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1. INTRODUCTION 

The main focus of research in temporal databases has been on the modeling and representation of tem

poral data [4-6], [13], [16-20], [22]. Until recently, concerns about the performance of temporal databases have, 

to a large extent, been ignored. There are two major issues that separate the physical design of temporal data

bases from conventional ones: the size of data, which may be several orders of magnitude larger; and the 

extended semantics of temporal queries, e.g., [5], [17], [8], [15], which increase the complexity of query pr0-

cessing. Previous studies in physical temporal database design tended to focus on narrowly defined objectives. 

Methods to index the surrogate (time-invariant) key with sequential access to history were explored by [12], 

[23], [10]. Partitioning and indexing of static databases was studied in [7], [14]. The performance of traditional 

indexing methods for temporal queries was investigated by [2], [21], and methods to organize cwrent and histor

ical versions proposed in [1], [3]. 

In this paper, we investigate methods of indexing time-dependent data, within the context of a a first nor

mal form (1NF) relalional representation of temporal data. A framework by which to develop and evaluate phy

sical design architectures for temp<nl databases is given. We subdivide a temporal database into two or possi

bly three segments, based on the time-related view or version of the data, i.e., current, a moving window (if it is 

defined), and the archived history. The major factors that influence design are (1) the physical organization of 

each portion, (2) the index construction on each portion, and (3) functionality of queries on the database. Several 

interesting cases are subsequently investigated: (1) Dynamic structures for surrogate and time indexing (ST); (2) 

Static and dynamic partitioning algorithms for the time-line in the context of temporal attribute and time index

ing; and (3) Time-indexing for append-ooly database. In all the designs, the focus is on the role of the time attri

bute. 

The paper is organized as follows. In Section 2, we discuss the relational representation of data in the tem

poral context, followed by a framework for analyzing the physical design of a temporal database. In Section 3, 

we introduce the AP -tree, which is designed for time-based query operations on an append-ooly database, and is 

subsequently incorporated into our surrogate-time index of Section 4. In Section 5, we discuss the issue of 

indexing time and one or more temporal attributes, and delve into techniques for efficiently partitioning the time 

line. In Section 6 conclusions and future directions are outlined. 

2. FUNDAMENTAL CONCEPTS AND DESIGN CONSIDERATIONS 

In this section, we look at the fundamental approach undertaken f<r the paper. We adopt a tuple version

ing approach with interval time representation, and look at the possible architectures of a temporal database. 
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1.1. Relational Representation of Temporal Data 

A convenient way to look at temporal data is through the concepts of Time Sequences (TS) and 

Time Sequence Collection (TSC) [16]. A TS represents a history of a temporal aUribute(s) associated with 

a particular instance of an entity or a relationship. The entity or the relationship are identified by a surrogate (or 

equivalently, the time-invariant key [13]). For example, in the MANAGER. relation of Fig.l, the manager 

history of employee #1 is a TS. A TS is characterized by several properties, such as the time granularity, 

lifespan. type. and interpolation rule to derive data values for non-stored time points. In this paper. we are con

cerned with two types - stepwise constant and discrete. Stepwise constant (SWC) data represents a state 

variable whose values are determined by events and remain the same between events; the salary attribute 

represents SWC data. Discrete data represents an attribute of the event itself. e.g .• number of items sold. Time 

sequences of the same surrogate and attribute types can be grouped into a time sequence collection (TSC), e.g. 

the manager history of all employees forms a TSC. 

There are various ways to represent temporal data in the relational model; detailed discussion can be 

found in [17]. In this paper we assume first normal form relations (INF). Fig. 1 shows two ways of representing 

SWC data. 

MANAGER E# MGR Ts TE COMMISSION E# CRATE Ts TE 
El TOM 1 5 El 10% 2 7 
El MARK 9 12 El 12% 8 20 
El JAY 13 20 E2 8% 2 7 
E2 RON 1 18 E2 10% 8 20 
E3 RON 1 20 

(a) time-interval representation 

MANAGER E# MGR T COMMISSION E# CRATE T 
El TOM 1 El 0 1 
El 0 6 El 10% 2 
El MARK 9 El 12% 8 
El JAY 13 E2 0 1 
E2 RON 1 E2 8% 2 
E2 0 19 E2 10% 8 
E3 RON 1 

(b) time-point representation 

Figure 1: Representing Step-WISe Constant Data with Lifespan = [1. 20] 

The representations can be different at each level (external. conceptual. physical). but we are concerned with the 

tuple representation at the physical level. Fig. l(a) shows time-interval representation of the MANAGER and 

COMMISSION relations. On the other hand. the representation in Fig. 1(b) stores data only for event points and 

requires explicit storage of null values to indicate the transition of the state variable into a non-existence state. 
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Also, the tuples should be ordered by time in order to determine the values between two consecutive event 

points. Both representations require the use of the lifespan metadata; it is required for the time-interval 

representation since we do not store non-existence nulls explicitly, e.g., the lifespan is needed in order to 

correctly answer the query 'what was the commission rate of E2 at time 121'. We select time-interval represen

tation f<r the purpose of generalization, although the indexes can be adapted to event-point representation. 

We use the tenns surrogate (S), temporal attribute (A), and time attribute (T) when referring to 

auributes of a relation. For example, in Fig. 1, the smrogate of the MANAGER relation tis E#, MGR is a tem

poral attribute, and Ts and TE are time attributes. We assume that all relations are in first temporal normal form 

(1TNF) [17]. ITNF requires that for each combination of SW'lOgate instance, time point in the lifespan and tem

poral attribute (<r attributes) there is at most one temporal value (or a unique combination of temporal values). 

Note that INF does not imply ITNF, e.g., the relation COMMISSION in Fig. I(a) would not be in ITNF if for 

any surrogate instance there were two tuples with the same commission rate value and intersecting time inter

vals. The temporal normal fonn (TNF) definition given in [13] is deemed too restrictive, since enforcing it 

would mean that most relations will contain only a single temporal attribute. 

2.2. Lifespan and Organization of a Relation 

The physical design requirements of a temporal relation may be viewed according to its lifespan relative 

to current time. Let the lifespan of relation r be identified by a pair of start-end time-points LSr .sTART and 

LSr.END. Current data, i.e., those tuples with TE = NOW, fonn the current snapshot; all others make up the 

history of r. In many instances, a moving time window (M7W) may be defined on the relation, defined by 

the closed interval [max {NOW-lNT+l, LSr.START}, NOWl, where [NT is the length of the window. A 

relation may thus be subdivided into these three segments, or versions - current snapshot, M7W history, and 

archived versions. 

Several design issues result from this dichotomy. First is the physical organization of each version, i.e., 

whether they should be organized jointly or separately. We adopt the position that the data that is covered by 

the M7W should be physically separated from the archived history, which is presumed to be less frequently 

needed to answer queries. The indexes should also be separated, so as to improve efficiency by reducing the 

size of each. There are other associated design issues related to this approach, including the media selection and 

indexing, e.g., the adoption of WORM optical disks for archival and design of suitable indexes for such media; 

and the issue of migration strategies for moving bJples from one level of the hierarchy to the next, e.g. 

t We refer 10 the daIa coostruct u a 'relation', but we mean a 'lempora! relatim'. It is different from a staDdard re
latim because of the ulOciated meu-<ialL 



'vacuuming' techniques in [23], [24]. In this paper, our focus is on indexing only. 

For the time window, cmrent data may be separated or stored together with the historical portion. There 

are several tradeoff's to either approach. If they are separated, overheads will always be incmred in order to 

move them from one level to another in storage. On the other hand, all cmrent snapshot queries should retain 

the efficiency of conventional database management systems. Conversely, if the tuples are stored together, the 

efficiency of snapshot queries can only be preserved if data has been clustered according to the time dimension, 

and the indexes are specifically designed to allow rapid retrieval of cmrent tuples. 

2.3. Functionality of Queries 

Various operators for temporal databases are discussed in [16],[17] within the context of the TSC, in [13]. 

[19] with respect to an extended relational model, and in [8], [15] for joins involving time. The functionality of 

queries is our primary interest, i.e., how data should be organized and retrieved at minimum cost. Cost is meas

ured in both storage and disk access time. The following are the main types of temporal queries: 

(1). ST Queries: What would have been primary key queries in a conventional relation, is now a query on a 

conjunction of SandT. Functionally, there are four distinct time specifications, i.e. the current time 

NOW. an arbitrary point, an interval [t", te]' or the whole lifespan of the entity. A specific time point 

can also be further qualified as a Ts or TE time attribute in the relation. which is semantically different 

than the specification of an arbitrary time or event point 

(2). AT Queries: These are queries based on the temporal attribute value at some point or interval in time. 

(3). T Queries: These apply to queries which are primarily qualified on time, i.e., for such queries as aggre

gates, time ordering or where initial restriction on T is more selective for a conjunctive query with S or 

A. 

(4). Multidimensional Queries: These queries can have arbitrary conjunctions on relational attributes. 

2.4. General Notations 

Table 1 below summarizes notations which are used throughout the paper. 

3. THE APPEND-ONLY TREE 

In this section we present a multiway tree to index time values, that is a modification of the standard B+

tree; it was first introduced to optimize event-join operations [15]. The primary reason that it is most suitable 
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Variable(s) Description 

LS,..SI ART, LS,. .END Start. end times of r's lifespan 
d(X) Order of index X 
v, V Search values for an index 

hx(Y) Height of index type X for query type Y 

Ny Total numb« of keys in a given index 

Ndv Total numb« of keys being deleted from an index 

N,., Ns , NTLJ Size of relation (tuples), swrogate domain and 
time-sequence (tuples) 

l(r),I(S).I(T),I(PTR) Byte size of a tuple, smrogate, time attributes and 

tuple pointez 

Table 1: Summary of Notations 

for append-only databases is the fact that it is designed to increase node loading and ease insertions at the 

expense of complicating deletions. This structure is also useful in the case of the ST nested index which will 

be introduced in the following section, where the values of time arrive in order. 

3.1. Definition 

The Append -only Tree, which we call AP -tree, is a multiway search tree that is a hybrid of an [SAM 

index and a B+-tree. The leaves of the tree contain all the Ts values in the relation; for each Ts value, the leaf 

points to the last (towards the end of the file) tuple with the specific Ts value. Each non-leaf node indexes 

nodes at the next level. Fig. 2 gives an example of an AP -tree of order 4. 

U 12 t3 M = IIIpIea willi T •• 1 

IS 16 (/ = IIIpIea willi Ts .o4 

U12t3t<41S160_ 

ROOlPoiNu 

uafPoiNu 
'-_--' ...... t---

Figure 2: Example of AP-tree of Order 4 

Note that the pointez associated with a non-leaf key value. with the exception of the first pointer. points to a 



node at the next level having this key value u the smallest node value. The significance of this decision is 

explained latel' on. Access to the tree is either through the root or through the right-most leaf. The AP -tree is 

different than the B + -tree in several respects. FII'St. if the tree is of degree d, there is no consuaint that a node 

must have at least r d 121 children. Second, there is no node splitting when a node gets full. Third, the online 

maintenance of the tree is done by accessing the right-most leaf. 

Given the premise that deletions are treated u offline t storage management, only the right-hand side of 

the tree can be affected The only online transactions that affects the Ts values in an append-only database is 

appending a new tuple. In most cases. just the right-most leaf is affected, either a pointer is updated or a new 

key-poinlel' pair is added, but if it is full a new leaf has to be created to its right, and in the worst case either a 

new node along the path from the root to the new leaf, or a new root have to be created. These conditions lead 

to the following formal definition. 

DEFINITION. An AP-tree of ortkr d is a d -way tree in which 

1. All internal nodes except the root have at most d (non-empty) children, and at least 2 (oon

empty) children. 

2. The number of keys in each internal node is one less than the number of its children, and these 

keys partition the keys in the children in the fashion of a search tree. 

3. The root has at most d children, and at 1east 2 if it is not a leaf, or none if the tree consists of 

the root alone. 

4. For a tree with n children (n > 0), and a height of h, each of the first n-I chl!dren is the root 

of a subtree where 

(i) all leaves in each subtree are on the same level, 

(ti) all subtrees have a height of h -1 , 

(ti) each subtree's internal nodes have d-I keys. 

For the rightmost subtree rooted at the nth child: 

(i) it has a height of at least I, and no more than h -I, 

(iii) when its height reaches h -I, and each internal node has d -1 keys, the next key insertion 

into the AP -tree creates a new right subtree. 

The fourth point in the definition ensures that the AP -tree is balanced for all but the right subtree, and 

that this subtree will continue to grow until it reaches the same height and maximal node loading as its siblings, 

t Reorganizing the tree 10 reflect deletiOOI can be done during idle periodl or low load periods. All the procedures 
fUllClicu amecdy regardlell ~ the timing; the only issue is performance. 
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before a new right subtree is aeated. There are various implementation details of the AP -tn:e that differ from 

B ~trees and [SAM indexes. and these will be described as we proceed. 

3.2. Searching an AP·tree 

nie AP -tn:e's search procedures is similar to that of a standard B+-tree for secondary key indexing. 

except for two primary differences. FD'St. direct access to the righunost leaf is available. so that insertions can be 

made rapidly; since access to the tn:e for insertions is always made through the rigbunost leaf. two-way pointers 

are used to link a node with its parent t. Second. the semantics of time-based queries allow modifications aimed 

at improving the efficiency of retrieval. A search through the tree may be based on the TE value or a given time 

point, which requires a backward scan of tuples starting from those with a key value v + = max {v Iv S V}. By 

maintaining meladata about the first Ts value and the largest T E value indexed by the tn:e. the fact that all but 

the first child in an internal node indexes lower level nodes based on the smallest ratbez than the largest key 

values. ensures that only one leaf node is visited. In Fig. 3, an AP tn:e for the data in Fig. 2 is shown with a 

search organization based on the largest key value; 

Figure 3: Example of AP-tree with B-tree Key Organization 

for a query that requests tuples that have V = 32, v+ will be found in the visited leaf of the tn:e in Fig. 2, but 

not for the tree in Fig. 3, where the key resides in the left sibling of the visited node. 

In order to optimize searching time, an AP -tree's root node contains the fonowing metadata: Ts- which is 

the minimum of all the Ts values indexed by the tree; LSr.END *. which is the end point of the lifespan of the 

relation rj being indexed; the leftmost leaf pointer; and the righunost leaf pointer. We assume that the beginning 

of the data file pointer for r is resident in main memory or is easily accessible, thus not requiring its inclusion 

as metadata. Further, due to the need for backward as well as forward sequential scans through the data file, the 

t Two adjacent leaves of the tn:e are also linked by two-way pointers althwgh this detail is not clearly shown in the 
figura. 
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data blocks are linked by two-way pointfn. In the following procedures. we ignae certain details such as 

pointer maintenance for brevity. When a query is based explicitly on Ts. using the index is beneficial, but 

when the query is based on some arbitrary point in time. then it is not possible to detennine a priori whether 

an index search is more useful than a simple forward scan. On the other hand, further qualification. such as the 

specification of a surrogate value(s) in the query. or additional knowledge about the data, may allow a choice of 

either forward scan or index-based search for optimal response time. We provide only a general search algorithm 

on the basis of time alone. 

SearchTimeStart 

[For V = Tsl 

1. If V < Ts- or V > LSr END. search fails; 

else if V = Ts- perform task. 

2. If V = LSr END. go to RighMostLeaf; 
if V is not found. search fails; 

else perform task. 

3. Starting from Root. follow pointer corresponding to v+ = max {v Iv ~ V} until leaf is reached. 

if V is not found in leaf. search fails; 

else perform task. 

Searc:hArbitraryTime 

[For arbitrary Vl 
1. If V < Ts- or V > LSr END • search fails; 

else if V = LSr END perform step 3; 

else perform step 2 or 3. 

2. [Index search] 

Starting from Root, follow pointer corresponding to v + = max {v Iv ~ V} until leaf is reached. 

Carry out backward scan, starting from tuple accessed by leaf pointer. to the beginning of data file. 

For each tuple x. if V E [x(Ts). x(TE )] perform task. 

3. [Non-index search] 

Scan tuples from beginning of file until a tuple with T s > V is found. For each tuple x. if . 

V E [x(Ts). x(TE )] perform task. 

* Ts- is not the same a. the beginning of the lifespan of r. since the tree may index a moving time window. 
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3.3. Insertion· into the AP-tree 

Insertions into the tree are made by first accessing the righun~t leaf. One of the advantages of the AP -

tree is that it requires no splitting of filled nodes, and when new nodes have to be created, it is done so only on 

two levels- the leaf and its parent; no other level will be affected. The only nodes of the tree that are relevant 

during an insertion procedure are the root, the righunost child of the root, the righunost leaf, and the parent of 

the righunost leaf and its parent If the root and righunost leaf are not stored in main memory, at most five disk 

blocks have to be retrieved during an insertion; unlike the B -tree, recursive procedures are not required. The 

insertion algorithm below consists of two subroutines- InsertLeaf and AdjustTree. We ignore the housekeep-

ing details related to the updating of RootPtr and RightMostPtr. 

InsertLeal 

1. If RootPtr = nil, create Root and insert NewKey; 
else retrieve RightMostLeaj. 

2. If NewKey is found in RightMostLeaj update tuple pointer if necessary. 

3. If RighlMostLeaj is not full, insert NewKey into RightMostLeaj. 

4. (RightMostLeaj is full] 

Create NewLeaj and insert NewKey ; 
Set the parent of NewLeaj to the parent of RightMostLeaj; 
call AdjustTree. 

AdjustTree 

1. Name the parent of NewLeaj CurrentNode. 

2. If CurrentNode = nil, 
create NewRoot and insert NewKey into it; 

3. If CurrentNode is not full, insert NewKey into it 

4. (CurrentNode is full] 
If the rightmost child of Root is full 

if Root is also full, create NewRoot, insert 
NewKey into NewRoot, and link NewLeaj and Root to NewRoot; 
else insert NewKey into Root and link NewLeaj to Root. 

5. (CurrentNode is full but rightmost child of Root is not full] 

Create NewNode and insert NewKey; 
link NewNode to the parent of CurrentNode; 
link NewLeaj and CurrentNode to NewNode. 

In InsertLeal, the appropriate location for the new key is determined; when the righunost leaf is full, a 

new righunost leaf is created and the key inserted into it The parent pointer of this new leaf is set to the same 
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parent of the fortner rightmost leaf. The adjustments are then accomplished by AdjustTree; the examples given 

in Fig. 4 help to illustrate some of the cases. 

11 246 

(i) after iMmioli ofUy81. 2. 4 tIIId 6 

(iv) After insmioll o/a,s42 43 44 45 

Figure 4: Examples or Insertions into the AP-tree 

Step two is illustrated by Fig. 4 (ii). where the parent of the new leaf. CurrentNode. is nil. therefore requiring 

a new root to be created. Where the CurrentNode is not yet filled up. NewKey has only to be inserted into it 

On the other hand. if the CurrentNode is full. there are three subcases to consider: (1) the whole right subtree 

of the AP -tree is already filled to capacity but the root is not yet full; (2) both the root and the right subtree of 
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the AP -tree are full; and (3) the right subtree has not fully grown. In the first ease, a new entry is made into 

the root, creating a new rightmost subtree coosisting only of the new leaf. In the second case, a new root has to 

be created, with the new leaf again being the sole node in its rightmost subtree and the rest of the old tree as its 

left subtree; Fig. 4(iii) provides an illustration. For the third case, since the rightmost subtree can still grow, a 

new internal node is created which becomes the parent of the subtree rooted at CurrentNode and the new leaf; 

Fig. 4(iv) shows such an example. 

3.4. Deletions from the AP·tree 

Deletions are made in ordez to reduce the current time-window of the database. There are two relevant 

types of deletions: one based on change points, i.e., Ts values; and on event points, i.e., some given point along 

the time dimension. Unlike the B -tree, deletions from the AP -tree require complete reconstruction of the tree in 

order to maintain balance; in othez words, the complexity is proportional to Ny, the total number of keys. If we 

weze to allow the lefunost leaf to be less than 100% full after a delete opezation, the complexity is reduced; Fig. 

S provides an illustration of the diffezences between the two approaches. 

(a) Maintaining 100% fill factor for leftmost leaf 

(b) Allowing less than 100% fill factor for leftmost leaf 

Figure 5: Deletion of Keys 1,4,6 and 7 hom AP-tree of Fig. 1 
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The second method is useful for the deletion of a small nlDllber of keys from the leftmost node. since in such an 

instance, the intema1nodes remain unaltered. Otherwise, this technique presents difficulties due to (1) in the 

worst case, the parent-pointer of most leaves have to be changed. so they need to be read, and (2) modification 

of the internal nodes means that they have to be chained together for efficient retrieval. In the following algo

rithms, we adopt the first approach. We call the new cutoff key Cutoff: if Cutoff is not a Ts , then Ts- is set 

to the lefunost key along the leaf level after deletion is completed. else Ts- = Cutoff. For simplicity, we 

ignore below the treatment of the data tuples and any index search needed, since that would use the search pr0-

cedures previously given. Fwther, housekeeping of pointezs and metadata are ignored unless explicit treatment is 

important 

DeleteTimeStart 

[For Cutoff = Ts] 

1. For CurrentNode, delete all v < Cutoff in it and any left siblings. 

if CurrentNode becomes empty, make right sibling the new CurrentNode and delete empty node; 

else shift remaining keys (and their associated pointezs) leftward. 

2. Let Ts- = Cutoff. 

3. If Current Node has no siblings, set Root to CurrentNode; 
else call RebuildTree. 

DeleteArbitraryTime 

[For arbitrary Cutoff point] 

1. From leftmost leaf until v ~ Cutoff, delete a key v if all tuples with Ts = v have TE < Cutoff; 
if a node becomes empty, delete it 

2. Consolidate non-empty nodes leftwards; 

delete resulting empty nodes. 

3. Let Ts- = smallest key of leftmost leaf. 

4. If leftmost node has no siblings, set it as Root; 
else call RebuildTree. 

RebuildTree 

1. Create NewNode for every d children and enter appropriate keys. 

if the rightmost node has only one child, do not create it, and treat that child as if it were a node on 

this level 

2. If only a single node is created, set it to Root; 
else call RebuildTree. 

While the DeleteTimeStart routine is self explanatory, the DeleteArbitraryTime routine requires elabora-

tion: since a key may be associated with tuples of varying T E values, the best approach is to do a forward scan 

and eliminate a key only if all associated tuples have been eliminated. After the Cutoff point is reached, the 
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remaining keys have to be consolidared and this is accomplished by shifting the keys left to right The Rebuild-

Tree procedure recursively rebuilds die tree towards the root; it also has to make provision for an unbalanced 

rightmost subtree. Since two-way pointers between a key and its child are necessary, to avoid having to read a 

node twice, the above procedures could be rewritten as depth-first recursion, as opposed to breadth-first recur-

sion. 

3.5. Analysis and Comparison with B-trees 

In analyzing the perfoonance characteristics of the AP -tree, we will compare it to a B + -tree constructed 

for time indexing. This B+-tree incorporates some of the properties of the AP -tree which can be easily 

included without major changes to the general algorithms. These modifications are: two-way pointers between 

leaves, so that forward and backward scans can be performed; and metadata on the minimum Ts and maximum 

T E values. We do not consider the case of two-way pointers between parent-child, because many modifications 

would be needed in the deletion and insertion procedures. 

Height. The AP -tree, with the exception of the rightmost subtree will have a fill factor of 100%. In contrast, a 

B+-tree will almost always be very close to its minimum loading factor of 50%; the reason is that due to the 

progressive arrival of key values, each leaf node is split just once, and subsequently is never needed for further 

insertions. Thus the height of the AP -tree is 

(1) 

which is equivalent to the lower bound height of a general B+-tree. The B+-tree's height is 

(2) 

Comparing the two heights, hB (T) can be represented in terms of a factor that is a function of d times hAP (T), 

i.e., 

(3) 

As an example, if d = 70, then hB (T) == 1.2hAP (T). 
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Searching. Searching cost difference is a function of the height difference. if index search is used. 

Insertion. Let us ignore the I/Os needed to insert tuples into the data file; we are concerned only with the I/Os 

for the index. The lower bounds for. both the AP -tree and B+-tree are equal to two disk IIOs: one read and one 

write. The upper bound for an insertion into the B+-tree is 3hB (T): i.e .• h is the cost of traversing the tree to 

the current leaf. and for each level of the tree. a split is required. which necessitates an additional read and write 

pel' level In the case of the AP -tree. the upper bowld for insertion is 10 I/Os: this can be derived from step 4 

of InsertLeaf and step 5 of AdjustTree t. As long as hB (T) > 3. the AP -tree performs better for insertions. 

Deletion. In considering deletions from the tree. we ignore the cost of tuple deletions from the data file. and 

assume only Ts deletions in order to simplify comparisons. The lower bounds for both trees are again two disk 

IIOs. For the B+-tree. the worst case perfonnance for a deletion of a set of keys with cardinality NdY consists of 

the following sequence of actions: (1) traverse tree down to first leaf. (2) keep deleting keys until balancing is 

required, (3) carry out worst case balancing from leaf to root. and return to step (2) until no more keys need to 

be deleted. The total cost is 

NdY ldt2T (3hB (T) - 2) (4) 

For the AP -tree. all but the leaves left of the cutoff point have to be read and written once; as for higher levels. 

only writes of new internal nodes are needed. The total cost comes to 

(5) 

If deletions are based on arbitrary time points, the upper bound costs are of the same order as above. In 

general, deletions for the AP -tree are more costly, since it is dependent on the number of nodes in the tree. as 

opposed to just the height of the B+-tree. Fig. 6 shows the behavi<r of the deletion costs f<r the two indexes as 

a function of the percentage of keys deleted. where Ny is 10,000 and d is 40. At very high percentages of key 

deletions, the cost for the B + -tree becomes worse than the AP -tree. 

t For step 4 of InsertLeaI the rooc. rigblmOlt Jeaf and pen:nt of the rightmost leaf are read; in step S of Adjust. 
Tree , the rightmost child of the root and pan:nt of the ament node &Ie read, while the newleaf, new node, ament 
node, righlmOllleaf and righImost child of the root &Ie written. 
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Figure 6: Deletion Cost Comparison 

4. INDEXING SURROGATES AND TIME 

ST indexes have to take into consideration the efficiency of answering current as well as historical 

queries, and the need to answer combinations of range and point specifications. It is more likely. that range 

qualification is given for the time atttibute. In order to provide a higher degree of selectivity, we present a struc

ture that is based on nested trees, where the first level index is based on the B+-tree, while the second level 

index is based on the AP -tree. In order to evaluate the performance of this method, we compare it with two 

alternative methods, both of which are also based on variants of the B -tree. 

4.1. Nested ST -tree 

The nested sr -tree was introduced for the static database in [7], which is similar to the concept of the 

K -b tree of [11]. We introduce a modified structure which is designed for (1) a dynamic database, (2) takes 

advantage of the natural ordering of time stamps for each given S thus enabling the use of an AP -tree, and (3) 

is independent of the physical ordering of data. This approach is designed to answer queries where the primary 

qualification is on S . Fig. 7 illustrates the basic constructs of the tree. 

S -superindex. The first level of the hierarchy is a B+-tree, with the following modifications: Each leaf entry 

has two pointers associated with it -- a direct pointer to the current tuple, and one that points to the root node of 

the T -subindex. 
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Figure 7: Nested ST Indexing 

B+ -tree 

Smrogate 
Superindcx 

TIIDC 
Subindex 

Data 
Tuplcs 

T -subindex. The T -subindex is structured as an AP -tree. Unlike a solo T -index to the relation. the subindex 

always maintains a single time entty per S -value. In order to compress fwther the height of the tree. the subin

dex can be constructed sparsely. i.e .• each leaf entry will lead to a tuple-pointer block. rather than to the data 

block itself. The adoption of the AP -tree for this level of indexing is not dependent on an append-only database. 

since a dynamic database that allows delete operations would delete tuples only on the basis of maintaining 

some current time-window. 
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4.2. Nested Tree Procedures 

The insertion procedure for the Nested ST -tree is two-stage: 

InsertSuperindex 

1. If S is fOWld in leaf, IDsertSubindex. 

2. Create new leaf entry; 

Create new root node for T -subindex. 

IDsertSubindex 

Same as in AP -tree. 

The search procedures consists of ttaversing the B+-tree superindex, and then using the appropriate pro-

cedures for the AP -tree subindex. Deletions can be of two types, one to delete some tuples of an S -entry, and 

the other to delete all history of the entry. 

DeJeteTuple 

1. If T range = AlL, delete S entry in superindex. 

2. Delete appropriate T entries in subindex. 

In insert and delete operations, any reconstruction is bounded by the complexity of the sum of B+-tree and 

AP -tree balancing. 

4.3.- Alternative Structures 

We introduce two structures f<X' comparison pwposes: the first is based on a conventional B+-tree for the 

composite key S and T, while the second is similar to the idea introduced by [12]. 

Composite Index. The key is made up of the concatenation of the two auributes, employing a B+-tree. There 

are many ways in which the height of the tree can be reduced, including the use of pre/ix-B -trees, compres-

sion, and allowing sparse indexing on the T portion of the key. 

S -Index and Accession L~t. In this case, only the S values is indexed, and the associated T values are stored 

in a list accessible from the appropriate leaf entry. The list is made up of the concatenation of disk pages, each 

containing pairs of time-value and tuple-pointer. The list can be reduced in length by compression. 
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4.4. Analytical Com)NU'Bm 01 Approaches 

We will look at the perfonnance of the three indexes analytically. in terms of heights and complexity with 

respect to balancing. We assume for simplicity. that the tuples are uniformly distributed across the surrogate 

instances. We denote the nested structure as 'Nested' or IN. the composite key index as 'Composite' or Ie. and 

the S -index and accession list as 'Sparse' or ISp. 

Heights. Let hN(S1'). he(S1'). and hsp(ST) denote the heights of IN. Ie. and Isp respectively. Further. let 

N,. and Ns denote the cardinality of the relation and surrogate domain respectively; Nrlt is the mean number 

of time values for each surrogate instance. i.e.. the average length of a time chain; B sp represents the blocking 

factor for the accession list of I sp; and d ( . ) is the ordec of the tree for the specified key. 

= llOgrd(S)l21 + l(Ns + l)j + llO&i(T)+ l(NTls + l)j + 2 

= llO&i(S)+ l(Ns + 1)j + llO&i(T)+ l(NTlt + l)j + 2 

he (ST) = hB (ST) 

= llOgrd(s+T)I21 + l(N,. + l)J + 1 

= llO&i(S+T) + l(N,. + l)J + 1 

[
NTIs 1 hsp(ST) = hB(S) + --
Bsp 

(6) 

(UB) 

(LB) 

(7) 

(UB) 

(LB) 

(8) 

TIle difference between the lower and upper bounds of the first two techniques is in the fanout of the B + -trees. 

There are two types of height comparisons -- the first relates to current time queries, in which case hN (ST) is 

never worse than the other two alternatives. 

The second type of comparison relates to the maximum height of the three. i.e., in retrieving an arbitrary 

ST query. In comparing lower bounds of the nested tree versus the other two, 

(9) 
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and 

(10) 

The height difference is due to the fact that an additional level of indirection is needed to find the T value for 

the nested tree, given that the loading factor of all trees involved is the maximum possible. 

In terms of upper bound differences, 

(11) 

i.e., the difference is due to the logarithmic versus linear complexity of the two time-indexes. On the other hand, 

for the nested versus composite approaches, assume that d (S) = d (T) = a, 

(12) 

In Fig. 8, the upperbound comparisons are made for the three methods, letting a = SO, N,. = 1 million 

tuples, Bsp = 100, and Ns varying between 1,000 to 10,000. 
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Figure 8: Upper Bound Heights, Nr = 1M tuples 

We label the three methods 'Nested', 'Composite' and 'Sparse' in the graphs that follow. As the graph shows, 

for the given parameter values, IN is always one level lower than Ie, while I sp fluctuates, depending on the size 
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of the history chain. Since the relation size is fixed. the distance of index traversal carried out by I sp is 

inversely proportional to the size of the S domain. 

Insertions. For an insertion that requires only the insertion of a new T value, the lower bounds is 3 I/Os for IN 

and I sp ' and 2 for the Ie; the worst case costs on the other hand, are hs(S) + 3, hs(S) +10, and 3hs (ST) 

respectively. On the other hand, when a new S value is inserted. the lower bounds remain the same as before; 

for the the worst case, while the cost for Ie also remains unchanged, it increases for the other two methods, i.e., 

3hs (S) + 3 for I sp , and 3hs (S) + 10 for IN. 

Deletions. The case for deletion costs mirror those presented above for the best case scenarios, while for the 

worst case, they are a function of the worst case costs of the B+ -tree and AI' -tree, as presented previously in 

Section 4. 

4.5. Empirical Test of Alternative Structures 

In this subsection, we provide results of some tests of the tree indexing techniques. In executing the tests, 

it was decided that sparse indexing and compression of index entries should be ignored, since they can be 

applied to each approach. Furthermore, the idea of using prefix B -trees was rejected, since it can again be 

applied to varying degrees to each index, and this method of compacting the index's storage requirement is 

known not to be very effective [26]. 

The parameter settings used are shown below, where the relation size is set at lOOK and 1M tuples, and 

the S domain varied in increments of lK, from lK to 10K. 

Variable Value 

Nr lOOK and 1M tuples 

Ns lK to 10K, in lK increments 

1 (r ),1 (S ),1 (T),I (PTR ) 40B tuple, 8B S & T, 4B pointer 

FIlL INDEX 100% for AP -tree, 75% for B+-tree 
FIlL DATA 75% 
CR 50% 

Table 2: Table of Values for Tests 

I( . ) represents the byte size of the argument, and FIlLJNDEX and FIlL_DATA are the fill factors for the 

index and data pages respectively. CR is the compression ratio, and is set to 50%, which is about the best most 

existing algorithms can achieve. 
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Fig. 9 to 11 exhibit some of the results of the tests. In Fig. 9, the current quel'y cost in tenns of disk I/Os 

is graphed for the tIuee alternatives - since IN and ISp have identical superlndexes, they have identical costs. 

The graphs show that the average cost of accessing the current tuple is cheaper by 1 or 2 disk accesses for these 

two methods when compared to Ie. Only in Fig. 9(a), with Ns = 10,000 was 
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Figure 9: Query on Current Tuple Cost Compamon 

the cost identical; the reason is that at this point. the time chain is only 10 tuples long on average, and there is 

little benefit in maintaining two-level indexing. 

Fig. 10 shows the I/O costs associated with arbitrary queries involving historical data. When the relation 

size is lOOK tuples (Fig. 10 (a», Isp is more efficient than the other two techniques, which share the same cost 

for all values except at the right extreme, when the short time chain yields higher overheads for the nested 

index. When the relation size is fixed at 1M tuples, the results fluctuate much more -- the composite index per

fonns W<xst. The reason that the sparse index yielded better performance in these two tests, is due to the 

assumption of a high compression ration of 50%, which allows each block to hold around 300 tuple-pointers. 

Since our tests are limited to history chains of 1,000 in maximum length, and we assumed unifonn distribution 
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In Fig. 11. the index storage costs for the three methods. for the 
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case of a 1 million tuple relation is examined. The composite approach on the average is the most expensive to 

maintain -- this is due to the fact that it is a single tree. Other' tests undeztaken, but for which results are not 

displayed, included sequential query retrieval costs undel' conditions of sorted aDd unsorted data (with S as the 

primary sort key). The results show liule differences between the three methods, since the cost of retrieving data 

blocks overwhelms the index search costs. 

To conclude, the nested approach is an efficient method of retrieving data for ST queries. The insertions 

are easily carried out. and balancing of one level can be separated from the other, Deletions on the AP-tree 

level is not a primary concern, thus the weaknesses of the tree is not exposed of teD. Further, the nested index is 

much more efficient in answering current queries, and is efficient storage-wise. Compared to the sparse indexing, 

although the average case analysis for random queries is eithea- worse or equal, it has a lower upper bound. 

5. AT·INDEXING AND TIME PARTITIONING 

In this section, we look at the problems of indexing a relation on the temporal attribute and time, and the 

related issue of partitioning the time-line into segments. 

5.1. AT Indexing Using Nested Trees 

Fig. 12 illustrates our approach to indexing for AT queries. The basic concepts are similar to that of the 

ST -index, whereby the fist level indexes the non-time attribute, and the second level indexes time. The 

difference relates to the multiplicity of qualifying tuples for a given A value. Since the temporal attribute is not 

a ~que key, tuples that qualify on it are likely to overlap over their associated time intervals. A straightfor

ward way of indexing the time line in such a case, would be to use a conventional index, such as the B -tree, 

with one of the two time-attributes, i.e., T s or TEas the search key. A major limitation to this is that many 

queries are not based on the start or end time, rather on an arbitrary point in time or time interval. Using the 

above method of indexing the time line, multiple overlaps among tuples will OCCW', meaning that the index will 

not be highly selective. The greatel' the degree of overlap, the more time will be spent traversing sibling nodes 

of the index tree in search of overlapping tuples. We will thus look at methods by which the tuples associated 

with a given temporal attribute value, or even a range of such values, can be partitioned along the time dimen

sion, such that minimal overlap is achieved. 
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Figure 12: AT Indexing 

5.2. Basic Approach and Objectives 01 Partitioning 

The time-line is partitioned into several segments, each segment being represented by a leaf entry in the 

index. The associated pointer leads to a bucket of tuple pointers, for all ruples where [Ts , T E] intersects with 

the segment delimiters, [Vj, Vj+1). Each bucket consists of one or more disk pages, and in the event of an 

overflow, additional pages are chained to it, thus increasing the search time along that segment The objective is 

thus to minimize overflow resulting from the partitioning, which requires that duplication of tuple pointers across 

the relevant buckets be minimized. We develop the algorithms from an initial point where the number of tuples 

are known. These are then extended to the dynamic case. 
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5.3. Simple Allocation Approach 

In this algorithm. divide the bucket capacity into the total pointez count, to derive the starting number of 

buckets. We then assign pointel'S to buckets, which will likely cause overflows. A balancing routine is then exe

cuted. which attempts a reallocation of overflow pointers between neighboring buckets in an iterative manner. At 

each step. the bucket with the worst overflow is selected. and the length of its associated segment is reduced by 

setting V max higher. V max+l lower. or both. if doing so reduces its tuple count without increasing that of its 

neighbors. The balancing is completed when no more improvement is possible. 

Algorithm Simple 

1. [Initial Allocation] 
Divide total count of tuple pointers by desired bucket capacity to derive numbez of buckets and seg
ments. 

2. Allocate pointers to buckets. 

3. [Balancing] 
Find bucket with highest overflow. Compute the changes in allocations. if the left boundary is moved 
to the right, the right boundary to the left. or both. Execute change if feasible and until no more 
adjustment is possible. 
Eliminate any redundant buckets. 

4. Repeat Step 3 mtil there is no overflow or all buckets have been iterated through. 

5.4. Optimal Allocation Approach 

There are two major drawbacks that the first algorithm possesses. First, it does not consider the probabil-

ity distribution of pointers as a function of time. Secondly. the duplication of pointers. which takes place as the 

partitioning is caITied out is ignored. An optimal solution approach is to use a dynamic programming algorithm 

to solve the problem. We recursively allocate pointel'S to buckets. such that each receives its optimal allocation. 

given that its immediate predecessor has also received an optimum assignment of the tuple pointers. The recur-

sive equation is as follows. 

where 

Xi = right boundary point for B j 

i = 0 •...• MAX 

y = set capacity for buckets 

Bj = ith bucket 
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This algorithm will require exponential time in ordec to solve, with a worst case of NT!. We develop two 

heuristics to implement the formulation. taking into considera1ion the repetition of poinlel's as the lifespan is par-

titioned into intel'Vals. The heuristics differ in the decision to terminate assignment to the current bucket: in the 

first version, assignment is terminated when eithez the capacity is reached or exceeded; in the second version, 

termination occurs if the next assignment will cause an overflow, unless that assignment will be the only one for 

the buckeL These heuristics also require balancing, since there is a good probability that the procedures will be 

less effective in assigning tuples as the end of the lifespan is reached. Thus the balancing algorithm is carried 

out right to left, under the assumption that tuple pointers have to redistributed from the last bucket towards the 

Algorithm Dynamic-Overflow 

1. [Allocation] 

Starting from IST .SI'ART, allocate to bucket one until its capacity is reached or exceeded. Detennine the 

righbnost boundary of the associated segmenL 

2. Continue for bucket two to MAX, until all tuples have been assigned. For each subsequent bucket, start' 

with a count of the predecessor bucket's overlapping intervals. 

3. [Balancing] 

Perform balancing algorithm similar to that given in Algorithm Simple, but starting from bucket MAX to 

0, execute a single scan. 

Algorithm Dynamic-Underflow 

1. Starting from IST .ST ART, make an initial allocation of pointers. 

2. If the bucket is not full, continue allocating the next batch of pointers iff they do not cause an 

overflow; 

else determine the boundary of the associated segment of cwrent bucket. 

3. Carry out Steps 2 and 3 of Algorithm Dynamic-Overflow. 

5.5. Non-redundant Allocation or Pointers' Time Intervals 

Our objective of reducing redundancy of pointer assignment was motivated by the need to minimize 

search time in order to retrieve the relevant tuples associated with a query. A major problem that arises from 

this approach is that a given time segment does not tightly bind all tuples that it is indexing. In other words, a 



-27-

quecy that is directed at a particular segment needs to scan all tuples within that segment in order to determine 

if any of them is relevant in answering the query. To avoid actual pbysical reuieval of data. each data pointer 

can be stored together with its time-stamps; but this will dramatically reduce the fanout facta of any indexing 

tree employed. 

A method which eliminates the need to maintain time-stamps feX' each tuple pointer is one in which each 

bucket contains only intervals or subintervals that will span the bucket. This requires the pointer intervals to be 

divided into as many buckets as there are unique starting or ending points along the lifespan. Another advan-

tage with this approach is that a variety of aggregate operations can be facilitated more easily, since each bucket 

has an identical set of intervals/subintervals. The drawback is that there will be a much larger number of buck-

ets and therefore the indexing tree will be taller. This algorithm does not consider the capacity of the buckets, 

but it is unlikely that many of them require more than one data page, unless the disuibution of the event points 

are not unifonn. 

Algorithm Tight-Bound 

1 Create the first bucket, with starting point equal to the first starting time found among the tuples. 
Take note of the ending time for this first tuple. 

2 Allocate tuples into this bucket, until (i) another tuple is found with the same starting time as the first 
tuple, but has an earlier ending time, or (ii) another tuple is found with a starting time earlier than the 
first tuple's ending time. 

3 Determine the segment of the first bucket, and create the next bucket 

4. Repeat Steps 1 to 3 until the end of the lifespan is reached. 

5.6. Empirical Testing or Partitioning Algorithms 

There are several factors involved in the performance of the algorithms. We retained the assumption of 

uniformity in the occurrence of events. The following parameters were used: 

The relation size is fixed between 200k to 1M tuples in increments of 2OOk. Nt is the number of time 

points in the lifespan of the relation. We generate time sequences, where once an event is generated, PI indi

cates the probability that for the next time point, the event remains valid. i.e., there has been no change. By 

varying this probability between 0.70 and 0.90, we allow for varying mean intervals for events, and thus affect 

the count of actual tuples, i.e., the change points associated with each A value. Fixing the' A and T domains 

at arbittary values should not affect the general results, since we vary the mean length of events and thus 
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Variable Value 

N, 200k to l000k 

Nt 1000 

NA 100 

p" 0.70 and 0.90 

KPTR page poiDtel' capacity = 70 

Table 3: Range of Values for Empirical Test 

relation size. 

Fig. 13 and 14 display two sets of results from the experiments, where an arbitrary value of A is selected. 

In the graphs, the four algoothms are labeled as S, DO, DU and TB respectively. Fig. 13 shows the number 

of buckets that result from each partitioning algorithm, where in (a) p" is 0.7, while in (b) it is 0.9. Regardless 

of p" or relation size, Alg. TB ,which is the R+ [25] equivalent in tenns of partitioning technique, utilizes 

almost the same number of buckets. The reason is the high degree of overlaps, as opposed to identical intervals, 

that exist for any attribute value. Thus. for ahnost every point in the time line. there is a single bucket associ

ated with it This is why the number of buckets for the algoothm peaks at 1000. which is the size of the T 

domain. 

On the other hand, the other three algorithms explicitly allocate pointers as a function of the capacity of 

buckets. Thus. for a given p" the number of buckets rise in proportion to the size of the relation. For all cases. 

Alg. S has the lowest number of buckets, followed by Alg. DO and Alg. DU. This is due to the linear relation

ship between Alg. S's bucket generation and the number of tuples. But, the two dynamic algorithms assign 

tuples in an incremental way, leading to nonlinear growth. since at higher values of p" and N" the increasing 

number of overlaps cause suboptimal use of many buckets. As expected, Alg. DU is inferior to Alg. DO. In Fig. 

13 (b), we see that Alg. 00, DU and TB converge as the relation size increases. 

Fig.14 shows two graphs pertaining to the performance of the four algorithms in terms of the average fill 

factor of buckets. over the same range of parameters as in Fig. 13. Alg. TB has.the lowest fill factor, exceeding 

100% only in the extreme! The low average utilization of the disk pages is another explanation for the high 

number of buckets required for the method. On the other hand, Alg. S ahnost always has an overflow, although 

it is usually below 100% -- this means that most of the time, an additional page is needed for each bucket The 

two dynamic algorithms are the most efficient in space utilization -- there is little distinction between Alg. 00 

and DU otherwise. 
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Figure 13: Comparison of Number or Buckets Used 

5.7. Performance or Balancing Routines 

1000 

The first three algorithms included balancing routines. It was found that the first method required balanc

ing most. The result of the balancing was not so much a reduction in the total pointer count, but in the distribu

tion of pointers across buckets. In most tests, the total count remained about the same, but the high count and 

standard deviation of bucket count dropped within the range of 10% to 40%. On the other hand, Alg. 00 and 

DU did not require balancing, with minor exceptions; even when balancing took place, no noticeable difference 

occurred in the high count and standard deviation of allocations. One intervening factor is uniformity of the 
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Figure 14: Compariwn of Bucket Fill Factors 

1000 

generated sample data, which means that the intervals associated with tuples were unifonnly distributed across 

the lifespan. Nonetheless, these two methods can be easily adapted to dynamic databases, since new data will 

only extend the ending time of the lifespan, requiring new segments to be created independent of the existing 

assignment • 

/, 
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5.8. Implications (or Query Performauce 

We reject the second dynamic algorithm - Alg. Dynamic-Underflow, since it never perfonns better than 

its variant, the Dynamic-Overflow. Among the three remaining algorithms. we have to distinguish Alg. Simple 

from the other two: the fooner is more suitable for static data. since the partitioning is a function of the total 

count of tuples and a balancing routine is needed to optimize its performance. It clearly outperfonns the others, 

especially when there is a larger density of tuples for a given time point being considered. and also the interval 

of a tuple is longer. 

On the other hand, Alg. Dynamic-Overflow and Tight-Bound are more suitable for dynamic databases. The 

difference between the two is the tradeoff between the number of tuples retrieved in order to respond to a given 

query on the one hand, and the number of index pages that have to be retrieved on the other hand. Although 

Alg. Tight-Bound should provide only data that is valid for a specified query interval, its partitions are degen

erate, i.e., it quicldy converges towards the worst case of one partition for each time poinL Thus, it has very low 

selectivity for an aIbitrary query. Both algorithms generally have no overflow: thus, Alg. Dynamic-Overflow is 

clearly superior. Even if we take into consideration the desirability of adding a pair of time-stamps for each 

pointer in a given bucket, the reduced bucket capacity utilization in Alg. 00 does not negate its advantages over 

Alg. TB. 

The difficulties of allocating intervals is clearly the result of the fact that time intervals, unlike geometric 

objects, do not have natural clustering tendencies. Therefore, partitioning methods similar to those in spatial 

indexes, such as R -tree [9] and R+ tree [25], need not be suitable, as discovered in [10]. 

6. CONCLUSIONS 

In this paper we have investigated various issues associated with the indexing of temporal databases. We 

looked at the organization of a database in terms of current and historical data. the functional requirements of 

queries, and the links between physical order of data and indexing. We then looked at several structures, each 

aimed at optimizing data retrieval for a specific contexL The AP -tree is aimed at indexing data for append-only 

databases, in order to help event-join optimization and queries that can exploit the inherent time ordering of 

such databases. Two variable indexing for the surrogate and time was studied -- we showed that a nested index 

could be a very efficient structure in this context, and overall is preferable to a composite B -tree or an index 

that involves linear lists of historical tuples. We discussed in detail the problems of indexing time intervals, as 

related to non-surrogate joint-indexing. Several algorithms to partition the time line were introduced, and we 

concluded that the Dynamic-Overflow method seems to yield good performance for the case of a dynamic 
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database, while the Simple algorithm can be effective for static data organizalions. We also outlined a two

variable AT index based on nested indexing. Indexing of temporal attributes and time has not been explored in 

the literature before, where focus has been on the swrogate and time. 

For future research, we would like to explore furthez the issue of time partitioning, primarily in the con

text of multidimensional search structures. It has already been mentioned, how difficult it can be in partitioning 

time jointly with other variables, since the lattez are inherently point data, and further, there is no natmal order

ing within them. Thus, we should not follow too closely the resean:h already done in the multidimensional parti

tioning area, since they are more often than not applied to spatial/CAD/geometric data. Another topic of interest 

is the construction and use of indexing for certain classes of tempaal queries, which by their complex nature, 

may benefit from indexing. Fmally, the organization and maintenance of a multi-level storage structure for tem

poral data is an important topic worth exploring. 
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