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Abstract 

This paper presents a Buckley-Leverett-type analytical solution for one-dimensional 

immiscible displacement in a linear composite porous medium. The classical Buckley­

Leverett theory, applicable only to flow in a homogeneous porous medium, has been 

extended to flow in an inhomogeneous porous medium, in which the formation system is 

treated as consisting of a number of flow domains with different rock properties. The 

analytical solution, obtained under the conditions for the Buckley-Leverett solution for 

each flow domain, can be used to determine the complete saturation profile in the compo­

site system at all times. The analytical results indicate that noncapillary immiscible dis­

placement of two fluids in a composite system is characterized by discontinuities in 

saturation profiles across the interfaces between adjacent flow domains. 



- 3 -

Introduction 

Immiscible flow and displacement of multiple phase fluids in porous media are of 

fundamental importance to many problems relating to underground natural resource 

recovery and to storage projects, and waste disposal and contamination transport evalua­

tion. Immiscible and miscible flow of multiple phase fluids through porous media, as 

compared with single phase flow, is much more complicated and is not well understood 

in many areas due to the complex interactions of the different fluid phases. Many contri-
, 

butions to this subject have been made since the 1940's. In the petroleum industry, the 

simultaneous flow of oil, gas and water in reservoirs is important in connection with the 

production of oil and gas. The flow of moisture in unsaturated soils (Le., the simultane­

ous flow of water and air) is often encountered in soil science. Multiple phase flow of 

water, hydrocarbons, air and chemicals is also involved in evaluating problems of under­

ground contamination. 

A fundamental understanding of immiscible displacement of Newtonian fluids in 

porous media was contributed by Buckley and Leverett (1942) in their classical study of 

the fractional flow theory. The Buckley-Leverett solution gives a saturation profile with a 

sharp front along the flow direction, but ignores capillary pressure and gravity effects. As 

time progresses, the saturation becomes a multiple-valued function of the distance coor­

dinate, x, which can be overcome by material balance considerations. Where the initial 

saturation is uniform, a simple graphic approach developed by Welge (1952) can be used 

to determine the sharp saturation front without difficulty. Effects of gravity and capillary 

pressure on linear waterflood was included by Fayers and Sheldon (1959), Hovanessian 

and Fayers (1961), by numerical models. Some special analytical solutions of immisci­

ble displacement including the effects of capillary pressure were obtained in Russian and 

Chinese literature in the 1960's (Chen,1988), and more recently by Yortsos and Fokas 

(1983) and McWhorter and Sunada (1990). 
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The state of the art in numerical modeling of immiscible fluid displacement 

processes has advanced considerably since the 1950's (Douglas et al., 1959; Coats, 1987; 

Aziz and Settari, 1979; and Thomas, 1982). A large number of numerical models have 

been developed to simulate the process of waterflooding under quite general operating 

and reservoir conditions in oil production. However, numerical techniques cannot 

replace analytical methods completely, since i) numerical methods need checking against 

analytical solutions because they are subject to discretization errors that may be espe­

cially troublesome for problems that involve propagation of sharp fronts, and ii) analyti­

cal solutions if available often provide a better insight into the physics of the transport 

phenomena occurring within the porous media. 

In this paper, we extend the Buckley-Leverett theory to the flow problem in a com­

posite porous medium, which is used to approximate more complicated formations. Our 

formulation considers a one-dimensional linear flow system, consisting of two flow 

domains with different rock properties, but an extension to an arbitrary number of 

domains is straightforward. A new analytical solution to describe displacement of two 

immiscible fluids in this composite system is developed and examined using a numerical 

simulator. Immiscible displacement in composite systems is found to give rise to com­

plex saturation profiles, which consist of different-shape segments with discontinuities at 

the interfaces of adjacent flow domains. 

2. Mathematical Formulation and Analytical Solution 

Two-phase flow of immiscible fluids is considered in an incompressible composite 

system, consisting of two flow domains (j=I, 2) with each domain having different rock 

properties. The mathematical formulation of immiscible multiple phase flow in porous 

media has been discussed extensively in the literature (Willhite, 1986). For the 
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derivation of the analytical solution, the same assumptions as used for the Bucldey­

Leverett solution are made for each flow domain, namely, 

1. the two fluids and the porous medium are incompressible, 

2. the capillary pressure gradient is negligible, 

3. the flow is one-dimensional linear, 

4. the fluid and rock properties are constant within each domain, 

and additionally, 

5. the formation properties change in discontinuous fashion at the contact 

between domains 1 and 2. 

The flow system under consideration (See Figure 1) is a linear one-dimensional 

composite flow tube with a constant cross-sectional area A. The system is initially 

saturated uniformly with a mixture of a non-wetting phase fluid (such as oil) and a wet­

ting phase fluid (such as water), and at time t = 0 injection of the same wetting fluid is 

started at the inlet (x = 0). It is further assumed that gravity segregation is negligible and 

that stable displacement exists near the displacement front (no viscous fingering). The 

fractional flow function for the wetting phase in domain j (j=I, 2) may be written in the 

following form (Willhite, 1986): 

(1) 

where ~iS) and kw,j(S) are relative permeabilities of domain j (j = 1, 2 ) to non-wetting 

and wetting phases, respectively, as functions of wetting phase saturation, S; ~ and J.1w 

are viscosities of non-wetting and wetting fluids, respectively; Kj is absolute permeabili­

ties of domain j; q(t) is the volumetric injection rate of wetting fluid at the inlet; 

Pn and Pw are densities of non-wetting and wetting fluids; and a. is the angle of the flow 
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direction with the horizontal plane. 

The partial differential flow equation for the wetting phase in each domain can be 

expressed in terms of saturation and fractional flow as 

_af~j(S_) + _<I>j_A _a_s = 0 
ax q(t) at 

for j = 1,2 (2) 

where <l>j is the formation porosity in domain j. As shown by Buckley and Leverett, this 

equation describes propagation of different saturations at different characteristic speeds, 

given by (Willhite, 1986) 

for j = 1,2 (3) 

The interface at x = D between domain 1 and 2 is a discontinuity surface for poros­

ity and absolute and relative penneability. This surface is fixed in space, so that the 

volumetric flow rates for both phases must be continuous at x = D at all times. Thus 

at x=D (4) 

where St- and S2+ are saturations of the wetting phase on the interface 

D- = D - E, D+ = D + E in domains 1 and 2, respectively (E is an infinitesimally small 

increment). 

The complete saturation solution for immiscible displacement in a composite 

medium is obtained in this paper by solving the frontal advance equation (3) in both 

domains, subject to thecontinuity condition Equation (4). 

Since the downstream conditions of the system have no effects on the upstream 

flow, the saturation distribution in domain 1 at all times is given by the Buckley-Leverett 

theory. Suppose that at t = t·, the displacement shock front with saturation S = Sr,t in 

domain 1 reaches the interface. For t > t·, the injected wetting fluid has entered domain 2. 

The total volume of the injected fluid remaining in domain 1 at time t can be calculated 

as 
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D 

Ql (t) = <PIA J[ S(x, t) - S/J dx 
o 

(5) 

where Si 1 is the initial saturation in domain 1. 

The volume of injected fluid that has crossed the interface x = D into domain 2 is 

then given from mass balance considerations as 

(6) 

t 

where Q(t) = fq('t) d't, the total injected fluid volume. Equation (6) will be used to find 
o 

the moving shock saturation front in domain 2. 

Consider a particular saturation S in domain 2, which begins to propagate from the 

interface x = D at t = ts. Multiplying Equation (3) with dt and integrating from ts to t, we 

have 

t 

Xs = D + ~A l[:;]. q«)d< (7) 

where Xs is the travelling distance of saturation S at time t from the inlet. 

As normally done for evaluation of the Buckley-Leverett solution, we pick a value 

of saturation in domain 2, and then use (7) to calculate its location at the given time. The 

starting time ts for each saturation S = S2 + at the interface can be determined by using the 

continuity condition (4). Indeed, for each value S2+ of saturation at x = D+ in domain 2, 

there exists a unique corresponding saturation SI- at x = D- in domain 1 (see Figure 2), 

i) for SI- ~ Sr,l' i.e., for a value of SI-larger than that of the sharp front satura­

tion in domain 1, the time ts for S = St(SI-) to start travelling into domain 2 

is equal to the time at which the corresponding saturation S 1- reaches the 

interface of domain 1, given by 
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(8) 

ii) for SI- < Sr,l, i.e., for values of the corresponding saturation in domain 1 

smaller than or equal to that of the sharp front saturation, the actual starting 

time ts is the time when the sharp front arrives at the interface, 

• ts= t (9) 

As in the Buckley-Leverett solution, a direct use of (7) to calculate saturation profiles in 

domain 2 will result in a multi-valued solution at the displacement front. Physically,this 

corresponds to the development of a moving saturation shock front in domain 2. The 

location xr,2 and saturation Sr,2 of the shock front can be obtained from the mass balance 

constraint, 

Xu 

Q2(t) = <P2A f (S(X, t) - Si,2] dx 
D 

(10) 

where Si,2 is the initial saturation in domain 2. Then, the saturation profile in domain 2 at 

any injection time t (t ~ t) is determined by Equations (7) and (10), with the starting time 

given by Equation (8), or (9). 

Discussion of Immiscible Displacement 

The fundamental displacement behavior of two immiscible fluids in a composite 

system can be discussed using the analytical solution obtained above. For simplicity, let 

us consider a linear horizontal composite system with a constant cross-sectional area A. 

Initially, the system is saturated with only a non-wetting phase, and a wetting fluid is 
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injected at a constant volumetric rate, q , at the inlet x = 0 from t = O. Then, the solution 

(7) for the saturation distribution in domain 2 ( x > D ) is simplified as 

xs=D+ ~[df2] [t-tsJ 
cl>2A dS s 

(11) 

where the starting time ts for this saturation at x = D in domain 2 is, from Equation (8), 

for S1 > Sr,1 (12) 

Here S1 = S1 (S) is the interface saturation in domain 1, corresponding to S in domain 2 

according to Equation (4). When SI ~ Sr,l' we have 

• ts = t (13) 

From Equations (5), (6) and (10), the mass balance for determining the sharp displace-

ment front in domain 2 becomes 

Xu 

Q2(t) = cl>2A J [S(X, t) - Si.2) dx = q t - AcI>lD [SCSi'l] 
D 

(14) 

where SI is the average saturation in domain 1, which can be determined by the graphic 

method (Willhite, 1986). The detailed procedure for calculating saturation profiles is 

given in Appendix A. 

Note that the saturation profile in domain 2, described by Equations (11)-(13), is 

determined from formation porosity and fractional flow curves which, for horizontal 

flow, depend only on relative permeabilities and viscosities of fluids. Thus we have the 

important result that, under the approximations of Buckley-Leverett flow, saturation 

profiles in a composite medium are dependent only on formation porosities and relative 

permeabilities, and are completely independent of absolute permeabilities. In hetero­

geneous geological systems, such as layered formations, the relative permeabilities may 
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be quite different in different flow domains, resulting in a diverse variety of possible 

saturation profiles. 

The fluid and rock properties for illustrative examples are given in Table 1, in which 

the relative permeability functions were chosen typical for oil and water flow in different 

media (Honarpour et aI, 1986). The fractional flow functions for the domains are shown 

in Figure 2, and the predicted saturation profile after an injection time of t = 8,143.3 

seconds is given in Figure 3. The distinguishing features of immiscible displacement in a 

composite porous medium, as shown in Figure 3, are that there exists a saturation discon­

tinuity at the interface of the domains, and that the derivative as;ax has a discontinuity at 

a point (x·, S·) in domain 2, at which the value of S· corresponds to the shock front 

saturation Sr.1 of domain 1, f2(S*) = f1(Sr.1)' 

The wave-traveling behavior of saturation profiles in a two-domain composite 

medium can be represented by characteristics in the (x, t) space, as shown in Figure 4. 

Each straight line represents a constant saturation, and travels at different velocity, which 

is described by the slope of the straight lines. Each value of saturations (S1' S2, or S3) in 

domain 1 corresponds to a unique saturation wave (S·1' S· 2' or S· 3) across the interface x 

= D if S > S· in domain 2. For saturations in the range Sr,2 s; S S; S· in domain 2, the start­

ing times for a saturation to travel from the interface are the same, corresponding to the 

time when the sharp moving front in domain 1 reaches the interface. For a given time t = 

T (T > r*) , the intersections of characteristic straight lines with the vertical line (t = T) on 

Figure 4 give the complete saturation profile, such as given by Figure 3 in S-x space. 

A numerical simulator, MULKOM-GWF (Pruess and Wu, 1988), has been used to 

examine the analytical solution. A comparison of the analytical and numerical results for 

the data of Table 1 is provided in Figure 5. The numerical simulation shows the familiar 

numerical dispersion effects (Aziz and Settari, 1979), but generally agrees very well with 

the analytical solution. 
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If we switch the fractional flow curves for the two domains, the saturation profile 

after time t = 29,927 seconds of injection is shown in Figure 6. In this case, the mass bal­

ance (14) is satisfied before the moving front reaches the point (x *, S*), and there is no 

discontinuity in as/ax versus x in domain 2. The numerical results match the analytical 

solution very well. 

The values of saturation on the interface for both domains are always increasing 

with time. Equation (11) indicates that the travelling distance of a particular saturation S 

from the interface in domain 2 is proportional to derivatives of the fractional flow func­

tion of domain 2 with respect to saturation. In the above two examples, saturation varia­

tions happen to be in a range over which (df:z/dS) decreases as S2+ increases, i.e., a higher 

saturation, later departing from the interface, has a lower velocity (see Figure 7). The 

physical range for saturations in domain 1 is the range with fl ~ f1(Sr,I)' or S ~ Sr,l' and 

for domain 2, as shown in Figure 7, the physical range at a given time when S = S2 + at 

the interface is given by f2(Sr,2) ~ f2 ~ f2(S2 +), or Sr,2 ~ S ~ S2 +. 

Since the relative permeabilities in different regions of a composite medium are 

generally independent, we may have a situation in which the travelling velocity increases 

in domain 2 as the saturation increases. An example of fractional flow curves with this 

behavior is given in Figure 8, and the corresponding correlation of the fractional flow and 

its derivatives is shown in Figure 9. The derivatives of fractional flow with respect to 

saturation increase as saturation and fractional flow increases in domain 2. The resulting 

saturation distribution is shown in Figure 10. In this case, Sr,2 ~ S* , so that there is no 

discontinuity for aSldx in domain 2. The saturation profile in domain 2 has a negative 

curvature since the derivative df2/dS decreases as S decreases in domain 2. 
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Summary 

A Buckley-Leverett type analytical solution for one-dimensional two-phase immis­

cible displacement in a composite porous medium has been developed. Our treatment has 

considered a composite medium consisting of two domains with uniform initial condi­

tions; an extension to an arbitrary number of domains, to non-uniform initial saturation 

distribution, and to one-dimensional horizontal flow in a composite system with non­

constant cross-sectional areas is straightforward. The analytical solution has been exam­

ined using a numerical simulator and excellent agreement has been obtained between 

analytical and numerical calculations. 

Immiscible displacement in composite porous media is found to be characterized by 

discontinuities in saturation profiles across the interfaces of adjacent flow domains, and 

by discontinuous saturation derivatives. Saturation profiles for horizontal displacement 

depend only on relative permeability curves and ratio of fluid viscosities, and are 

independent of absolute permeability. 
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Nomenclature 

Symbol Description Units 

A Cross-sectional area m2 

w· 

D Length of Domain 1 m 

fj Fractional flow of wetting phase in domain j G= 1, 2) 

g Magnitude of the gravitational acceleration m/s2 

K 
J 

Absolute permeability in domain j m2 

~,j Relative permeability to non-wetting phase 

kw,j Relative permeability to wetting phase 

q, q(t) Volumetric injection rate m3/s 

Q(t) Cumulative injected fluid volume m3 

Qj(t) Fluid volume injected into domain j m3 

S Saturation of wetting phase 

Sf" ,J Sharp front saturation of domain j 

S·· 1,J 
Initial wetting phase saturation in domain j G=1,2) 

Sk Distributed saturation in domain 2 

S1 Average wetting phase saturation in domain 1 

S1- Wetting phase saturation at interface in domain 1 

st Wetting phase saturation at interface in domain 2 

t Time s 

ts Time for saturation S to begin to propagate into domain 2 s 

V Injected fluid volume in domain 2 m3 

-' 

x Distance from inlet, coordinate m 

Xr,j Distance to shock saturation front in domain j m 

Xs Distance to saturation S m 

XSk Distance to saturation Sk in domain 2 m 
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Greek Symbols 

a Angle with horizontal plane 

Iln Non-wetting phase viscosity 

~ Wetting phase viscosity 

Pn Density of non-wetting fluid 

Pw Density of wetting fluid 

<l>j Porosity of domain j 

Subscripts 

fj Shock front in domain j 

j Domain index, j= 1, 2 

n Non-wetting phase 

w Wetting phase 

mj Relative to non-wetting phase in domain j 

rw j Relative to wetting phase in domain j 

t Time 

t Total 

Pa's 

Pa's 

kg/m3 

kg/m3 
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Appendix A. 

Evaluation of Saturation Profiles in Domain 2 

1. Determine the sharp front saturation Sf,1 in domain 1 by the Welge method or the 

mass balance calculation. Calculate the time t* at which Sf,1 reaches the interface by 

(AI) 

2. For a given time t (t > t), calculate S1- at the interface in domain 1 by 

qt= (A2) 

Then solve for S2+ in domain 2 by Equation (4). Calculate the average saturation S1 in 

domain 1 by 

[1- f1(S1-)] 

[~L,-
(A3) 

3. Calculate the saturation profile in domain 2 as follows: 

i) choose a saturation Sk (k =0, 1, 2, ... N), In which 

st = SO > S 1 > S2 > S3 >, ... ; 

ii) 

iii) 

calculate the travelling distance XSk of a saturation Sk from x = D by 

(11); 

calculate the injected fluid volume V contained from x = D to x = XSk 

in the portion of domain 2 with S > Sk by 
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Xs' 

V = A<P2 f [Sw - SWir.2] dx 
x=D 

j=k 

= A<P2L[Sj - Si.2]&j 
j=l 

(A.4) 

where .1x· = x· - x· 1 and 'Xn = D J J .r-' . "'V • 

vi) compare V with Q2(t) as given by Equation (14). If V < Q2(t), the 

and 

saturation shock front has not been reached yet, and the process is con­

tinued with the next saturation value Sk+l. If V ~ Q2(t), stop the calcu-

lation, and set 

(A.5) 

(A.6) 

If Sk - Sk+l is taken to be sufficiently small, the calculation of the sharp front will be 

accurate. In this work, we have used .1Sk = .00 1. The above procedure has been pro­

grammed and carried out by computer. 

The above procedure can be easily to extended to composite media with an arbitrary 

number of domains, because of saturation profiles are solely determined from upstream 

conditions. Given the time-dependence of saturation~ at the interface between domains N 

and N + 1, our method will yield the saturation distribution in domain N + 1, which in 

turn defines the time dependence of saturations at the interface to domain N + 2, etc. 
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Table 1 

Parameters for Immiscible Displacement in a Composite System 

Porosity of domain 1 <1>1 =0.20 

Porosity of domain 2 <1>2=0.20 

Cross-Sectional Area A = 1 m2 

Injection Rate q=lxlO-5m3/s 

Wetting Phase Viscosity ~=lcp 

Non-Wetting Phase Viscosity J.1n=5cp 

Permeability of Domain 1 K1=100md 

Permeability of Domain 2 K2=lOmd 

Initial Wetting-Phase Saturation Si,l=O'OO 

Initial Wetting-Phase Saturation Si,2=O'OO 

Length of Domain 1 D = 0.25, 0.5, 1 m 

Relative Permeability kw,l = 1.831S4 

Relative Permeability kn.l = 0.75(1-1.25S)2[l-1.652S2] 

Relative Permeability kw,2 = 0.4687S2 

Relative Permeability ~.2 = 0.5 [1-1.25S ] 2 
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Figure 3. Saturation Profiles in the Two-Domain System. 
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Figure 6. Saturation Profile and Comparison with Numerical Solution. 
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Figure 7. Relationship of Fractional Flow and Its Derivatives in the Two Flow 

Domains. 
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Fractional Flow Curves, Showing Increases in Derivatives of Fractional 

Flow with Saturation in Domain 2. 
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Figure 10. Saturation Profiles for Fractional Flow Curves in Figure 8. 
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