moreover, the dotted 
curve encloses the selfcohesive domain in which the pressure is negative. 

Figure 6: Statistical weight 
As a function of the density p and for a range of temperatures T is shown the reduced 
quantity w = (1/ A) In W = -f3</J = a - f3E, which is equal to minus the free energy 
per nucleon divided by the temperature. Because it is thus independent of the actual 
size of the system, this display can be regarded as a universal representation of the 
statistical weight. 

Figure 7: Critical wavelength 
The maximum wavelength Amax, for which a hot uniform system inside the spinodal 
boundary is stable against harmonic density undulations (see eq. (30)), as a function 
of the temperature T, for three selected values of the average nucleon density p. The 
open circles show the results in the limit of infinitesimal amplitudes, while the curves 
were obtained with the finite amplitude c = 0.1. 
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