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ABSTRACT 

DIAMAGNETISM is the phenomenon by which a given substance 

or body repels or expels magnetic flux from its interior. A diamagnet 

increases its free energy when placed in a magnetic field, and thus experi

ences a repulsive force away from regions of space where the magnetic 

field is high. Diamagnetism is a purely quantum-mechanical 

phenomenon and can only be understood in quantum-mechanical tenns. 

Examples of diamagnets are closed-shell systems -- atoms and molecules 

with no unpaired electrons -- in their gaseous, liquid or solid fonn, and 

superconductors, the perfect diamagnets. Metallic electrons also provide, 

through their orbital quantization in the presence of a magnetic field, a 

diamagnetic contribution to the susceptibility, even though -- in most 

metals -- the paramagnetic contribution of the electron spin dominates. 

The orbital diamagnetism of metallic electrons also contains a part which 

oscillates as a function of the intensity of the applied static magnetic field. 

This phenomenon -- known as the de Haas - van Alphen effect -- pro-
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vides a very precise experimental tool to detemrine the quantum

mechanical electronic structure of pure metals. 

April 6, 1990 



1. INTRODUCTION 

DIAMAGNETISM 

L. M. Falicov 

Deparunent of Physics, 
University of California, 

Berkeley, California, 94720, 
U.S.A. 

and 

Materials and Chemical Sciences Division, 
Lawrence Berkeley Laboratory 

Berkeley, California, 94720, 
U.S.A. 

TABLE OF CONTENTS 

2. THERMODYNAMIC ARGUMENTS 

3. DIAMAGNETISM OF ATOMS, MOLECULES AND MOLECULAR SOLIDS 

3.1 Hamiltonian of Electrons in a Magnetic Field 

3.2 Langevin Theory for Closed-Shell Systems 

4. ORBITAL DIAMAGNETISM OF METALLIC ELECTRONS 



- 2-

4.1 Quantization of Itinerant Electrons in a Magnetic Field 

4.2 Landau Diamagnetism 

4.3 The de Haas - van Alphen Effect 

5. DIAMAGNETISM IN SUPERCONDUCTORS 

5.1 The Meissner Effect 

5.2 The London Theory 

5.3 The Ginzburg-Landau Theory 

5.3.1 General Formulation 

5.3.2 Penetration Length and Coherence Length 

5.3.3 Flux Quantization 

5.3.4 Phase-Current Relationship; the Josephson Effect 

5.3.5. Magnetic-Field Dependence of the Order Parameter 



- 3 -

5.3.6 Quantum Interference Phenomena 

6. CONCLUSION 



-4-

GLOSSARY 

anti ferromagnetic (anti ferromagnetism) 

A substance in which local magnetic moments are arranged in alternating 

orientations, resulting in no net macroscopic moment. 

Bardeen, Cooper and Schrieffer theory 

See BCS theory. 

BCS theory 

A microscopic theory of superconductivity formulated by Bardeen, Cooper 

and Schrieffer in 1957. 

Bohr-Sommerfeld quantization rules 

Rules by which the energy of bound electronic states were quantized in the 

"old" quantum mechanics. 

Brillouin zone 

The polyhedron in reciprocal space over which the wave" vector k is allowed 

to vary. 

coherence length 

The distance over which the coherence of the quantum-mechanical phase of 

the superconducting order parameter is preserved. 
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vclotron resonance 

Resonance absorption of electromagnetic radiation obtained when the elec

tromagnetic frequency is equal to the cyclotron frequency of electrons moving in a mag

netic field; it is also sometimes called diamagnetic resonance. 

de Haas - van Alphen effect 

Oscillatory contribution to the magnetic suscep~bility, periodic in liB, 

caused by the interrelationship of the quantized energy levels and the Fermi surface. . 

diamagnetic (diamagnetism) 

A substance or body that repels or expels magnetic flux. 

diamagnetic resonance 

See cyclotron resonance. 

Fermi-Dirac statistics 

The thermal-equilibrium statistics that applies to particles which satisfy the 

Pauli exclusion principle, electrons among them. 

Fermi level 

The value of the energy that separates occupied from empty states in the 
+-.. + - - -

limit T ~ 0 of the Fermi-Dirac statistics. 

Fermi surface 

The surface of constant energy in k-space corresponding to the Fermi level. 
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ferrimagnetic 

An arrangement of local magnetic moments which exhibits both a uniform 

value -- a macroscopic moment -- and a spatially oscillatory component. 

ferromagnetic (ferromagnetism) , 

An arrangement of magnetic moments all·parallel to each other that results in 

a macroscopic moment. 

fluxoid 

The quantum of magnetic flux in multiply connected superconductors (see 

flux quantization) 

flux quantization 

The property of multiply connected superconductors that restricts the values 

of the magnetic field inside the sample to integral multiples of a fixed quantity, called 

the fluxoid. 

Ginzburg-Landau theory (Ginzburg-Landau equations) 

A phenomenological quantum theory that describes the electromagnetic pro

perties of superconductors and which allows for spatial variations and coherence effects. 

Josephson effect 

Coherent tunneling of electrons between two superconductors separated by a 

thin non-superconducting -- normally insulating -- layer. 
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London theory (London equation) 

A macroscopic classical theory which describes the electromagnetic proper

ties of superconductors. 

Meissner effect 

The complete exclusion of magnetic flux (perfect diamagnetism) from the 

body of a superconductor at low enough values of the applied magnetic field. 

paramagnetic (paramagnetism) 

A substance that exhibits neither permanent magnetic moment nor long-range 

order of local moments and which attracts magnetic flux. 

penetration depth 

The distance over which an outside magnetic field decays into the bulk of a 

superconductor. 

reciprocal lattice 

The discrete, infinite set of points in reciprocal space which defines the vec

tors used in the Fourier series for a given periodic structure in three-dimensions. 

reciprocal space (k-space) 

A mathematical space, with the dimension of inverse length, over which 

wave vectors and periodicities of Fourier series are defined. 
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1. INTRODUCTION 

The word DIAMAGNETIC was introduced -- originally as a noun, later as an 

adjective -- by Michael Faraday in 1846. In the P hilosophicaZ Transactions I , 2, page 

2149, one reads: "By a DIAMAGNETIC I mean a body through which lines of magnetic 

force are passing, and which by their action does not assume the usual magnetic state of 

iron or loadstone". It was constructed from the Greek prefix ota (which means by, 

through, across) and the word magnetic -- from the Latin word magneticus -- which 

described, at that time, the special forces inherent in naturally occurring iron, iron 

oxides, and other substances. 

The operational definition of DIAMAGNETISM, quoted in most electromagnetism 

and materials sciences textbooks for a century and a half, is still valid. A substance 

shaped in the form of a bar or needle and suspended freely between the poles of a mag

net is called paramagnetic or magnetic if it orients itself longitudinally with the magnetic 

lines of force, i.e. pointing towards the poles; it is called diamagnetic if it orients itself 

equatorially, i.e. perpendicular to the lines of force. Already in 1849 Mrs. Sommerville 

[ Connect. Phys. Sc. xxiii, 369] wrote "Substances affected after the manner of bismuth 

(when suspended between the poles of an electromagnet) are said to be diamagnetic": 

To the present day the semimetal bismuth is taken as the prototype of a diamagnetic sub

stance. 

Although the concept of magnetism of materials predated Quantum Mechanics by 

some eighty years, magnetism is a purely quantum-mechanical effect. Strictly classical 

systems in equilibrium cannot display a magnetic momen4 even in the presence of a 

magnetic field. Understanding diamagnetism, therefore, requires a complete quantum-

mechanical treatment. 
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2. THERMODYNAMIC ARGUMENTS 

In the presence of an applied external magnetic field B, the free energy F (T ,B) of 

a given system at a given temperature T can be expanded in a Taylor series of the form 

F (T ,B) = F o(T) - Mo(T)· B - ( 1 / 2 ~) L B i Xij (T) B j 
ij 

(2.1) 

In (2.1) the vector Mo(T) is called the temperature-dependent intrinsic magnetization, 

and the second-rank leT) is the magnetic susceptibility tensor. The magnetization M(T) 

is defined by 

M(T) = Mo(T) + ( 1 / ~ ) X . B (2.2) 

Materials for which Mo(T) is non-zero at a particular T are calledferromagnets or fern

magnets at that temperature, irrespective of the properties of l(T). Such is the case, 

for instance, of the metals Fe, Co, Ni, and Gd and the compounds Cr02' EuS, and 

Fe 30 4' inter alia, at low enough temperatures .. 

If, on the other hand, Mo(T) = 0, then the magnetic properties are dominated by 

X(T) . In particular, for isotropic systems where 1 is a diagonal tensor, 

Xij(T) = X(T) Oij , if X(T) is positive, then the substance is said to be paramagnetic, 

whereas if X(T) is negative, then it is labelled diamagnetic. The definitions can be 

extended to particular directions of anisotropic systems. 

Examples of paramagnets are Fe, Co, Ni, and Gd at high temperatures, most rare

earth compounds and gaseous molecular oxygen. Examples of diamagnets include the 

noble gases He, Ne, Ar, Kr, and Xe, most molecular gases, liquids and solids, and the 

semimetals As, Sb, Bi, and graphite. 

It should be pointed out that the free energy of a diamagnet increases in the pres

ence of a magnetic field, and therefore the system evolves so as to avoid high-field 

regions of space; there is a net repulsive force, caused by the magnetic field, acting on 

the diamagnet. Conversely the free energy of a paramagnet decreases in the presence of 
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a magnetic field, with an attendant attractive force. 

3. DIAMAGNETISM OF ATOMS, MOLECULES AND MOLECULAR SOLIDS 

Lenz's law in electromagnetism {see 05-01-5-124 and 05-01-5-127} establishes 

that when the magnetic flux through an electrical circuit is changed, an induced current 

appears so as to oppose the flux change. In classical systems that current rapidly decays 

through dissipation, and a new state of equilibrium is achieved with no current flowing 

through the circuit, and with the new value of the magnetic flux permanently established. 

In quantized systems with a discrete, non-degenerate energy spectrum, such as a 

closed-shell atom or molecule, the induced current persists for as long as the applied 

field is present, and the net magnetic field -- the sum of the applied field and the internal 

one generated by the electronic current in the atom -- is always smaller than the applied 

field. 

In addition, closed-shell systems, because of their non-degenerate ground state, 

possess no intrinsic magnetic moment and are therefore diamagnetic. (It should be 

remembered that intrinsic magnetic moments are caused by non-vanishing orbital or spin 

angular momenta which are able to reorient themselves in the presence of a magnetic 

field; that capability of reorientation requires degeneracy of the ground-state manifold.) 

3.1 Hamiltonian of Electrons in a Magnetic Field 

A well established result, valid in both classical and quantum mechanics, states that 

a system of electrons in a magnetic field B, defined by a vector potential A. such that 

VxA=B 

is described by the following Hamiltonian: 

(3.1) 
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H = 2~ ~ ~i + e A(ri) r + v - ~ e <I>(ri) + ~ ~ (Ji . V x A(ri) (3.2) 
1 1 1 

In (3.2) m is the mass of the electron, e is the (positive) charge of the proton, V is the 

internal electrostatic energy of the electronic system, <I> is the electrostatic (scalar) poten

tial, and ri' Pi' and (e 1m) (Ji are the position, the momentum and the spin magnetic 

moment of the i th electron, respectively. 

For a single atom or ion in a uniform magnetic field of magnitude B oriented in the 

z direction, it is convenient to choose the so-called symmetric gauge 

A=lhBxr (3.3) 

where the origin of the gauge is located at the nucleus. Under such conditions the Ham-

iltonian (3.2) reduces to 

[ 
1 ·eB e 2 B2 ] H= ~ -p.2+ e"'(r·)+-(L·+2cr·)+ (x·2 +y.2) +v 

~ 2m 1 'I' 1 2m ZI ZI 8 m . 1 1 
1 

. (3.4) 

The terms in the summation correspond, for each electron, to the kinetic energy, the out

side potential energy, the coupling of the magnetic moments arising from the orbital 

(Lzi ) and the spin (crzi) magnetic moments of the electrons to the magnetic field, and the 

weak quadratic term, proportional to B 2. 

3.2 Langevin Theory for Closed-Shell Systems 

Diamagnetism arises in systems where the contribution from the third term in (3.4), 

linear in B vanishes, i.e. for atoms and molecules with a closed-shell structure. The 

magnetic-field dependence to the energy originates then exclusively from the term qua

dratic in B . For a system of N atoms or ions per unit volume, each consisting of n elec

trons which have an average square radial distance from the nucleus equal to < r2 >, the 

summation 
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in (3.4) can be replaced by ( 2Nn < r2 > / 3 ). This substitution results in an excess mag

netic energy per unit volume of 

and, consequently, in a diamagnetic susceptibility 

(3.5) 

If the system (solid, liquid or gas) consists of N a atoms or ions of the a-type per 

unit volume, and all these species are closed electronic shells, then the diamagnetic sus

ceptibility of the system is given by 

(3.6) 

where na and < r ~ > are, respectively, the number of electrons on the a atom or ion and 

the mean value of r2 for the electrons from their nucleus, for that particular species. 

It should be noted that the diamagnetism of closed-shell systems is essentially a 

very weak perturbation of the non-degenerate ground state caused by the presence of the 

applied magnetic field. It is therefore a pure quantum-mechanical phenomenon -- since 

it requires a discrete, non-degenerate lowest energy state in the spectrum, a feature that 

can only be achieved quantum-mechanically -- and an effect that depends extremely 

weakly on the temperature. This virtual temperature independence is. once again, 

caused by the same features of the spectrum: only at inaccessible temperatures are the 

excited states appreciably populated, the only way in which the various < r ~ > in (3.6) 

can be affected by the temperature. 
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4. ORBITAL DIAMAGNETISM OF METALLIC ELECTRONS 

Metallic electrons are, by their very nature, itinerant. Their wave functions extend 

essentially over the entire crystal and their energy spectrum is in the form of bands 

separated, in some cases, by forbidden energy gaps. The single-electron wave functions 

{see 12-oo-4-296} are in the form of Bloch states, i.e. a product of a plane wave of vec

tor k, a periodic function with the full periodicity of the crystal lattice, and a spinor. 

Each Bloch function is thus labelled by a k-vector, a band index v (a positive integer), 

and a spin index cr ( i or J.). The vector k is restricted to a finite region in reciprocal 

space (k-space), a polyhedron known as the Brillouin zone. The energy E of each state 

is given by the band-structure function Ev(k,cr), which is continuous in k-space. These 

features arise from the solution of the Schrodinger equation in a periodic potential, and 

from the properties of periodic functions and Fourier series in three dimensions. 

The occupation of the one-electron energy bands follows FERMI-DIRAC STATIS

TICS {see 08-01-5-215}, with no more than one electron occupying each state. At very 

low temperatures, T -+ 0 , the Fermi-Dirac distribution is a step-function, with all elec

tronic states with energy E < EF being occupied by one electron, and all states with 

E> EF being empty. The energy EF is called the Fermi level and, in a metal, falls in the 

middle of one or more bands, i.e. not in the middle of a forbidden energy gap. The 

equation 

Ey(k,cr) = EF (4.1) 

defines, for a metal, a surface in k-space called the FERMI SURFACE {see 12-00-4-

297 } . This surface consists of one or more sheets -- one or more for each band v which 

crosses the Fermi level --, is defined within the Brillouin zone, and has all the symmetry 

and periodic properties of the Brillouin zone and k-space. 

Metallic electrons do not form closed electronic shells, and therefore do not fall in 

the category discussed in the previous section. The fact that the Fermi level falls in the 
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middle of a continuous energy band guarantees that the ground state of the many

electron system is not part of the discrete spectrum, i.e. the ground state is the lowest of 

a set of continuum states. The response of metallic electrons to an applied magnetic 

field is in general very complex, and contains several contributions of various charac

teristics which must be treated separately: 

(i) If the bands of different spin are not identical and are occupied differently then the 

system develops a spontaneous local magnetization which, depending on the way it 

distributes itself, results in MAGNETIC ORDERING {see 13-00-4-329}; these 

ordered states include ferromagnets, ferrimagnets, antiferromagnets, spiral spin 

arrangements, etc. 

(ii) If the bands of different spin are identical -- and identically occupied -- in the 

absence of an applied magnetic field, then the electron spin and its associated mag

netic moment are responsible for a rearrangement of the band occupation when a 

magnetic field is applied; the imbalance in the spin distribution results in a 

temperature-independent positive susceptibility known as PAULI PARAMAGNE

TISM {see 13-00-4-328}. For simple metals of columns I, II, III and IV of the 

periodic table that contain only fully occupied and/or fully empty d and f atomic 

shells, a commonly used approximation is the so-called free-electron model. This 

model replaces the periodic potential of the lattice by a constant, i.e. the periodic 

oscillations of the potential are completely smoothed out. As a consequence the 

periodic factor in the Bloch state reduces to a plane wave of vector Gv; the set of 

Gy's is infinite but discrete and constitutes the so-called the reciprocal lattice. The 

energy spectrum for the Bloch states in the free-electron model is given by 

, . 
(4.2) 

In this model the Pauli contribution to the (paramagnetic) susceptibility per unit 

volume is equal to 
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(4.3) 

In (4.3) ~ is the Bohr magneton, N is the number of metal atoms per unit volume, 

and n is the number of metallic (conduction) electrons per atom. 

(iii) There is, in addition, an orbital diamagnetic contribution to the susceptibility, 

known as LANDAU DIAMAGNETISM, discussed below. For the free-electron 

model this contribution is 

(4.4) 

i.e. 'XLandau = - ( 1/3 ) 'XPauli , which yields a total paramagnetic susceptibility 

'X/ree-electrons = ( 2/3) 'XPauJi (4.5) 

for the free-electron model. The free-electron model, however, has only a very res

tricted range of applicability. For some substances -- the semimetals As, Sb, Bi, 

and graphite being the most notable examples -- real band-structure effects, caused 

by the periodic potential, produce a large enhancement of the Landau diamagne

tism, by factors of up to several hundred. The diamagnetic contribution thus 

overwhelms the paramagnetic Pauli term; the net result is a negative 'X and a 

diamagnetic solid. 

(iv) The orbital contribution of metallic electrons also includes a diamagnetic term 

which oscillates with the magnetic field, and is periodic in (l/B). This oscillatory 

contribution is called the DE HAAS - VAN ALPHEN effect. Its periods and 

amplitudes give very precise information on the geometrical and differential pro

perties of the Fermi surface. 
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4.1 Quantization of Itinerant Electrons in a Magnetic Field 

To study diamagnetic effect in metals the effect of the electron-electron interaction 

can be neglected, and the electrons may be treated as independent particles. Independent 

electrons moving in a crystal lattice in a magnetic field are described by (3.3). with the 

electron-electron interaction made to vanish, V = 0, and with the electrostatic term 

[- e <1>( r i )] representing the periodic potential acting on electron i and caused by the lat

tice of nuclei and ionic cores. The solution of the Schrodinger equation under these con

ditions is still a very complex and difficult process. The difficulty arises from 

conflicting periodicities imposed separately by the lattice and the magnetic field. The 

problem is simple only in the free-electron case, q, = O. The solution was obtained by L. 

D. Landau in 1930, the early days of Quantum Mechanics. Landau chose the field B 

along the z -axis and an asymmetric gauge 

A = [0, Bx ,0] (4.6) 

The resulting spectrum is 

(4.7) 

where v is a non-negative integer, kz is the wave vector for motion along the direction 

of the magnetic field, and roc' the so-called cyclotron frequency, is given by 

roc = e B 1m (4.8) 

This spectrum for three-dimensional electrons, which depends only on two-quantum 

numbers (a discrete v and a continuous kz ), is highly degenerate -- each energy is shared 

by very large number of states. There is a "hidden" quantum number, Icy. necessary to 

define completely the wave function. The energy £ does not depend on Icy and all wave 

functions with the same v and kz -- no matter the value of Icy -- have the :same energy. 

For each fixed value of the set (v, kz ), there are 

(4.9) 
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different ky states, where (Lx Ly) is the macroscopic area of the crystal -- assumed to be 

prismatic -- perpendicular to the direction of the magnetic field. 

Each integer v defines for the perpendicular motion in the (x ,y ) plane and for fixed 

kz a discrete energy level, called a LANDAU LEVEL. 

From this spectrum, (4.7) - (4.9), its degeneracy and its dependence on the mag

netic field intensity B, all thennodynamic quantities can be calculated for the free

electron model. Some of these quantities are discussed explicitly in the next two subsec-

tions. 

Extension of equations (4.7) - (4.9) to the case of a non-vanishing periodic poten

tial was proposed by L. Onsager and I. M. Lifshitz, who based their method on a semi

classical approach. This approach consists of determining electron trajectories and 

applying to them the Bohr-Sommerfeld "old" quantum-mechanical quantization rules, 

i.e. 

f p·dr=(v+'Y)21t1i, 
closed orbit 

, (4.10) 

where v is a non-negative integer, 'Y is a (positive) phase correction which takes the 

value 'h in the free-electron case, the position r follows the closed semi-classical trajec

tories of the electron in the (x ,y ) plane, p is the canonical momentum 

p=1ik-eA (4.11) 

1i k is interpreted as the kinetic momentum, and (- e A) is the contribution of the field to 

the canonical momentum. 

The semi-classical equations of motion of electrons in a periodic potential and a 

magnetic field are given by 

kparallel = constant (4.12) 

where kparallel is the component of k parallel to B, 

Ey(k,a) = constant (4.13) 
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and 

. 
1ik=-erxB (4.14) 

which integrated and with proper choice of the origin yields 

1ik=-erxB (4.15) 

for the motion perpendicular to B . 

Insertion of (4.15) and (4.11) into (4.10), use of Stokes's theorem and application 

of (3.1) yields Onsager's famous result for the quantization of itinerant electron orbits in 

a uniform magnetic field, 

f p . d r = e ~ = (v + y) 21t 1i , (4.16) 
closed orbit 

for the motion of the electrons perpendicular to B. In (4.16) ~ is the magnetic flux 

encircled by the electron in its trajectory in the plane perpendicular to B. In other words 

the only trajectories that are (quantum-mechanically) allowed are those that, in the plane 

perpendicular to B, encirle a magnetic flux ~ which takes the discrete values 

21t 1i 
~y = (v+y) -

e 
(4.17) 

Because the magnetic flux is quantized, and the value of the magnetic field B is 

externally determined, the areas of the allowed orbits in real space, Ay , must take well 

defined, discrete values. In addition (4.12) , (4.13) and (4.15) state that the orbits in real 

space in the plane perpendicular to B are proportional to -- and rotated by an angle of 

(1t /2) from -- the corresponding trajectori~s in k-space. The cross sections (4.12) at a 

constant kparaIJel of the surface of constant energy in k-space, (4.13), are therefore pro

portionalto the areas Ay of the allowed orbits in real space. The cons~t of propor

tionality between areas in k-space and real space, as given by (4.15), is proportional to 

B2, i.e. equal to (e B 11i )2. Therefore the allowed cross-sectional areas Sy of the sur-

faces of constant energy in k-space are given by 



- 19 -

(4.18) 

Because the cross-sectional areas in k-space S v perpendicular to B are quantized --

take only the discrete values given by (4.18) -- the energies for the motion perpendicular 

to B are also quantized. Two successive levels, which differ by flv = ± 1, are separated 

by an energy fl e, which defines, for that particular ~alue of the energy and that particu

lar value of kz' a cyclotron frequency roc * and an effective cyclotron mass mc * : 

(4.19) 

When the Onsager rules (4.18) are applied to the free-electron model, the results 

(4.7) - (4.9) are obtained if"(= V2. For this particular case roc * = roc' as given by (4.8), 

and me * = m , i.e. the cyclotron mass is equal to the electron mass. 

It should be mentioned that transition between two adjacent Landau levels, with 

conservation of kparallel can be induced, for electrons near the Fermi level, by 

microwave or far infrared radiation; when the frequency ro of that radiation is in the 

vicinity of roc' a resonance -- the so-called CYCLOTRON RESONANCE or diamag-

netic resonance -- is observed. 

4.2 Landau Diamagnetism 

For non-interacting electrons, the total energy of the system -- the metal -- is 

obtained by adding the individual energies of each electron. Since electrons satisfy 

Fermi-Dirac statistics {see 08-01-5-216}, in the limit T ~ 0 that total energy is obtained 

by summing one-electron energies for all states with energy below the Fermi level eF. 

The term (lh) in the factor ( v + lh ) in (4.7) -- or equivalently the term "( in the fac

tor (v + "() in (4.17)-(4.18) --, which is ordinarily called the zero-point energy, guaran

tees that although upon the application of a magnetic field some states increase their 
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energy and other decrease it, the energy sum over states of contiguous occupation up to 

the Fermi level always shows an increase by an amount proportional to B2, thus yield

ing a diamagnetic contribution to the susceptibility. This is the Laundau diamagnetic 

contribution to the susceptibility of metallic electrons. 

The summation is in general difficult to perform. It can be done numerically -- and 

laboriously -- for some specific cases, where the number of carriers is small, i.e. for the 

semimetals. For the free-electron model the summation can be accomplished in closed 

form. The result is that quoted in (4.4). 

4.3 The de Haas - van Alphen Effect 

The de Haas - van Alphen effect is an oscillatory variation in the magnetic suscep

tibility of metals as a function of the magnitude of the static magnetic field intensity B . 

It is an effect observed in strong magnetic fields, for pure specimens, and at low tem

peratures. These three conditions arise from the necessity to have the Landau levels 

widely separated, not blurred by electron collision effects with impurities, and populated 

with a sharp discontinuity at the Fermi level, i.e. a discontinuity in occupation of essen

tially 1 between the last "occupied" and the first "empty" levels. These conditions may 

be summarized by two inequalities 

roc * 't:> 1 (4.20) 

where roc * is the cyclotron frequency defined by (4.19), kB is Boltzmann's constant 

and't, the relaxation time, is the median time between electron collisions {see 08-01-5-

212 and 08-01-4-214}. 

The locus of allowed quantum states -- in k-space -- for itinerant electrons in a 

periodic lattice and a magnetic field are "tubes", i.e. cylindrical shells of well deter

mined, discrete cross sections, given by (4.18). The cylinders, nor necessarily of 
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circular cross section, are inside each other in order of either increasing or decreasing 

energy .. For the free-electron model the tubes are concentric circular cylinders of axis 

parallel to B. These highly degenerate tubes, when the conditions (4.20) are satisfied, 

are populated by electrons if the energy of their states is lower that EF' i.e. states are 

occupied for that part of those tubes that lies inside the Fermi surface (4.1). Only some 

parts of some tubes are populated by electrons. The rest -- the states for which E > EF -

are allowed but empty states. This distribution is illustrated in Figure 1. 

As the magnitude B of the field increases the tubes get more widely separated and 

contain more states -- as indicated by (4.18) and (4.9). The tubes get thus repopulated at 

each increasing value of the field. For each orientation (9 , <1» of the magnetic field B 

there are discrete values of the field intensity, B v , for which a given tube gets com-

pletely depopulated, i.e. it "leaves" the Fermi surface and lies completely outside. 

These values of the field B v satisfy the condition 

(4.21) 

where SFermi surface (9 , <1» is the extremal cross-sectional area of the Fermi surface in the 

direction perpendicular to B. This phenomenon of allowed-energy tubes "peeling off' 

the Fermi surface results in a contribution to the free energy, the magnetization, and the 

susceptibility of the sample which is periodic in (liB), with period 

Ll [1..] = 21t e 
B 11. SFermi surface (9 , <1» 

(4.22) 

i.e. a (1 / B) period inversely proportional to the extremal cross-sectional area of the 

Fermi surface in the direction (9 , <1» perpendicular to B. 

If the Fermi surface is complex and exhibits several sheets and/or several extremal 

cross-sectional areas for a given sheet, the magnetization becomes a very complicated 

oscillatory function. The analysis of the various periods in (liB) permits the determina

tion of the corresponding cross-sectional areas. Studies of the variation of the 



- 22-

oscillations with orientation (9 , $) of the magnetic field lead to accurate determination 

of the geometry and topology of the Fenni surface of the metal under consideration. 

The amplitude of the oscillations and its variation with temperature yield informa

tion about the separation between the levels -- the cyclotron mass me * at the Fenni level 

for a particular orientation, (9 ,$), an intrinsic property of the metal -- as well as the 

relaxation time 't, a specific property of the sample under study. The de Haas - van 

Alphen effect provides the most useful tool to investigate the electronic properties of 

metals. It yields extremely accurate information on the structural and dynamical proper

ties of itinerant-electron states in solids. 

S. DIAMAGNETISM IN SUPERCONDUCTORS 

Superconductors are perfect diamagnets for a given range of intensities of applied 

magnetic fields. They are also perfect conductors, i.e. they have zero resistivity. 

Although the zero resistivity is a necessary condition for perfect diamagnetism -- since it 

is required for the induced currents in Lenz's law not to decay -- by itself it only implies 

that the magnetic field in the bulk of a superconductor cannot be changed, whatever its 

value. The expulsion of the field from the bulk of a superconductor is an additional pro

perty, known as the MEISSNER EFFECT. It is illustrated in Figure 2. 

SUPERCONDUCTIVITY (see 11-00-4-287) is a phase, a state of matter (in the 

sense that ice and steam are phases of water and diamond and graphite are phases of 

pure carbon) observed only in some solids, mostly metals. 

The superconducting state has several characteristic properties: 

(i) When it exists for a given substance, it exists only at temperatures below a so

called transition temperature Te , and in general down to the absolute zero of the 

temperature scale 0 K. 
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(ii) It exhibits d.c. zero resistivity i.e. infinite conductivity for zero-frequency measure

ments (an effect discovered in mercury by Kamerlingh Onnes in 1911), 

(iii) It exhibits, for weak. magnetic fields, perfect diamagnetism, 

i.e. its magnetic susceptibility is given by 

x = :- 1 

(5.1) 

(5.2) 

which means that magnetic flux lines are completely expelled from the supercon

ductor and that there is a force pushing superconductors away from magnetic fields. 

This is the Meissner effect discovered by Meissner and Ochsenfeld in 1933. 

(iv) In addition to the effect of high temperatures, superconductivity can be destroyed 

(with a return to the normal metallic state) by either a large enough· electric current 

I > Ie' or a large enough applied magnetic field B > He' The quantities Ie' and He 

are called the critical current, and the critical magnetic field, respectively. 

(v) Superconductivity is a macroscopic quantum phenomenon with amplitudes and 

phases associated with an order parameter'll. Therefore interference and 

diffraction effects can be achieved, in particular the Josephson effect. These effects 

can be fruitfully employed in processing, storing, and retrieving information, i.e. in 

computer technology {see 11-00-1-291}. 

5.1 The Meissner Effect 

Meissner and Ochsenfeld discovered that, when a superconductor is cooled below 

Te in the presence of a magnetic field, at the transition the lines of induction B are com

pletely expelled from the bulk of the sample. In other words, inside the superconductor 

(5.2) is obtained or, equivalently, 

B=O (5.3) 
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This result holds up to a given value of the applied field B. In the so-called type I 

superconductors there is only one critical field He' For B > He superconductivity is 

destroyed, the flux fully penetrates the sample, and the metal returns to its normal state. 

In type II superconductors there is no field penetration for B < Hcl and the super- .. 

conductors acts as a perfect diamagnet. For intermediate field strengths He 1 < B < He2, 

the magnetic flux lines partially penetrate the superconductor but do not destroy the 

superconducting state. Since in general He2 is very large, this feature of type II super

conductors make them useful as materials for magnets {see 1l-OO-1-294}. Finally for 

B > He2 superconductivity is again destroyed with a return of the substance to its nor

mal state. This behavior is illustrated in Figure 3. 

5.2 The London Theory 

The London theory is completely classical. It incorporates into Maxwell's equa

tions, phenomenologically, the electrodynamic characteristics of superconductors, The 

zero resistivity property (5.1) requires that, since 

pj =E 

the electric field E should vanish everywhere in a superconductor. The Meissner effect 

(5.2)-(5.3) implies vanishing magnetic field B in the bulk. These two conditions led F. 

London, in 1950, to postulate that in a superconductor the current density j, instead of 

being proportional to E, as is the case in other media, is proportional to the vector poten-

tial A 

j=_[ 1 ]A 
Jlo Ai 

(5.4) 

where the constant of proportionality defines the length AL' the London penetration 

depth. The London equation (5.4), by taking the curl on both sides, may also be 

.;. 
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vX j =[ 12]B 
J.l.o AL 

(5.5) 

Since the vector potential A is not, in general, a physically measurable quantity, and the 

current density j always is, equation (5.4) in effect selects a particular gauge, the so

called London gauge. Equation (5.4) must be consistent with Maxwell's equations. 

Therefore it implies that, in the absence of charges V . A = 0, and that the normal com

ponents of A are zero on any external surface through which no external current is fed. 

Additional conditions on the gauge, compatible with the physical boundary conditions, 

should be imposed on problems with multiply connected geometries. 

It is easily seen that the London equation implies the Meissner effect, and that AL 

is the characteristic length describing the penetration and exponential decay of the mag

netic field B into a superconductor. From Maxwell's equation, 

VxB=J.l.o j (5.6) 

when the curl is taken on both sides and use is made of (5.5) and of Maxwell's other 

equation, V . B = 0, one obtains 

(5.7) 

Equation (5.7) does not allow a constant B solution, unless B = 0. In addition (5.6) 

guarantees that j = ° wherever B vanishes. In a superconductor extending over the 

half-space x ~ 0, if the field at the boundary x = ° is parallel to the surface and of mag

nitude B 0 , solution of (5.6) yields 

B (x) = B 0 exp (- x I AL) (5.8) 

i.e. the field decays exponentially into the superconductor, a perfect diamagnet, with 

characteristic length given by the London penetration depth. 
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5.3 The Ginzburg-Landau Theory 

5.3.1 General Formulation 

In . 1950 Ginzburg and Landau (GL) proposed a macroscopic, phenomenological 

theory of superconductivity, which was independent of the microscopic aspects of the 

phenomenon. The theory is quantum-mechanical, in the sense that includes coherent, 

macroscopic quantum effects. It is a pioneering theory which, independently of the 

mechanisms responsible for superconductivity, is still valid today. It contains such 

diverse phenomena as magnetic-field penetration depths, coherence lengths, magnetic

field flux quantization, magnetic-field dependence of the superconducting order parame

ter, and the Josephson effect. It can be applied to all superconductors, as well as to 

superfiuid 3He, and has become the prototype theory to study a whole class of 

phenomena related to spatial dependence in second-order phase transitions. 

The GL theory introduces a complex order parameter 'I' which is allowed to vary in 

space. Originally GL interpreted 'I' as an amplitude, and 1'1'12 as the density of the 

"superconducting" electrons (they envisioned a superconductor as two interpenetrating 

electron fluids, the non-dissipative, non-resistive "superconducting" electron fluid, and 

the dissipative, resistive "normal" electron fluid). In 1959. however, Gor'kov proved 

that for temperatures below and close to Tc ' equations identical to those of GL could be 

obtained from the Bardeen-Cooper-Schrieffer (BCS) microscopic theory of superconduc

tivity, and that the GL parameters 'I' could be interpreted (except for a trivial constant of 

proportionality) as what in the BCS theory is known as the energy-gap parameter. 

The starting point of the GL theory is the introduction of a magnetic Helmholtz 

free energy FSH for the superconductor, derived from plausibility arguments 
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(5.9) 

Here F NO is the free-energy density of the nonnal state in the absence of a magnetic 

field; llF is the difference of free-energy densities between the superconducting and the 

nonnal states (also in the absence of a field) and is a function of 1'1'12. The third tenn is 

the gauge invariant "superconducting kinetic 'energy", and the last tenn is the magnetic-

field energy in the superconductor. The vector potential is A, B is the magnetic field, 

and e * is an effective charge, known now to be (- 2e), twice the charge of the electron 

(the charge of a "Cooper pair" in the BCS theory). All tenns in (5.9) are functions of 

the position r, and change with the magnitude and direction of the magnetic field. 

Because the proper variables of the magnetic Helmholtz free energy are the tem

perature T and the magnetization M, where 

M = (l/Jlo) f d 3r [B(r)-Ba ] 
all space 

(5.10) 

Ba = applied magnetic field 

FSH is not continuous at the critical fields. The function which is continuous at He 1 and 

He2, and whose proper variables are T and Ba, is the Gibbs free energy GSH ' given by 

GSH = FSH - M . Ba (5.11) 

Substitution of (5.9) and (5.10) into (5.11) yields 

(5.12) 

where 
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It should be noted that the last tenn in (5.12) is to be integrated over the whole space 

(both in the superconductor and outside). Minimization of G with respect to the four 

functions '\jf and A [or equivalently '\jf and B] yields the GL equations: 

(5.13) 

v x A = Ba on surface (5.14) 

aM +_1_ (-i 11. V _e*A]2 lIf=O 
d'\jf* 2m 't'" 

(5.15) 

( i 11. V'\jf + e * A'\jf terpendicular = 0 , (5.16) 

where the London gauge 

V·A=O 

has been chosen. 

5.3.2 Penetration Length and Coherence Length 

In singly connected samples with no penetration of the magnetic flux into the bulk 

superconductor, the phase of'\jf can be chosen so that '\jf is real throughout the sample. In 

particular for a one-dimensional, singly conrtected problem, with quantities varying 

along the x -axis, and with magnetic field and vector potential given by 

B = [ 0 ,0, B (x) ] 

A = [0, A (x), 0] 

the equations (5.13)-(5.16) become 

(5.17) 

(dA / dx) = H 0 on surface , (5.18) 

(5.19) 

;. 
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(d'l' / dx) = 0 on surf ace (5.20) 

For the free-energy difference M' , the original GL derivation used a power-series 

expansion in 1'1'1 2, and neglected all tellllS higher than the second. That expansion is 

still commonly used, and is known to be valid for superconductors at temperatures close 

(5.21) 

where Hcb is the thermodynamic bulk critical field, and'l'T is the equilibrium value of 'I' 

in the bulk, at temperature T, in the absence of a magnetic field. 

The problem of the superconducting half-space discussed above, (5.8) in connec

tion with the London equation; can be solved in the GL theory. Integration of (5.17)

(5.21), under the assumption of small changes in 'I' near the surface, yields for x > 0 

(5.22) 

and 

(5.23) 

Equation (5.23) reproduces, approximately, (5.8). In the GL equations AL, the London 

penetration depth, is given by 

(5.24) 

In (5. 22) Ko is a dimensionless constant 

(5.25) 

Two remarks are necessary at this point. First, there are two length scales in the prob

lem: (i) the decay length for magnetic fields, AL' and (ii) the decay length, (AL / "2Ko ), 

for the order parameter '1', given by the first exponent in (5.22). Second, Gor'kov has 
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shown that 

(5.26) 

where ~o is the coherence length introduced by Pippard in connection with the general 

electromagnetic properties of superconductors {see 11-00-4-287}. Values of Ko are 

small ( < 0.707 ) for the soft, type I superconductors [0.01 for AI; 0.3 for Pb], whereas it 

takes large values ( > 0.707) for the hard, type II superconductors [ - 8 for V; extremely 

large for the new, high Te materials {see 1l-00-4-288}]. 

A type I superconductor excludes a magnetic field from its bulk completely. If the 

magnetic field B is increased there is a value, He for which the superconductivity is sud

denly destroyed. the system returns to the normal state, and the magnetic field penetrates 

the specimen completely. A type II superconductor excludes the field completely up to 

a value Hc1. Above Hc1 the field is partially excluded, although the specimen remains 

superconducting and exhibits zero resistivity. At a higher field, He2 , the flux penetrates 

completely, superconductivity is destroyed and the specimen returns to its normal state. 

5.3.3 Flux Quantization 

In many applications (thin specimens, weak magnetic fields, etc.), the order param

eter 'V can be considereq to have a constant magnitude nih, although its phase 8(r) can 

vary appreciably in space, 

'I' = nih e i9(r) • (5.27) 

From standard quantum-mechanical arguments the electrical supercurrent is given in this 

case by the usual formula 

j = ~ ['1'* [ -i 1i V - e * A J 'I' + 'V [i 1i V - e * A J 'V*] 
n e* [ ) =-m- 1iV8-e*A . (5.28) 
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Deep inside any superconductor the magnetic field B and the electric current j are 

zero and, therefore, from (5.28) one obtains 

e* A=nV9 (5.29) 

In a multiply connected sample one can find a closed path C which encircles a 

non-superconducting region where there may be a magnetic field. Line integration of 

(5.29) over that path, use of Stokes's theorem and knowledge that 'I' must be single

valued yields 

fA' d s = f VxA' d CJ = f B· d CJ = <1> 
closed C area C area C 

= n f V9· ds = ~ . 21t V 

e * closed C e * 
(5.30) 

where <1> is the magnetic-field flux, and v is an arbitrary integer. In other words (5.30), 

taking Ie * I = 2 e, can be written 

<1> = v <1>0 = v . 2.0678 x 10 -15 tesla m 2 , (5.31) 

i.e. if a closed path without currents can be established deep inside a multiply connected 

. superconductor, then the magnetic-field flux encircled by that path is quantized in units 

of <1>0' The unit of flux, <1>0 ' is called afiuxoid. 

5.3.4 Phase-Current Relationship; the Josephson Effect 

From the GL equations it -can be easily seen that the order parameter 'I' has an 

indeterminate arbitrary, constant phase. In a given superconductor (called 1) its phase 

91 is completely arbitrary. If, however, there is nearby a second superco~~uctor (called 

2), which is weakly connected to the first one, although both phases, 91 and 92, are 

indeterminate by the same additive constant, the phase difference between the two, 
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is an observable meaningful quantity. As can be seen from (5.28) a variation of e over 

space is responsible for the existence of a supercurrent. Similarly a phase difference 

between two weakly coupled, spatially close superconductors produces a current flow 

between them given by 

J = J 0 sino. (5.32) 

where J 0 ' a constant, describes the maximum possible current which may flow between 

the two specimens. Equation (5.32) is Josephson's d.c. equation relating current and 

phase difference. It is implicit in the GL equations and applies to any system with a 

macroscopic, quantum-mechanical, complex order parameter. It can be interpreted in 

terms of the standard quantum-mechanical uncertainty relation between particle number 

and wave-function phase. 

5:3.5. Magnetic-Field Dependence of the Order Parameter 

Detailed solutions of (5.17)-(5.21) for thin films clearly exhibit a field dependence 

of the amplitude of the order parameter I'V I on the applied magnetic field strength B a • 

As the field is increased the value of I'V I decreases, and there is a value HI for which it 

goes (either continuously or discontinuously) to zero and the film becomes normal. It is 

found that HI -- the film critical field -- depends on Reb' the film thickness d, and the 

London penetration depth, and that the I 'V I transition to zero at HI is discontinuous if 

dlA.L > V5. 

These results, and many others obtained from the solution of the GL equations for a 

variety of geometries and situations. have been confirmed by supercondu~?ng tunneling 

experiments. 
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5.3.6 Quantum Interference Phenomena 

Given the following facts: 

(i) the order parameter 'I' is complex; 

(ii) 'I' m1;lst be single valued; 

(iii) the magnetic field B couples to it in a gauge-invariant form and therefore is directly 

related to the phase e of '1'; and 

(iv) the GL equations are non linear; 

it is possible to obtain a large number of interference and diffraction effects which 

can be fruitfully used in designing interesting electronic devices {see ll-00-1-291}. 

It can be said that, in understanding the origins of the diamagnetism in supercon

ductors, scientists and engineers have promoted quantum mechanics to the macros

copic, everyday-use level. 

6. CONCLUSION 

All diamagnetic effects are quantum mechanical. The persistence of the currents 

induced by by Lenz's law is caused exclusively by the phase coherence of the quantum

mechanical wave functions, either at the microscopic level -- as evidenced in the 

diamagnetism of atoms, molecules and metallic electrons -- or in their macroscopic man

ifestations -- as in superconductors. One of the principal effects is the gauge-invariant 

way in which quantum-mechanical phases couple to magnetic fields. This coupling pro

duces, in addition to steady currents that result in a screening of the magnetic field, i.e. 

normal diamagnetism, a wealth of refraction, interference and diffraction effects which 

are directly observable experimentally. The de Haas - van Alphen effect; discussed in 

Section 4, and the Josephson Effect and Flux Quantization in superconductors, presented 

briefly in Section 5, are all manifestations of the relationship between electrical current 

and quantum-mechanical phase, coherent coupling of magnetic fields to the phases of 
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quantum-mechanical wave functions or order parameters, and the relationship between 

electrical currents and magnetic fields as given by Maxwell's equations. 
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FIGURE CAPTIONS 

Figure 1 

Schematic representation of the quantization of metallic electrons in a magnetic 

field. The depicted tubes are the loci of allowed states in k-space. Only the occupied 

portions of the tubes are drawn. (a) The free-electron model. (b) An arbitrary' potential. 

[From Falicov, 1973] 

Figure 2 

Schematic representation of the Meissner effect. When a superconducting sphere is 

cooled in a constant applied magnetic field. below the transition temperature Tc the 

lines of induction B are ejected from the sphere. [From Kittel. 1986] 

Figure 3 

(a) Magnetization versus applied magnetic field for a type I superconductor exhi

biting the Meissner effect (perfect diamagnetism) below He. (b) Magnetization versus 

applied magnetic field for a type IT superconductor. [From Kittel, 1986] 
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